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I. INTRODUCTION

A. Motivation

There is often interest in predicting an individual’s latent
health status based on high-dimensional genomic biomarkers
that vary over time, for example gene-expression and pro-
teomic data. Motivated by novel longitudinal gene-expression
and proteomic data we have collected in several viral challenge
studies, performed with healthy human volunteers, we present
signal processing methods for analysis of time-evolving ge-
nomic biomarkers. We consider this problem from multiple
perspectives related to factor analysis and dictionary learning,
and in each the high-dimensional data trajectories are related
to a relatively low-dimensional vector of latent factors or
dictionary elements. The multiple analyses are employed for
cross validation, to assure that the inferred biological processes
are meaningful and uncovered via distinct models. The models
infer genes and proteins in the viral response pathway, as
well as variability among individuals in infection times. The
inferred low-dimensional space in which the high-dimensional
data resides is used to provide biological interpretation of the
inferred viral response pathways.

There has been much recent interest in the analysis of
dynamic biological processes, particularly with data from
DNA gene-expression microarray chips [1], [2]. Appropriately
analyzing the trajectories as multivariate functional data is
challenging due to the massive dimensionality, few obser-
vations in time, low signal-to-noise ratio, and missingness.
Ideally, methods would allow building a full joint model that
allows each biomarker (e.g., gene or protein) to have its own
trajectory, while accommodating dependence in these trajecto-
ries across biomarkers within shared pathways and variability
across individuals. In such time-dependent modeling, one must
often distinguish the observed (“wall clock”) time at which
a measurement was performed from the (latent) biological-
clock time, and the difference between these two must be
inferred (since the offset between the two is typically subject
dependent) [3], [4].

In this paper we consider analysis of time-evolving gene-
expression and proteomic data. The proposed models explicitly
address issues associated with inferring the time shift between
biological times and “wall-clock” time, inferring the subject-
dependent character of the former. We employ factor-analysis
and related dictionary-learning based approaches. The use of

such methods obviates the need for explicit clustering [1] of
genes.

The analysis techniques reviewed here are motivated by and
demonstrated with a novel data set we have measured in re-
cent challenge studies. Specifically, after receiving appropriate
Institutional Review Board approval, we performed separate
challenge studies in which human volunteers were inoculated
with two strains of influenza (H3N2 and H1N1), human rhino
virus (HRV) and respiratory syncytial virus (RSV). For each
such challenge study, roughly 20 healthy individuals were
inoculated with a particular influenza virus, and blood samples
were collected at regular time intervals until the individuals
were discharged. These data provide a unique opportunity
to examine the time-evolving host response to such viruses.
The mRNA expression levels in blood were assayed with
Affymetrix GeneChip Human Genome U133A 2.0 Arrays to
constitute gene-expression values for 12,023 genes. For more
details on the mRNA data, see [5].

B. Existing methods for time-course analysis
There have been numerous previous studies on the analysis

of time-course gene-expression data [1], [2] and almost all of
these employ a clustering of the genes. To model the con-
tinuous time dependence of the gene expression, researchers
have employed the Gaussian process [3], as well as spline
basis functions [1]. Most of these methods employ mixed-
effects models, where the fixed-effects component corresponds
to clusters, with the genes clustered among one of C different
classes or clusters. The random effect term typically has a con-
tinuous time dependence that is a function of the specific gene
and subject (inferred, for example, using a spline expansion).
One may also employ hierarchical clustering of the genes [6].

Additional examples of such a mixed-effect clustering
model applied to time-course gene-expression data include
[7], [8]. While this approach has been applied successfully
in many settings, it has limitations that restrict its utility. For
example, we are typically interested in over 10,000 genes when
performing microarray analysis, and therefore the number
of spline-based expansions that must be fit is significant.
Additionally, for the application of interest here, we have on
the order of 20 different subjects, each manifesting a distinct
time-course profile.

The proposed approaches avoid the need to explicitly
perform clustering (it is done implicitly within the factor
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modeling and dictionary learning), and the proposed models
infer subject-dependent shifts in the latent biological turn-on
time. Typically only a small fraction of the genes contribute
to the biology under study, and in the context of the factor
analysis these genes are inferred by imposing a sparseness
constraint. One need only model the time dependence of the
factor scores, rather than separately model the time evolution
of each individual gene or protein.

II. TIME-DEPENDENT FACTOR SCORES

A. Basic factor model

Let Xi ∈ RP×T represent observed biomarkers (e.g., gene-
expression data) for individual i, considering P markers,
collected at T time points (the number of time points could
also be subject-dependent); the jth column of Xi corresponds
to the P biomarkers measured at time tij , for j ∈ {1, . . . , ni}.
We assume a total of S individuals/subjects, constituting
cumulative data {Xi}i=1,S . We consider a factor model with
k factors

Xi = LSi+Ei =

k∑
m=1

LmS>mi+Ei; i = 1, 2, · · · , S (1)

where L ∈ RP×k is the factor loading matrix, and Lm is
the mth column of L; the factor scores for individual i are
Si ∈ Rk×T , and S>mi is a row vector (mth row of Si) of time-
varying scores for the ith individual and mth latent factor. The
factor loadings are assumed fixed in time, while we allow the
latent factors, S>mi, to vary dynamically. The matrix Ei ∈
RP×T is the additive noise or residual.

