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Environmental Issues for MIMO Capacity

Daniel W. Bliss, Keith W. Forsythe, Alfred O. Hero, JIFellow, IEEE and Ali F. Yegulalp

Abstract—Wireless communication using multiple-input mul-  spectral efficiency is defined as the total number of bits per
tiple-output (MIMO) systems enables increased spectral efficiency second per Hertz transmitted from one array to the other.
for a given total transmit power. Increased capacity is achieved Capacity increases linearly with signal-to-noise-ratio (SNR) at

by introducing additional spatial channels that are exploited using . . - . .
space—time coding. In this paper, the environmental factors that af- low SNR but increases logarithmically with SNR at high SNR.

fect MIMO capacity are surveyed. These factors include channel A given total transmit power can be divided among multiple
complexity, external interference, and channel estimation error. spatial paths (or modes), driving the capacity closer to the linear
The maximum spectral efficiency of MIMO systems in which both - regime for each mode, thus increasing the aggregate spectral
transmitter and receiver know the channel (using channel estimate efficiency. As seen in Fig. 1, which assumes an optimal high

feedback) is compared with MIMO systems in which only the re- . . .
ceiver knows the channel. Channel complexity is studied using both spectral efficiency MIMO channel [a channel matrix with a

simple stochastic physical scattering and asymptotic large random flat singular value distribution (SVD)], MIMO systems enable
matrix models. Both uncooperative (worst-case) and cooperative high spectral efficiency at much lower required energy per bit.

(amenable to multiuser detection) interference are considered. An Because MIMO systems use antenna arrays, interference can
analysis for capacity loss associated with channel estimation error be mitigated naturally.

at the transmitter is introduced.

Index Terms—Channel capacity, channel phenomenology, infor- .
mation theory, interference cancellation, MIMO communication, A Environment

multiuser detection, space—time coding. The environmental factors that affect MIMO system capacity,

namely channel complexity, external interference, and channel
|. INTRODUCTION stationarity, are addressed in this paper in Sections IlI-V, re-

M ULTIPLE-INPUT multiple-output (MIMO) systems are spectively. The first category (channel complexity) is a function

a natural extension of developments in antenna arrgs/the richness of scatterers. In general, capacity increases as the

communication. While the advantages of multiple receive aﬁ_ngular valgs of _the channel EMFNRCreaseyie d|sFr|but|on
ingular values is a measure of the usefulness of various spa-

tennas, such as gain and spatial diversity, have been known 8?1?
exploited for some time [1]—[3], the use of transmit diversitg[}a patiyihrough the channgg )

has more recently been investigated [4], [5]. Finally, the advan-The second category (external interference) _adversely affects
tages of MIMO communication, exploiting the physical channérl‘e usefulness of paths throug.h thg channel. Given that the most
between many transmit and receive antennas, are currentlyq’ﬁ@ﬂ,JI port|on.of the channel I|v_es in a subspace of the channel
ceiving significant attention [6]—[9]. While it is possible for theMalrix, capacity loss is a function of the overlap of the inter-
channel to be so nonstationary that it cannot be estimated in &f{ENce with this subspace. Generally, interference is assumed

useful sense [10], in this paper, a quasistationary channel iP€ uncooperative (worst-case). However, if the interference
sumption is employed. source is cooperative, that is, the various users share system pa-

MIMO systems provide a number of advantages Ové§meters and control, the adverse effects of interference can be

single-antenna communication. Sensitivity to fading is reduc&gduced significantly through the use of multiuser detectors.
by the spatial diversity provided by multiple spatial paths. The third category is channel stationarity. If the environment

Under certain environmental conditions, the power requirja's_sta‘tionary, then channel estimation error vanishes asymptoti-

ments associated with high spectral efficiency communicatiGA'!Y: H(;V\I/ever_, '3 praCt'Cﬁ! sr)]/sterﬁs, ch?nnel statlon_arlty ngs
can be significantly reduced by avoiding the Compressi\me usehu period over VI\II Ich a (I:I ahnne can be est:zjnateh. e-l
region of the information theoretic capacity bound. Heré:,alfset etransmltterwy generally have access to older ¢ anne
estimates than the receiver, one would expect the channel esti-
mation error to be greater at the transmitter.
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H ng, x ny, (humber of receive by transmit antenna)
channel matrix;
x transmit array vector;
n zero mean complex Gaussian noise.
The capacity is defined as the maximum of the mutual infor-
mation [22]

»
>

-
h

Z(z, x[H) = <10g2 {%D (2)

over the source probability densipix|H) subject to average

. . . . _ _ taansmit power constraints, where the expectation value is indi-
Fig. 1. Spectral efficiency bound as a function of noise density normalize . . . .
energy per bit £,/N,) comparison ofM x M MIMO systems assuming C_ated using the notatiofi- -). N(_)tmg that the mutual mform?_‘
channel matrices with flat SVD. tion can be expressed as the difference between two conditional
entropies

Spectral Efficiency (bits/s/Hz)
=3

0 5
E,IN, (dB)

C. Space—Time Coding (2, x|H) = h(z|H) — h(z[x, H) 3)
The focus of this paper is the environmental sensitivity
of MIMO communication; however, for completeness, &hath(z|x, H) = h(n) = ng, log,(7eo?), and thath(z|H)
few space—time coding references are discussed. In ordemaximized for a zero mean Gaussian soutcthe capacity
to implement a MIMO communication system, a particulas given by
coding scheme must be selected. Most space—time coding
schemes have a strong connection to well-known single-input C = sup log |UiInRI + H<XXT>HT|
single-output (SISO) coding approaches and assumanam (xx) 2 |o2L,, ., |
formed transmitterSpace—time coding can exploit the MIMO
degrees of freedom to increase redundancy, spectral efficierhere
or some combination of these characteristics [11]. Preliminary| ---| determinant;
ideas are discussed in [6]. A simple and elegant solution thatf Hermitian conjugate;
maximizes diversity and enables simple decoupled detection idn, identity matrix of sizeng..
proposed in [12]. More generally, orthogonal space—time blodlaere are a variety of possible constraintsas’), depending
codes are discussed in [13] and [14]. A general discussion@f the assumed transmitter limitations. Here, it is assumed
distributing data across transmitters (linear dispersive codesjhat the fundamental limitation is the total power transmitted.
given in [15]. High SNR design criteria and specific exampleBhe optimization of thevr,, x nz. noise-normalized transmit
are given for space—time trellis codes in [16]. Unitary codes ogovariance matrixP = (xx')/o2 is constrained by the
timized for operation in Rayleigh fading are presented in [17§0tal noise-normalized transmit powet,. Allowing different
More recently, MIMO extensions of turbo coding have beelfiansmit powers at each antenna, this constraint can be enforced
suggested [18], [19]. Finally, coding techniques fisformed using the form tf{P} < F,. The channel capacity is achieved
transmittersystems have received some interest [20], [21]. if the channel is known by both the transmitter and receiver,
giving

