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ABSTRACT

The advent of distributed and agile sensing systems that collect data in multiple

locations and through a variety of sensing modalities has brought about new and

exciting challenges to the field of signal processing. Motivated by problems that

arise in the development of these systems, the thesis makes contributions in three

domains: (1) distributed optimization for inference in sensor networks, (2) statistical

tests for optimality that mitigate the problem of sensitivity to local maxima, and (3)

development and analysis of reinforcement learning solutions to stochastic decision

problems for resource allocation in agile sensing.

A novel incremental gradient method, called incremental aggregated gradient

(IAG), that can be used by wireless sensor networks to perform inference in a dis-

tributed manner, is proposed and analyzed. A gradient aggregation concept relaxes

the common requirement of incremental methods for a diminishing step size for con-

vergence, and a fast convergence rate is established.

The convergence of IAG is established under a certain unimodality assumption.

For non-convex problems however, for example when IAG is applied to find the

maximum likelihood estimator, the method might stagnate at a local maximum. To

mitigate this weakness, the following question is addressed: Given the location of

a relative maximum of the log-likelihood function, how to assess whether it is the

global maximum? We analyze and improve an existing statistical tool, called A

Test for Global Maximum, that answers this question by posing it as a hypothesis
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testing problem. Tests that are insensitive to model mismatch are proposed, thereby

overcoming a fundamental weakness of this tool.

Finding optimal policies for controlling an agile sensing system is formulated as

a reinforcement learning problem and solved via a novel approximate dynamic pro-

gramming algorithm that approximates the solution of the associated multi-stage

non-convex optimization problem by solving a sequence of single-stage convex prob-

lems. Via this approximation a plethora of off-the-shelf classification methods can

be applied to approximate the solution of the more complicated reinforcement learn-

ing problem. The consequences of the approximation are investigated by deriving

finite sample upper bounds on the performance of the estimated policy relative to

the performance of the optimal one.
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CHAPTER 1

Introduction

1.1 Overview

The advent of distributed and agile sensing systems that collect data in multiple

locations and through a variety of sensing modalities has brought about new and

exciting challenges to the field of signal processing. This phrase ”distributed and

agile sensing systems” ties together the emerging technologies of wireless sensor net-

works [35,69] and multi-modal sensing systems [60,68]. A wireless sensor network is a

system of partially connected data acquisition elements that are spatially distributed

to sample a random field. Wireless sensor networks were introduced to accomplish

monitoring tasks such as measuring power consumption over the electric power grid

to prevent overloads, collecting traffic volumes over the internet to identify abnor-

malities, environmental monitoring, and surveillance. Agile, or multi-modal, sensing

is the capability of controlling the data collection process. Examples of agile sensing

systems include a radar that can control its beam direction, a land mine detector

that can deploy several types of sensors, and a monitoring satellite that can control

the frequency band of its radar. The key element that differentiates agile sensing

systems from other data collection systems is a resource allocation constraint that
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precludes using all sensor modalities at all times. In its operation, an agile sensing

system must select the best sensing modality based on past observations to maxi-

mize a given objective. These two technologies are clearly linked in the following

way. If, due to power and bandwidth constraints, a sensor network must activate

only a portion of its elements, then the resulting system can be analyzed as an agile

sensing system. If an agile sensing system is composed of several platforms that are

connected though noisy channels, then we encounter similar design problems as we

do in sensor networks.

The contribution of the thesis to the development of distributed and agile sensing

systems will be described as we review various aspects of an intrusion detection sys-

tem. Consider a wireless network of acoustic sensors that is distributed to monitor

a field. When a vehicle enters the field, the network should track its position. Given

the sensors’ measurements, it is easy to derive an estimator of the source location.

However, the fact that wireless sensors are powered by batteries limits the amount

of information that can be transmitted by the sensors, and hence, a central design

problem is how to compute this estimator from data that are distributed across the

network elements. Solutions to this problem divide into centralized and distributed

methods (see Fig. 1.1). In the centralized approach, the data collected by the sensors

are communicated to a central point (sometimes called a fusion center) for process-

ing [117]. Distributed methods relax the requirement for complete data sharing.

They solve the optimization problem via iterative partial information sharing be-

tween the network elements. Distributed methods are especially advantageous when

the data collected by the sensors are only the means for performing inference, as in

the application described above. In this case, transmitting the data from each sensor

to a fusion center may be unnecessary [90]. Several contributions have been made

to distributed optimization for sensor networks. In Chapter 2 a novel incremental
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gradient method, called incremental aggregated gradient (IAG), that can be used

by wireless sensor networks to perform inference in a distributed manner, is pro-

posed and analyzed. As explained in more details in Section 1.2 below, a gradient

aggregation concept relaxes the common requirement of incremental methods for a

diminishing step size for convergence [18, 48, 51, 64, 76, 77, 79, 108]. Sensor network

acoustic source localization, which was traditionally solved via the maximum likeli-

hood estimator [75, 94, 95, 105], is formulated as a convex feasibility problem in [J1]

and solved via a distributed version of the projection onto convex sets (POCS) algo-

rithm. In [C2], the gradient aggregation approach of Chapter 2 is applied to derive a

convergent variation of POCS. The gradient aggregation approach was also applied

outside of the domain of wireless sensor networks. In [J2] the approach is applied to

derive a convergent incremental optimization transfer algorithm for tomography.

In Chapter 2, convergence of IAG is established under a certain unimodality

assumption. For non-convex problems however, for example when IAG is applied

to find the maximum likelihood estimator of the source location, the method might

stagnate at a local maximum. The sensitivity to local maxima is common to other

methods for computing the maximum likelihood estimator, such as the expectation

maximization algorithm [38] or Fisher scoring [81]. To mitigate this weakness, the

following question is addressed: Given a location of a relative maximum of the log-
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likelihood function, how to assess whether this is the global maximum? As detailed

in Section 1.3, Chapter 3 analyzes an existing statistical tool [21,39,49], called A Test

for Global Maximum, that answers this question by posing it as a hypothesis testing

problem. Furthermore, tests that are insensitive to model mismatch are proposed,

thereby overcoming a fundamental weakness of this tool.

As part of the analysis in Chapter 3, the asymptotic characterization of the lo-

cal maxima of the likelihood function is derived. This result was used to propose

a method for solving the global optimization problem of maximum likelihood in

wireless sensor networks. Suppose that each sensor finds a local maximum of the

likelihood function and transmits its location, rather than the collected data, to the

fusion center. It is shown in [C3] that the problem of finding the maximum likeli-

hood estimator from the sub-optimal local estimates is a Gaussian mixture clustering

problem, and that it is possible to identify the cluster that is associated with esti-

mates that converged to the global maximum by comparing the covariance of the

clusters to the inverse of the Fisher Information Matrix. Once the right cluster is

identified, its mean is the final estimator.

A common approach for saving battery power in wireless sensor networks is to

adaptively switch the sensors on and off, in accordance with the task and the state

of the network. For example, in the intrusion detection system described above, one

might activate a small portion of the sensors at first, and once an initial estimate of

the source location is obtained, more sensors in the vicinity of the source are turned

on while distant sensors are switched off. A closely related problem is that of finding

policies to control an agile sensing system [60,68], which we formulate as a sequential

choice of experiment problem [37]. In the sequential choice of experiment problem,

a system performs inference based on information that can be acquired through a

number of sensors or sensor modalities, each with a different observation distribution

4



and deployment cost (see Fig. 1.2). The goal is to find a policy for controlling the

agile sensing system that achieves optimal inference performance with a minimal

number of sensor dwells. In this thesis, we consider the more general problem of

finding optimal policies for controlling an arbitrary finite horizon stochastic decision

process, which includes the sequential choice of experiment problem as a special case,

and treat the problem of finding the optimal policy without explicit knowledge of

the underlying model, but rather from experimental or simulated data. This model

free instance of the stochastic control problem is called reinforcement learning [112].

In [J3], the reinforcement learning algorithm Q-learning [112] was applied to find

near-optimal policies for a multi-modal radar to detect maneuvering targets. It is

well known, however, that applying reinforcement learning methods to real life ap-

plications requires a great deal of expertise and experimentation [102]. In [C1], a

Gauss-Seidel algorithm is used to break a multistage reinforcement learning prob-

lem into a sequence of single-stage reinforcement learning subproblems, which are

then converted to supervised learning problems that can be solved using off-the-shelf

methods. The goal was to leverage techniques and theoretical results from supervised

learning for solving the more complex problem of reinforcement learning, as advo-

cated in [9]. In Chapter 4, we build on the ideas in [C1] and propose an approximate

dynamic programming algorithm to solve the reinforcement learning problem. The

algorithm approximates the multi-stage non-convex optimization problem, required

for finding the optimal policy, by a sequence of single-stage convex problems. Via

this approximation a plethora of off-the-shelf classification methods can be applied to

approximate the solution of the more complicated reinforcement learning problem.

The consequences of the approximation are investigated by deriving finite sample

upper bounds on the performance of the estimated policy relative to the optimal

one. In Chapter 5 we return to the sequential choice of experiment problem and the

5
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approximate dynamic programming algorithm is successfully applied to the problems

of finding an optimal policy for controlling a land mine detection system from sim-

ulated data and finding an optimal policy for controlling a land monitoring satellite

from real data.

In Figure 1.3, the different elements of the presented work and the relations

between them is presented.

The thesis is organized as follows. This chapter reviews the results in the thesis:

Sections 1.2, 1.3, and 1.4 summarize the results on the IAG method, the tests for

global maximum, and the work on reinforcement learning, respectively. In Chapters 2

and 3 two self-contained manuscripts based on the results on the IAG method and

the tests for global maximum are given. In Chapter 4 the approximate dynamic

algorithm and its analysis are presented. The application of the algorithm to the

sequential choice of experiment problem is presented in Chapter 5.
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1.2 Distributed Optimization for Sensor Networks

This section describes the results presented in a paper that is under second review

at SIAM Journal on Optimization.

1.2.1 Introduction

The emerging technology of wireless sensor networks provides means of efficiently

collecting data that are distributed over a large area [69]. The collection of the data,

however, is often not the end goal but rather the means for solving an associated

optimization problem, e.g., inference [90]. Solutions to the optimization problems

that arise in sensor networks divide into centralized and distributed methods. In the

centralized approach, the data collected by the sensors are communicated to a central

point (sometimes called a fusion center) for processing. Distributed methods relax

the requirement for complete data sharing by solving the optimization problem via

iterative partial information sharing between the network elements. A comparison

between the centralized and distributed frameworks shows that, when the monitored

area is fixed, transmitting data to a fusion center requires the transmission of O(L)

bits over a distance of O(1) per bit, whereas sharing information in a distributed

manner requires O(L) bits over a distance of O(
√

log2 L/L) per bit, where L is

the number of sensors [96]. Hence, distributed implementation is advantageous for

dense networks. Furthermore, when the data collected by the sensors are only the

means for performing inference, transmitting the data from each sensor to a fusion

center may be unnecessary and distributed schemes can be used to perform the same

inference task in a distributed manner while reducing the communication and energy

requirements [90]. In particular, under the assumption that data collected at different

9



sensors are independent, inference optimization problems often take the form

minimize f(x) =
L∑

l=1

fl(x), x ∈ R
p, (1.1)

where fl : R
p → R are indexed by the data at sensor l, l = 1, . . . , L. For example,

in maximum likelihood estimation fl(x) is the log-likelihood of the measurements of

sensor l given the parameter vector x, and in least squares estimation fl(x) corre-

sponds to the sum of squared distances between the measurements of sensor l to the

assumed parametric model parameterized by x.

To solve (1.1) in a distributed manner, Rabbat and Nowak [95] proposed the

incremental gradient algorithm that has been studied extensively in the literature [18,

48,51,52,64,76,77,79,108]. To describe the incremental gradient method, the steepest

descent method is first reviewed. Given an initial point x1, the steepest descent

method generates a sequence {xk}k≥1 according to

xk+1 = xk − µ∇f(xxk

) = xk − µ
L∑

l=1

∇fl(x
k),

where µ is a positive constant step size chosen small enough to ensure convergence.

Hence, every update requires the computation of each of the gradients ∇fl(x
k),

l = 1, . . . , L. In contrast, the incremental gradient method updates xk according to

xk+1 = xk − µ(k)∇f(k)L
(xk), (1.2)

where µ(k) is a positive step size, possibly depending on k, and (k)L denotes k mod-

ulo L. Hence, the incremental gradient method requires a single gradient evaluation

per iteration. When this algorithm is implemented in a sensor network, (1.1) is solved

via several communication cycles across the network. Sensor 1 generates x1 arbitrar-
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ily, computes x2 according to (1.2) and transmits x2 to sensor 2. Upon receiving

xk and from sensor (k − 1)L, processor (k)L computes xk+1 according to (1.2) and

transmits the new estimate xk+1 to sensor (k + 1)L. Incremental gradient methods

are motivated by the observation that when the iterates are far from the eventual

limit, the evaluation of a single gradient component is sufficient for generating an

approximate descent direction. Hence, these methods lead to a significant reduction

in the amount of required computations per iteration (see e.g. [16] section 1.5.2 and

the discussion in [15]). When implemented in a sensor network, these methods relax

the requirement for transmitting the data from all the sensors to a fusion center [95].

The drawback of these methods, when using a constant step size, is that the iterates

converge to a limit cycle and oscillate around a stationary point [76], unless restric-

tions of the type ∇fl(x) = 0, l = 1, . . . , L whenever ∇f(x) = 0 are imposed [108].

In a sensor network application, this amounts to having each sensor converge to a

different limit. Convergence for a diminishing step size has been established by a

number of authors under different conditions [18, 48, 51, 64,76, 77, 79, 108]. However,

a diminishing step size usually leads to slow convergence near the eventual limit and

requires exhaustive experimentation to determine how rapidly the step size must

decrease in order to prevent scenarios in which the step size becomes too small when

the iterates are far from the eventual limit (e.g. determining the constants a and b

in step sizes of the form µ(k) = a/(k + b)).

