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ABSTRACT

Dimensionality reduction is required for ‘human in the loop’
analysis of high dimensional data. We present a method for
dimensionality reduction that is tailored to tasks of data set
discrimination. As contrasted with Euclidean dimensionality
reduction, which preserves Euclidean distance or Euler angles
in the lower dimensional space, our method seeks to preserve
information as measured by the Fisher information distance,
or approximations thereof, on the data-associated probability
density functions. We will illustrate the approach for multi-
class object discrimination problems.

Index Terms— Information geometry, statistical mani-
fold, dimensionality reduction, classification, object recogni-
tion

1. INTRODUCTION

Object recognition and discrimination is of critical impor-
tance in many application areas such as face recognition and
surveillance. The standard formulation is that of the clas-
sic classification task – one is given a set of training data
I = [(I1, y1), . . . , (IN , yN )] where yi ∈ [1, . . . , M ] is the
class label (or object type) of image Ii, and there are M dif-
ferent recognized object types. The task is then to find a func-
tion f(I) : I → y which assigns a class label y given an
unknown test image I .

In many applications of practical interest, one has more
available information than a single image of an object. Often
systems have the capability to obtain images taken at different
angles of the same object. For example, a camera may capture
several shots while rotating about an object, or a camera may
be stationary while an object rotates in a fixed plane. In these
situations, the recognition task may be modified such that the
training data is now I = {(I1, y1), . . . , (IN , yN )}, where
Ii = [I1, . . . , Ini ] is now a collection of ni images of the
same object, potentially taken at different vantage angles. We
now wish to classify an unknown set of images I with some
function f(I) : I → y. This framework is similar to that
which was present by Arandjelovic et. al. [1] where they per-
formed facial recognition using sets of images. Specifically,
they used the Kullback-Leibler (KL) divergence to define a

similarity between image sets, and used a nearest neighbor
classifier over the KL-divergences between the test set and
the training sets. This method showed very promising results
for the facial recognition task.

In this paper we propose an information-geometric ap-
proach to the problem of object recognition. By viewing the
image sets as realizations of some generative model, i.e. prob-
ability density function (PDF), we can frame the problem as
that of classification on a statistical manifold (or manifold
of PDFs). This information-geometric modeling allows for
the comparison between PDFs with the Fisher information
distance, which is the natural metric on a statistical man-
ifold. We will show that this approach yields competitive
recognition performance, distinguishing different laptops and
LCD monitors. We also employ the use of Fisher informa-
tion nonparametric embedding (FINE) [2, 3], which provides
an information-geometric embedding of the image sets into a
low-dimensional Euclidean space. This is useful for visual-
ization and ‘human in the loop’ analysis.

We note that this paper is not meant to be a seminal work
on object discrimination, but rather a proof-of-concept. The
methods (FINE) that we utilize for object recognition have
been similarly used for document classification [3] and flow
cytometry analysis and diagnosis [4]. We now illustrate a new
application using FINE, and compare performance to existing
methods.

1.1. Previous Work

We note that our methods of recognition are similar to those
in [1], in which they operate on a manifold of densities in the
‘face space’. While never mentioned, this is essentially de-
scribing a statistical manifold, and the KL-divergence maybe
used as an approximation of the Fisher information distance
[5]. However, the fact that the KL-divergence is unbounded
leaves it to be a very unstable measure. Given a sample from
a test image set which is very dissimilar from any appear-
ing in the training set, the KL-divergence will approach in-
finity. They wisely account for this by using the appropriate
direction of the divergence and estimating PDFs with Gaus-
sian mixture models (GMMs), which dampens the effect of
image outliers. This, however, raises two potential concerns.



First, since the KL-divergence is not a distance metric, they
are unable to fully take a geometric approach to the problem.
Secondly, GMMs are a parametric approach which requires
parameter estimation for the mixtures, in terms of number of
components, location, and covariance.

Our work may be considered as a more general case of [1],
accounting for these potential concerns which may or may not
become significant issues. We utilize the Hellinger distance
as our Fisher information distance approximation, which sat-
isfies all of properties of a distance metric. Hence, we operate
in a full information-geometric manner. More importantly,
the Hellinger distance is bounded, which offers a stable metric
regardless of the input. Rather than parametrically estimating
PDFs with a GMM, we use non-parametric kernel density es-
timation (KDE). While more computationally complex than
GMMs, KDEs offer a better description of the PDF, and re-
quire only a single parameter (kernel bandwidth). Finally, we
recognize that the approximations of the Fisher information
distance are valid only in the limit, as PDFs approach one
another on the manifold. Hence, we offer a geodesic approx-
imation using graphical methods, which converges to the true
information distance.