[I. INFORMATION THEORETIC CAPACITY Cir= sup log, |Inm, + HPHT| ) (5)

p; trp)=r,

(4)

The information theoretic capacity of MIMO systems has

been widely discussed, for example, in [7]. The development g ayoid radiating negative power, the additional constiint
theinformed transmittefwater filling” and uninformed trans-  jg imposed by using only a subset of channel modes.

mitterapproaches is repeated here. This is useful as an i”trOdUCSubstitutingUSWT, the magnitude-ordered singular value
tion to MIMO capacity and to the notation used in this paper. '@ecomposition, foH, (5) can be written as
addition, the spectral efficiency bounds in the presence of inter-

ference are introduced. Crr = sup log, |L,..... + Q| (6)
Q: triQ(sts)-1}=r, '
A. Informed Transmitter (IT) Q =SwiPwsf 7)

For narrowband MIMO systems, the coupling between the,

transmitter and receiver for each sample in time can be modetéere S is @ diagonal numin X nmin MAallX, nin
min(nry, nre), andU andW aren g, X nypin @ndngg X nmin

usin : - , .
9 matrices containing the selected columns of unitary matrices.
2 — Hx+n (1) The maximum under the total power constraint can be found
o by differentiating with respect tg an arbitrary parameter &}
where

7] _
z  complex receive array output; 8q {logy L., + QI = MH{Q(S'$)7}} =0 (8)
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whereX is the undetermined parameter associated with the Lamtennd® = P, /nr.1,.,.., [7]. Assuming that the receiver can
grangian constraint. Evaluating the derivative accurately estimate the channel but the transmitter does not at-
tempt to optimize its output to compensate for the channel, the

tr {(Inm +Q %} —tr {(STS)*@} (9) maximum spectral efficiency is given by

dq
this relationship is satisfied for allQ/dq if Q is a diagonal Cur = logy | L, + 5 HH . (18)
matrix given by R
1l This a common transmit constraint as it may be difficult to pro-
Q=-S8'S-1,__. 10y . . )
A vide the transmitter channel estimates.

This discussion assumes ti€ats full rank. The additional pos-

itive power constraint is satisfied by employing only a subset & Capacity RatioC;r /Cur

channel modes. This intuitively satisfying but arbitrary enforce- At high SNR,C andCy4- converge. This can be observed
ment of the positive power constraint is justified with greatén the largeP, limit of the ratio of (17) and (18)

precision in the Appendix. The total power is given by

| P T{(8TS) "1} g
r{Q(s's) 1} =P, Crp  lom| =7 S'S
L, . Cy . r,
_tr { . (STs)l} (11) VT logy [Ty, + 7 TS|
log, |S'S
1 P, +tr{(StS)—1) logy(F,) — loga(nmin) + grzlnlﬁn |
5= : = (12) y Tog, |S'S]
A Nmin logy (F,) — loga(nrs) + #
The constrainP > 0 is enforced by employing only the tep. — 1 (19)
modes of theu,,,;,, channel modes. The optimu@;+ is given
by If nT. > ng., then the convergence to one is logarithmically
A slow.
0 . . A o
Qi = < . 0) (13) At low SNR, the ratioC;r/Cyr is given by
A = PO * tr(Dil) D I (14) CTT — 1Og2 [(PO + 1/dmax)dmax]
= - = Cyr logy [T, + n’;ol HHf
where the entried,,, in the diagonal matriXD contain then. _ log(1 + P,maxeig{HH'})
top eigenvalues dBS' (or, equivalently, o H). The values "t foe (1 o R
d,. must satisfy { ~ ( nrs g, )}
N maxeig{ HH'}
AD™!' >0 (15) N L yaay (20)
n4 Ny
o +1r{ ¥ using (17) withn = 1 and (18). Given this asymptotic result,
If (16) is not satisfied for somé,,, it will not be satisfied for & few observations can be made. The spectral efficiency ratio is
any smallerd,,,. The resulting capacity is given by given by the maximum to the average eigenvalue ratH 6.
. If the channel is rank one, such as in the case of a multiple-
Crr = log, Po+t{D™"} Dl (17) input single-output (MISO) system, the ratio is approximately
n4 equal tong,. Finally, in the special case whel'H has a flat

ﬁ@envalue distribution, the optimal transmit covariance matrix

The receive and transmit beamforming pairs are given by t )
gp 9 y 3 not unique. Nonetheless, the rafipr /Cyy- approaches one.

columns ofU andW associated with the selected eigenvalué
contained inD.

In this discussion, it is assumed that the environment is sfa- Interference
tionary over a period long enough for the error associated withExtending the previous discussion [8], [23], capacity is calcu-
channel estimation to vanish asymptotically. In order to studyted in the presence of uncooperative (worst-case) external in-
typical performance of quasistationary channels sampled fragrference; in addition to the spatially-white complex Gaussian
a given probability distribution, capacity is averaged over an eneisen, which was considered previously. The mutual informa-
semble of quasistationary environments. Under the ergodic &en is again given by (2) and (3), where entrapiz|x, H) in
sumption (that is, the ensemble average is equal to the time the presence of the external interference becadfast #)
erage), the mean capacif;r) is the channel capacity.

- 2 2

B. Uninformed Transmitter (UT) Malx, H) < logytrelonl +onR[} D

If the channel is not known at the transmitter, then the opndo2 R is the spatial interference covariance matrix. Equality
timal transmission strategy is to transmit equal power with eathachieved if and only if the interference amplitudes have a
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Gaussian distribution. Thus, the worst-cas®rmedcapacity transmitter element to transmitter scatterer to receiver scatterer

(the maximum—minimum mutual information) to receiver element) dominates propagation. Third, scatterers
are sufficiently separated in angle when viewed by their asso-

Cint = sup inf I(z, x|H) (22) ciated array. Finally, all transmitter scatterers couple with all re-

p(z[H) P(1) ceiver scatterers. Ray-tracing models of urban propagation in-

becomes dicate that the latter assumption, in particular, is often violated.