Chapter 2 proposes and analyzes a novel incremental gradient method called

incremental aggregated gradient (IAG) for solving (1.1), which requires a single gra-

dient computation per iteration and converges with a constant step size. The IAG

method generates a sequence {xk}k≥1 as follows. Given L arbitrary initial points

x1, x2, . . . , xL, an aggregated gradient, denoted by dL, is defined as
∑L

l=1 ∇fl(x
l).
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For k ≥ L,

xk+1 = xk − µ
1

L
dk, (1.3)

dk+1 = dk −∇f(k+1)L
(xk+1−L) + ∇f(k+1)L

(xk+1), (1.4)

where µ is a positive constant step size chosen small enough to ensure convergence,

and the factor 1/L is explicitly included to make the approximate descent direction

1
L
dk comparable in magnitude to the one used in the standard incremental gradient

method (1.2). Thus, at every iteration a new point xk+1 is generated according to the

direction of the aggregated gradient dk. Then, only one of the gradient summands

∇f(k+1)L
(xk+1) is computed to replace the previously computed ∇f(k+1)L

(xk+1−L).

Note that for k ≥ L the IAG iteration (1.3)–(1.4) is equivalent to

xk+1 = xk − µ
1

L

L−1∑

l=0

∇f(k−l)L
(xk−l). (1.5)

It is seen that the principal difference between the standard incremental gradient

method (1.2) and the IAG method is that the standard incremental gradient method

uses only one of the components in order to generate an approximate descent di-

rection, whereas the IAG method uses the average of the L previously computed

gradients. This property leads to convergence of the IAG method for fixed and

sufficiently small positive step size µ. This is as contrasted to the standard incre-

mental gradient method, whose convergence requires that the step size sequence µ(k)

converge to zero.

A hybrid between the steepest descent method and the incremental gradient

method was studied in [15]. The hybrid method starts as an incremental gradient

method and gradually becomes the steepest descent. This method requires a tun-

ing parameter, which controls the transition between the two methods, to gradually
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increase with k to ensure convergence. When the tuning parameter increases suffi-

ciently fast with the number of iterations, it is shown that the rate of convergence

is linear. However, the question of determining the rate of transition between the

two methods still remains. For any fixed value of the tuning parameter, the hybrid

method converges to a limit cycle, unless a diminishing step size is used, similar to

the standard incremental gradient method.

The choice of the aggregated gradient dk (1.4) for generating an approximate

descent direction was mentioned in [51] in the context of adaptive step size methods,

which require repeated evaluations of either the complete objective function f(x) or

its gradient. This requirement renders the methods proposed in [51] inapplicable to

problems in sensor networks of interest to us or any other applications which require

decentralized implementation. In addition, as noted in [116], if ∇fl(x), l = 1, . . . , L,

are not necessarily zero whenever ∇f(x) = 0, the step size tends to zero, resulting

in slow convergence.

The IAG method is closely related to Tseng’s incremental gradient with mo-

mentum term [116], which is an incremental generalization of Polyak’s heavy-ball

method [91, p. 65] (also called the steepest descent with momentum term [17, p.

104]). Rewriting Tseng’s method’s update rule as

xk+1 = xk − µ(k)
k∑

l=0

ζ l∇f(k−l)L
(xk−l),

we see from (1.5) that the IAG method is a variation of this method with a truncated

sum, ζ = 1, and a constant step size. Similar to [51], the step size adaptation rule that

leads to convergence in [116] requires repeated evaluations of the complete objective

function f(x) and its gradient. Hence, this method cannot be implemented in a

distributed manner either. Furthermore, a linear convergence rate is established
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only under a certain growth property on the functions’ gradients, which requires

∇fl(x) = 0, l = 1, . . . , L, whenever ∇f(x) = 0.

In contrast to the available methods, the IAG method has all four of the following

properties: (a) it evaluates a single gradient per iteration, (b) it uses a constant step

size, (c) it is convergent, and (d) it has global linear convergence rate for quadratic

objective f(x).

1.2.2 Convergence Analysis

The convergence analysis is done for several function classes. Under the assump-

tion that ∇fl(x), l = 1, . . . , L are bounded and satisfy a Lipschitz condition it is

shown that

lim inf
k→∞

||∇f(xk)|| ≤ C1

1 − C2

µ,

where C1 and C2 are given constants. To prove this result the IAG method is first

written in a form known as the “gradient method with errors” [18]:

xk+1 = xk − µ
1

L

[
L−1∑

l=0

∇f(k−l)L
(xk) +

L−1∑

l=0

∇f(k−l)L
(xk−l) −

L−1∑

l=0

∇f(k−l)L
(xk)

]

= xk − µ
1

L

[
∇f(xk) + hk

]
, (1.6)

where

hk =
L−1∑

l=1

[
∇f(k−l)L

(xk−l) −∇f(k−l)L
(xk)

]

is the error term in the calculation of the gradient at xk. Then it is shown that

the process {hk}k≥1 can be upper bounded by the output of an autoregressive linear

system that is driven by a bounded process. Then a standard analysis of a gradient

method with bounded errors leads to the result.

Next, it is assumed in addition that f(x) has a unique global minimum at x∗,
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that the Hessian of f(x) is continuous and positive definite at x∗, and that for any

sequence {tk}∞k=1 in R
p, if limk→∞ f(tk) = f(x∗) or limk→∞ ||∇f(tk)|| = 0, then

limk→∞ tk = x∗. Under these assumptions, pointwise convergence of the method is

established. The proof follows the following argument. As long as the the gradient of

f(x) at xk is larger than the maximal contribution of the error term in (1.6), dk is a

descent direction and the iterates reduce the value of the function. When the iterates

enter a region of small gradient, the method slows down, i.e., the distance between

subsequent iterations reduces, and a new bound on the contribution of the error term

hk can be established. The convergence result follows by iteratively applying these

two arguments.

It is shown that the assumptions required for the convergence result are weaker

than strict convexity, which is usually assumed to establish global convergence. In

particular, two examples of functions that satisfy all the assumptions are given.

These are an objective function associated with a robust estimator [55] and the

objective function associated with the LogitBoost algorithm [46]. The case when

f(x) and fl(x) are quadratic functions, however, is not covered by the above analysis.

For this important case, a completely different convergence proof is given and it is

shown in addition that the convergence rate is globally linear.

In the quadratic case, the functions fl, l = 1, . . . , L, have the following form

fl(x) =
1

2
x′Qlx− c′lx, l = 1, . . . , L, (1.7)

where Ql are given symmetric matrices, cl are given vectors, and
∑L

l=1Ql is positive

definite. Under this assumption, the function f(x) =
∑L

l=1 fl(x) is strictly convex,

has its minimum point at

x∗ = (
L∑

l=1

Ql)
−1

L∑

l=1

cl, (1.8)
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and x∗ is the only stationary point of f(x). In Chapter 2, it is shown that for

sufficiently small µ, limk→∞ xk = x∗ and the rate of convergence of the IAG method

is linear. To prove the convergence result in this case, the iterates are first written

explicitly

xk+1 = xk − µ

[
L−1∑

l=0

Q(k−l)L
xk−l − c(k−l)L

]
= xk − µ

L−1∑

l=0

Q(k−l)L
xk−l + µc,

where c =
∑L

l=1 cl, and the factor 1
L

was absorbed into µ to simplify the notation.

Subtracting x∗ (1.8) from both sides and adding and subtracting x∗ inside the paren-

theses, we obtain

xk+1 − x∗ = xk − x∗ − µ
L−1∑

l=0

Q(k−l)L
(xk−l − x∗ + x∗) + µc.

Denoting the error at the kth iteration by ek = xk − x∗ and the substitution of (1.8)

for x∗ lead to the following error form

ek+1 = ek − µ
L−1∑

l=0

Q(k−l)L
ek−l.

This relation between a new error and the previous errors can be seen as a periodically

time varying linear system. To analyze its stability, which will lead to the convergence

result, it is useful to consider L iterations as one iteration [82]. This can be seen as

down-sampling the original system by a factor of L, which leads to a time invariant
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system of a lower sampling rate. Specifically, by defining

ek =




ek

ek−1

...

ek−L+1




,

it is shown by induction that

ek+L = M(µ)ek,

where M(µ) is a matrix function of µ. Therefore, to establish convergence (and a

linear rate), we need to prove that the eigenvalues of M(µ) are inside the unit circle

for sufficiently small µ. It is easy to see that if µ = 0, M(µ) has multiple eigenvalues

at zero and one. By continuity, the eigenvalue at zero will remain inside the unit

circle for small enough µ. As for the eigenvalues at one, it is shown that they enter

the unit circle as µ increases from zero by showing that the derivative of the function

that expresses the dependency of the eigenvalues on µ is negative at µ = 0+.

1.2.3 Application to Sensor Networks

In Chapter 2, it is shown how the IAG method is implemented in a sensor network

in a distributed manner, i.e, applied to solve optimization problems without sending

the data to a fusion center. For two sensor network applications, numerical experi-

ments compare the IAG method with other incremental gradient methods, showing

the advantages of the new method.
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1.3 Tests for Global Maximum of the Likelihood

Function

This section describes the results presented in a paper that has been accepted

after revision to the IEEE Transactions on Information Theory.

1.3.1 Introduction

Chapter 3 tackles a question that is fundamental to Maximum Likelihood estima-

tion: Given a location of a relative maximum of the likelihood function, how to assess

whether this is the global maximum? The problem of distinguishing between local

and global maxima arises whenever the Maximum Likelihood method is applied to

nonlinear problems and local search methods, such as the Expectation Maximization

algorithm [38], Fisher scoring [81], or the IAG method of Chapter 2, are applied. In

Chapter 3, a statistical tool, called A Test for Global Maximum [21, 39, 49], that

answers this question by posing it as a hypothesis testing problem is analyzed. The

analysis quantifies the sensitivity of the tests to model mismatch in terms of the Renyi

divergence and the Kullback-Leibler distance between the true underlying distribu-

tion and the assumed parametric class. The analysis also leads to a simple threshold

correction method that accounts for possible deviations from the model as long as

these deviations are bounded in terms of the mentioned distances. When deviations

from the model are defined in terms of an embedding in a larger parametric class,

insensitivity to a Pitman drift is established by constructing tests based on a vector

valued validation function that is orthogonal to the elements of the gradient of the

log-likelihood function of the larger class. This construction leads to tests that are

locally robust to deviations from the assumed model. Finally, the tests are applied to

three problems that are known to suffer from local maxima: (1) passive localization
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using an array of sensors, (2) clustering by estimating the parameters of a Gaus-

sian mixture model, and (3) time series analysis though estimation of superimposed

exponentials in noise.

1.3.2 Preliminaries

Let yt, t = 1, . . . , n be a collection of n independent observations drawn from an

unknown distribution G with density g(y), y ∈ R
P . The information we want to

extract from the data is encoded in a K × 1 parameter vector θ, through which we

define a parametric family of densities {f(y, θ) : θ ∈ Θ}. Denote by

Ln(Yn; θ) =
1

n

n∑

t=1

log f(yt; θ)

the normalized log-likelihood function of the measurements, where Yn = [y1 y2 . . . yn].

The MLE1 is defined as

θ̂n = arg max
θ∈Θ

Ln(Yn; θ). (1.9)

Denote by E {·} the expectation with respect to the true underlying distribution

G, and by θ∗ the minimizer of the Kullback-Leibler information, i.e.,

θ∗ = arg min
θ∈Θ

E

{
log

g(y)

f(y; θ)

}
= arg max

θ∈Θ
a(θ)

where a(θ) is the ambiguity function, defined as

a(θ) = E {log f(y; θ)} (1.10)

and assume that θ∗ is unique.

1Sometimes called quasi-MLE when the model is incorrect.
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Denote by θ̃n one of the relative maxima of the log-likelihood function. Then the

problem addressed in this paper can be formulated as a hypothesis testing problem.

Given θ̃n, decide between

H0 : θ̃n = θ̂n (1.11)

H1 : θ̃n 6= θ̂n.

A statistical test which gives a solution to this problem is called a test for global

maximum.

M-Tests for Global Maximum

M-tests were proposed in an econometric context by Newey [88], Tauchen [114], and

White [123] as a general way of testing the validity of parametric models (see [124, Ch.

9] as well). The tests are based on a vector valued test function

e(y, θ) : R
P × Θ → R

Q (1.12)

which is chosen to satisfy

∫
e(y, θ)f(y, θ)dy = 0, ∀θ ∈ Θ. (1.13)

Hence, given the MLE θ̂n, large values (relative to a threshold to be defined be-

low) of 1/n
∑n

t=1 e(yt, θ̂n) indicate that a model mismatch is likely. Small values of

1/n
∑n

t=1 e(yt, θ̂n) indicate that the model is correctly specified or alternatively that

the type of model mismatch is such that g(y) /∈ {f(y, θ) : θ ∈ Θ} but

E {e(y, θ∗)} =

∫
e(y, θ∗)g(y)dy = 0. (1.14)
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The same framework can be used to construct tests for (1.11). First suppose that

the model is correctly specified and that e(y, θ) is chosen to satisfy (1.13). Then,

given a location of a relative maximum of the log-likelihood function θ̃n, large values

of 1/n
∑n

t=1 e(yt, θ̃n) indicate that it is not likely that θ̃n is the MLE. This directly

extends to the case of model mismatch, if it is known that (1.14) holds.

To constructed a test for global maximum choose a function e(y, θ) that satis-

fies (1.14). The function e(y, θ) will be called the global maximum validation function.

Define the vector

hn(θ) =
1

n

n∑

t=1

e(yt, θ) (1.15)

and assume that Vn(θ̂n) is a given consistent estimator for the asymptotic covariance

matrix of hn(θ̂n). In Chapter 3, several possibilities for such a consistent estimator

that are available in the literature are reviewed. It is possible to show that under H0

the statistic

Sn = nhT
n (θ̃n)V −1

n (θ̃n)hn(θ̃n) (1.16)

is asymptotically Chi-Squared distributed with Q degrees of freedom, denoted by χ2
Q.

Denote by Fχ2
Q
(·) the χ2

Q cumulative distribution function. Therefore, a false alarm

level α test of the hypotheses (1.11) is made by comparing Sn to F−1
χ2

Q

(1−α), which is

the critical value of the χ2
Q distribution for the desired false alarm level. If Sn exceeds

the critical value, H0 is rejected and one concludes that the iterative local search

should be re-initiated in the hope of convergence to a different maximum. Otherwise,

the null hypothesis cannot be rejected and θ̃n is declared the final estimate.