1.2. Paper Outline

This paper proceeds as follows. In Section 2, we give a mo-
tivation for the problem and a description for its difficulties.
We give an overview of statistical manifolds and the Fisher
information distance in Section 3, followed by a connection
to the problem of object recognition in Section 4. We discuss
simulation results on a real data set in Section 5, followed by
conclusions in Section 6.

2. PROBLEM FORMULATION

The problem of object recognition from image sets is similar
to the standard classification problem. One is given a collec-
tion of training data I = {(I1, y1), . . . , (IN , yN )}, where
Ii = [I1, . . . , Ini ] is a collection of ni images {Ij} of the
same object. These images may be captured at different van-
tage points, showcasing different attributes of the object. We
wish to classify an unknown set of images I with some func-
tion f(I) : I → y.

Let us first illustrate the potential difficulties with this
problem. Let I be a collection of ∼ 150 image captures each
of N = 4 unique objects. Each image is taken at a different
angle, holding pitch constant while rotating the yaw (full de-
tails of image requisition can be found in Section 5.1). We
use principal component analysis (PCA) on the entire collec-
tion of rasterized images (ie. X = [I1

1, . . . , I
1
n1

, I2
1, . . .]) to

project each image onto the first 2 and 3 principal compo-
nents of X; Fig. 1 shows these results. One can naturally see
a path formed which demonstrates the natural transition from
one image taken at one yaw to the next taken with a slight

change in yaw. It is also clear that the paths which different
objects take are very similar, which would make it difficult
to distinguish one from the other in most cases. Add that in
practice, there may be¿ 150 available images per object, and
the problem of differentiating image sets (i.e. recognition) be-
comes very difficult.

Looking at the trajectories, however, it becomes apparent
that there is some generative model which governs the path.
While any given point in an object trajectory may be difficult
to distinguish from the path of a different object, the entire
path maybe more easily discerned. We take a statistical ap-
proach by modeling each trajectory as a probability density
function, which allows for an information-geometric frame-
work to the problem.

3. STATISTICAL MANIFOLDS

Let us now present the notion of statistical manifolds, or a set
M whose elements are probability distributions. A probabil-
ity density function (PDF) on a set X is defined as a function
p : X → R in which

p(x) ≥ 0, ∀x ∈ X
∫

p(x) dx = 1. (1)

If we consider M to be a family of PDFs on the set X , in
which each element of M is a PDF which can be parameter-
ized by θ =

[
θ1, . . . , θn

]
, then M is known as a statistical

model on X . Specifically, let

M = {p(x | θ) | θ ∈ Θ ⊆ Rd}, (2)

with p(x | θ) satisfying the equations in (1). Additionally,
there exists a one-to-one mapping between θ and p(x | θ).

Given certain properties of the parameterization of M,
such as differentiability and C∞ diffeomorphism (details of
which are described in [6]), the parameterization θ is also a
coordinate system of M. In this case, M is known as a sta-
tistical manifold. In the rest of this report, we will use the
terms ‘manifold’ and ‘statistical manifold’ interchangeably.

3.1. Fisher Information Distance

For a parametric family of probability distributions on a sta-
tistical manifold, it is possible to define a Riemannian metric
using the Fisher information matrix [I(θ)], which measures
the amount of information a random variable contains in ref-
erence to an unknown parameter θ. The Fisher information
distance between two distributions p(x; θ1) and p(x; θ2) is:

DF (θ1, θ2) = min
θ(·):

θ(0)=θ1

θ(1)=θ2

∫ 1

0

√(dθ

dt

)T [I(θ)]
(dθ

dt

)
dt, (3)
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Fig. 1. Projected each image onto the first principal components (PCs). It is clear that there is some trajectory which is followed
by each object, corresponding to the change in yaw in each image.

where θ = θ(t) is the parameter path along the manifold
[5, 6]. Note that the coordinate system of a statistical man-
ifold is the same as the parameterization of the PDFs (i.e. θ).
Essentially, (3) amounts to finding the length of the shortest
path – the geodesic – on M connecting coordinates θ1 and
θ2.

While the Fisher information distance cannot be exactly
computed without a priori knowledge about the parameteri-
zation of the manifold, the distance between PDFs p1 and p2

may be approximated with the Hellinger distance,

DH(p1, p2) =

√∫ (√
p1(x)−

√
p2(x)

)2

dx, (4)

which converges to the Fisher information distance,

2DH(p1, p2) → DF (p1, p2)

as p1 → p2 [5]. This measures allow for the approximation
of the information distance in the absence of the geometry of
the statistical manifold on which the PDFs lie. For additional
measures of probabilistic distance, some of which approxi-
mate the Fisher information distance, and a means of calcu-
lating them between data sets, we refer the reader to [7, 8].

