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ABSTRACT

The problem of document classification considers categoriz-
ing or grouping of various document types. Each document
can be represented as a bag of words, which has no straight-
forward Euclidean representation. Relative word counts form
the basis for similarity metrics among documents. Endowing
the vector of term frequencies with a Euclidean metric has no
obvious straightforward justification. A more appropriate as-
sumption commonly used is that the data lies on a statistical
manifold, or a manifold of probabilistic generative models. In
this paper, we propose calculating a low-dimensional, infor-
mation based embedding of documents into Euclidean space.
One component of our approach motivated by information ge-
ometry is the Fisher information distance to define similarities
between documents. The other component is the calculation
of the Fisher metric over a lower dimensional statistical man-
ifold estimated in a nonparametric fashion from the data. We
demonstrate that in the classification task, this information
driven embedding outperforms both a standard PCA embed-
ding and other Euclidean embeddings of the term frequency
vector.

Index Terms— Manifold learning, Riemannian manifold,
geodesics, text classification, information geometry

1. INTRODUCTION

Document classification is an area of machine learning in which
it is desired to distinguish between different classes of docu-
ments, assuming each document can be represented as a ‘bag
of words’. Often this task is performed by first using Principal
Components Analysis (PCA), which is optimal for Euclidean
data, to reduce the dimension of the data and reduce the effect
of the curse of dimensionality. This type of ad hoc feature
vector extraction has been called the “dirty laundry” of ma-
chine learning [1]. The problem of document classification is
one in which the data has no straightforward Euclidean rep-
resentation, as each set is a collection of words from a dictio-
nary, which leads to suboptimal processing and information
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loss. When a statistical model is available, the process of ob-
taining a feature vector can be done optimally by extracting
the model parameters for a given data set. We are interested in
extending this approach to the case in which the data follows
an unknown parametric statistical model.

A document can be viewed as a realization of some over-
riding probability distribution, in which different distributions
will create different documents. For example, in a newsgroup
about computers you could expect to see multiple instances
of the term “laptop”, while a group discussing recreation may
see many occurrences of “sports”. The counts of “laptop” in
the recreation group, or “sports” in the computer group would
predictably be low. As such, the distributions between arti-
cles in computers and recreation should be distinct. A stan-
dard method for differentiating document classes is to form a
probability distribution over a dictionary and use methods of
information geometry to determine a similarity between data
sets [2]. To the best of our knowledge, most metrics in docu-
ment classification which are based on word probabilities [3]
do not restrict the probability manifold to be a lower dimen-
sional parametric manifold. As a result, a geodesic may go
through many probability models that are not admissible in
the context of document classification (e.g., a text with only
the words ‘the’ and ‘of’). Our approach learns the manifold
of admissibility of a probability model from a training set and
constructs geodesics based on such manifolds.

In this paper, we utilize the framework presented in [4],
which we now refer to as Fisher Information Non-parametric
Embedding (FINE), towards the problem of document classi-
fication. By viewing each document as a realization of some
distribution function lying on a statistical manifold, we are
able to generate an information based embedding into a low-
dimension Euclidean space. These methods are entirely non-
parametric and make no Euclidean assumptions of the data.
While previous work has been presented using statistical man-
ifolds for document classification, these methods are geared
towards modeling the data [2] and finding optimal classifica-
tion methods for the data [5]. Our work is restricted to the
pre-processing to obtain a low-dimensional representation of
the data. We will show using existing classification methods
that an information based embedding with FINE outperforms
methods optimized for Euclidean data.



2. LEARNING ON STATISTICAL MANIFOLDS

In [4] we presented a framework for learning on statistical
manifolds for the purposes of visualization and clustering. We
now apply that framework towards the problem of document
classification. While details on the theory behind FINE can be
found in [4], we shall give a brief overview of the methods.

2.1. Statistical Manifolds

If we consider M to be a family of probability density func-
tions (PDFs) on the set X , in which each element of M is a
PDF which can be parameterized by θ =

[
θ1, . . . , θn

]
, then

M is known as a statistical model on X . Specifically, let

M = {p(x | θ) | θ ∈ Θ ⊆ Rn}, (1)

with p(x | θ) satisfying

p(x | θ) ≥ 0, ∀x ∈ X (2)
∫

p(x | θ) dx = 1.

Additionally, there exists a one-to-one mapping between θ
and p(x | θ).

We describe only the case for continuum on the set X ,
however if X was discrete valued, equation (2) will still apply
by switching

∫
p(x | θ) dx = 1 with

∑
p(x | θ) = 1.