In Chapter 3 it is shown that two tests for global maximum that are available

in the literature fall into this framework and that it is easy to construct other tests,

e.g., from global maximum validation functions that are based on the moments of
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the underlying distribution.

1.3.3 Power Analysis

The power function of a test is the probability of correctly rejecting the null

hypothesis as a function of the specified level. In order to derive the power func-

tion, the asymptotic distribution of θ̃n under H1 needs to be determined. Therefore,

assumptions on the structure of the ambiguity function (1.10) at different local max-

ima are required. Assume that the system of equations ∇a(θ) = 0, has a finite

number of solutions in Θ and each one of these solutions is an interior point of Θ.

In addition, at each of these points, the matrix ∇2a(θ) is either negative definite or

positive definite. The ambiguity function a(θ) has its global maximum at θ∗; denote

by θm, m = 1, . . . ,M , the other M local maxima of a(θ). In Chapter 3 it is proven

that for sufficiently large n, Ln(Yn; θ) has M + 1 local maxima for almost every se-

quence {yt}t≥1 and that the location of these relative maxima are strongly consistent

estimates for θ∗ and θm, m = 1, . . . ,M . This result ensures that as n increases the

relative maxima of the log-likelihood function occur close to the relative maxima of

the ambiguity function and only at these locations.

Based on this result, it is shown that the test statistic Sn (1.16) is asymptotically

distributed as a non-central χ2 random variable and the consistency of the tests is

established, i.e., it is shown that the power function converges to one as n increases to

infinity for every choice of level α ∈ (0, 1). In addition, the non-centrality parameter

of the non-central χ2 distribution is derived and, based on it, a finite n approximation

to the power function is given. This result extends the results of [49] and [21], which

established under a correctly specified model (each for their own global maximum
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validation function) that if the only solution to the set of equations

∫
∇θ log f(y, θ)f(y, θ0)dy = 0

∫
e(y, θ)f(y, θ0)dy = 0

is θ0, then
√
nhn(θ̃n)

D→ N(0, V (θ0)) iff θ̃n = θ̂n.

1.3.4 Misspecified Models

When g(y) ∈ {f(y, θ) : θ ∈ Θ} we say that the model is correctly specified. When

there exists no θ for which g(y) = f(y, θ) we say that the model is misspecified. In

general, it is difficult to discriminate between the cases of: (a) θ̃n a local maximum

in a correctly specified model; and (b) θ̃n a global maximum in a misspecified model.

Under model mismatch, the probability of mistakenly rejecting θ̃n as the global

maximum, increases with the number of samples.

If the test statistic is designed under the assumption that the model is correctly

specified but the actual underlying distribution g(y) is outside the assumed para-

metric family {f(y, θ) : θ ∈ Θ}, then (1.14) may be violated. In this case, even when

θ̃n = θ̂n, hn(θ̃n)
a.s.→ E {e(y, θ∗)} = h(θ∗) 6= 0 and, similar to the discussion in the

previous section, Sn is approximately distributed as non-central χ2, instead of the

assumed central chi-squared. In this case, as n tends to infinity, the probability of

mistakenly rejecting θ̃n as the global maximum increases to one regardless of the test

threshold. In Chapter 3 two ways to overcome this weakness are given.
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A Bound on the Non-Centrality Parameter

It is possible to bound the non-centrality parameter that is associated with the

model mismatch in terms of the Renyi divergence between f(y; θ∗) and true under-

lying density g(y). Furthermore, if the true underlying distribution is restricted to

a larger parametric class which contains the assumed model as a subspace, then a

bound in terms of the Kullback-Leibler distance can be easily computed. Based on

the bounds, a threshold correction method is given, which leads to tests that are

robust to small deviations from the model as long as these deviations are bounded in

terms of the mentioned distances. For example, in array signal processing it is often

assumed for simplicity that the noise terms at the array antenna elements are uncor-

related. In practice, however, the antennas are mounted on the same platform and

electro-magnetic interference cause correlation between the noise terms. In Chapter

3 it is shown that if the noise terms are modelled as a spacial autoregressive process

then it is possible to bound the effect of this model mismatch on the test and to

correct the test’s threshold accordingly so as to obtain a robust test.

Tests Insensitive to a Pitman Drift

Assume that the parametric class {f(y; θ) : θ ∈ Θ} is embedded in a larger class

{f̃(y; θ, γ) : θ ∈ Θ, γ ∈ Γ ⊂ R
K′} such that f(y; θ) = f̃(y; θ, γ0) for all θ ∈ Θ.

Furthermore, assume that the true underlying distribution depends on n, hence

denoted by gn(y), and is given by

gn(y) = f̃(y; θ0, γ0 + γ/
√
n) (1.17)

for some fixed γ ∈ Γ, and denote the limiting distribution by g(y). In the context

of model specification tests, this type of local alternative is called a Pitman drift.
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Newey [88] investigated the performance of M-tests in this scenario and used the

result to maximize the power of the tests against such local alternatives. Here, our

goal is reversed; we would like the tests to be insensitive to small deviations from

the assumed model. By considering the space of zero-mean L2 functions of y with

inner product

〈f1(y), f2(y)〉 =

∫
f1(y)f2(y)f(y; θ)dy

it is shown that our objective is to construct a global maximum validation function

e(y, θ), with elements orthogonal to the space spanned by the set of functions

∇β log f̃(y; β)
∣∣∣
γ=γ0

, (1.18)

where β = [θT , γT ]T is the concatenated parameter vector. Given any global max-

imum validation function e(y, θ), it is shown in Chapter 3 how to construct the

component e⊥(y, θ), which is orthogonal to the functions in (1.18). By this con-

struction, we obtain a test which is insensitive to the Pitman drift regardless of the

vector γ. Denoting the classes of log-likelihood functions {log f(y; θ) : θ ∈ Θ} and

{log f̃(y; θ, γ) : θ ∈ Θ, γ ∈ Γ} by F and G, respectively, Fig. 1.4 gives a geometrical

interpretation of the construction of e⊥(y, θ). For the array signal processing mis-

match model example, it is shown that this construction indeed leads to tests that

are robust to small deviations from the assumed model.

1.3.5 Applications

The asymptotic regime adopted in the analysis, raises the question of small sample

performance. In Chapter 3, tests for global maximum are derived and evaluated

through simulations for several parameter estimation problems. In the simulations

the following aspects were studied. First, the accuracy of setting the test threshold
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Figure 1.4: Geometrical interpretation of the construction of tests insensitive to
Pitman drift.

to F−1
χ2

Q

(1 − α) for a level α test was evaluated. Second, we evaluated how fast

the power of the test approaches 1, as the number of samples increases, and the

accuracy of the finite sample power approximation. Finally, the sensitivity of the

tests to a misspecified model is examined and the threshold adjustment procedure

and the construction of tests that are orthogonal to deviations from the model are

demonstrated.
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1.4 Reinforcement Learning

This section describes results that were presented at the eighteenth annual confer-

ence on neural information processing systems (NIPS) 2005 and more recent results

that have not been published yet. These results are given in Chapters 4 and 5. As

mentioned earlier the research is motivated by the sequential choice of experiment

problem that arise in agile sensing systems. However, the algorithm and analysis

are more general and apply to the larger class of finite horizon stochastic decision

processes, which contain the sequential choice of experiment problem as a special

case. Hence, in Chapter 4 we consider the finite horizon stochastic control problem,

and in particular, its model free case – the reinforcement learning problem. Then,

in Chapter 5, we apply the results to the special case of the sequential choice of

experiment problem.

1.4.1 Introduction

The field of reinforcement learning is centered around the challenge of designing

agents that learn to act in a stochastic environment by interacting with it [112].

As the agent interacts with the environment it receives rewards, and the goal is to

eventually learn through these rewards which actions maximize the future sum of

rewards. There are a number of mathematical model for reinforcement learning. In

this thesis we treat the problem of finding the optimal policy for controlling a finite

horizon partially observable stochastic decision process. Such a process consists of

several elements:

• The decision epochs determine the times in which the agent must take an

action. In the discrete model adopted here, decision epochs occur at t =

0, 1, . . . , T , where we consider the case in which T is finite.
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• At every decision epoch, prior to taking an action, the agent collects an obser-

vation of the system’s state, denoted Ot ∈ Ot, t = 0, 1, . . . , T . In general, Ot is

a combination of observable system state variables and noisy measurements of

partially observable system variables, and, in general, contains discrete-valued

and continuous-valued elements.

• At every decision epoch the agent chooses an action At, based on the previous

observations, from a set of possible actions called the action space A. We

assume that A is a finite set. When T is finite, the action at time T is the final

action.

• Upon taking action At at time t, the agent observes the next observation Ot+1

and receives a reward, denoted by r(Ot,At, Ot+1), whose value depends on the

past observations Ot = (O0, O1, . . . , Ot) and actions At = (A0, A1, . . . , At), and

on the new observation Ot+1.

• A deterministic policy π is a sequence of mappings from all possible obser-

vations and actions histories to A, which specifies the action to take at each

decision epoch, given the history. When T is finite, the policy is composed of

T + 1 mappings π = (π0, π1, . . . , πT ).

• A random policy π = (πp0
, πp1

, . . . , πpT
) is a sequence of conditional distri-

bution functions over the action space A given all possible observations and

actions histories. That is, pt(·|ot, at−1) is a distribution over A for any real-

ization (ot, at−1) of the past observations and actions. When the system is

controlled using a random policy, the actions are chosen at random according

to these conditional distributions.

• A policy induces a distribution over the vector O0, A0, O1, . . . , OT , AT , OT+1.
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One common objective in stochastic control is to find the policy that maximizes the

expected sum of rewards:

V (π) = Eπ

{
T∑

t=0

r(Ot,At, Ot+1)

}
, (1.19)

where the expectation is taken with respect to the distribution induced by the policy

π, hence the symbol E is subscript by π. The expected sum of rewards under policy

π, V (π), is called the averaged value function of the policy π. The optimal policy π∗

is the policy that maximizes V (π).

1.4.2 The Generative Model Assumption

A center problem in reinforcement learning is to find a policy that maximizes (1.19)

by merely observing the controlled system, without knowledge of the transition prob-

abilities. For example, under the generative model assumption [62] the initial dis-

tribution of O0 and the distribution of Ot given past observations and actions are

unknown but it is possible to generate realizations of the initial observations and gen-

erate a realization of Ot conditioned on arbitrary observations and actions histories.

Chapter 4 considers the problem of estimating the optimal policy for controlling a

finite horizon stochastic decision process based on n trajectory trees generated by a

generative model. Each trajectory tree is generated as follows: The root of the tree

is a random realization of O0. Given the realization of the initial state, realizations

of the next observation O1 given all possible actions, denoted by Oa
1 , a ∈ A, are

randomly generated. Each of the realizations of O1 is now the root of the subtree.

Denote by O
at−1

t , where at = (a0, a1, . . . , at), the random variable generated at the

node that follows the sequence of actions a0, a1, . . . , at−1. This random variable is a

realization of Ot conditioned on the sequence of actions and the sequence of observa-
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tions that appear on the path of the tree that leads to it. These iterations continue

to generate a depth T + 1 tree (See Fig. 1.5).
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Figure 1.5: A binary trajectory tree of depth T + 1 = 3.

Consider a class of deterministic policies Π, i.e., each element of Π is a sequence

of T + 1 mappings from histories to A. It is possible to estimate the average value

function value of any policy in the class from the set of trajectory trees by averaging

the collection of the sum of rewards along the path of actions that agrees with the

policy on each tree [62]. A policy specifies the action to take at each decision epoch

and so there is exactly one path on every tree that agrees with a given policy. Denote

by V̂ i(π) the observed sum of rewards on the i’th tree along the path that corresponds

to the policy π. Then the value of the policy π is estimated by

V̂n(π) = n−1

n∑

i=1

V̂ i(π). (1.20)

In [62], the authors show that with high probability (over the data set) V̂n(π) con-

verges uniformly over the policy class to V (π) with rates that depend on the VC-
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dimension [5] of the policy class. This result motivates the use of policies π with

high V̂n(π), since with high probability these policies have high values of V (π).

1.4.3 An Approximate Dynamic Programming Algorithm

In Chapter 4, we consider the problem of estimating the optimal policy from

a restricted class of policies of the form Π = {(π0, π1, . . . , πT ) : π0 ∈ Π0, π1 ∈

Π1, . . . , πT ∈ ΠT}. It is shown that while the task of finding the global opti-

mum within a class of non-stationary policies may be overwhelming, an approximate

dynamic programming algorithm leads to a sequence of single-stage reinforcement

learning subproblems, which can be reduced to a sequence of weighted classification

problems. Thus the algorithm converts a reinforcement learning problem into simpler

supervised learning subproblems and the implication is that a plethora of classifica-

tion methods can be applied to find policies in the reinforcement learning problem,

which will enable tackling more complicated reinforcement learning problems in large

state spaces using existing methods. The proposed algorithm first estimates the opti-

mal policy for time T by considering the single-stage reinforcement learning problem

following a randomly selected leaf at stage T . Given π̂T , the actions following time

T that do not agree with π̂T are removed from the tree. To find π̂T−1 given π̂T ,

a random leaf is selected on every tree at stage T − 1. Then π̂T−1 is the solution

to the single-stage reinforcement learning problem for the sum of the two rewards

following time T − 1. Note that due to the tree pruning the reward at time T are

deterministic functions of the previous history. This procedure continuous until the

root of the tree. To solve each of the single-stage reinforcement learning problems,

we propose a reduction to a weighted classification problems which leads the way

to a convex approximation to a combinatorial optimization problem. Together with

this reduction, the approximate dynamic programming algorithm is a link between
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the reinforcement learning problem and existing tools for solving the simper classifi-

cation problem. In other words, a plethora of off-the-shelf classification method can

be applied to approximate the solution to the reinforcement learning problem.