If p1 and p2 do not lie closely together on the manifold,
these approximations become weak. A good approximation
can still be achieved if the manifold is densely sampled be-
tween the two end points.Using a graphical model, we may
define the path between p1 and p2 as a series of connected
segments. The geodesic distance may then be approximated
as the sum of the length of those segments. Specifically, given
the collection of N PDFs P = {p1, . . . , pN} and using an ap-
proximation of the Fisher information distance D̂F (p1, p2) as
p1 → p2, we can now define an approximation function G for

all pairs of PDFs:

G(p1, p2;P) = min
M,P

M−1∑

i=1

D̂F (p(i), p(i+1)), p(i) → p(i+1)∀i.
(5)

Intuitively, this estimate calculates the length of the shortest
path between points in a connected graph on the well sam-
pled manifold, and as such G(p1, p2;P) → DF (p1, p2) as
N → ∞. This is similar to the manner in which Isomap
[9] approximates distances on Riemannian manifolds in Eu-
clidean space.

4. OBJECT RECOGNITION

Given the information-geometric framework we have created,
by approximating distances on statistical manifolds, we may
now extend to the task at hand of object recognition. Specifi-
cally, we are given I = {(I1, y1), . . . , (IN , yN )} as training
data, and we may estimate the PDFs of each Ii as pi(I), for
i ∈ [1, N ]. This is performed using kernel density estima-
tion (KDE) on the rasterized image sets; specific details of
the KDE implementation may be found in [8]. Once the ob-
ject class PDFs are estimated with the training data, test sets
are classified by minimizing the information divergence be-
tween test and training sets. Let I be a test image set with
estimated PDF p(I), our classifier y = f(I) is

f(I) = arg min
i

G(p(I), pi(I);P). (6)

This may be essentially viewed as a 1-nearest neighbor clas-
sifier, using the Hellinger distance as an appropriate metric.



Algorithm 1 Fisher Information Nonparametric Embedding

Input: Collection of data sets I = {I1, . . . , IN}; the de-
sired embedding dimension d

1: for i = 1 to N do
2: Calculate p̂i(I), the density estimate of Ii

3: end for
4: Calculate G, where G(i, j) is the geodesic approximation

of the Fisher information distance between pi and pj

5: Y = mds(G, d)
Output: d-dimensional embedding of X , into Euclidean

space Y ∈ Rd×N

4.1. Visualization

Suppose now that visualization of several image sets is de-
sired for ‘human in the loop’ analysis of the data. For ex-
ample, as a recognition system stays online and accumulates
new test data, an analyst may be interested in the compar-
ative relationship between objects. For this task we refer
the reader to Fisher information nonparametric embedding
(FINE) [3], which finds an information-geometric embedding
of PDFs into a low-dimensional Euclidean space. FINE op-
erates by performing multidimensional scaling (MDS) on the
matrix of pairwise dissimilarities formed by the information
divergences (e.g. Hellinger distances). FINE is not tied to
any specific method of MDS, and has been implemented with
both classical MDS [10] and Laplacian Eigenmaps [11] for
unsupervised dimensionality reduction. The full description
of FINE may be found in Algorithm 1.

Note that once embedded in a Euclidean space, one may
use other learning methods for classification. For example,
while one cannot easily define a linear classifier between PDFs,
this becomes a trivial task once those PDFs are embedded into
Euclidean space with FINE.

5. SIMULATIONS

5.1. Data Setup

The data we will analyze was collected at Tech-edge build-
ing, in the Air Force Research Laboratory. The experiment
was performed with 4 unique objects – 3 different model lap-
tops and an LCD monitor. Each object was positioned on a
swiveling desk, with a stationary camera (Canon VB-50iR)
located above and to the left side of the object. The desk was
then spun by a rope (so that no person is in the scene) and
the camera captured still frames of the object at 15 fps with a
640× 480 resolution, for roughly 10 seconds. An illustration
of these retrieved data sets may be found in Fig. 2. Note that
for each trial, the object was placed at the same location on
the desk, and the desk was spun at an (attempted) equal speed.