When associated with the Fisher information metric,M is
known as a statistical manifold. The Fisher information mea-
sures the amount of information a random variable X con-
tains in reference to an unknown parameter θ. We define the
Fisher information matrix [I(θ)], whose elements consist of
the Fisher information with respect to specified parameters

Iij = −E

[
∂

∂θi
log f(X; θ)

∂

∂θj
log f(X; θ)

]
. (3)

For a parametric family of probability distributions, it is
possible to define a Riemannian metric using the Fisher in-
formation matrix, known as the information metric. The in-
formation metric distance, or Fisher information distance, be-
tween two distributions p(x; θ1) and p(x; θ2) is:

DF (θ1, θ2) = min
θ(·):

θ(0)=θ1

θ(1)=θ2

∫ 1

0

√
( dθ

dβ

)TI(θ)
( dθ

dβ

)
dβ. (4)

2.1.1. Hellinger Distance

We may approximate the Fisher information distance by the
Hellinger distance, which is defined as:

DH(p, q) =

√∫ (√
p(x)−

√
q(x)

)2

dx,

and is related to the information distance in the limit by

2DH(p, q) → DF (p, q) (5)

as p → q [6].
While there are other methods of approximating the Fisher

information distance (i.e. Kullback-Leibler divergence, Renyi-
α entropy), we choose to use the Hellinger distance for the
purposes of document classification. Since the PDFs can be
considered sparse multinomial distributions, the Hellinger dis-
tance avoids any of the divide-by-zero issues associated with
other metrics. One should note that when dealing with multi-
nomial distributions, the approximation

DC(p, q) = 2 arccos
∫ √

p · q → DF (p, q),

as this is the natural metric on the sphere [6]. DH and DC are
related by a monotonic transformation function, so we restrict
our metric to that of the Hellinger distance.

2.2. Approximation of Distance on Statistical Manifolds

As noted earlier (5), 2DH(p1, p2) → DF (p1, p2) as p1 →
p2. If p1 and p2 do not lie closely together on the manifold,
the Hellinger distance becomes a weak approximation of the
Fisher information distance. However, a good approximation
can still be achieved if the manifold is densely sampled be-
tween the two end points by defining the path between p1 and
p2 as a series of connected segments, and summing the length
of those segments. Specifically, given the set of n probability
density functions P = {p1, . . . , pn}, the Fisher information
distance between p1 and p2 can be estimated as:

DF (p1, p2) ≈ min
m,{p(1),...,p(m)}

m∑

i=1

2DH(p(i), p(i+1)),

where p(1) = p1 and p(m) = p2. Intuitively, this estimate
calculates the length of the shortest path between points in a
connected graph on the well sampled manifold.

2.3. Dimensionality Reduction

Given a matrix of dissimilarities between entities, many algo-
rithms have been developed to find a low dimensional embed-
ding of the original data ψ : M→ Rd. These techniques have
been classified as a group of methods referred to as Multi-
Dimensional Scaling (MDS). There are supervised methods,
which are generally used for classification purposes, and un-
supervised methods, which are often used for clustering and
manifold learning. For our purposes, we will use the unsuper-
vised method Laplacian Eigenmaps [7], which will reveal any
natural separation or clustering of the data sets. This allows
us to find a single low-dimensional coordinate representation
of each high-dimensional, large sample, data set. Once this
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Fig. 1. 2-dimensional embeddings of 20Newsgroups data. The data displays some natural clustering, in the information based
embedding, while the PCA embedding does not distinguish between classes.

Algorithm 1 Fisher Information Non-parametric Embedding
Input: Collection of PDFs P = {p1, p2, . . . , pN} and the

desired embedding dimension d
1: Calculate D, where D(i, j) = D̂F (pi, pj)
2: Y = embed(D, d)

Output: d-dimensional embedding of P , into Euclidean
space Y ∈ Rd×N

Euclidean embedding is obtained, we can use learning meth-
ods such as Support Vector Machines (SVMs) to perform our
classification task.

2.4. Algorithm

Algorithm 1, which we refer to as the Fisher Information
Non-parametric Embedding (FINE), illustrates the ability to
find a low-dimensional embedding of a collection of PDFs.
If we assume each data set is a realization of an underlying
probability density, and each of those densities lie on a mani-
fold with some natural parameterization, then this embedding
can be viewed as an embedding of the actual manifold into
Euclidean space. Note that in line 2, ‘embed(D, d)’ refers to
using any multi-dimensional scaling method (such as Lapla-
cian Eigenmaps) to embed the approximation of the Fisher
information distance matrix into Rd.