B. Shifted spline representation

Recall that individual i has data sampled at ni time points;
let ti = (ti1, ti2, . . . , tT ) denote the time points at which data
were collected for individual i (in units of minutes/hours, etc.),
with respect to a time reference shared by all S individuals.
Note that these are observed times, on a universal clock, to be
distinguished from the latent biological clock of the system
under investigation (in our specific example this corresponds
to the host response to a virus), which is generally individual
dependent. The rows of Si(t) are a continuous function of
time, and the matrix Si represents each such row sampled at
the T time points represented by ti.

Recall that Smi ∈ RT represents the factor score associated
with factor m ∈ {1, . . . , k} for subject i ∈ {1, . . . , I},
evaluated at the T discrete time points in ti (Smi is a
column vector, the transpose of S>mi above). To model Smi,
let b(t) ∈ Rq represent a column vector, corresponding to
evaluating each of q spline functions at any time t over the
support of the splines [1], defined here by the time window
over which data are collected. The number of splines q and
their composition depend upon the specific application. The
function b(t − τ) ∈ Rq corresponds to realigning the spline
functions to have the time origin shifted forward by τ ∈ R. We
allow a time shift τmi specific to latent factor m and individual
i by characterizing the factor score trajectories as

Smi = B(ti; τmi)wm + εmi, (2)

Fig. 1. Generative process for the factors Smi = B(ti; τmi)wm +
εmi. At left are shown the basis functions, corresponding to spline
functions and a step function at earliest times (the latter represents the
factor before the virus under study causes changes to the host). The
basis functions are weighted by wm and superposed, to constitute a
continuous-time factor, termed here a “prototypical trajectory”. For
individual i, the trajectory is shifted by time τmi, and then sampled
at the times defined by ti, manifesting the discrete samples in the
second-to-last column. Finally, i.i.d. noise is added to each discrete
observation, manifesting the final discrete individual-dependent fac-
tors for factor m (right-most column). The figures in the right two
columns correspond to actual samples from the H3N2 challenge study
(microarray data), with the “prototypical trajectory” representing the
inferred typical host response, apart from the individual-dependent
shift τmi. The basis functions (left column) are used for all factors
m ∈ {1, . . . , k}, and separate weights wm are used to yield the
shifted factors within the box.

where [B(ti; τmi)]
> = [b(ti1 − τmi), . . . , b(tini

− τmi)],
[B(ti; τmi)]

> is the transpose of B(ti; τmi), and wm ∈ Rq

corresponds to the spline coefficients for the mth latent factor.
An illustration of the above generative process is presented in
Figure 1.

C. Temporal shift and distinguishing host-response factors

In our motivating application, all individuals are inoculated
with a virus at the same time. Blood is drawn from all subjects
at a specified time prior to inoculation (t = −5 hours) to
constitute a baseline signature, and another (distinct) blood
sample is drawn just before inoculation (the latter occurring
at what is defined as time t = 0 hours). The vector ti is defined
such that increasing element index corresponds to increasing
time; this vector records the times at which blood samples
were collected. Therefore, each individual shares the same first
two time points in ti, and since the time of inoculation is
by definition at t = 0, the first element in ti corresponds to
negative time.

Our objective is to study the host (body) response to the
virus, and therefore the spline-based construction for the time-
dependent factors is constituted as in Figure 2. Note that the
function B(ti; τmi = 0)wm has a constant form for t ≤ −5
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hours (with value of the constant inferred via the analysis), this
representing the background/baseline (pre-inoculation) factor
score for a (presumably) healthy individual. Consequently,
with application to our challenge studies, the shift τmi may
be viewed as the delay between inoculation of subject i and
the time at which factor m changes from its background
(“normal”) value; i.e., this is the host response time for
pathway m, which is expected to vary between subjects.

Fig. 2. Basis functions used for modeling the time dependence of the factor
scores.

Considering Figure 2, note that large shifts τmi imply that
individual i has a near constant host response for factor m,
as function of time (“near”, but not exactly constant because
of the addition of the εmi). This model is consistent with our
influenza challenge study data, as approximately half of the
individuals did not become symptomatic, and for these all of
the associated factor scores manifested very weak temporal
changes. Therefore, the presence of large τmi for all factors
m ∈ {1, . . . , k} implies that individual i is asymptomatic.
Further, if a particular factor m ∈ {1, . . . , k} is not related to
the host response to the virus for individual i, the associated
τmi will be large, implying that Smi is nearly time invariant.