Given the lack of unique objects, but the well sampled
trajectories of the objects with changes in yaw, we may ar-
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Fig. 3. Classification error rates for object recognition us-
ing different information divergences. The stability of the
Hellinger distance for low sample sizes shows superior per-
formance, garnering even better rates when using the geodesic
approximation (FINE).

tificially manufacture “new” realizations of unique objects
by subsampling along the trajectory. Specifically, let I =
[I1, . . . , In], ordered according to change in object yaw, and
let l be the sample spacing. Rather than having only 1 image
set for the object, we can create n/l image sets by subsam-
pling in the following manner:

Ij = [Ij , Ij+l, Ij+2l, . . .], (7)

which generate uniformly spaced, i.i.d. realizations along the
yaw trajectory. Although artificially generated, this is sta-
tistically equivalent to capturing a sequence of images from
identical items which have been positioned differently (with
respect to yaw). Note that each manufactured set has entirely
unique images, so no two estimated PDFs will be identical.
This is key as it simulates the setting for this object recogni-
tion task.

5.2. Results

We first wish to study the effect of test sample size on recog-
nition capability. We begin by partitioning our training set
to ∼ 10 sample images for each of the 4 objects, obtained
with subsampling using (7). Next, we partition our test set
using ∼ Nt samples per test object, with Nt ∈ [2, 10]. Given
the small sample sizes, we preprocess the data by projecting
each image onto the first 10 principal components of the en-
tire collection. To test recognition capabilities, we use the
1-NN classifier (6) and plot the classification error, over a
10-fold cross validation, in Fig. 3. We also compare to the
method presented in [1], which classifies by maximizing the
KL-divergence between test set and training set. Note that we
have modified the method to use a KDE rather than GMM



Fig. 2. Sample images from the image sets. The objects rotate on the table, giving the camera different capture angles. Pitch
remained constant while yaw changed with the rotation.

for density estimation. While this may cause a minor change
in performance, we aim to keep as many factors constant as
possible for a fair comparison. Additionally, given the low
number of samples we are considering, a GMM offers very
little difference to a KDE.

It is clear that the proposed method (FINE) outperforms
the KL method. To ease concerns that the performance gain is
strictly due to the geodesic distance approximation G(p, pi;P),
which may not be practically available in all cases, we also
illustrate classification performance using the strict Hellinger
distance DH(p, pi). There is a slight decrease in performance,
which shows that there is indeed some gain from the geodesic
approach, but performance is still far superior to that of the
KL-divergence. We believe this is due to the instability of
the KL measure, which is highlighted when dealing with low
sample size. As the sample size increases, and the PDFs
are better estimated, we believe both methods would perform
comparably.

Finally, we illustrate the embedding obtained with FINE
of the data. For this case we used l = 7, such that each test
image set had roughly 70% the number of sample images as
the training sets. The embedding results are shown in Fig. 4,
and the natural clustering is visually identified. Each point

represents a unique image set I , and the points correspond-
ing to training sets are denoted with the symbol o. Note that
this embedding was entirely unsupervised. This visualization,
which is entirely based on the natural information-geometry
between the image sets, is useful for comparing objects. One
may notice that two of the laptop image sets are similarly em-
bedded, while the other two are clearly separated. It is logical
that the points corresponding to the LCD monitor lie furthest
away from the points representing laptop image sets, as they
are the most dissimilar. We can not visually decipher the rea-
son 2 laptops seem so close, but note that they are still distin-
guishable even in 2 dimensions.

6. CONCLUSIONS

In this work we attempted to use an information-geometric
approach to the problem of object recognition. By modeling
each image set as a realization of some PDF on a statistical
manifold, we were able to approximate the Fisher informa-
tion distance between PDFs through the use of the Hellinger
distance. The classification task was then performed using a
1-NN classifier between the test PDFs and the training PDFs.
This formulation was shown to offer promising results for the
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Fig. 4. Embedding of the image sets with FINE. We can see
that two of the laptops (4 and +) are very similar, while the
third laptop (?) and LCD monitor (·) are clearly separable.

object recognition task. Using Fisher information nonpara-
metric embedding, we were able to reconstruct the statistical
manifold in an low-dimensional Euclidean space. This en-
ables visualization for ‘human in the loop’ analysis, as well
as the ability to use learning methods which operate in Eu-
clidean space (e.g. linear classifier) which have no straight-
forward connection to PDF representations.

We compare our methods to those found in [1], which
is a similar framework focusing on the Kullback-Leibler di-
vergence. We have shown that due to the low sample size,
this measure is unstable and yields poor recognition perfor-
mance. When more samples are available, the KL divergence
becomes a more stable measure and is much more useful, as
was illustrated in [1]. We have also shown that the geodesic
approximation of the Fisher information distance, through the
use of the Hellinger distance, yields improved performance to
that of the strict Hellinger distance. We once again stress that
this work is meant as a proof-of-concept, and we simply il-
lustrate an example where we cover the shortcomings of a
leading algorithm.

In future work, we wish to extend our methods towards
the problem of automated face recognition. Additionally, we
plan to continue the work on object recognition and obtain
more thorough data sets and compare to several leading meth-
ods.
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