3. SIMULATION RESULTS

The problem of document classification is an interesting ap-
plication for FINE. Given a collection of documents of known
class, we wish to best classify a document of unknown class.
In this setting, we defined the PDFs as the term frequency
representation of each document. Specifically, let xi be the

number of times term i appears in a specific document. The
PDF of that document can then be characterized as the multi-
nomial distribution of normalized word counts, with the max-
imum likelihood estimate provided as

p̂(x) =
(

x1∑
i xi

, . . . ,
xN∑

i xi

)
. (6)

Given these term frequency representations, the problem of
document classification fits directly into our framework.

For illustration, we will utilize the well known 20 News-
groups data set1, which is commonly used for testing docu-
ment classification methods. This set contains word counts
for postings on 20 separate newsgroups. We choose to re-
strict our simulation to the 4 domains with the largest number
of sub-domains (comp.*, rec.*, sci.*, and talk.*), and wish to
classify each posting by its highest level domain. Specifically
we are given P = {p1, . . . , pN} where each pi corresponds
to a single newsgroup posting and is estimated with (6). First,
we utilize unsupervised methods to see if the natural geom-
etry exists between domains. We note that the data was pre-
processed to remove all words that occur in 5 or less doc-
uments2. Using Laplacian Eigenmaps on the dissimilarities
calculated with the Hellinger distance, we found an embed-
ding P → R2. Figure 1(a) shows the natural geometric sepa-
ration between the different document classes, although there
is some expected overlap. Contrarily, a Principal Components
Analysis (PCA) embedding (Fig. 1(b)) does not demonstrate
the same natural clustering. PCA is often used as a means to
lower the dimension of data for learning problems due to its
optimality for Euclidean data. However, the PCA embedding

1http://people.csail.mit.edu/jrennie/
20Newsgroups/

2http://www.cs.uiuc.edu/homes/dengcai2/Data/
TextData.html
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Fig. 2. Classification rates for low-dimensional embedding
using different methods for dimensionality reduction

of the 20 Newsgroups set does not exhibit any natural class
separation due to the non-Euclidean nature of the data.

We now compare the classification performance of FINE
to that of PCA. In the case of document classification, di-
mensionality reduction is important as the natural dimension
(i.e. number of words) for the 20 Newsgroups data set is
26,214. We test performance for low dimensional embed-
dings P → Rd for d = 5 to d = 95. Following each em-
bedding, we apply an SVM with a linear kernel to classify the
data in an ‘all-vs-all’ setting (i.e. classify each test sample as
one of 4 different potential classes). The training and test sets
were separated according to the recommended indices, and
each set was randomly sub-sampled for computational pur-
poses (2413 training samples, 1607 test samples). Both the
FINE and PCA settings jointly embed the training and test
sets.

Figure 2 illustrates that the embedding calculated with
FINE outperforms using PCA as a means of dimensional-
ity reduction. The classification rates are shown with a 1-
standard deviation confidence interval, and FINE with a di-
mension as low as d = 25 generates results comparable to
those of a PCA embedding with d = 95. To ease any concerns
that Laplacian Eigenmaps (LEM) is simply a better method
for embedding these multinomial PDFs, we calculated an em-
bedding with LEM in which each PDF was viewed as a Eu-
clidean vector with the L2-distance used as a dissimilarity
metric. This form of embedding performed much worse than
the information based embedding using the same form of di-
mensionality reduction and the same linear kernel SVM, while
comparable to the PCA embedding in very low dimensions.

4. CONCLUSIONS

We have presented the ability to derive an information based
embedding for a data set consisting of term frequency repre-

sentations of documents. By not making Euclidean assump-
tions on the data, we find a low dimensional representation
which yields high classification rates with a linear SVM, out-
performing an embedding calculated with Principal Compo-
nent Analysis. Although PCA is optimal for Euclidean data,
it is clear that there is no straightforward way to represent a
document in Euclidean space. The standard term frequency
representation is clearly non-Euclidean and is better viewed
as a probability distribution. As such, using information ge-
ometry to learn on the underlying statistical manifold is more
appropriate than the ad hoc manner of Euclidean feature vec-
tor extraction.

In future work we intend to test our FINE algorithm with
various different manifold learning methods. While we cur-
rently choose to use Laplacian Eigenmaps to generate our low
dimensional representation, we will look into other multi-
dimensional scaling methods to determine which gives the
best performance. In this paper we focused on unsupervised
methods in order to garner a fair comparison to PCA, how-
ever we plan to utilize supervised methods of dimensionality
reduction to see if we can generate better classification per-
formance than an SVM (with a linear or diffusion kernel [5])
on the full dimensional data set.
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