For this discussion, three approaches will be explored:
Crr.int = sup  log, ‘I + ﬁf’f{T‘ (23) 1) line-of-sight toy physical model;
P tr@)=r, 2) large dimension random matrix model;
using 3) stochastic physical single scattering model.
H = T+ R)_I/QH. (24) A. Toy 2x 2 Channel Model

Because the distribution of channel matrix eigenvalues is
Gaussian interference corresponds to a saddle point of #ssential to the effectiveness of MIMO communication, a toy
mutual information at which the maximum-minimum capacitgxample is employed for the purposes of introduction. The
is achieved. The capacity in the presence of Gaussian inteigenvalue distribution of a & 2 narrowband MIMO system
ference has a form identical to (17) under the transformatiom the absence of environmental scatterers is discussed. To
D — D, whereD contains the eigenvalues #H'. The visualize the example, one can imagine two receive and two
transmitted noise-normalized power covariance maRixXs transmit antennas located at the corners of a rectangle. The
calculated usingH. Similarly, the uninformed transmitter ratio of channel matrix eigenvalues can be changed by varying
spectral efficiency bound in the presence of noise is given bye shape of the rectangle. The columns of the channel matrix
the same transformation #1 — H. H can be viewed as the receiver array response vectors (one

vector for each transmit antenna)

E. Other Performance Metrics

The information-theoretic capacity is not the only possible H = v2(a vi a3 v) (26)

metric of performance. As an example, another useful perf%hereal anda, are constants of proportionality (equal to the

mance metric is the “outage capacity” [16]. “Outage capacity ot mean squared transmit-to-receive attenuation for transmit

IS tge ba_llc; h|e\f/able sfp ect(rjal efg_c:lencfy ?ound, Iassummg a ?'Vajﬂtennas 1 and 2 respectively) that take into account geometric
probability of error-free decoding of a frame. In many practicay o, ,afion and antenna gain effects, andand vo are unit

situations, th"?’ metric may be the best measure of performangg, , array response vectors. For the purpose of this discussion,
for example, in the case where the system can resend frames o <<\ med that — a1 = as, which is valid if the rectangle

of d_ata. However, this metr_lc_: is depenaggifon partlcule_lr SYSt®Bformation does not significantly affect overall transmitter-to-
choices (allowable probability of outage and frame size). FPéceiver distances

this paper, the information theoretic capacity is employed. The capacity of the 2 2 MIMO system is a function of
the channel singular values and the total transmit power. Eigen-

[ll. CHANNEL COMPLEXITY values of HH' are given by
A variety of techniques are used to simulate the channel ma- ) ;
trix [24]. The simplest approach is to assume that all the entries p1,2 = 2a7(1 £ [[vyvel]) (27)

in the channel matrix are sampled from identical independent .

complex GaussiarHl ~ G. While this approach is convenient/here the absolute value norm is denoted|by- . The sep-
from the perspective of performing analytic calculations, it majfation between receive array responses can be described in a
provide a channel eigenvalue distribution that is too flat. At tHgPTvenient form in terms of generalized beamwidths [26]

other extreme, channels can be characterized by a diversity order 9

[25], which is used to indicate an effective cutoff in the eigen- bia=— arccos{[[v]vall}. (28)

value distribution induced by spatial correlation. A number of

approaches that introduce spatial correlations have been Jo@t small angular separations, this definition of beamwidths

gested. One approach uses the form closely approximates margd hocdefinitions for physical ar-
rays. The eigenvalugg andy.» are displayed in Fig. 2 as afunc-
H =R,/ GR,.. (25) tion of generalized beamwidth separation. When the transmit

and receive arrays are small, as indicated by small separation
The above model results in a covariance matrix of the Kroneckarbeamwidths, one eigenvalue is dominant. As the array aper-
product formRs: @ R, ,,, for the entries in the channel ma-tures become larger, which is indicated by larger separation, one
trix H. This product structure can arise from a spherical Greerdsray’s individual elements can be resolved by the other array.
function model of propagation such as that used in Section llI-Cpnsequently, the smaller eigenvalue increases. Conversely, the
provided several additional conditions are met. First, scatteréagger eigenvalue decreases slightly.
are concentrated around (but not too close to) the transmitter anéquations (16) and (17) are employed to determine the ca-

receiver. Second, multiple scattering of a particular kind (fromacity for the 2x 2 system. The water-filling technique first
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Fig. 2. Eigenvalues dHH? for a 2 x 2 line-of-sight channel as a function of

. Fig. 3. Informed transmittercapacity of a 2x 2 line-of-sight channel,
antenna separation.

assuming antenna beamwidth separations of 0.1 (solid) and 0.9 (dashed).

must determine if both modes in the channel are employed. Both ved The choi ©2P for the hori |
modes are used if the following condition is satisfied: 1) Received PowerThe choice ofa"F, for the horizonta

axis of Fig. 3 is convenient because it can be employed to easily

[y > 2 compare performance using different constraints and environ-
P, + ﬁ + u% ments. This choice corresponds to the typical noise-normalized
1 1 received power for a single receive and single transmit antenna

B, > 2 radiating power2 P,. However, this choice can be mildly mis-
||VIV2|| leading because the total received power will, in general, be

— it (29) much larger tham?P,. In generala? is defined by the Frobe-
a*(1 = |lviva|]?) nius norm squared of the channel matrix normalized by the

assumingu; > . number of transmitters and receivers

If the condition is not satisfied, then only the stronger channel 2 tr{HH'} '

mode is employed, and the capacity, from (17), is given by p—— (32)
Crr = logy(1 + i F) The total received noise-normalized power produced by a
= logy(1 + 2a2[1 + |[Viv2 || P,). (30) set of orthogonal receive beamformers is given H¥PH'}.

) . Theuninformed transmitterate is maximized by sending equal
Otherwise, both modes are used, and the capacity is given bpfower to all transmit antennas so thafFfPH'} becomes
P, /nrtr{HH'} = ng,a®P,. It is worth noting thatP is not,

1 1
Crr = log, m <’“L1 0 )‘ in general, optimized by thiaformed transmitteto maximize
2 0 pi2 received power but to maximize capacity. For tth 2 toy ex-
2 ample, the total received power is giventyt + ||[v!vs|[)a? P,
= log, { <“1“2P" J;’“ s “2> . } andp2a2Po +2||v1v2||2/(1p_ ||v1v2||qz) whzé% us|i|ng11 0n|2 or two
g modes, respectively. In both cases, the total received power is
=2logy{a’(1 — ||[vive||H)P, + 1} much larger tham?F,.
—logy{1 — ||VIV2||2}- (31) The total received power for the capacity-optimizefdrmed

transmitter given an arbitrary channel matrix, is
The resulting capacity as a function efP, for two

beamwidth separations 0.1 and 0.9, is displayed in Fig. 3. Q) = {(Po +tr(D_1)) }

5 . . . S IT} =tr — 1D - In+
At low a°P,, the capacity associated with small beamwidth ny
separation performs best. In this regime, capacity is linear tr{D} tr{D~'}r{D} - ni
with receive power, and small beamwidth separation increases =1 +
the coherent gain. At high?P,, large beamwidth separation
produces a higher capacity as the optimal MIMO systensing (14). The first term in (33) is bounded from below by
distributes the energy between modes.