1.4.4 Generalization Error Bounds

To support the proposed algorithm, we derive finite sample upper bounds of the

type derived in [84] on the generalization error of the resulting estimated policy. The

approach we take is similar to the one in [84]. Namely, we first write the general-

ization error in terms whose empirical counterparts are minimized by the algorithm,

and then invoke uniform convergence results to bound these terms. However, the

rates we establish are faster than the one in [84], except for the case in which the

approximation class is a linear space, for which we establish the same rates. The

rate improvement supports the use of weighted classification based methods over Q-

learning methods that are based on regression. The bounds provide estimates for the

number of trajectory trees required to achieve a given performance guarantee. But

more importantly, the bounds establish a link between algorithms and analysis tools

from the supervised learning literature and the reinforcement learning problem.

1.4.5 Application to the Sequential Choice of Experiment

Problem

In Chapter 5, we return to the sequential choice of experiment problem that

arises in sensor scheduling application and formulate it as a finite horizon partially

observable stochastic decision problem. When formulated as a sequential choice2

2The key difference from the related sequential design of experiment problem is that instead

of adapting a set of continuous experiment parameters, here we choose from a finite set of fixed

experiments.
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of experiments problem [37], the agile sensing problem consists of an episodic task

that is divided into a sequence of decision epochs. Each episode begins as the first

observation is collected. Then, at each subsequent decision epoch two decisions

are made. The first one is to decide if the amount of information collected thus

far is sufficient for making inference (detection or estimation) on the data with a

desired accuracy or whether more observations are required. This first decision also

determines the choices available at the second decision. If more observations are

required, the next best sensor modality needs to be determined. If the information

is deemed sufficient for inference, the final estimation or detection decision is made.

Every sensor modality has an associated deployment cost and a decision rule must

balance the expected information gain from a sensor deployment, which results in

improved inference capabilities, with the deployment cost. The collection of decision

rules, i.e., the sequence of mappings from past observations to the decision space, is

called a policy and the goal is to find a policy that optimally balances the overall

average sensor deployment costs and the estimation or detection performance, e.g.,

mean squared estimation error or classification error rate.

In the sequential choice of experiment problem we model the sensors outputs as

a collection X1, X2, . . . , XK of K random variables. Let Y be a discrete random

variable that represent the state of nature whose value we try to predict. A policy π

specifies which sensor to deploy first, say sensor k. Then, based of the value of Xk,

the policy determines if an accurate prediction of Y is possible, and if so, what is

the best prediction, or, otherwise, which is the next best sensor to deploy to collect

additional data. This process continues until either a prediction of Y is made or all

available sensors are deployed. We assume that each sensor can be applied at most

once and hence, the total number observations is bounded by K. Therefore, a policy

π is sequence of K + 1 decision rules π = [π1, π2, . . . , πK+1].

33



When represented as a finite horizon partially observable stochastic decision pro-

cess, the initial observation O0 is a constant that indicated that an episode begins

but contains no information regarding the state of nature, Y . The first decision

rule specifies the best sensor to deploy first. The result of deploying a sensor is an

observation O1 which corresponds to the sensor’s output. The reward for taking this

action is minus the deployment cost associated with the chosen sensor. The sensor

selection process continues until it is decided that the information that was collected

by the sequence of sensors is sufficient for predicting Y , and so the last decision of

every episode is a prediction Ŷ . The reward following this action is one if Ŷ = Y

and zero otherwise.

We assume that deploying a sensor does not effect Y and so it is possible to

populate an entire trajectory tree from a single realization of the random variables

X1, X2, . . . , XK , Y . In particular, given this realization, it is possible to construct

the path specified by any policy. In general, only a subset of the observation random

variables and Y will appear on the path, unless it so happen that, for the specific

realization of the observation random variables, the policy specifies taking all possible

observations prior to making a prediction of Y . Therefore, the approximate dynamic

programming algorithm of Chapter 4 can be directly applied to estimate the optimal

policy for the sequential design of experiment problem based on a set of realizations

of the random variables X1, X2, . . . , XK , Y .

In Chapter 5, we apply the approximate dynamic programming algorithm to esti-

mate the optimal policy for controlling a land mine detection system from simulated

data and finding an optimal policy for controlling a land monitoring satellite from

real data.
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CHAPTER 2

A Convergent Incremental Gradient Method

with a Constant Step Size

2.1 Introduction

Consider the unconstrained optimization problem

minimize f(x) =
L∑

l=1

fl(x), x ∈ R
p, (2.1)

where R
p is the p-dimensional Euclidean space, and fl : R

p → R are continuously

differentiable scalar functions on R
p. Our interest in this problem stems from op-

timization problems arising in wireless sensor networks (see e.g. [24, 90, 94–96]), in

which fl(x) corresponds to the data collected by the lth sensor in the network. This

problem also arises in neural network training, in which fl(x) corresponds to the lth

training data set (see e.g. [17,48,51,77–79]).

The iterative method proposed and analyzed in this paper for solving (2.1), which

we call the incremental aggregated gradient (IAG) method, generates a sequence

{xk}k≥1 as follows. Given L arbitrary initial points x1, x2, . . . , xL, an aggregated

gradient, denoted by dL, is defined as
∑L

l=1 ∇fl(x
l). Possible initializations are dis-
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cussed in §3. For k ≥ L,

xk+1 = xk − µ
1

L
dk, (2.2)

dk+1 = dk −∇f(k+1)L
(xk+1−L) + ∇f(k+1)L

(xk+1), (2.3)

where µ is a positive constant step size chosen small enough to ensure convergence,

(k)L denotes k modulo L with representative class {1, 2, . . . , L}, and the factor 1/L

is explicitly included to make the approximate descent direction 1
L
dk comparable

in magnitude to the one used in the standard incremental gradient method to be

discussed below. Thus, at every iteration a new point xk+1 is generated according to

the direction of the aggregated gradient dk. Then, only one of the gradient summands

∇f(k+1)L
(xk+1) is computed to replace the previously computed ∇f(k+1)L

(xk+1−L).

Note that for k ≥ L the IAG iteration (2.2)–(2.3) is equivalent to

xk+1 = xk − µ
1

L

L−1∑

l=0

∇f(k−l)L
(xk−l). (2.4)

The IAG method is related to the large class of incremental gradient methods

that has been studied extensively in the literature [18, 48, 51, 52, 64, 76, 77, 79, 108]

(see also [65, 87] and references therein for incremental subgradient methods for

nondifferentiable convex optimization). The standard incremental gradient method

updates xk according to

xk+1 = xk − µ(k)∇f(k)L
(xk), (2.5)

where µ(k) is a positive step size, possibly depending on k. Therefore, it is seen that

the principal difference between the two methods is that the standard incremental

gradient method uses only one of the components in order to generate an approximate
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descent direction, whereas the IAG method uses the average of the L previously

computed gradients. This property leads to convergence of the IAG method for

fixed and sufficiently small positive step size µ. This is as contrasted to the standard

incremental gradient method, whose convergence requires that the step size sequence

µ(k) converge to zero.

Incremental gradient methods can be motivated by the observation that when the

iterates are far from the eventual limit, the evaluation of a single gradient component

is sufficient for generating an approximate descent direction. Hence, these methods

lead to a significant reduction in the amount of required computations per iteration

(see e.g. [16] section 1.5.2 and the discussion in [15]). The drawback of these methods,

when using a constant step size, is that the iterates converge to a limit cycle and

oscillate around a stationary point [76], unless restrictions of the type ∇fl(x) = 0, l =

1, . . . , L whenever ∇f(x) = 0 are imposed [108]. Convergence for a diminishing step

size has been established by a number of authors under different conditions [18,48,51,

64,76,77,79,108]. However, a diminishing step size usually leads to slow convergence

near the eventual limit and requires exhaustive experimentation to determine how

rapidly the step size must decrease in order to prevent scenarios in which the step size

becomes too small when the iterates are far from the eventual limit (e.g. determining

the constants a and b in step sizes of the form µ(k) = a/(k + b)).

A hybrid between the steepest descent method and the incremental gradient

method was studied in [15]. The hybrid method starts as an incremental gradient

method and gradually becomes the steepest descent. This method requires a tun-

ing parameter, which controls the transition between the two methods, to gradually

increase with k to ensure convergence. When the tuning parameter increases suffi-

ciently fast with the number of iterations, it is shown that the rate of convergence

is linear. However, the question of determining the rate of transition between the
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two methods still remains. For any fixed value of the tuning parameter, the hybrid

method converges to a limit cycle, unless a diminishing step size is used, similar to

the standard incremental gradient method.

The choice of the aggregated gradient dk (2.3) for generating an approximate

descent direction was mentioned in [51] in the context of adaptive step size methods,

which require repeated evaluations of either the complete objective function f(x)

or its gradient. This requirement renders the methods proposed in [51] inapplicable

to problems in sensor networks of interest to us or any other applications which

require decentralized implementation, as will be explained in §3. In addition, as

noted in [116], if ∇fl(x), l = 1, . . . , L, are not necessarily zero whenever ∇f(x) = 0,

the step size tends to zero, resulting in slow convergence.

The IAG method is closely related to Tseng’s incremental gradient with mo-

mentum term [116], which is an incremental generalization of Polyak’s heavy-ball

method [91, p. 65] (also called the steepest descent with momentum term [17, p.

104]). Rewriting Tseng’s method’s update rule as

xk+1 = xk − µ(k)
k∑

l=0

ζ l∇f(k−l)L
(xk−l),

we see from (2.4) that the IAG method is a variation of this method with a truncated

sum, ζ = 1, and a constant step size. Similar to [51], the step size adaptation rule that

leads to convergence in [116] requires repeated evaluations of the complete objective

function f(x) and its gradient. Hence, this method cannot be implemented in a

distributed manner either. Furthermore, a linear convergence rate is established

only under a certain growth property on the functions’ gradients, which requires

∇fl(x) = 0, l = 1, . . . , L, whenever ∇f(x) = 0.

In contrast to the available methods, the IAG method has all four of the following
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properties: (a) it evaluates a single gradient per iteration, (b) it uses a constant step

size, (c) it is convergent (Proposition 2), and (d) it has global linear convergence rate

for quadratic objective f(x) (Proposition 3).

Finally, we note that the IAG method is reminiscent of other methods in various

optimization problems, such as the incremental version of the Gauss-Newton method

or the extended Kalman filter [10,14,36,83], the distributed EM algorithm for maxi-

mum likelihood estimation [86,90], the ordered subset and incremental optimization

transfer for image reconstruction [2, 13, 28], and iterative methods for the convex

feasibility problem [29,30].

2.2 Convergence Analysis

In this section we present convergence proofs for two different function classes: (I)

restricted Lipschitz and (II) quadratic. Under a Lipschitz condition and a bounded

gradient assumption on fl(x), l = 1, . . . , L (Assumptions A.1 and A.2), we obtain an

upper bound on the limit inferior of ||∇f(xk)||, which depends linearly on the step

size µ. By imposing additional restrictions on the function f(x) (Assumptions A.3

and A.4), we prove pointwise convergence of the method. There are many functions

that satisfy Assumptions A.1–A.4. However, one important case does not satisfy

these assumptions. This is the case when f(x) and fl(x) are quadratic functions on

R
p. For this important case we provide a completely different convergence proof and

show in addition that the convergence rate is globally linear.

For later reference, it will be useful to write (2.4) in a form known as the “gradient
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method with errors” [18]:

xk+1 = xk − µ
1

L

[
L−1∑

l=0

∇f(k−l)L
(xk) +

L−1∑

l=0

∇f(k−l)L
(xk−l) −

L−1∑

l=0

∇f(k−l)L
(xk)

]

= xk − µ
1

L

[
∇f(xk) + hk

]
, (2.6)

where

hk =
L−1∑

l=1

[
∇f(k−l)L

(xk−l) −∇f(k−l)L
(xk)

]

is the error term in the calculation of the gradient at xk. Also note that for all k ≥ 2L

and 1 ≤ l ≤ L,

xk−l − xk = µ
1

L

(
dk−1 + dk−2 + . . .+ dk−l

)
.

2.2.1 Case I

Assumptions A.1. ∇fl(x), l = 1, . . . , L, satisfy a Lipschitz condition in R
p, i.e.

there is a positive number M1 such that for all x, x ∈ R
p, ||∇fl(x) − ∇fl(x)|| ≤

M1||x− x||, l = 1, . . . , L.

Assumption A.1 implies that ∇f(x) also satisfies a Lipschitz condition, that is,

for all x, x ∈ R
p, ||∇f(x) −∇f(x)|| ≤M2||x− x||, where M2 = LM1.

Assumptions A.2. There exists a positive number M3 such that for all x ∈ R
p,

||∇fl(x)|| ≤M3, l = 1, . . . , L.

Assumption A.2 implies that for all x ∈ R
p, ||∇f(x)|| ≤M4, where M4 = LM3.

Lemma 1. Let {sk}k≥1 be a sequence of non-negative real numbers satisfying for

some fixed integer L > 1 and all k ≥ L

sk ≤ cQ(sk−1, sk−2, . . . , sk−L+1) +M,
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where 0 < c < 1, M is nonnegative, and Q(sk−1, sk−2, . . . , sk−L+1) is a linear form in

the variables sk−1, sk−2,. . .,sk−L+1, whose coefficients are non-negative and the sum

of the coefficients equals one. Then, lim supk→∞ sk ≤ M
1−c

.

Proof. Define the sequence {wk}k≥1 by wk = sk for 1 ≤ k ≤ L− 1 and

wk = cQ(wk−1, wk−2, . . . , wk−L+1) +M,

for k ≥ L. Since sk ≤ wk for all k, if limk→∞wk = M
1−c

then

lim sup
k→∞

sk ≤ lim sup
k→∞

wk = lim
k→∞

wk =
M

1 − c
.

To show that limk→∞wk = M
1−c

, define the sequence {vk}k≥1 by vk = sk − M
1−c

for

1 ≤ k ≤ L− 1 and

vk = cQ(vk−1, vk−2, . . . , vk−L+1),

for k ≥ L. By this construction,

wL = cQ(
M

1 − c
+ vL−1,

M

1 − c
+ vL−2, . . . ,

M

1 − c
+ v1) +M

= c
M

1 − c
+ cQ(vL−1, vL−2, . . . , v1) +M =

M

1 − c
+ vL,

and, by induction, wk = M
1−c

+ vk for all k > L. Therefore, if limk→∞ vk = 0 then

limk→∞wk = M
1−c

. To show that limk→∞ vk = 0, set A = max{|v1|, |v2|, . . . , |vL−1|}.