Concerning the subject and factor-dependent shift τmi, we
consider a finite set of discretized τmi, finely sampled in time,
and place a Dirichlet prior on the probability that each of these
shifts are selected. The model infers an approximate posterior
density function on which time shift is most appropriate for
each subject and factor.

D. Sparse Factor Loadings

In many biological applications it is desirable to impose that
the factor-loading matrix is sparse [9]. In the case of gene-
expression data, the mth factor can be viewed as measuring
overall expression of the mth pathway, with the non-zero
elements in the mth column of the loadings matrix Lm

corresponding to the genes in that pathway. Biologically, we
would expect a small minority of the genes to play a role
in any one pathway, implying sparsity. Hence, we model the
loading matrix as

L = V ◦ Z (3)

where ◦ represents a pointwise (Hadamard) matrix product
between A ∈ RP×k and Z ∈ {0, 1}P×k. Binary matrix Z

is designed to be sparse, and therefore the factor loadings,
defined by the columns of A ◦ Z, are also sparse.

The binary matrix Z is constituted via a so-called Indian
buffet process (IBP) [10], implemented in practice by setting
k large, and allowing the model to infer the number of needed
factors. In the context of the IBP, each of the P genes
are “customers” in a buffet restaurant, and the mth factor
represents the mth dish. If gene g selects dish (factor) m,
then Zgm = 1, and otherwise Zgm = 0.

E. Example results

Of the k factors, one of them manifested a time trajec-
tory B(ti; τmi)wm that was closely aligned with the clinical
scores, and it is this factor that is examined in further detail,
as it is deemed to be associated with the (time-evolving)
host response to the virus. Results are shown for the gene g
corresponding to RSAD2, for the H3N2 virus. This gene had
the strongest contribution to the loading of this factor (largest
Zgm|Agm|). All computations with this method are performed
using a Gibbs sampler.

We compare the individual- and time-dependent factor
score of this factor with clinical symptom score provided by
medical doctors. The clinical symptom score was recorded
twice daily using standardized symptom scoring [11]. The
modified Jackson Score requires subjects to rank symptoms
of upper respiratory infection (stuffy nose, scratchy throat,
headache, cough, etc) on a scale of 0-3 of “no symptoms”,
“just noticeable”, “bothersome but can still do activities” and
“bothersome and cannot do daily activities”. For all cohorts,
modified Jackson scores were tabulated to determine if sub-
jects became symptomatic from the respiratory viral challenge.
A modified Jackson score of ≥ 6 over the quarantine period
was the primary indicator of successful viral infection [12] and
subjects with such a score were denoted as “symptomatic”; the
latter individuals are represented with blue points in Figure 3.

In Figure 3 we plot the inferred time-dependent factor score
for each of the subjects as well as the clinical symptom scores.
Note that the clinical symptom score generally tracks the
inferred factor score well, for this time-evolving factor. Ad-
ditionally, for the asymptomatic x(m)

g (tij) = Agm[εmi(tij) +∑q
l=1 wmlBl(tij ; τmi)] is almost a constant with time, but it

is not zero.
We now examine the inferred mean trajectory

Agm

∑q
l=1 wmlBl(tij ; τmi) of the (typical) individuals

who became symptomatic (Zgm = 1). In Figure 4 we depict
the inferred host response for this factor. Note that this
trajectory has a constant value at early time; it is used as a
prototype trajectory for both symptomatic and asymptomatic
subjects, and the two are distinguished by the manner in
which the trajectory evolves with time and the inferred
temporal shifts.

III. ORDER PRESERVING FACTOR ANALYSIS

A. Dictionary learning and factor analysis

In addition to Bayesian factor analysis, we have also exam-
ined the data using non-Bayesian dictionary learning. The two



4

Fig. 3. Subject-dependent plots of average x
(m)
g (tij) =

ZgmAgm[εmi(tij)+
∑q

l=1 wmlBl(tij ; τmi)], for gene RSAD2 from
the factor linked to H3N2 (blue), as well as the clinically ob-
served symptom score (green). We consider RSAD2 gene, for which
Zgm = 1. The horizontal axes correspond to time from inoculation,
in hours, and the vertical axes correspond to factor (left) or clinical
(right) score. The subjects with a +1 label (top of each subfigure)
corresponds to individuals who became symptomatic, and those with
-1 labels were asymptomatic. Time t = 0 hour corresponds to when
the virus inoculation occurred. To reduce clutter in the figures, the
axes are not labeled; the horizontal axes correspond to time in hours,
and the vertical axes represent the factor score (left) or the clinical
score (right).

Fig. 4. Top: Inferred average trajectory for the (presumed) fac-
tor associated with the time-dependent host response to H3N2,
ZgmAgm

∑q
l=1 wmlBl(tij ; τmi = 0) (with standard-deviation error

bars), corresponding to the gene RSAD2 (Zgm = 1). Bottom:
Inferred shifts for all individuals. Note that the shifts cluster naturally
into two groups (red: asymptomatic, blue:symptomatic), consistent
with the clinical label information.

distinct classes of models have inferred very similar under-
lying biological processes. The use of independent analyses
is deemed important for accurately uncovering new biology
based on limited high-dimensional data.