(33)

(LS Ty

In complicated multipath environments, small arrays employ pmD} tr{HH'}
scatterers to create virtual arrays of a much larger effective aper- * ny T “min{ngs, nre}
ture. The effect of the scatterers on capacity depends on their > max{nry, nrs o> P,. (34)

number and distribution in the environment. The individual an-

tenna elements can be resolved by the larger effective apertiihe second term in (33) is bounded from below by zero. Con-
produced by the scatterers. As was demonstrated in Fig. 2, deguently, the total received power is greater than or equal to
ability to resolve antenna elements is related to the numbenofix{nr., ng. }a’P,.

large singular values of the channel matrix and, thus, the cafor very smalla®P,, far from the nonlinear regime of the
pacity. Shannon limit, the optimal solution is to maximize received
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power. This is done by transmitting the best mode only, setting 0.08 Py
n, = 1. In this regime, the total received power is given by %’g'gz )4
£ 0.
tr{Q;zr} = P,maxeig HH'}. (35) 2,008 /
o ' ' £ 0.04
This result is bounded from above by, nr.a*F,, which is S 0.03 v
achieved if there is only a single nontrivial mode in the channel. £ 0.02 -~ -
001 [t
. S
B. Large Dimension Gaussian Channel

. . -20 -15 -10 -5 O 5 10
A common channel modeling approach is to construct a ma- Eigenvalue (dB)

trix G by independently drawing matrix elements from a unit-
variance complex Gaussian distribution, mimicking indepeftig. 4. Eigenvalue probability density function for the complex Gaussian

dent Rayleigh fading O o eing, an el rumber of wansmiters and
H — CLG. (36) 0

This matrix is characterized by a relatively flat distribution of - -5 ~

singular values and is an appropriate model for very rich mul- @ -10

tiple scattering environments. 2 18

In the limit of a large channel matrix, the eigenvalue 2 i \

probability density function fof1/nr,)GG' asymptotically 5 -20 \

approaches a variant of the Wigner distribution [27]-[31]. = -25

Of course, implemented systems will have a finite number of \

antenna elements; however, because the shape of the typical 0 02 04 06 08 1

eigenvalue distributions quickly converges to that of the Fraction of Eigenvalues

asymptotic distribution, insight can be gained by consideri 4 . .
L . . . . 5. Peak-normalized eigenvalue spectrum for the complex Gaussian

the |nf|n|tg—d|men3|onal case. The proba}bll|ty that a rangom annel ((1/n7.)GGT) assuming an equal number of transmitters and

chosen eigenvalue of theg, x ng, matrix (1/nTa;)G'GT is receiver{r = 1) in the infinite dimension limit.

less than is given byF.,.(1.). Here,G is ann g, X nr,, matrix,

a_mql the ratio ofvz, t0 7., is giyen byr = n_Rm/nTm. In the = log, |L.,., + a2P, 1 th‘
limit of ng, — oo, the probability measure is Nz
Fr(1) + cr6(p) (37) R NRx /0 dpufr (1) fr (1) Loga (1 + pa®By) - (41)
where the constant associated with the “delta function” at Ovighere the continuous form is asymptotically exact. This integral
given by is discussed in [31].The normalized asymptotic capacity as a
. function ofa?P, andr, Cyr /nr. = ®(a?F,; r) is given by
¢, = max <0, 1-— —) . (38)
”

T 1- 1
O(z; r) =v {10g2 (; w+> + ; P log, <1 — )

The first term of the probability measuyfe(y) is given by

w_
(1 —ar)(br — ) . an < < b, pln(Z)}
() = 2 A (39) 1 op v 1 2
0; otherwise wE=ot ot Ea (1+p+5) —
1 1
where p = min <7’, —) , v=——. (42)
r max(1, )

2 2
ar = (Vr=1), b= (Vr+1)". (40) In the special case d¥/ = ny, = nr,, the capacity is given
The eigenvalue probability density function for this matrix exdy
presse(_j_usmg a deC|beI_ scale is dlsplayed_ in _Flg. 4. Using the Cur  d2P,
probability density function, the large matrix eigenvalue spec- —+— =
: 4 L M ln(2)
trum can be constructed and is depicted in Fig. 5.
1) Uninformed Transmitter Spectral Efficiency Bound: where, I is the generalized hypergeometric function [32].
the large matrix limit, theuninformed transmitterspectral ~ 2) Informed Transmitter CapacitySimilarly, in the large
efficiency bound, which is defined in (18) and discussed in [9Datrix limit, theinformed transmittecapacity, which is defined
and [31], can be expressed in terms of a continuous eigenvallig17), can be expressed in terms of a continuous eigenvalue
distribution distribution [9]. To make connection with the continuous eigen-
value probability density defined in (371) from (17) is re-

3F2([17 1, 3/2]7 [27 3]7 _4a2P0) (43)

P,
T = 4 T
Cur 10%2 I"RI + NT HH 1Equation (42) is expressed in terms of bits rather than nats as it is in [31].
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placed withD = a*n;, A, where diagonal entries & contain
the selected eigenvalues @f/nr,)GGF.

P+ Lt trA—t

a?nr,

Crr = log, a2nTxA‘

Ny
2 B / 1
a’*nrePo +nre [, i fir(p )7]

9N Rz
[=S)
+ NRy /
m

cut

/2 gn Ry lOg,

dpfr(p)loga(p) — (44)

whereg is the fraction of channel modes used by the transmitter

_ne [T
g—Mw~A A (45)

cut

To calculate the capacity, the following integral must also be
evaluated:

s

dpef1(pt) logy(pe)

1117 [3 3] jrew
4. 1= = = 2 2| Heuwt
{3 2<|:27272:|7 |:27 :|7 4 )

+ <\/4— Pheut — \/L% arcsec[\/ﬁ%D
(1= o) = 2 W) ) Y (50)

Implicitly solving for z..., capacity as a function e P, is
displayed in Fig. 6. Theininformed transmittespectral effi-
ciency bound is plotted for comparison. For sm&lP,, ficu
approaches the maximum eigenvalue supported,ify). In
this regime, the ratio o€y /Cyr approaches 4. Conversely,

and ., is the minimum eigenvalue used by the transmitteg; largea®P,, the normalizednformed transmitterand unin-

given by the continuous version of (16)

n
drn :nTacGQN > +00
Py 4 nRo g [ difr(i) 5
. [0 / /
I/L ut = 7 et dl’L f”(l’L) ) (46)
TR [

The approximations are asymptotically exactin the limit of lar

NRx-

as the number of antennas increases. Each additional ant
increases the effective area of the receive system. Eventual
this model breaks down as the number of antennas become§
large that any additional antenna is electromagnetically shielded
by existing antennas. However, finite random channel matrices
quickly approach the shape of the infinite model. Consequently, n
it is useful to consider the antenna-number normalized capa

as a function ofi? P, andr, Crr /ng., Which is given by

Crr

NRx

He
g

)
m

cut

2 N / 1
o [P, A
~ glogs

dpfr (1) logo(pn).  (47)

Using the asymptotic eigenvalue probability density function
given in (39), the integrals in (46) and (47) can be evaluat

The relatively concise results for= 1 are displayed here as

[ autin)
Heut
(4 = peut) freur + 4 arcsin (\/T )
o (48)
27

and

[ i,

Heut

formed transmittespectral efficiency bounds converge.