Hence,

|vL| = c|Q(vL−1, vL−2, . . . , v1)| ≤ cQ(|vL−1|, |vL−2|, . . . , |v1|) ≤ cA.

Similarly, |vL+1| ≤ cA, and in general |vk| ≤ cA for all k ≥ L. Consider now v2L.
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Since max{|v2L−1|, |v2L−2|, . . . , |vL+1|} ≤ cA, we have

|v2L| = c|Q(v2L−1, v2L−2, . . . , vL+1)| ≤ cQ(|v2L−1|, |v2L−2|, . . . , |vL+1|) ≤ c2A,

and in general |vk| ≤ c2A for all k ≥ 2L. Similarly, we obtain |vk| ≤ cnL for all

k ≥ nL. Since 0 < c < 1, we have limn→∞ cn = 0, and therefore limk→∞ vk = 0.

Remark 1. Lemma 1 can also be proven using concepts from dynamical systems.

The sequence wk is the output of an autoregressive linear system

wk = c
L−1∑

l=1

αkwk−l +Mu(k − L),

where u(k) is the unit step function which equals one when k ≥ 0 and zero otherwise,

with initial condition wk = sk for 1 ≤ k ≤ L− 1. Since the coefficients of the linear

form are all positive and sum to one, and 0 < c < 1, it is possible to show that

the system is stable (bounded input bounded output) and the steady state response is

M
1−c

[92], i.e., limk→∞wk = M
1−c

.

Lemma 2. Under Assumption A.1, if ||∇f(xk)|| > ||hk||
1−2µM1

, and 0 < 1 − 2µM1 < 1,

then f(xk) > f(xk+1).

Proof. Assume that ||∇f(xk)|| > ||hk||
1−2µM1

. Then

||dk||2 = ||∇f(xk) + hk||2 ≤ 2||∇f(xk)||2 + 2||hk||2

< 2||∇f(xk)||2 + 2
||hk||2

1 − 2µM1

< 4||∇f(xk)||2.

By [16, Prop. A.24], if Assumption A.1 holds, then

f(x+ y) − f(x) ≤ y′∇f(x) +
1

2
M2||y||2.
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Hence

f(xk) − f(xk+1) = f(xk) − f(xk − µ
1

L
dk)

≥ µ
1

L
dk ′∇f(xk) − 1

2
M2µ

2 1

L2
||dk||2

> µ
1

L
(∇f(xk) + hk)′∇f(xk) − 1

2
M2µ

2 1

L2
4||∇f(xk)||2

= µ
1

L
||∇f(xk)||2 + µ

1

L
hk ′∇f(xk) − 2M2µ

2 1

L2
||∇f(xk)||2

≥ µ
1

L
||∇f(xk)||2 − µ

1

L
||hk|| · ||∇f(xk)|| − 2M2µ

2 1

L2
||∇f(xk)||2

=
µ

L
||∇f(xk)||(1 − 2µM1)

(
||∇f(xk)|| − ||hk||

1 − 2µM1

)

> 0.

Lemma 3. Set δ0 = µM2M3. Under Assumptions A.1 and A.2, if µM2 < 1, there

exists K such that for all k > K, ||hk|| < δ0.

Proof.

||hk|| ≤
L−1∑

l=1

||∇f(k−l)L
(xk−l) −∇f(k−l)L

(xk)||

≤ M1

L−1∑

l=1

||xk−l − xk||

= µM1
1

L

L−1∑

l=1

||dk−1 + dk−2 + . . .+ dk−l||

≤ µM1
1

L

L−1∑

l=1

(
||dk−1|| + ||dk−2|| + . . .+ ||dk−l||

)

= µM1
1

L

[
(L− 1)||dk−1|| + (L− 2)||dk−2|| + . . .+ ||dk−L+1||

]

= µM1
1

L

L(L− 1)

2

[
(L− 1)||dk−1|| + (L− 2)||dk−2|| + . . .+ ||dk−L+1||

L(L− 1)/2

]

= µM1
L− 1

2
Q(||dk−1||, ||dk−2||, . . . , ||dk−L+1||),
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where Q(||dk−1||, ||dk−2||, . . . , ||dk−L+1||) is a linear form in the variables ||dk−1||,

||dk−2||, . . . ,||dk−L+1|| whose coefficients, L−1
L(L−1)/2

, L−2
L(L−1)/2

, . . ., 1
L(L−1)/2

, sum to

one. Next we use ||dk|| = ||∇f(xk) + hk|| ≤ ||∇f(xk)|| + ||hk|| to obtain

||hk|| ≤ µM1
L− 1

2
Q(||hk−1||, ||hk−2||, . . . , ||hk−L+1||)

+µM1
L− 1

2
Q(||∇f(xk−1)||, ||∇f(xk−2)||, . . . , ||∇f(xk−L+1)||)

≤ µM1
L− 1

2
Q(||hk−1||, ||hk−2||, . . . , ||hk−L+1||) + µM1

L− 1

2
M3

< µ
M2

2
Q(||hk−1||, ||hk−2||, . . . , ||hk−L+1||) + µ

M2

2
M3,

where Assumption A.2 was used in the second to last inequality. Hence, by Lemma 1,

since 0 < µM2

2
< 1/2, lim supk→∞ ||hk|| ≤ µ

M2
2

M3

1−µ
M2
2

. By using µM2

2
< 1/2, we obtain

lim supk→∞ ||hk|| < µM2M3 and the lemma follows.

Proposition 1. Under Assumptions A.1 and A.2, if f(x) is bounded from below and

µmax{2M1,M2} < 1 then,

lim inf
k→∞

||∇f(xk)|| ≤ 2M2M3

1 − 2µM1

µ.

Proof. Similar to the proof of Theorem 2.1 in [108].

Next, by imposing two additional assumptions, we prove that the IAG method

converges with a constant step size to the minimum point of f(x).

Assumptions A.3. f(x) has a unique global minimum at x∗. The Hessian ∇2f(x)

is continuous and positive definite at x∗.

Assumptions A.4. For any sequence {tk}∞k=1 in R
p, if limk→∞ f(tk) = f(x∗) or

limk→∞ ||∇f(tk)|| = 0, then limk→∞ tk = x∗.
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There is an equivalent form of Assumption A.4: For each neighborhood U of x∗

there exists η > 0 such that if f(x) − f(x∗) < η or ||∇f(x)|| < η, then x ∈ U .

Remark 2. Assumptions A.3 and A.4 are stronger than the assumptions usually

made on f(x) in the literature (see [18] for a summary of the available convergence

proofs and the assumptions they require). However, our results hold for a constant

step size and do not require that ∇fl(x) = 0, l = 1, . . . , L, whenever ∇f(x) = 0.

In addition, note that there are non-convex functions that satisfy Assumption A.4.

However, if f(x) is strictly convex and takes a minimum in the interior of its domain

(Rp), then Assumption A.4 is automatically satisfied. In particular, if f(x) satisfies

Assumption 3 and is strictly convex, then Assumption 4 is satisfied. In fact, the

implication limk→∞ f(tk) = f(x∗) ⇒ limk→∞ tk = x∗ is the statement of Corollary

27.2.2 from [101]. The implication limk→∞ ||∇f(tk)|| = 0 ⇒ limk→∞ tk = x∗ can be

obtained as follows: Consider the function ∇f : R
p → R

p. The derivative (∇f)′

of this function is the Hessian ∇2f . Since f(x) is strictly convex, det(∇f)′ 6= 0.

Therefore, by the Inverse Function Theorem, there are open neighborhoods V of x∗ ∈

R
p and W of 0 ∈ R

p such that ∇f : V → W has a continuous inverse γ : W → V .

Let {tk}∞k=1 be a sequence such that limk→∞ ||∇f(tk)|| = 0. Then there exists k0 such

that ∇f(tk) ∈ W for all k ≥ k0. By Theorem B on page 99 in [100], since f(x) is

strictly convex, ∇f is one-to-one, i.e. if x 6= y, then ∇f(x) 6= ∇f(y). It follows that

tk ∈ V for all k ≥ k0. Now we have

lim
k→∞

tk = lim
k→∞

γ
(
∇f(tk)

)

= γ
(

lim
k→∞

∇f(tk)
)

= γ (0) = x∗.

Remark 3. Unimodal functions which are convex in the neighborhood of their mini-
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mum and have bounded gradient are common in robust estimation [55]. An example

of a robust estimation objective function that satisfies Assumptions 1-4 is given in

§4.1. Another important function which satisfies Assumptions 1-4 is the objective

function minimized by the LogitBoost algorithm [46] (or adaptive logistic regression).

To explain the components which are used to construct this objective function we in-

clude a short description (taken from [32]) of the supervised learning problem, and in

particular, the problem of combining weak features. Let {zl, yl}L
l=1 be a set of training

examples, where each instance zl takes values in an instance domain Z, and each yl,

called the label, takes values in {−1,+1}. Given a set of p real-valued functions on

Z, h1, h2, . . . , hp called features, the goal is to find a vector x ∈ R
p for which the sign

of gx(zl) =
∑p

i=1 xihi(zl) is a good predictor of yl, for l = 1, . . . , L. Let M be the

L × p matrix whose (l, i) element is hi(zl). The objective function f(x) : R
p → R

minimized by the LogitBoost algorithm [32] is given by

f(x) =
L∑

l=1

log [1 + exp (−yl[Mx]l)] . (2.7)

where [Mx]l is the l’th element of the vector Mx. It can be motivated as being a

convex surrogate to the non-convex and non-differentiable 0 − 1 loss function

f(x) =
L∑

l=1

I(gx(zl)yl ≤ 0),

which is the number of labels that are not predicted correctly by the sign of gx(zl), or

through the maximum likelihood method for estimating the conditional probability of

yl given zl. It is shown below that in the non-separable case, i.e., when there exists

no value of x for which sign(gx(zl)) = yl, for l = 1, . . . , L, and when the features are

linearly independent on the training set, i.e., rankM = p, the function f(x) (2.7)
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satisfies Assumptions 1-4.

∂

∂xj

log [1 + exp (−yl[Mx]l)] =
exp (−yl[Mx]l)

1 + exp (−yl[Mx]l)
(−ylhj(zl)) ≤ |hj(zl)|.

Hence Assumption 2 holds.

∂2

∂xj∂xk

log [1 + exp (−yl[Mx]l)] =
exp (−yl[Mx]l)

[1 + exp (−yl[Mx]l)]
2hj(zl)hk(zl)

≤ |hj(zl)hk(zl)|.

Hence Assumption 1 holds. Let dl(x) = exp (−yl[Mx]l) / [1 + exp (−yl[Mx]l)]
2 > 0.

Then,

∂2f(x)

∂xj∂xk

=
L∑

l=1

dl(x)MljMlk.

To show that ∇f(x) is positive definite for all x, consider ζT∇f(x)ζ for some vector

ζ ∈ R
p:

ζT∇f(x)ζ =

p∑

j,k=1

L∑

l=1

dl(x)MlkMljζkζj =
L∑

l=1

dl(x) ([Mζ]l)
2 ≥ 0

with equality if and only if ζ = 0, by the assumption that rankM = p. Hence the

function f(x) is strictly convex. Assume the training set {zl, yl}L
l=1 is non-separable

with respect to the features h1, h2, . . . , hp, i.e., for every x there exists at least one

l for which yl[Mx]l < 0. For any given x 6= 0 let I1(x) = {l : yl[Mx]l < 0},

I2(x) = {l : yl[Mx]l = 0}, and I3(x) = {l : yl[Mx]l > 0}, and note that I1(x) is

nonempty by assumption. For a positive scalar c, we can write f(cx) as the sum of
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three summations:

f(cx) =
∑

l∈I1(x)

log

{
1 + exp

[
−cyl

p∑

i=1

xihi(zl)

]}
+

∑

l∈I2(x)

log 2 +

∑

l∈I3(x)

log

{
1 + exp

[
−cyl

p∑

i=1

xihi(zl)

]}
.

When c→ ∞,
∑

l∈I1(x)

log

{
1 + exp

[
−cyl

p∑

i=1

xihi(zl)

]}
→ ∞

and
∑

l∈I3(x)

log

{
1 + exp

[
−cyl

p∑

i=1

xihi(zl)

]}
→ 0.

Therefore, limc→∞ f(cx) = ∞, for all x 6= 0. This implies that f(x) has no directions

of recession. A direction of recession is a non-zero vector x1 such that f(x2 + cx1)

is a non-increasing function of the scalar c for every choice of vector x2. Hence

by Theorem 27.1(d) in [101, p.265] the minimum set of f(x) is non-empty. The

minimum is unique by the strict convexity of f(x). Therefore, Assumption 3 is also

satisfied, and the strict convexity together with Assumption 3 imply Assumption 4 as

well.

The following lemma is well known.

Lemma 4. Under Assumption A.3, there exists a neighborhood U of x∗ and positive

constants A1, A2, B1, B2 such that for all x ∈ U ,

A1||x − x∗||2 ≤ f(x) − f(x∗) ≤ B1||x − x∗||2, (2.8)

A2||x − x∗||2 ≤ ||∇f(x)||2 ≤ B2||x − x∗||2. (2.9)
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Let U be a neighborhood of x∗ for which inequalities (2.8) and (2.9) hold. By

assumption A.4 there exists η > 0 such that x ∈ U if f(x)−f(x∗) < η or ||∇f(x)|| <

η.

Lemma 5. Set M5 = max{3
√

B1B2

A1A2
, 2

1−2µM1
} and λ = µM2M5. Under Assump-

tions A.1, A.3, and A.4, if there exist positive numbers n1 and δ such that ||hk|| < δ

for every k ≥ n1, 3δ < η, 9B1

A2
δ2 < η, and 9µM1 < 1, then

1. there exists a number k1 such that ||∇f(xk)|| < M5δ and ||dk|| < 2M5δ for

every k ≥ k1, and

2. there exists a number n2 such that ||hk|| < λδ for every k ≥ n2.