Dictionary learning refers to a class of methods that seek
to represent data by sparse combinations of an overcomplete
basis set, called a dictionary [13]. Note that here we take a
different approach from the factor modeling in Section II, with
X>i from Section II corresponding to Yi. Dictionary learning
is also called sparse coding and is widely used in neuroscience,
speech, audio, and image processing. On the surface dictionary
learning resembles factor analysis in that they both seek a
factored representation for the data matrix. For example, when
Yi is the matrix of subject i with rows corresponding to T time
points and columns corresponding to P gene indices dictionary
learning seeks a factorization of the form

Yi = MAi + εi, i = 1, . . . , S (4)

where S is the number of subjects, the f columns of matrix
M form the universal dictionary of basis elements, and Ai is
a sparse coefficient vector (the code) associated with subject
i’s particular linear combination of dictionary elements com-
posing Yi. In dictionary learning, as in factor analysis, both
the dictionary and the coefficients are learned from the data
{Yi}. However, while in standard factor analysis the objective
is to find a low rank Ai, in dictionary learning the objective
is to find a sparse matrix Ai.

For consistency we will use the standard factor analysis
terminology for the dictionary learning model (5): columns of
M and Ai will be called factor loadings and factor scores,
respectively. While this model can be used for a wide range
of applications it is not applicable when there are unknown
delays among factor loadings shared by different subjects. We
describe a variant of the dictionary learning model, called
order preserving factor analysis (OPFA), that accounts for
temporal misalignment, incorporates smoothness constraints
on the factor loadings, and preserves their relative ordering
over the subject population.

B. Order preserving factor analysis

The principle of evolutionary conservation suggests that
major gene regulation mechanisms, such as cell growth and
death, operate similarly over the human population. According
to this principle, all healthy individuals share the same basic
mechanisms of immune response. Systems biology models
formalize this principle by modeling gene regulation according
to a causal cascade of modules or pathways. Under such
a model, signals associated with viral sensing and antigen
presentation precede signals for the inflammation response to
the virus. The order in which these signals occur is important
to effective immune response while the precise timing of these
signals may be less important. The order may in some cases
be known, or hypothesized based on known biology, or it may
be unspecified and learned from data [14].

The systems biology viewpoint motivates an order preserv-
ing modification of the dictionary learning model (5) that
restricts immune-related signaling to occur in a (unknown)
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temporal precedence order. The modified model accounts for
temporal misalignments between signals up to these order
restrictions

Yi = M(F,di)Ai + εi, (5)

delays that specifies the delay of each factor, a column of
F. When the factors satisfy a precedence order constraint the
vector of delays will lie in a cone shaped region for all subjects
i, for example, di ∈

{
d = [d1, . . . , df ] : ∩fj=2{dj > dj−1}

}
is the region where each factor precedes the next in the
natural index order of the factors. The factors, delays and
coefficients are estimated from the data by solving a non-
convex optimization problem of the form

min
F,di,Ai

S∑
i=1

‖Yi −M(F,di)Ai‖2F

+λP1(A1, . . . ,AS) + βP2(F) (6)

where minimization is performed over vectors of delays di

that lie in the order-preserving set for all subjects and over
non-negative matrices F, Ai. The non-negativity constraint
on the factors is natural since gene expression is measured
in units of abundance of mRNA. The functions P1 and P2

are penalties that induce temporally smooth columns of F and
sparse columns of Ai. For more details on the implementation
of the optimization algorithm for solving the order preserving
dictionary learning problem (6) the reader is referred to [15].

C. Example results

Our formulation (6) of order preserving factor analysis can
be interpreted as an extension of Sparse Factor Analysis (SFA)
[16], parallel matrix factorization (PARAFAC) [17], and non-
negative matrix factorization (NMF) [18] that accommodates
factor misalignment and unknown factor ordering common
to all measurements. PARAFAC and NMF generalize PCA
to higher dimensions (tensors) and to non-negative matrices,
respectively. These matrix factorization methods are highly
sensitive to misalignments of the factors. The order preserving
restriction of OPFA overcomes this misalignment sensitivity
as illustrated in Fig. 5 for a toy example.