C. Stochastic Physical Scattering Model

For many physical environments, the random channel matrix
assumption may be inappropriate because it produces an eigen-
value spectrum that is overly optimistic in terms of the number
of large eigenvalues. To investigate more realistic channel ma-

gtéices, a simple scattering model is employed. This model was

relatively successful in matching the spatial decorrelation of

For a finite transmit power, the capacity continues to increa@8t€nna elements measured at cellular phone frequencies and
epmadmdths [33]. Assuming a particular density, a field of point

S;atterers is generated randomly, and the channel matrix is cal-
Wated explicitly using

Hrn,l ~ Z

e 27i[dRe, m () HdTa, 1 (0)]

dRm,nz(n)dTmJ(n) (51)

Yhere distancegg, »(n)anddr, ((n) between antennas and

scatterers are expressed in terms of wavelengthsyaridand
n index the receive antenna, transmit antenna, and scatterer, re-
spectively. The model does not include multiple scattering.

Given an ensemble of matrices constructed using this tech-
nique, the distribution of channel matrices is primarily a func-
tion of the number of transmit and receive antennas and the
density of scatterers in units af/ L?, whereL is the distance
between the arrays. If the field of scatterers is large compared
ith L, the size of the field does not overwhelm the contribu-

n to an element in the scattering matrix. At some large dis-
tanceR ~ dry. m ~ drs 1, the contribution of a scatterer to
an entry in the channel matrix is attenuated by the inverse of
the distance squared R2. The number of scatterers in a differ-
ential annulus increases linearly with distance, but the effects
of the scatterers combine incoherently so that the contribution
grows more slowly thai?, and the integrated contribution from
radiusR to oo is finite.

The local distribution of antenna elements has a subtle ef-
fect on the channel SVD. As was discussed in Section IlI-A,
the eigenvalue distribution depends on the ability of one array
to resolve the individual elements of the opposing array. In the
presence of scatterers, the issue is whether or not the virtual
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Fig. 6. Asymptotic large dimension Gaussian channel §
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array (consisting of scatterers) can resolve the antennas inthg7. (a) Median eigenvalue distribution BEH for 2 x 2, 4 x 4, 8 x
opposing array. However, the effect is dominated by the dens&ﬁ%and 16x 16 channel MIMO systems, assgming a dense_ field _of scatterers
- . 10/(L)?) and an antenna array separatidn The median eigenvalue

of scatterers. Assuming that the array is not oversampled S{éif'%lfribution for a 16x 16 random matrix MIMO system is provided for
tially, the dependence on intra-array spacing is weak. comparison. (b) IT capacity ratio with respect to thexi86 random Gaussian

1) Eigenvalue Spectrum ExampleShe sensitivity of channel.
eigenvalue spectra and capacity to variations in the dominant
parameters (number of antennas and scatterer density) of
the model are analyzed here. The median eigenvalues of an
ensemble of eigenvalue spectra are displayed with the largest
eigenvalue normalized to 0 dB in Figs. 7(a) and 8(a). Atie
point in the median eigenvalue distribution indicates the median
of the nth eigenvalue for each spectrum in the ensemble. The
median eigenvalues are a helpful diagnostic tool but cannot be
used as an input to other calculations because of correlations
between eigenvalues. In Figs. 7(b) and 8(b), the corresponding
capacities are displayed.

The median eigenvalue distribution as a function of the
number of MIMO antenna elements is displayed in Fig. 7(a)
for the same total aperture (16 wavelengths). As the number
of antennas increases, in a fixed environment, the value of
the smallest eigenvalue in each spectrum decreases. There are
two reasons for this. First, the typical ratio of the maximum to
minimum of a set of random numbers grows as the numberHig- 8. (a) Median eigenvalue distributions HFFL! for an 8 x 8 channel
the set grows. Second, as the number of antennas increa¥@dO systems, assuming scatterer densitie/of, 10/L*, and100/ L* for

B antenna array separationsiof The median eigenvalue distribution for arx8

more scatterers are required to take advantage of the NeMndom matrix MIMO system is provided for comparison. (b) Capacity ratio
degrees of freedom. Thieaformed transmittercapacity ratio with respect to 8& 8 random Gaussian channel.
for each array size to the 16 16 random matrix is displayed
in Fig. 7(b). Over a wide range of SNR, the performance isane near the transmit array and one near the receive array.
simple function of the number of antennas. This is because at high density, there are a large number of

The median eigenvalue distribution as a function of scattersratterers near both the transmit and receive arrays, and the
density is displayed in Fig. 8(a). At low density, the relativelgontribution increases inversely with distance. A scatterer near
low number of scatterers dominate the channel matrix wittine of the arrays is necessarily far from the other. The field
strong spatial correlation at the transmit and receive arrays. Thisscatterers near the transmit array is spatially uncorrelated
causes the eigenvalue distribution to decrease quickly. As finhem the transmit array’s perspective, but this field of scatterers
density of scatterers increases, the environment becomes nsuietends a small angle from the receiver's perspective and
random, and the eigenvalue distributionFH' moves closer is consequently highly correlated. Similarly, there is a dense
to the random matrix distribution. However, the distributiofield surrounding the receive array. These scattering fields
does not converge to the random matrix distribution. In theontribute low rank components to the channel matrix. This
figure, it can be observed that once the density of scatterersdifect competes with the much larger number of scatterers
units of 1/L?) has exceeded the number of antennas, therefas from both arrays. The correspondiimgormed transmitter
little effect on the distribution. The channel matrix in the higiphysical scatterer to thimformed transmitterandom matrix
scatterer density limit is affected by two fields of scattererspectral efficiency bound ratios and theinformed transmitter

M(Edian Eigenvalues (dB)
[

Capacity Ratio

=4
[
@
, :
-t
9
>
-4 §

)
4’ P (dB)
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physical scatterer to theninformed transmitterandom matrix bound is explicitly calculated. For theninformed transmitter
capacity spectral efficiency bound ratios are displayed the spectral efficiency bound is given by
Fig. 8(b). At low SNR, the relative performance of théormed

2
transmitteris better in simpler environments, taking advantage Cyr = logy |Lynp, + a” L, GGt
of the dominant mode. At higher SNR, channels with higher nre
complexity perform better. ~ynre®(a” Po; yr) (55)
whereG is a(yngrz) X ny, Matrix with entries sampled from a
IV. INTERFERENCEEFFECTS unit-norm complex Gaussian distributich(z; ) is defined in
A. Interference Model (42), andr is defined in Section IlI-B. For thinformed trans-