Proof. First we show that there exists k such that k ≥ n1 and ||∇f(xk)|| < 2δ
1−2µM1

.

In fact, if ||∇f(xk)|| ≥ 2δ
1−2µM1

for all k ≥ n1, then ||∇f(xk)|| > 2||hk||
1−2µM1

≥ ||hk||
1−2µM1

for all k ≥ n1. By Lemma 2, the sequence {f(xk)}∞k=n1
is decreasing. Since it is

bounded from below by f(x∗), there exists limk→∞ f(xk). By replacing δ0 with δ and

max{K1, K2} with n1 at the last argument of the proof of Proposition 1, we obtain

a contradiction.

Let k1 be the smallest natural number such that k1 ≥ n1 and ||∇f(xk1)|| ≤
2δ

1−2µM1
. Without loss of generality, assume there exists k2, the smallest natural

number such that k2 > k1 and ||∇f(xk2)|| > 2δ
1−2µM1

. Let k3 be the smallest natural

number such that k3 > k2 and ||∇f(xk3)|| ≤ 2δ
1−2µM1

. Let k4 be the smallest natural

number such that k4 > k3 and ||∇f(xk4)|| > 2δ
1−2µM1

. We define k5, k6, . . . in a similar

manner.

For every natural m,

||dk2m−1|| ≤ ||∇f(xk2m−1)|| + ||hk2m−1|| ≤ 2δ

1 − 2µM1

+ δ ≤ 3δ

1 − 2µM1

,
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||xk2m − xk2m−1|| = µ
1

L
||dk2m−1|| ≤ 3µ/L

1 − 2µM1

δ,

and

||∇f(xk2m)|| ≤ ||∇f(xk2m) −∇f(xk2m−1)|| + ||∇f(xk2m−1)||

≤ M2||xk2m − xk2m−1|| + 2δ

1 − 2µM1

≤ M2
3µ/L

1 − 2µM1

δ +
2

1 − 2µM1

δ

=
2 + 3µM1

1 − 2µM1

δ < 3δ,

where we used µ < 1
9M1

to obtain the last inequality.

Since ||∇f(xk2m)|| < 3δ < η, xk2m ∈ U and we can use Lemma 4. We obtain

f(xk2m) − f(x∗) ≤ B1||xk2m − x∗|| ≤ B1

A2

||∇f(xk2m)||2 < B1

A2

9δ2.

Let k be such that k2m ≤ k < k2m+1. Then, by Lemma 2,

f(xk) − f(x∗) < f(xk2m) − f(x∗) < 9
B1

A2

δ2.

Since f(xk) − f(x∗) < 9B1

A2
δ2 < η, xk ∈ U , and we can use Lemma 4. We obtain

||∇f(xk)||2 ≤ B2||xk − x∗||2 ≤ B2

A1

[
f(xk) − f(x∗)

]
< 9

B1B2

A1A2

δ2.

Thus, if k satisfies k2m ≤ k < k2m+1, we have ||∇f(xk)|| < 3
√

B1B2

A1A2
δ. If k satisfies

k2m−1 ≤ k < k2m, we have ||∇f(xk)|| < 2
1−2µM1

δ. Therefore for each k ≥ k1,

||∇f(xk)|| < M5δ and therefore:

||dk|| ≤ ||∇f(xk)|| + ||hk|| ≤M5δ + δ < 2M5δ.
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Thus, if k ≥ k1, we have

||∇f(xk)|| < M5δ

(2.10)

||dk|| < 2M5δ.

This proves the first part of the Lemma.

To prove the second part, we take n2 = k1+L−1. If k ≥ n2, then not only xk but

also L− 1 previous terms of the sequence {xk} satisfy inequalities (2.10). Therefore,

by following the steps in the proof of Proposition 1, we have for k ≥ n2

||hk|| ≤ µM1
1

L

L−1∑

l=1

(
||dk−1|| + ||dk−2|| + . . .+ ||dk−l||

)

< µM1
1

L
2M5δ

L−1∑

l=1

l∑

m=1

1 = µM1
1

L
2M5δ

L(L− 1)

2

< µM2M5δ = λδ.

Thus ||hk|| < λδ. This proves the second part of Lemma 5.

Remark 4. A direct result of Lemma 5 is that under Assumptions A.1-A.4, ||hk|| →

0 is a sufficient condition for the convergence of xk, generated by any gradient method

with errors (2.6), to x∗.

Proposition 2. Under Assumptions A.1, A.2, A.3, and A.4,

if µ < min{ 1
9M1

, 1
M2M5

, η
3M1M3

, 1
3M2M3

√
A2η
B1

}, then limk→∞ xk = x∗.

Proof. We prove Proposition 2 by repeated use of Lemma 5. We start with δ = δ0.

By applying Lemma 3, there exists K such that for all k > K, ||hk|| < δ0. After

applying Lemma 5 r times we get a number nr such that ||hk|| < δ0λ
r, ||∇f(xk)|| <

M5δ0λ
r, and ||dk|| < 2M5δ0λ

r, for k ≥ nr. The inequality µ < 1
M2M5

is equivalent to
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0 < λ < 1. Hence, limk→∞ ||hk|| = 0, limk→∞ ||dk|| = 0, and limk→∞ ||∇f(xk)|| = 0,

and by Assumption A.4, limk→∞ xk = x∗.

Note that the inequality µ < 1
9M1

was used in the proof of Lemma 5, and the

inequalities µ < η
3M2M3

and µ < 1
3M2M3

√
A2η
B1

are equivalent to 3δ0 < η and 9B1

A2
δ2
0 < η,

respectively.

2.2.2 Case II: Quadratic Case

In [76] it is shown that when applied to the objective function

f(x) =
1

2
(x− c1)

2 +
1

2
(x− c2)

2,

the standard incremental gradient method with a constant step size

xk+1 = xk − µ∇f(k)L
(xk)

converges to a limit cycle with limit points

x∗1(µ) =
(1 − µ)c1 + c2

2 − µ
, x∗2(µ) =

(1 − µ)c2 + c1
2 − µ

,

whenever 0 < µ < 1. When implementing the IAG method one obtains

xk+1 = xk − µ

2

[(
xk − c(k)2

)
+
(
xk−1 − c(k−1)2

)]

= xk − µ

2

[
xk + xk−1 − (c1 + c2)

]
.

Subtracting x∗ = (c1 + c2)/2, the unique minimum of f(x), from both sides and

denoting the error at the kth iteration by ek = xk − x∗, leads to the following error
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form

ek+1 = ek − µ

2

[
ek + ek−1

]
.

The characteristic polynomial of this linear system is λ2 − (1 − µ/2)λ + µ/2 and it

is easy to show that the roots of this polynomial are inside the unit circle whenever

0 < µ < 2. Hence, when 0 < µ < 2, ek → 0, i.e., xk converges to the unique

minimum, in contrast to the standard incremental gradient method.

More generally, suppose that the functions fl, l = 1, . . . , L, have the following

form

fl(x) =
1

2
x′Qlx− c′lx, l = 1, . . . , L, (2.11)

where Ql are given symmetric matrices, cl are given vectors, and
∑L

l=1Ql is positive

definite. Under this assumption, the function f(x) =
∑L

l=1 fl(x) is strictly convex,

has its minimum point at

x∗ = (
L∑

l=1

Ql)
−1

L∑

l=1

cl, (2.12)

and x∗ is the only stationary point of f(x).

Proposition 3. For sufficiently small µ, limk→∞ xk = x∗ and the rate of convergence

of the IAG method (1.4) is linear.

Proof. Plugging (2.11) in (2.4), the IAG method becomes

xk+1 = xk − µ

[
L−1∑

l=0

Q(k−l)L
xk−l − c(k−l)L

]
= xk − µ

L−1∑

l=0

Q(k−l)L
xk−l + µc,

where c =
∑L

l=1 cl, and the factor 1
L

was absorbed into µ to simplify the notation.

Subtracting x∗ (2.12) from both sides and adding and subtracting x∗ inside the
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parentheses, we obtain

xk+1 − x∗ = xk − x∗ − µ
L−1∑

l=0

Q(k−l)L
(xk−l − x∗ + x∗) + µc.

Denoting the error at the kth iteration by ek = xk −x∗ and the substitution of (2.12)

for x∗ lead to the following error form

ek+1 = ek − µ

L−1∑

l=0

Q(k−l)L
ek−l.

This relation between a new error and the previous errors can be seen as a periodically

time varying linear system. To analyze its stability, which will lead to the convergence

result, it is useful to consider L iterations as one iteration [82]. This can be seen as

down-sampling the original system by a factor of L, which leads to a time invariant

system of a lower sampling rate. Without loss of generality, consider the case where

k = NL for some integer N , i.e. k + 1 corresponds to the first iteration of a new

cycle. In this case we have

ek+1 = ek − µ

L−1∑

l=0

Q(k−l)L
ek−l = ek − µ

[
QL QL−1 QL−2 . . . Q1

]
ek

=

[
Ip − µQL −µQL−1 −µQL−2 . . . −µQ1

]
ek,

where Ip is the p× p identity matrix and

ek =




ek

ek−1

...

ek−L+1




.
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Similarly,

ek+2 = ek+1 − µ
L−1∑

l=0

Q(k+1−l)Le
k+1−l

= ek+1 − µ

[
Q1 QL QL−1 . . . Q2

]
ek+1

=

[
Ip − µQ1 −µQL −µQL−1 . . . −µQ2

]
ek+1,

and finally

ek+L = ek+L−1 − µ

L−1∑

l=0

Q(k+L−1−l)Le
k+L−1−l

= ek+L−1 − µ

[
QL−1 QL−2 QL−3 . . . QL

]
ek+L−1

=

[
Ip − µQL−1 −µQL−2 −µQL−3 . . . −µQL

]
ek+L−1.

This leads to the relation

ek+L = MLe
k+L−1,

where

ML =




Ip − µQL−1 −µQL−2 . . . −µQ1 −µQL

Ip 0p . . . 0p 0p

0p Ip . . . 0p 0p

...
...

. . .
...

...

0p 0p . . . Ip 0p




,

where 0p denotes the p× p zero matrix. Taking another step we have

ek+L = MLML−1e
k+L−2,

55



where

ML−1 =




Ip − µQL−2 −µQL−3 . . . −µQL −µQL−1

Ip 0p . . . 0p 0p

0p Ip . . . 0p 0p

...
...

. . .
...

...

0p 0p . . . Ip 0p




,

and finally, by induction,

ek+L = MLML−1 . . .M1e
k,

where

M1 =




Ip − µQL −µQL−1 . . . −µQ2 −µQ1

Ip 0p . . . 0p 0p

0p Ip . . . 0p 0p

...
...

. . .
...

...

0p 0p . . . Ip 0p




.

Denoting M = MLML−1 . . .M1, we have ek+L = Mek, and in general ek+nL = Mnek.

Therefore, if for sufficiently small µ > 0 the eigenvalues of M are inside the unit

circle, then limn→∞ ek+nL = 0pL×1, where 0pL×1 is a pL × 1 zero vector, i.e. the

method converges to the minimum of the function f(x) and the convergence rate is

linear.
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To prove that the eigenvalues of M are inside the unit circle, set

A =




Ip 0p . . . 0p 0p

Ip 0p . . . 0p 0p

0p Ip . . . 0p 0p

...
...

. . .
...

...

0p 0p . . . Ip 0p




,

and

Bk =




Q(k−1)L
Q(k−2)L

. . . Q(k+1)L
Qk

0p 0p . . . 0p 0p

0p 0p . . . 0p 0p

...
...

. . .
...

...

0p 0p . . . 0p 0p




, k = 1, . . . , L,

so that Mk = A− µBk and M = (A− µBL)(A− µBL−1) . . . (A− µB1). Hence,

M = AL − µ
(
BLA

L−1 + ABL−1A
L−2 + A2BL−2A

L−3 + . . .

+AL−2B2A+ AL−1B1

)
+ µ2C(µ),

where C(µ) is a Lp× Lp matrix whose elements are polynomials in µ.

Note that pre-multiplying a matrix by A will duplicate the first row of p × p

matrices and will shift the rest of the rows down, discarding the last p rows. Post-

multiplying by A will add the second column of p × p matrices to the first one and

will shift the rest of the columns to the left, inserting a block of p× p zero matrices
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to the last column. It follows that

AL =




Ip 0p . . . 0p 0p

Ip 0p . . . 0p 0p

Ip 0p . . . 0p 0p

...
...

. . .
...

...

Ip 0p . . . 0p 0p




,

and

AL−kBkAk−1 =




W1(k) 0(L−k+1)p×(k−1)p

0(k−1)p×(L−k+1)p 0(k−1)p×(k−1)p


 ,

where W1(k) is a (L− k + 1)p× (L− k + 1)p matrix whose elements are

W1(k) =




∑k−1
l=0 Q(l)L

QL−1 . . . Qk

...
...

...
∑k−1

l=0 Q(l)L
QL−1 . . . Qk



.

Therefore, the characteristic polynomial F (µ, λ) of M is

F (µ, λ) = det (M − λILp) = det

(
AL − µ

L∑

k=1

AL−kBkAk−1 − λILp + µ2C(µ)

)
.
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The first p columns of
(
AL − µ

∑L
k=1A

L−kBkAk−1 − λILp + µ2C(µ)
)

are




(1 − λ)Ip − µ [LQL + (L− 1)Q1 + . . .+QL−1] + µ2C11

Ip − µ [(L− 1)QL + (L− 2)Q1 + . . .+QL−2] + µ2C21

Ip − µ [(L− 2)QL + (L− 3)Q1 + . . .+QL−3] + µ2C31

...

Ip − µ (2QL +Q1) + µ2CL−1 1

Ip − µQL + µ2CL1




,

the second p columns are




−(L− 1)µQL−1 + µ2C12

−(L− 1)µQL−1 − λIp + µ2C22

−(L− 2)µQL−1 + µ2C32

...