Figure 6 shows the result of applying OPFA to real data,
in particular the set of 9 clinically sick subjects in the
H3N2 challenge study described above. OPFA factors were
discovered that correspond to three characteristic temporal
profiles: suppressed response (factor 1 in red), suppressed
response followed by recovery (factor 2 in blue), and enhanced
response (factor 3 in green). The genes in these three groups
are associated with the JNK pathway (factor 1), ribosomal
protein (RP) expression (factor 2), and interferon inducible
(IFN) genes (factor 3). Furthermore, the factor order recon-
structed by OPFA indicates that the gene onset times in
factor 2 occur earlier than those in factor 3, a finding that
is consistent with previous studies of temporal immune host
response [19]. Remarkably, OPFA discovered this ordering de
novo despite subject misalignments in the gene expression
trajectories. Furthermore, even though clinically determined
symptom onset times reported in [20] were not used by

Fig. 5. Illustration of effect of temporal misalignment on order
preserving factor analysis for a synthetic example with ten subjects
(only four shown), 50 genes, 50 time points and f = 2 factors in
a low-noise environment (SNR=10dB). The top plot shows the gene
trajectories of four of the subjects, the misalignment of the signal
features is evident. The left-bottom plot shows the OPFA estimated
and original factors, after realignment to a common reference time-
point. The right-bottom plot shows the same for Sparse Factor Anal-
ysis (SFA), a model that does not account for the order-preserving
misalignments. The OPFA estimates correlate signficantly better with
the original factors than the SFA ones.

Fig. 6. Upper panel: gene expression trajectories of 13 highly-variant
genes for 4 of the 9 symptomatic subjects in the H3N2 challenge
study. Lower panel: OPFA discovers 3 factors (red blue and green),
and their corresponding alignment parameters, that explain these gene
expressions trajectories by solving the optimization problem in (6).
The clinical onset times, determined by physicians, are shown in
black. It is clear that the peak of the green factor predicts the onset
time and that precedence order among the three factors is consistent
across subjects.



6

Fig. 7. Scatter plots: Representation of each gene trajectory on
the first two OPFA coordinates (given by the first two columns of
Ai) and the coordinates obtained through a PCA analysis of the
misaligned joint covariance

∑9
i=1 XiX

T
i . The left-most and right-

most figures show the correspondence between the color coding
and the clusters obtained by doing hierarchical clustering on the
OPFA re-aligned data (left) and the raw misaligned data (right). The
down-regulated genes (reds) are clearly clustered away from the up-
regulated genes (dark blues) in the OPFA representation, and both
groups are separated by the genes that show little or no variation
(light blue). The PCA analysis suffers from misalignments and the
first two principal components fail to separate the up-regulated genes
(reds) from the down-regulated genes (dark blues). Furthermore, the
temporal clusters obtained from OPFA re-aligned data (far left) are
more concentrated than those obtained from raw misaligned data (far
right), as can be seen from the tighter confidence envelopes on the
OPFA cluster means.

OPFA, the subject-dependent delays of OPFA factor 3 track
these clinical symptom onset times. This provides independent
confirmation of the power of the OPFA method.

Figure 7 illustrates the utility of OPFA for improving cluster
separation performance for unsupervised clustering. The two
scatter plots show the coefficients of each gene over the first
two OPFA factors and the two first principal components of
the covariance matrix of the misaligned data,

∑9
i=1 XiX

T
i .

Each gene is color coded according to the clusters found
by performing hierarchical clustering on the OPFA-aligned
and on the original misaligned data, respectively. The scatter
plots show how the OPFA coefficients show better separa-
tion between the up-regulation genes (reds) from the down-
regulation genes (dark blues). In the OPFA scatter plot the
red and dark blue groups are separated by genes with weak
temporal response (light blue). In contrast the PCA-based
representation of the raw misaligned data does not separate
these groups well, reflecting the higher variance in the red and
dark blue genes groups due to misalignment. This tightening
of the clusters is further illustrated by comparing the far left
time profiles (cluster means after OPFA alignment) to the far
right time profiles (cluster means without first applying OPFA
alignment).

IV. METAPROTEIN EXPRESSION MODELING

A. Mass spectrometry proteomics

Unbiased mass spectrometry based proteomics has made
tremendous progress since initial studies using MALDI-ToF
(matrix-assisted laser desorption/ionization - time of flight)
machines in the late 1980’s. Current machines are now ca-
pable of splitting samples according to a number of different
features such as pK, hydrophobicity, and ion mobility and the
resolution of measurements of mass-to-charge ratios are now
high enough to detect the difference between two polypeptides
that are identical except for the inclusion of a single extra
neutron. In this section, we present a different extension of
the factor model used in [21] that is specific for the analysis
of unbiased, label free mass spectrometry proteomics data. We
incorporate multiple sources of information about correlation
in the hierarchical structure of the model, and this leads to
significant improvement in posterior estimation.

Mass spectrometry data may be summarized at a number of
different levels, and the analysis of that data may be tailored
to any of these summarizations. The smallest unit that is
measured by LC-MS-MS is a single peak, which is termed
a feature, and there are typically on the order of 105 such
features. This is a single peak in the 2-dimensional surface
over a plane defined by the retention time (amount of time a
polypeptide takes to pass through the liquid chromatography
column) and mass-to-charge ratio. The intensity of this feature
is defined to be the volume under this peak. Because a
certain percentage of carbon in nature has an extra neutron,
each polypeptide leads to multiple features. The collection of
features from a single polypeptide that differ in mass-to-charge
ratio only by an integer number of neutrons is called an isotope
group, and the intensity of the isotope group is the sum of the
intensities of its associated features – this is the level at which
w e summarize our data in this paper. In addition to differences
in mass, polypeptides may accept a variable, integer number
of protons during electrospray ionization. Thus there may be
multiple isotope groups per peptide. Finally, for a collection
of isotope groups that are known to originate from the same
protein one might summarize the data at the protein level.
We note that, in contrast to gene expression microarray data
in which each spot on the array is fully characterized, the
chemical species that make up a mass spectrometry peaks are
often unknown.