. L . mitter, the spectral efficiency bound is given by modifying (44)
A given MIMO communication system may be required tgq

operate in the presence of other MIMO or wireless commu-

nication systems. This is certainly true in the case of wireless F, + azrllT, trA— 2 <
T . . - Cpr = logy = a‘nr. A
local area networks operating in the uncontrolled industrial, sci- ng
entific, and medical (ISM) bands [34]. The effects of interfer- o
. (ISM) [34]. The effects o ] ) P, 1y [ il (1)
ence will be addressed using random infinite dimension and sto ~ dn ey 10g, flout #
chastic physical scattering models. gry
While one can certainly imagine a nearly limitless number of 0
interference scenarios, three interference regimes are of partic- + NRaY / dpfry () logy (1) (56)
ular interest: frous
1) a small number of strong interferers; where then g,y diagonal elements oA contain the selected
2) an uncooperative competing MIMO system; eigenvalues of1/nr,)GG'
3) a cooperative interfering MIMO system. oo
. - n4 .
1) Strong Interferencein an environment populated by 9= o / dpefr (1) (57)
€T et

a relatively small number of strong interferers, the spatial

whitening performed in (24) can be replaced with a pra&ndjic.: is given by
jection operator, removing the spatial subspace associated , foo A fn (41)
with the interferers. Noting that the Hermitian interference frowt = i ﬁcutm“ A ¢
matrix R can be expressed as some power scaling multi- a?Py + 17y fﬂm dufm(u)ﬁ
plied by the outer product of two matricesVV' so that
T+ R)™! = (I+ «VVH™L, in the limit of high power,
(I+ R)~! becomes

(58)

The spectral efficiency loss ratio is depicted in Fig. 9 foof
0.9 and 0.5. In the limit of large® P,, the ratioC/C converges
to v max(1, )/ max(1, rv).
2) Competing MIMO SystemsA reasonable model for the
Jim T4+ aVVH™ = lim IT-aV(I+aVIV)™' VT inerference is to assume that it is associated with a channel
—I-V(Viv) lyi=pt (52) matrix thgt 'is stgti§tically independent of, l:_)ut other.wise hgs
characteristics similar to, the channel matrix associated with

whereP is a projection matrix, which projects onto the Comghe intended transmitters. Usm_g the_ statlstlcal scattering model,
an ensemble of channel matrix pairs is constructed. The first

plement of the column space §f. Because projection matrices o . . : .
are idempotent, this is also the solution fér+ R)~/2 of the pair is associated with the intended transmitter, and the

The strong interference-mitigated spectral efficiency bourﬁ?cor,‘d Is associated with the_ interfering MIMO sy§tem. .De-
can be written as pending on the nature of the interference, the received signal
can be much stronger or weaker than the intended signal. In
. ol ol Fig. 10, the median eigenvalue distribution is displayed for envi-
C =logy |Lng, +a"P-GPG'P|. (53)  ronments that contain competing MIMO systems with total in-
terference-to-noise ratiosRrof 20 and 40 dB. The eigenvalue
The effect of strong interference on capacity is calculated, eXstributions are peak-normalized in the absence of interference.

ploiting the fact that unitary transformation of independentiderrhe effect of interference changes the shape of the distribution
tically distributed (i.i.d.) Gaussian matrices produces matricagd causes an overall downward shift.

with the same Gaussian statistics and that there exists a unitarny the case of the interfering MIMO system displayed in
matrix K that transforms the projection matrix to a diagonal masig. 10, the story is somewhat complicated. As one would

trix with the form expect, the adverse effects of the interference on the eigenvalue
spectra become worse for stronger interference. Because the

KPLK' — <Ian"/ 0) (54) ?nterfering MIMO system uses multiple transmit antennas, the

0 0 interference affects all of the modes of the channel matrix.

Interestingly, the loss of large eigenvalues for the sparse field
where the projection removés — v)n g, degrees of freedom. matrix is less severe than that for the random channel matrices
Using the large dimension limit discussed in Section 11I-B, thisecause the dominant portions of both the signal of interest
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Fig. 11. Spectral efficiency bound ratio of 8 8 MIMO to 1 x 8 SIMO
systems for random, dense, and sparse scattering fields, assuming (a) no
interference, (b) interference of 20 dB, and (c) 40 dB total noise-normalized
power for bothinformedanduninformed transmitter
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Fig. 10. Median eigenvalue distribution 8fH* for an 8 x 8 channel for singular values, whereas tinformed transmitterandomly
random, dense, and sparse scattering fields, assuming random interference o ' . L
(a) 20 dB and (b) 40 dB total noise-normalized power. Spreads energy between modes. The loss is most significant for

environments with relatively few large channel matrix singular

and the interference occupy smaller fractions of the total spat&8Y®s: . . .

in the sparse scatterer environment. This decreases the typ_icéﬁ) Inf|n|te-D|m¢n5|on Competlng MIMO Systeﬁl_\'he_ max-
overlap between the associated subspaces and thus reduce'S tHg' SpecieflicicIig for_thanmformed transmittem the
detrimental effects of mitigation. Of course, the channel matrB{€S€NCe Of an uncooperative (worst-case) interfering MIMO

associated with the sparse scatterer environment had fef¥éstem [9] is given by

useful modes to lose. B P, .
It is interesting to compare the capacity of asx&8 MIMO Cur = logy 1+ " I+R) HHT‘

communication system with a & 8 SIMO system under the T p

constraint that the total transmit power is equal. It is common =log, I+ R+ =2 HHT‘ —log, [T+ R|

to compare the capacity of MIMO systems to single-antenna Tz

Fransmit andreceive systems..However,_inthe presence of stroqg — log, |+ Ping 33+ P, HHT‘

interference, the capacity of single-to-single antenna systems is MNint Ny

oor. The spectral efficiency bound ratio b,

P P y —log, [T+ JJT‘ (60)

int

(C(8 x 8 tr{P} = P,)) (59)
(C(1x8 PL=PF,)) where the noise-normalized interference plus noise covariance

is displayed in Fig. 11 for botimformedanduninformed trans- matrix is given by

mitter bounds, where the expectation is evaluated over an en- P
: : : R =~ 337, (61)
semble of scatterers and interferers for a given environment. it
In Fig. 11, the sensitivity of MIMO capacity to environment }
is demonstrated. At very high SNR, tbhainformedspectral ef- The notationC' indicates the spectral efficiency bound in the
ficiency bound andnformed transmitteicapacities converge. presence of interference. The interference transmitter-to-re-
At low SNR, theinformed transmitteavoids modes with small ceiver channel matrix ig = a;,.I', which is similar to the
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channel matrix defined in (36). The,,, interfering transmitters 5 /
have total powerP;,,;.
A particularly interesting interference environment occurs E’ 4
when a MIMO system attempts to operate in the presence of 2 s g
an uncooperative competing MIMO, where the average receive E E 3 V'
power per transmit antenna is equal for the interferer and the E - //
intended transmi_tteaz?Po [nrs = amem_t [Mint _In this case, g . A
the spectral efficiency bound can be written using v /"
o le—1"
A=(TG) -10 -5 0 5 10 15 20
AAT =TT 4+ GG! (62) o’F, (dB)