−2µQL−1 + µ2CL−1 2

−µQL−1 + µ2CL2




,

the next (L− 3)p columns are




−(L− 2)µQL−2 + µ2C13 . . . −2µQ2 + µ2C1 L−1

−(L− 2)µQL−2 + µ2C23 . . . −2µQ2 + µ2C2 L−1

−(L− 2)µQL−2 − λIp + µ2C33 . . . −2µQ2 + µ2C3 L−1

...
...

−2µQL−2 + µ2CL−1 3 . . . −2µQ2 − λIp + µ2CL−1 L−1

−µQL−2 + µ2CL3 . . . −µQ2 + µ2CL L−1




,
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and the last p columns are




−µQ1 + µ2C1L

−µQ1 + µ2C2L

−µQ1 + µ2C3L

...

−µQ1 + µ2CL−1 L

−µQ1 − λIp + µ2CLL




,

where Cij, i, j = 1, . . . L are p× p matrices whose entrees are polynomials in µ.

It is easy to see that if µ = 0, then F (0, λ) = (−1)LpλLp−p(λ − 1)p. Hence,

if µ = 0, we have an eigenvalue 0 of multiplicity Lp − p and an eigenvalue 1 of

multiplicity p. If µ is close enough to zero, the 0-eigenvalues will be close to the

origin and therefore inside the unit circle. We need to prove that for sufficiently

small positive µ, all the 1-eigenvalues will be inside the unit circle. Let λ = λ(µ) be

a smooth function expressing the dependence of one of the 1-eigenvalues on µ. We

will prove that dλ
dµ

(0+) < 0. It will be enough for our purposes since it will show that

the trajectory λ = λ(µ) is entering the unit circle, and hence λ(µ) is inside the unit

circle for sufficiently small positive µ.

By the definition of λ(µ), λ(0+) = 1 and F (µ, λ(µ)) = 0 for all µ. It follows that

dpF (µ, λ(µ))

dµp
= 0. (2.13)

To calculate the left side of (2.13), we use the formula for the derivative of a deter-

minant [66]. Note that substituting µ = 0 and λ = 1 into each of the first p rows of

the matrix M−λILp leads to a row in which all of the entrees are zeros and therefore

the determinant has a zero value. Therefore the only non-zero terms in dpF (µ,λ(µ))
dµp
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after substituting µ = 0 and λ = 1 (more precisely, taking µ → 0+) are the terms

with the first derivatives in the first p rows (there are p! such terms). Hence taking

the pth derivative is reduced to taking the first derivative of each of the first p rows.

Substituting λ = 1 and µ→ 0+ we obtain

dpF (µ, λ(µ))

dµp
= p! det



W2 W3

W4 −I(L−1)p×(L−1)p


 = 0,

where W2 = −λ′(0+)Ip −
∑L−1

k=0 (L− k)Q(k)L
,

W3 =

[
−(L− 1)QL−1 −(L− 2)QL−2 . . . −2Q2 −Q1

]
,

and W4 = [Ip Ip . . . Ip]
T . Add all columns of p × p matrices to the first column of

p× p matrices to obtain

det




W5 W3

0(L−1)p×p −I(L−1)p×(L−1)p


 = 0,

where W5 = −λ′(0+)Ip − L
∑L

k=1Qk. Calculating the last determinant gives

det

[
L

L∑

k=1

Qk + λ′(0+)Ip

]
= 0.

The last equation shows that −λ′(0+) is an eigenvalue of the matrix L
∑L

k=1Qk.

Since L
∑L

k=1Qk is positive definite, −λ′(0+) > 0 and therefore λ′(0+) < 0. This

proves that for sufficiently small µ > 0 the eigenvalues of the matrix M are strictly

inside the unit circle and hence the sequence xk converges to x∗ and the convergence

rate is linear.
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2.3 Initialization and Distributed Implementation

As mentioned in §1, the IAG method is initiated with L points, x1, x2, . . . , xL.

Possible initialization strategies include setting x1 = x2 = . . . = xL or generating the

initial points using a single cycle of the standard incremental gradient method (2.5).

Another possibility is the following. Given x1, compute d1 = ∇f1(x
1). Then, for

1 ≤ k ≤ L− 1,

xk+1 = xk − µ
1

k
dk,

(2.14)

dk+1 = dk + ∇f(k+1)L
(xk+1).

Therefore, after L− 1 iterations we obtain x1, . . . , xL and dL =
∑L

l=1 ∇fl(x
l).

The key feature of the IAG method that makes it suitable for wireless sensor net-

works applications is that it can be implemented in a distributed manner. Consider

a distributed system of L processors enumerated over 1, 2, . . . , L, each of which has

access to one of the functions fl(x). The initialization (2.14) begins with x1 at pro-

cessor 1. Then, processor 1 sets d1 = ∇f1(x
1) and transmits x1 and d1 to processor

2. Upon receiving xk−1 and dk−1 from processor k − 1, processor k calculates xk

and dk according to (2.14) and transmits them to processor k+ 1. The initialization

phase is completed when processor L, upon receiving xL−1 and dL−1 from processor

L− 1, computes xL and dL according to (2.14) and transmits them to processor 1.

Once the initialization phase is completed, the algorithm progresses in a cyclic

manner. Upon receiving xk−1 and dk−1 from processor (k − 1)L, processor (k)L

computes xk and dk according to (2.2) and (2.3), respectively, and transmits them to

processor (k+1)L. Note that ∇f(k)L
(xk−L) in (2.3) is available at processor (k)L, since

it was the last gradient computed at that processor. Therefore, the only gradient
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computation at processor (k)L is ∇f(k)L
(xk). At no phase of the algorithm do the

processors share information regarding the complete function f(x) or its gradient

∇f(x).

2.4 Application to Wireless Sensor Networks

There are two motivations to use the IAG method: (a) reduced computational

burden due to the evaluation of a single gradient per iteration compared to L gra-

dients required for the steepest descent method; and (b) the possibility of a dis-

tributed implementation of the method in which each component has access to one

of the functions fl(x). The second item has been shown to be very useful in the

context of wireless sensor networks [96]. Wireless sensor networks provide means for

efficient large scale monitoring of large areas [113]. Often the ultimate goal is to

estimate certain parameters based on measurements that the sensors collect, giving

rise to an optimization problem. If measurements from distinct sensors are modelled

as statistically independent, the estimation problem takes the form of (2.1), where

fl(x) is indexed by the measurements available at sensor l (see e.g. [24, 90, 94, 95]

and references therein). When transmitting the complete set of data to a central

processor is impractical due to bandwidth and power constraints, the IAG method

can be implemented in a distributed manner as described in §3. In the following

sections we consider two such estimation problems.

2.4.1 Robust Estimation

One of the benefits of a wireless sensor network is the ability to deploy a large

number of low cost sensors to densely monitor a certain area [113]. Because low

cost sensors have limited reliability, the system must be designed to be robust to the
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possibility of individual sensor failures. In estimation tasks, this means that some

of the sensors will contribute unreliable measurements, namely outliers. In [94] the

authors suggest the use of robust statistics to alleviate the influence of outliers in the

data (see [55] or, specifically in the context of optimization, see [91, p. 347]). The

robust statistics framework uses objective functions that give less weight to outliers.

A common objective function used to this end is the function “Fair” [99, p. 110],

given by

g(x) = c2
[ |x|
c

− log

(
1 +

|x|
c

)]
. (2.15)

We use the function “Fair” rather than the more common Huber [55] since the later

is not strictly convex.

Following [94] we simulate a sensor network for measuring pollution levels and

assume that a certain percentage of the sensors are damaged and provide unreliable

measurements. Each sensor collects a single noisy measurement of the pollution level

and the estimate of the average pollution level is found by minimizing the objective

function defined by

f(x) =
L∑

l=1

fl(x), (2.16)

where x ∈ R, and

fl(x) =
1

L
g(x− yl),

where yl is the measurement collected by sensor l. There were L = 50 sensors in

the simulation. To reflect the possibility of faulty sensors, half of the samples were

generated according to a Gaussian distribution with mean m1 = 10 and unit variance

(σ2
1 = 1) and the other half were generated according to a Gaussian distribution with

mean m2 = 10 and ten times higher variance (σ2
2 = 10). The coefficient c in (2.15)

was chosen to be 10.

For positive x, the first derivative of g(x) is x
1+x/c

, and for negative x it is x
1−x/c

.
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Hence, g′(0+) = g′(0−) = 0. The continuity of g(x) implies then that it is differen-

tiable at zero despite the term |x|. Therefore, the first derivative of g(x) is x
1+|x|/c

, it is

continuous, and it is bounded by c. Considering positive and negative x’s separately,

also shows that g′′(0+) = g′′(0−) = 1, and that in general, the second derivative

of g(x) is 1
(1+|x|/c)2

which is bounded by 1. Hence both Assumptions A.1 and A.2

hold. In addition, since 1
(1+|x|/c)2

is strictly positive, g(x) is strictly convex, and

therefore f(x) is strictly convex as well. Since both limx→∞ f(x) and limx→−∞ f(x)

diverge to ∞, f(x) has no directions of recession, and therefore, by Theorem 27.1(d)

in [101, p.265], the minimum set of f(x) is non-empty. The minimum is unique by

the strict convexity of f(x). Since g′′(x) is continuous and positive everywhere As-

sumption A.3 is satisfied. The strict convexity of f(x) implies that Assumption A.4

holds as well (see Remark 2).

Both the standard incremental gradient method (2.5) with a constant step size

µ(k) = µ (abbreviated as “IG” in the figures) and the IAG method with the ini-

tialization (2.14) were implemented with several choices of step size µ. The initial

point x1 was set to 0. In Fig. 2.1 the trajectories of the two methods are presented.

The solid straight line corresponds to the minimum point x∗. It is seen that when

the step size is sufficiently small, IAG increases more rapidly towards x∗ than the

standard incremental gradient in the early iterations. Furthermore, as predicted by

the theory, IAG converges to the true limit, whereas incremental gradient method

converges to a limit cycle. For a larger step size the IAG method overshots due to

its heavy ball characteristic (2.4). When the step size is too large, the IAG method

no longer converges but the incremental gradient method still converges to a limit

cycle. We have observed this behavior for other values of the parameters m1, m2,

σ2
1, σ

2
2, c as well.

We also compared the IAG method with the incremental gradient method with
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Figure 2.1: Trajectories taken by the IG and IAG methods for the robust “Fair”
estimation problem.
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a diminishing step size, with Bertsekas’ hybrid method [15], and with Tseng’s in-

cremental gradient with momentum [116] in terms of number of iterations to con-

vergence. To optimize the performance of the incremental gradient method with

a diminishing step size, a relatively large constant step size µ = 0.2 is used un-

til convergence to a limit cycle is detected, and then the diminishing step size is

µ(k) = .2µ/(k̃ − k), where k̃ is the first iteration in which a limit cycle is detected.

Convergence to a limit cycle is declared when |xk − xk−L| < .01 for k a multiple of

L. To describe the parameters used in the hybrid method, we switch to the notation

in [15]. We set γ = 0.05 and α(µ) as defined in Eq. (47) in [15], with φ(µ) = ζ(1−µ),

where ζ = 2.5. The transition parameter µ is kept at zero, i.e., the iterates are identi-

cal to the incremental gradient method until convergence to a limit cycle is detected

as described above. Once a limit cycle is detected, µ is updated after every cycle

according to µ := 1.5µ + 0.3, i.e., n̂ = 1. These parameters seemed to optimize the

performance of the hybrid method. The parameters of the incremental gradient with

momentum term where set according to the recommendation in [116], which seemed

to optimize the performance of the method in our application as well. In particular,

we set ǫ0 = 1, ǫ1 = ǫ2 = 0.00001, ǫ3 = 1000, η = 1.5f(x0
1) + 100, ρ = ∞, ω = 0.5,

ζ = 0.8, and λ1+λ2+. . .+λm = 1. For the IAG method we set µ = 0.05. The conver-

gence point was specified to be the first iteration for which all subsequent iterations

satisfy |xk − x∗| < ǫ. Since the IAG and the hybrid methods outperform the incre-

mental gradient method with a diminishing step size and the incremental gradient

with momentum term by a large margin, ǫ was specified to be 0.01 for the IAG and

the hybrid method and 0.1 for the incremental gradient method with a diminishing

step size and the incremental gradient with momentum term. The average number

of iterations until convergence and its standard deviation were estimated from 100

Monte Carlo simulations and are summarized in Table 2.1. The trajectory taken by
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IAG Hybrid IG Diminishing Stepsize IG Momentum Term
ǫ = 0.01 ǫ = 0.01 ǫ = 0.1 ǫ = 0.1

mean 290 589 601 2063
std 23 135 258 919

Table 2.1: Number of iterations to convergence.

the different methods in one of these simulations is presented in Fig. 2.2. It is seen

that for this application, the IAG method performs best. Further experimentation

is required to make more general conclusions.

2.4.2 Source Localization

This section presents a simulation of a sensor network for localizing a source that

emits acoustic waves. L sensors are distributed on the perimeter of a field at known

spatial locations, denoted rl, l = 1, . . . , L, where rl ∈ R
2. Each sensor collects a

noisy measurement of the acoustic signal transmitted by the source, denoted yl, at

an unknown location x. Based on a far-field assumption and an isotropic acoustic

wave propagation model [31, 75, 94, 104, 105], the problem of estimation of source

location can be formulated as a non-linear least squares problem. The objective

function is again of the form (2.16), but now

fl(x) =
(
yl − g(||rl − x||2)

)2
, (2.17)

x ∈ R
2, and

g(z) =





A/z : z ≥ A/ǫ

2ǫ− ǫ2z/A : z < A/ǫ
. (2.18)

In (2.17) g(·) models the received signal strength as a function of the squared distance.

In (2.18) A is a known constant characterizing the source’s signal strength. For

z ≥ A/ǫ (far-field source), the source’s signal strength has isotropic attenuation as
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Figure 2.2: IAG compared to IG with diminishing step size, to the hybrid method,
and to IG with momentum term.
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an inverse function of the squared distance, while for z < A/ǫ (near-field source), the

attenuation is linear in the squared distance. It is easy to see that Assumptions A.1

and A.2 are satisfied and therefore, Proposition 1 holds. Clearly, since f(x) is multi-

modal in this case, Assumptions A.3 and A.4 cannot hold. However, it was observed

in our experiments that when the source is sufficiently distant from the sensors, the

objective function has a single minimum inside the observed field (See Fig. 2.4 for

a contour plot of the objective function) and, when initiated not too far from the

minimum point, the IAG method has good convergence properties. This suggests

the possible application of the IAG method under weaker assumptions than those

considered in this paper, and motivates further investigation into its properties.