B. Existing methods for analysis

There are a number of different regression models designed
for summarization of proteomics data at the protein level. The
simplest such procedures involve direct summarization of all
features/isotope groups/peptides that are identified for each
protein. This may involve averaging or robust summarization
based on quantiles [22]. In addition to these algorithms, there
are a number of different ANOVA approaches which include
fixed effects for protein, peptide and experimental group [23],
include an additional random effect for cases in which subjects
are measured in replicate [24], or add additional interaction
effects between treatment and feature [25]. These may assume
constant or varying noise levels across isotope groups, and
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have been shown to exhibit better performance than naive
summarization approaches that do not adjust for confounding
factors [25]. While all generally acknowledge the existence
of i ncorrect identifications, none of these approaches directly
address this problem. In addition, other than our previous work
which examines an earlier factor model in greater detal in a
different biological context [26], we are unaware of any such
techniques that utilize correlation between features/isotope
groups/peptides in any way, nor do any of them utilize
unidentified features in protein level quantitation. We review
in this paper a statistical model first described in [27] that
allows the direct modeling of correlation structure and its
deconvolution into separate protein and pathway effects. We
do not examine any improvements that might be made by the
inclusion of fixed and random effects associated with treatment
group or replicate measurements of sample. However, the
model we describe is a regression model, and would, therefore,
be amenable to the inclusion of such effects.

Fig. 8. All isotope groups originating from the protein A2GL. The
columns have been ordered to make the first principal component
monotone (independently in each heatmap) and the rows have been
ordered from top to bottom in order of decreasing correlation with
the first principal component in the left heatmap, with that ordering
preserved in the right heatmap. We have broken the figure by batch
to demonstrate that the correlation structure is preserved even when
the experiment is repeated on different samples months apart.

C. Factor model and hierarchical structure

There are two key sources of information we might use
in order to collect isotope groups into coherent subsets –
identifications and coexpression. The identifications tell us
which isotope groups originate from the same protein, and if
we assume that proteomics is actually measuring differential
expression of proteins, then all of the isotope groups from the
same protein should coexpress. However, identifications are
incomplete, and while those that are obtained are reasonably
high accuracy, there are still some mistakes. Additionally,
there are a number of biological processes that add chemical

Fig. 9. A heatmap of the metaprotein showing the strongest
association with disease. Each row is an isotope group and each
column is a sample. Note that the majority of the peptides are from
the protein A2GL (Leucine-rich alpha-2-glycoprotein), but that there
are peptides that were identified as belonging to other proteins such
as Apolipoprotein B-100 (APO B), Complement factor B (CFAB),
Kallistatin (KAIN) and other unidentified isotope groups. The red
color represents a relatively high concentration of the isotope group in
the sample while blue represents low (each row has been standardized
to have mean zero and variance 1). Samples from subjects who
became symptomatic are labeled with + and those who remained
assymptomatic are labeled with -. The label colors, black, blue, pink
and red represent times 0, .2, .8 and 1 respectively. The samples
are ordered so that the associated factor is increasing, and because
almost all samples from symptomatic individuals at times .8 and 1
(red and pink +’s) are at the far right we can see that this factor
clearly distinguishes sick from healthy individuals.

modifications to specific regions of proteins. These modi-
fications change the relative abundance of the unmodified
regions of the proteins, which exerts strong effects on the
resulting measurements (thus proteomics is actually measuring
something more subtle than just differential expression of
proteins).

Aside from biological processes that may lead to differential
expression of individual proteins, there is technical variation
that will lead to differential measurements of expression across
large portions of the data set. We will utilize a factor model
to represent the correlation structure present in the data, but
we break that model into two parts, each of which will have
its own hierarchical structure. We suppose that X ∈ RP×N

is a matrix of intensities, with columns Xi, where P is the
number of measured isotope groups and N is the number of
samples. We assume

X = MA+ LS+E.

Note that the basic form of this model is related to the factor
model in Section II-A, but now X corresponds to proteomic
data. Both MA and LS describe latent factors, but we have
split them because they describe different types of correlation
with different hierarchical structures.

We represent technical noise with the MA factor structure
where M ∈ RP×d is a factor loadings matrix and A ∈ Rd×N

is a factor scores matrix. We assume that this noise is
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ubiquitous throughout all isotope groups and therefore do not
impose sparsity, Mi,j ∼ N(0, τ0). We may optionally include
design variables in A if we want to control for specific known
features of the data. This may include either known batch
effects (although we find that these are captured well by latent
factors) or known phenotypes of the samples. Otherwise, we
assume latent factors such that Ak,j ∼ N(0, 1).