; ) ; Fig. 12. Infinite-dimension antenna normalized capacity for an equal number
where the shape L is g, X (nT“” + nmt)' Assuming thal’ of transmitters and receivers £ 1) given: no interference (black), cooperative

andG are independent ?—nd that the complex .emri(?s qf ea}ch ff€rference (dashed), and an equivalent uncooperative interfering MIMO
selected from a unit-variance complex Gaussian distribution, sxstem (gray).
was previously assumed, the spectral efficiency bound can be

expressed as where R;, denotes the spectral efficiency of théh user, and
~ a2P, Gy, has dimensiongs g, x n,. and has i.i.d. complex Gaussian
Cur, Bq = logy |1+ —— AAT‘ elements with zero mean and unit complex variance. Denoting
NTy
2p Aj = (G- Gy), the bound becomes
a-F,
— log, [T+ T A Al
Nra mLim xz
) AAT 1Og2 Ian + mGQPo— ~ nRac(I) <ma2Po§ nR ) .
— log, |1+ a’P. Nrz + Nint MNT, MmNy
2 ¢ Ny Ny + Nint (66)
2p Mint rrf . . . . . o o
—log, I+ a"F, e | (63) Using this relationship, the following asymptotic inequality is
o constructed:
The asymptotic form of (63) can be expressed as the differ-
ence between two terms using (42) with two different sets of Ri+ -+ Ry < nga®(ma®Py; v/m).

parameters. The maximum spectral efficiency bound in the pres-
ence of this interference for thminformed transmitteis given This asymptotic bound is achievable for a particular set of rates

by by a receiver employing successive interference cancellation
. (SIC). Recall that SIC detects signals (in this case, MIMO sig-
Cur, Eq ~ ® <a2Po NTg + Nint | "Rz ) nals) in order, treating yet undetected signals as interference
NRz NTg NTz + Nint in the manner of Section 1V-A3 and subtracting previously de-
% <a2Po nmt; an> (64) tected signals. More specifically, note that
NTx  TNin
' N 2 A"lAIn
whered(z; r) is defined in (42). The effects of the interference 1082 |Tng, +ma’l% “mng.

for an uncooperative interfering equivalent MIMO system are —1

displayed in Fig. 12. The effect can be significant. N Z log,
4) Cooperative MIMO InterferenceAssuming knowledge —o (m — k)nrs

of the interfering MIMO system parameters (for example, all

channel matrices) and cooperative control of the interfering —log,

users, the interference treated above can be mitigated by

employing a MIMO extension to the multiuser detector (MUD) ) A, Al

[30], increasing the capacity of each MIMO user beyond that a L, (m—k — Dnre

achievable with the spatial interference cancellation alone.

A simple example is provided by a system wfinformed \ pnere thekth term in the summand represents an achievable

transmitterMIMO users, each utilizingvr,. transmitters com- spectral efficiency boundg,, after the previously detected

municating with a single receiver array fielding;. elements. oer 1) signals have been subtracted, and the remaining

Itis assumed thai” P, is the same for all users, which can b&ignals (higherk) are treated as interference as in Sec-

achieved using power control. o tion IV-A3. Thus, in the asymptotic limit, one can achieve
The MIMO extension to the MUD spectral efficiency boun(g: Ry, & ngy®(ma®P,; r/m). By averaging over all possible

is given by the convex hull of a set of inequalities. In particulag|c orderings and controlling the corresponding user rates, the

the rates of alin users must satisfy spectral efficiency bound is the same for all users:

Lig + )

A, _pAl
Intim =+ (m _ k)CLQPO kX, &

Ian +(m_k_ 1)

2p,
70 GGl
NTe

Ry +---+ Ry, < log, (65) CN'UT7 MUD & [VRe d(ma’P,; r/m). (67)
m
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The spectral efficiency bound of a single user of the multiuser g’ 1
MIMO network described above (for two users ang, = §.
nrz), given a MIMO multiuser detector as areceiver, is depicted O 08 i T -
in Fig. 12. Note that MUD receivers substantially increase ca- 50.6 Al : ::‘;‘::z :g"ln
pacity at higher SNRs over the capacity achieved using spatial -g e : p—" 1'
interference cancellation alone. % 04 - sEmmmm———— we. UT
g 0‘2 b S e D e e . .................
V. CHANNEL ESTIMATION ERROR g
Channel estimation accuracy is limited by channel station- = -20 10 . ,;”(dB) 20

arity. For the purpose of this discussion, channel estimation error

is modeled as a perturbing mati® with i.i.d. elements. The Fig. 13, Fraction of stationary capacity for an>8 8 MIMO system with
estimated channel is then given By = H + ||H||§) Here, transmitter channel estimation error, assuming a dense scattering field and no
|| - - - || indicates the Frobenius norm. The validity of this modéfterferers.

depends on the details of the error source. It is assumed that

there is no correlation between the source of error and the moggc capacity for MIMO communication systems was reviewed
of_channel matrix. While botinformedanduninformed trans_- for both theinformedand uninformed transmitterThe spec-
mitter MIMO systems suffer loss as a result of channel estimgal efficiency bounds in the presence of worst-case interfer-
tion error, theinformed transmittesuffers a loss due to usingence were discussed. In Section Ill, the complexity of chan-
incorrect transmit spatial coding. . nels expressed in terms of channel matrix SVDs was discussed.
The losses peculiar tmformed transmitteMIMO systems  |ine-of-sight and stochastic physical scattering models were
can be investigated by assuming that the receiver has an accufat®duced. Using the stochastic physical model, channel ma-
estimate of the channel but that the transmitter has an inaccutge SVDs and capacity sensitivity to the number of antennas
estimate. This model is reasonable for nonstationary channelsd scatterer density were investigated. The asymptotic large
Assuming data is transmitted in blocks, the receiver can perfo@aussian matrix channel SVD and correspondininformed
channel estimation using the current block of data; howevefansmitterspectral efficiency bound was reviewed. The corre-
the transmitter must wait for that information to be fed backpondingnformed transmittecapacity was introduced. In Sec-

Ignoring the possibility of channel prediction, the transmittejon |V, three regimes of interference were investigated:
will employ channel estimates from a previous block. Using this 1) strong interference;
estimated channel with err&, the “optimal” noise-normalized 2) uncooperative comioeting MIMO system:
transmit covariance is constructed, solvingRyrusing (7) and 3) cooperative MIMO interference. ’
(13), assuming the estimated channel is the true channel./@s . . . . .
- : . _ . A strong interference asymptotic large Gaussian matrix capacity
a result, the spectral efficiency bound with channel estimation ; : .
L result was introduced for both thaformed and uninformed
error at the transmitter is given by . : . .
transmitter A competing MIMO interference, asymptotic large
Gaussian matrixninformed transmittecapacity result was in-
troduced. Using the stochastic physical scattering model, the
cotmpeting MIMO interference spectral efficiency bounds were
(fﬁ\/'estigated for both thimformedanduninformed transmitter
gxploiting MUD, a competing cooperative MIMO interference
. S Pl . asymptotic large Gaussian mattixinformed transmitteca-
transmit channel estimation error fE||” = 0.01,0.1, and 1is epacity result was introduced. Finally, in Section V, the effects of

displayed as a function af7,. For this analysis, an ensembl chf\nnel estimation error on performance ofitifermed trans-
t

.Of errors and reallza_tlons of the dense s_cgtterer environmelter was investigated using the stochastic physical scattering
is used. For comparison, the spectral efficiency bound of t odel

uninformed transmittetis presented. At high SNR, MIMO
systems are very forgiving of transmit-channel estimation error
for the same reason that thminformed transmittespectral APPENDIX

efficiency bound approaches the optimal capacity at highThis appendix provides a more rigorous derivation of the in-

SNR. Atlow SNR, the spectral efficiency remains remarkably e transmitter capacity given in (17). The starting point is

insensitive to channel estimation error. Relatively few modeg, ; ; ; -
ce again (5). Applying the generic matrix identEy-XY | =
are used by the optimal transmitter. It is apparently difficult foL& N qu it(c?sm gg ?/e V\S/Jr ittengas ity |
S 1

random noise to significantly disturb the transmit beamforme
even when the channel estimation error and the channel have

the same Frobenius norm. Crr = sup log, |, + BAAT| (69)
A;traan=r,

(Craer) = (log, ‘I + HPH' ‘> (68)

where the expectation is evaluated over an ensemble of s
terers and channel errors.
In Fig. 13, the fraction of the optimal capacity assumin

V1. SuMMARY whereB = H'H, andP = AAT. The matriceA andB both

The sensitivity of spectral efficiency bounds to environmentalve dimensionar, x nr,.. Note that positivity fol® is now
factors has been discussed. In Section Il, the information theastomatic. The maximum in (69) is found by adding a Lagrange
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multiplier to enforce the constrainttAA") = P, and differ- b; > by, otherwise,Crr could be increased by swapping the

entiating with respect to the componentsfofyielding values ofp; andp,. Assuming that the eigenvalues are ordered
) so thath; > by > --- > b, , the setS must be given by
(I+BAAH)T'BA = )\A. (70) s=1{1, 2, ...ny} forsomeinteget < ny < ng,. The value
o ) ; for n4 is determined by maximizing;r while maintaining the
Multiplying on the right byA" produces positivity conditionp, = A% — b}:l > 0forl <k < ng.
Noting thatp; > > ... > p,., it suffices to require that
(I+BP)"'BP = AP CEVI g == d
n+ - .
To see which value of ;. to choose, it is useful to define the

where) is the Lagrange multiplier constant that must be chos?n tion Clm)-
to satisfy the constraint. Note thBP and(I + BP)~! com- unction C'(m):

mute so that (71) can also be writtenBR(I+BP)~! = \P. ™
Multiplying by a factor of(I + BP) on the left or right as ap- C(m)= sup > logyo(1+bepr(m)).  (78)
propriate produces Po=)_, p(m) k=1

Note thatC(m) is similar to the capacity function, but there

(B-M-ABP)P =0 and (B-AI-APB)P =0. (72) ;" positivity constraint. It is clear that(1) < C(2) <

Subtracting (71) and (72) shows that ---C(nr,) since any set of values fex,(m) can be extended
to m + 1 by settingpr(m + 1) = pp(m) and p,,41(m +
MBP — PB)P = 0. (73) 1) = 0. The optimization with respect oy, (m) is performed

using the method of Lagrange multipliers, leading to the solu-
Now, it can be shown th@P = PB. First, consider the casetion px(m) = A71(m) — b,jl. Applying the total power con-
X = 0. From (72), it follows thaBP = 0, and thusP*B' = straint shows that the Lagrange constant is givea by(m) =
PB = 0 = BP. Inthe case\ # 0, letvy, vy, ... v, be (1/m)(P, + 37, b 1) It follows thatC(n) = Crr since
an eigenbasis for the Hermitian mati#& Computing the inner the values forp,, wherep;, # 0, are the same in both cases.
product of (73) between two arbitrary eigenvectors shows thaince theC(m) are monotonically increasing i, we need to
pick . to be the largest value for whigh, (ny) > 0.
PmVi(BP — PB)v,, =0 (74) It is also easily shown that,,(m) > 0 for m < n, and that
pm(m) < 0form > n. First, note thap; (1) = P, > 0. Next,

wherep,, is the eigenvalue corresponding ¥@,. Taking the suppose,,,(m) < 0 for somem. Plugging in the solution for
conjugate of the above equation and swappingth /. yields pm(m) gives the inequality

WV (BP — PB)v,, = 0. 75 Uk
PaVal Vm (75) P+ gt <mb k. (79)
If p, # 0orp, # 0, it follows from one of the above two k=1

equations thav| (BP — PB)v,, = 0. If p, = pm = 0, adding b1 to both sides and factoring the right side gives
vi(BP — PB)v,, = 0 follows directly sinceP annihilates

both eigenvectors. mtl
The above arguments show that the optimum valu®forust Po+ >0 bt <(m+ Dbk, +mby' — bk
commute withB, which means that they can be jointly diago- =
nalized. Equation (69) for the capacity can be rewritten as <(m+ 1)b;ll+1
nry which shows thap,,,+1(m + 1) < 0 as well. Oncep,,(m) is
Cir = sup Z log,(1 + brpr) (76) negative for somen, it must remain negative for all larges.
PR>0; Po=) " pi k=l To connect the results here to the main body of the paper,

. L note that the eigenvaluég are the same as the entriésin the
whereb;. andp. are the eigenvalues & andP. The optimiza- jia40nal matrixD. Plugging the solutions obtained fpx, into
tion need only be performed with respect to the scalar valpes (76) leads directly to (17)

rather than the full matri®. Applying the method of Lagrange

multipliers as before leads to the diagonalized analog of (72) as ACKNOWLEDGMENT
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