The correlation structure that is present in the data because
there are multiple isotope groups are derived from the same
protein is modeled by a separate factor structure LS. As before
L ∈ RP×k is a factor loadings matrix and S ∈ Rk×N is
a matrix of factor scores. This structure of L is expected
to be sparse – correlation described by this structure should
be largely restricted to sets of isotope groups from the same
proteins. We assume that every isotope group originates from
a single protein, and therefore that every row of the loadings
matrix L contains only one non-zero element. Thus we intro-
duce a latent variable zi which identifies, for isotope group i,
the metaprotein factor to which it belongs (i.e., which element
of the ith row of L is non-zero). Thus element Li,j = 0 when
j 6= zi and Li,zi ∼ N(0, τ0). Our hierarchical prior for zi is

zi ∼ Multinomial(1, qi) , qi ∼ Dir(ai). (7)

We utilize an informative choice of Dirichlet distribution
parameters ai in cases where we have prior information telling
us in which protein isotope group i originated. Specifically,
if isotope group i is from protein k then we assume that
ai = (a0, · · · , a0, ak, a0, · · · , a0)′ where ak >> a0.

In addition to correlation between isotope groups due to
originating from the same protein, expression of the proteins
themselves is also correlated due to that expression being
regulated within the same biological pathways. Because we
have information about the relationships between some isotope
groups and proteins, we are able to deconvolute these two
sources of structure in the data. In order to capture this
“pathway level” correlation between proteins, we impose a
binary tree model on the metaproteins. We suppose that each
row, Sk of S (each metaprotein) identifies an expression
pattern that is associated with a leaf in a binary tree. We
define ta→b to be the “distance” between node a and its child
node, b, and wa to be an N -dimensional vector describing
an expression pattern associated with node (or leaf) a. Then,
assuming b is a child of a, we assume

wb ∼ N(wa, ta→bIN )

Given any pair of leaves, we a priori assume that the distance
between one of those leaves and the first node which is
an ancestor of both is exponential with rate parameter 1.
This is the Kingman’s coalescent [28]. It describes a uniform
distribution on the space of binary trees, and provides a proper
prior distribution on child-to-parent distances, t.

We introduce a factor for each protein that has more than
one identified isotope group in the data set. This model is
conjugate, and we utilize Gibbs sampling in a Markov chain
Monte Carlo algorithm to obtain posterior distributions for all
model parameters. Sampling of coalescense times for the tree
model is accomplished via belief propogation [29], [27]. Trees

Fig. 10. The tree with the highest posterior likelihood from among
those that were visited during the MCMC chain. A2GL is shown at
the top in a sub-tree with c-reactive protein and lipopolysaccharide
binding protein, both of which are known to react to the presence of
infection.

are constructed through the coalescence procedure described
in [28] and in [27].

D. Plasma proteomics during viral infection

Working with the same set of subjects discussed in the
previous sections (innoculated with an H3N2 strain of viral
influenza), we obtained LC-MS/MS proteomics data from
blood plasma at baseline (time=0), at the time of maximum
symptoms (time=1) and at times .2 and .8. The resulting
MS traces were then used to estimate the concentrations of
approximately 40,000 isotope groups in each sample (with
≈ 5% overall missingness). Approximately 10% of these
were identified – the amino acid sequence of the peptide
was characterized and that sequence was mapped to a known
protein.

In our viral infection data, this leads to a very sparse
model with 109 latent factors, each nominally representing
the expression of a particular protein. Due to uncertainties in
identifications as well as biological perturbations of particular
sections of the proteins, there are many peptides (approxi-
mately half) that do not follow a pattern of expression across
the samples that is consistent with the majority of peptides
from that protein (see, for example, Figure 8).

We were able to identify a number of meta-proteins that
are associated with the disease state, the strongest of which
is shown in Figure 9. We note that the majority of isotope
groups in this factor are identified as belonging to the protein
A2GL and that it is grouped together by the tree model with c-
reactive protein and lipopolysaccharide binding protein (Figure
10), both of which are known to react to the presence of
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infection. It is informative to examine the full collection of
isotope groups from A2GL (Figure 8). We note that, while
around two thirds of the isotope groups show clear visible
coexpression, the remainder show patterns that are not highly
correlated. An understanding of this structure in the data
provides a number of benefits. First, in cases where it is
the bulk of the protein that shows differential expression that
correlates with biological phenotypes, as is the case with
A2GL and the “symptomatic versus assymptomatic” pheno-
type, the aggregate expression from the metaprotein model
will provide a much stronger predictor than a summarization
based on isotope group identifications. Second, if our goal
is the development of biosignatures then we must be careful
about which peptides, not just which proteins, we will use for
that biosignature. Finally, in cases where we are looking for
association between protein expression and phenotype data, we
will be able to perform many fewer hypothesis tests, and have
commensurate higher power, if we can perform those tests on
just metaproteins rather than on peptides. This is also true of
protein summarization approaches based on identifications as
well, however, we find that there are approximately half as
many metaproteins versus proteins, that the metaproteins are
typically less correlated with each other than are proteins, and
that we can include potentially informative but unidentified
isotope groups in targeted studies when we select them based
on the metaprotein model.

V. INFERRED BIOLOGY

As summarized in Sections II and III, two very distinct
techniques were employed to analyze the time-course gene-
expression data (in Section II a fully Bayesian approach was
employed, while in Section III a non-Bayesian optimization
approach was employed). It is encouraging that these ap-
proaches agreed on the the following 50 genes as being
important to the host response to the virus (these contribute
significantly to the factor linked to the host response to the
virus): RSAD2, OAS1, IFI44L, RTP4, IFIT3, IFITM1, IFI44,
PLSCR1, LY6E, ISG15, P2RX5, IFI27, GBP1, KIAA0125,
APOBEC3A, EPB41L3, IFIT1, XAF1, PSMB9, TRIM22,
SERPING1, HERC5, OASL, SCO2, IFI6, DDX60, BLK,
MS4A4A, TNFRSF9, BLVRA, LOC26010, MX1, C1QA,
OAS3, IRF7, VAMP5, IFIT5, SMPDL3A, FER1L3, UBE2L6,
SIGLEC1, C13orf18, PSME2, IFI35, C1QB, BST2, OAS2,
PNOC, RRAS and SRBD1. These same genes were found
to be important to all viruses we have studied (H3N2, H1N1,
HRV and RSV), and therefore we refer to these as constituting
a “pan-viral” factor. Further, we emphasize that we only list
50 genes for brevity, but hundreds of other genes are also
inferred to play a role in the host response. In the context of the
factor analysis in Section II, for example, these genes are those
that contribute appreciable amplitude to the factor loading
highlighted in Figures 3 and 4. In a third distinct analysis (not
covered in this paper), based upon elastic-net and Bayesian
elastic-net analyses [30], these genes were again found to play
principal roles in the host response; we therefore emphasize
that these genes have been analyzed and re-analyzed from
multiple statistical perspectives, and their robustness suggests
biological importance.

Fig. 11. Genes identified from a key anti-viral immune pathway.
Pathway analysis (www.genego.com) illustrates the ISG15 pathway,
with over-representation of genes identified by the multi-task elastic
net. ISG15 is a ubiquitin-like modifier that is induced by interferon
to restrict viral replication [32]. Downstream elements of ISG15
activation include activation of STAT-1.

These findings are also supported by our proteomics data.
Three of the proteins (CRP, A2GL and CO9), and 35 of the
50 top genes, have in their promoter regions binding sites for
interferon regulatory factor 1. This suggests that activation of
this interferon pathway is critical for an active response to
infection, although this has yet to be tested thoroughly.

In Figure 11 we relate the aforementioned genes to an
inferred pathway. This pathway is deemed to be of high
accuracy as the strength of association of the multi-task gene
list with this pathway is quite robust (z-score [an indication of
how many genes in the gene list are represented in a particular
network] 76.83). The top represented pathway, the ISG15
pathway in Figure 11, is highly involved in viral immunity as
it is activated by initial viral sensing and subsequent interferon
production. ISG15 is known to target the influenza A protein
NS1 and result in limitation of viral replication [31].

VI. SUMMARY

In this paper we have reviewed recent progress in using
high-dimensional longitudinal genomic data collected from
virus challenge studies, performed with healthy human vol-
unteers. The focus of the paper has been on the statistical
signal processing, but we also show how the results may be
used to yield biological insights.

An underlying theme of the statistical analysis is constituted
by use of factor analysis to yield a small number of factors



10

responsible for the high-dimensional data. This framework
significantly aids analysis, as we typically have far fewer
samples than genes and proteins, and therefore dimensionality
reduction is essential. The factor analysis has been imple-
mented from various perspectives. Specifically, in one analysis
of the gene-expression data, and when analyzing the proteomic
data, the factor loadings were related to the genes/proteins, and
the factor loadings were assumed sparse, as to infer the low-
dimensional set of genes/proteins responsible for biological
pathways. In a distinct factor analysis, related to dictionary
learning, the factor loadings were employed to model the
time dependence of the gene expressions, and in this case the
loadings are not sparse. In addition to these different usages of
the underlying model, we also employed Bayesian and non-
Bayesian i nference methods. It is highly encouraging that
these very different methods yielded very similar biological
interpretations, concerning the genes that play a pivotal role
in the host response to virus.

We have focused here on the H3N2 influenza virus, to
simplify the discussion. However, we have performed related
analyses on all virus investigated in our challenge stud-
ies, and we found consistent host responses and underlying
genes/proteins across all of them. This has led us to constitute
what we term a “pan-viral” factor, with an associated pathway
we have briefly discussed.
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