In the numerical experiment, L = 32 sensors are distributed equidistantly on

the perimeter of a 100 × 100 field. The source is located at the point [60, 60] and

emits a signal with strength A = 1000. The sensors’ noisy measurements were

generated according to a Gaussian distribution with a mean equal to the true signal

power and unit variance. Both the incremental gradient method with a constant

step size and the IAG method with the initialization (2.14) were initiated at the

point [40, 40]. The error term ||xk − x∗|| as a function of the iteration number is

presented in Fig. 2.3 for two choices of step size. The actual path taken by the

methods for step size µ = 10 is presented in Fig. 2.4, where the asterisk denotes

the true minimum point of the objective function. It is seen that, as the theory

predicts, the incremental gradient method exhibits oscillations near the eventual

limit, whereas the IAG method converges to the minimum. In this scenario, the IAG

method outperforms the IG method at early iterations as well.
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Figure 2.4: Path taken by the IG and IAG methods for source localization problem.

71



CHAPTER 3

On Tests for Global Maximum

3.1 Introduction

The maximum likelihood (ML) estimation method is one of the standard tools for

parameter estimation. Among its appealing properties are consistency and asymp-

totic efficiency [55, 61, 115]. However, a major drawback of this method when ap-

plied to non-linear estimation problems is the fact that the associated likelihood

equations required for the derivation of the estimator rarely have a closed form an-

alytic solution. This shortcoming poses a global optimization problem. Solving this

problem by applying numerical methods is usually computationally prohibitive. To

date, there have been few global optimization methods applied to ML estimation

(e.g. [4, 26, 106, 127, 128]) because of the computational complexity involved. More

commonly, initiate and converge methods are applied. These methods are based on

an initial guess (often found by a simpler method) which is followed by a local, often

iterative, optimization procedure (e.g. the expectation maximization algorithm [38]

and its variations [81], Fisher scoring [81], the Gauss-Newton method [110], and

majorizing or minorizing algorithms [40], [56]). As a consequence, the performance

of these methods highly depends on the starting point. In particular, if the log-
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likelihood function is not strictly convex and there is no available method that is

guaranteed to provide an initial guess within the attraction region of the global max-

imum, then there is a risk that a local search will stagnate at a local maximum. This

phenomenon leads to large-scale estimation errors.

The maximum likelihood framework would benefit from an answer to the following

question: Given a location of a relative maximum of the log-likelihood function, how

to assess whether this is the global maximum? One approach to this question is

the Kronecker-Picard integral framework [106]. However, the computation of this

multi-dimensional integral is difficult, indeed equivalent to the complexity involved

in finding the global maximum, rendering this approach impractical. Instead, in this

paper we take a statistical approach to answering this question.

The first statistical solutions for discriminating between local and global maxima

were based on sampling the domain of the log-likelihood function. Given a sequence

of random starting points and the corresponding set of relative maxima found by a

local search method, Finch et. al. [44] proposed a statistical method to assess the

probability that the global maximum has not yet been found based on an asymptotic

(in the number of starting points) result on the total probability of unobserved

outcomes due to Bickel and Yahav [19]. Veall [118] used an order statistic result due

to de Haan [53] that characterizes the distribution of the ordered values of a smooth

function, sampled at random points. Given a relative maximum, the log-likelihood

function is evaluated at a large number of randomly selected points. If a point with

a value larger than the value of the candidate maximum is found, then clearly it is

not the global maximum. If no such point is found, de Haan’s result is used to assess

the probability that the relative maximum is the global one. Since these methods are

based on sampling the domain of the log-likelihood function, they suffers from the

curse of dimensionality and do not generalize well to high dimensional problems. Yet
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high dimensional problems are exactly those in which global optimization methods

are computationally demanding.

Dorsey and Mayer [39] reported poor performance of Veall’s method and, as an

alternative, proposed to use the available methods for testing parametric models

to answer the question at hand. They observed that a local maximum of the log-

likelihood function is in fact a global maximum of a particular misspecified model

- a model in which the parameters are restricted to a region that does not contain

the true parameter. For scenarios in which the model is known to be correctly

specified, these authors tested whether a relative maximum is the global one by

applying a test that detects model mismatch. If the result of the test leads to

the conclusion that a model mismatch is likely, the hypothesis that the relative

maximum is the global one is rejected. Otherwise, the relative maximum is declared

the final estimate. Independently, Gan and Jiang [49] made the same observation and

proposed White’s information matrix test [122] as a test for global maximum. More

recently, Biernacki [20,21] proposed a new test, which is closely related to Cox’s tests

for separate families of hypotheses [33,34], and showed through simulations that his

new test outperforms White’s information matrix test.

A drawback of the methods of [39], [49], and [21] is that they are sensitive to

model mismatch. In particular, when the model is not specified correctly, the tests

lose their power to distinguish between local and global maxima. In some engi-

neering applications the statistical model is derived from the underlying physical

phenomenon and deviations from this model are unlikely. In these cases, the meth-

ods can be directly applied. However, when there are uncertainties about the model,

the methods [39], [49], and [21] need to be modified so as to not classify a global

maximum of a misspecified model as a local maximum.

In this paper, the tests are derived under possible model mismatch. The sensitiv-
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ity of the tests to model mismatch is analyzed in terms of the Renyi divergence and

the Kullback-Leibler distance between the true underlying distribution and the as-

sumed parametric class. The analysis leads to a simple threshold correction method

that accounts for possible deviations from the model as long as these deviations are

bounded in terms of the mentioned distances. When deviations from the model are

defined in terms of an embedding in a larger parametric class, insensitivity to a Pit-

man drift is established by constructing tests based on a vector valued validation

function that is orthogonal to the elements of the gradient of the log-likelihood func-

tion of the larger class. This construction leads to tests that are locally robust to

deviations from the assumed model.

An exhaustive catalogue of all the available methods for model specification test-

ing that might be considered as candidates for tests for global maximum is beyond

the scope of this paper. Rather, this paper focuses on the class of M-tests, which

includes the tests of [49] and [21] as special cases, and investigates their performance

as tests for global maximum.

The problem of testing a relative maximum is related to the problem of eliminat-

ing spurious maxima in scenarios in which the ML estimator (MLE) is not necessarily

consistent or may not even exist (see [107] and references therein). Although some

of the results apply to that problem as well, we do not pursue this connection here.

In Sec. 3.2, we review the properties of the MLE under a possible model mis-

match and pose the problem of discriminating between local and global maxima as

a statistical hypothesis testing problem. The general framework for constructing

M-tests [88, 114, 123] is presented, and it is shown that two of the available tests

in the literature are special cases of M-tests. In Sec. 3.3, the consistency of the

tests is established and an approximation of the finite sample power of the tests

is derived, which is useful for predicting performance and provides a measure for
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comparing between tests. The problem of model mismatch is treated in Sec. 3.4.

The effect of model mismatch is characterized in terms of the Renyi divergence and

the Kullback-Leibler distance and two methods for making the tests robust to small

deviations from the underlying model are given. Finally, to show the applicability of

this framework, in Sec. 3.5 a Monte-Carlo evaluation of the performance of the tests

is presented in terms of level and power under both correct and mismatched model.

3.2 Preliminaries

Let yt, t = 1, . . . , n be a collection of n independent observations drawn from

an unknown distribution G with density g(y), y ∈ R
P . The information we want

to extract from the data is encoded in a K × 1 parameter vector θ, through which

we define a parametric family of densities {f(y, θ) : θ ∈ Θ} that are twice contin-

uously differentiable in θ for all y. For scalar functions denote by ∇θ(·) and ∇2
θ(·)

the column vector of partial derivatives and the Hessian matrix with respect to θ,

respectively. For vector valued functions let ∇T
θ (·) be the matrix whose (k, l) element

is the partial derivative of the k’th element of the function with respect to the l’th

element of θ. Assume that the elements of the matrices ∇θ log f(y, θ)∇T
θ log f(y, θ)

and ∇2
θ log f(y, θ) are dominated by functions integrable with respect to G, for all

θ ∈ Θ, a compact subspace of R
K .

Denote by

Ln(Yn; θ) =
1

n

n∑

t=1

log f(yt; θ)

the normalized log-likelihood function of the measurements, where Yn = [y1 y2 . . . yn].

The MLE1 is defined as

θ̂n = arg max
θ∈Θ

Ln(Yn; θ). (3.1)

1Sometimes called quasi-MLE when the model is incorrect.
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Denote by E {·} the expectation with respect to the true underlying distribution

G, and by θ∗ the minimizer of the Kullback-Leibler information, i.e.,

θ∗ = arg min
θ∈Θ

E

{
log

g(y)

f(y; θ)

}
= arg max

θ∈Θ
a(θ)

where a(θ) is the ambiguity function, defined as

a(θ) = E {log f(y; θ)} (3.2)

and assume that θ∗ is a well defined unique interior point of Θ. Define the matrices

A(θ) = E
{
∇2

θ log f(y; θ)
}

(3.3)

B(θ) = E
{
∇θ log f(y; θ)∇T

θ log f(y; θ)
}

C(θ) = A−1(θ)B(θ)A−1(θ)

and assume that A(θ∗) and B(θ∗) are non-singular. Under these assumptions, The-

orems 2.1, 2.2, and 3.2 of White [122] assert that

θ̂n
a.s.→ θ∗ (3.4)

as n→ ∞, and θ̂n is asymptotically Gaussian in the sense that

√
n
(
θ̂n − θ∗

)
D→ N (0, C(θ∗)) . (3.5)

When g(y) = f(y, θ0) almost everywhere for some unique θ0 ∈ Θ, we say that the

model is correctly specified and this result becomes the standard consistency, and

asymptotic Normality result for the MLE. More specifically, if the elements of the

77



matrix ∇T
θ [∇θf(y, θ) · f(y, θ)] are dominated by functions integrable with respect to

ν, for all θ ∈ Θ, where ν is the dominating measure such that g(y) = dG(y)/dν, and

the support of f(y, θ) does not depend on θ, then C(θ0) = −A−1(θ0) = B−1(θ0) is

the inverse of the Fisher information matrix (FIM) [115, p. 80].

Denote by θ̃n one of the relative maxima of the log-likelihood function. Then the

problem addressed in this paper can be formulated as a hypothesis testing problem.

Given θ̃n, decide between

H0 : θ̃n = θ̂n (3.6)

H1 : θ̃n 6= θ̂n.

A statistical test which gives a solution to this problem is called a test for global

maximum.

3.2.1 M-Tests for Global Maximum

M-tests were proposed in an econometric context by Newey [88], Tauchen [114],

and White [123] as a general way of testing the validity of parametric models (see [124,

Ch. 9] as well). The tests are based on a vector valued test function

e(y, θ) : R
P × Θ → R

Q (3.7)

which is chosen to satisfy

∫
e(y, θ)f(y, θ)dy = 0, ∀θ ∈ Θ. (3.8)

Hence, given the MLE θ̂n, large values of 1/n
∑n

t=1 e(yt, θ̂n) indicate that a model

mismatch is likely. Small values of 1/n
∑n

t=1 e(yt, θ̂n) indicate that the model is
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correctly specified or alternatively that the type of model mismatch is such that

g(y) /∈ {f(y, θ) : θ ∈ Θ} but

∫
e(y, θ∗)g(y)dy = 0. (3.9)

The same framework can be used to construct tests for (3.6). First suppose that

the model is correctly specified and that e(y, θ) is chosen to satisfy (3.8). Then,

given a location of a relative maximum of the log-likelihood function θ̃n, large values

of 1/n
∑n

t=1 e(yt, θ̃n) indicate that it is not likely that θ̃n is the MLE. This directly

extends to the case of model mismatch, if it is known that (3.9) holds.

The tests are constructed as follows. Assume that the elements of e(y, θ) are

twice differentiable with respect to θ for every y, and that the elements of the vector

∇θe(y, θ) and the matrices e(y, θ)∇T
θ log f(y, θ) and e(y, θ)eT (y, θ) are dominated by

functions integrable with respect to G for all θ ∈ Θ. Define the vectors

hn(θ) =
1

n

n∑

t=1

e(yt, θ) (3.10)

h(θ) = E {e(y, θ)}

and the Q×K matrices

Hn(θ) =
1

n

n∑

t=1

∇T
θ e(yt, θ) (3.11)

H(θ) = E
{
∇T

θ e(y, θ)
}
.

Define the Q×Q matrix V (θ) by

E
{[
e(y, θ) − h(θ) −H(θ)A−1(θ)∇θ log f(y; θ)

]
× (3.12)

[
e(y, θ) − h(θ) −H(θ)A−1(θ)∇θ log f(y; θ)

]T}
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and its empirical estimate by

Vn(θ) =
1

n

n∑

t=1

(3.13)

[
e(yt, θ) − hn(θ) −Hn(θ)A−1

n (θ)∇θ log f(yt; θ)
]
×

[
e(yt, θ) − hn(θ) −Hn(θ)A−1

n (θ)∇θ log f(yt; θ)
]T

where

An(θ) =
1

n

n∑

t=1

∇2
θ log f(yt; θ) (3.14)

and assume that e(y, θ) is such that V (θ∗) in (3.12) is nonsingular. Under the

assumptions made above,

√
n
[
hn(θ̂n) − h(θ∗)

]
D→ N (0, V (θ∗)) (3.15)

Vn(θ̂n)
a.s.→ V (θ∗) (3.16)

element by element, Vn(θ̂n) is nonsingular for sufficiently large n, and as a result,

n
[
hn(θ̂n) − h(θ∗)

]T
V −1

n (θ̂n)
[
hn(θ̂n) − h(θ∗)

]
(3.17)

is asymptotically Chi-Squared distributed with Q degrees of freedom [88, 114, 123].

An elementary proof of this result is included in the Appendix for completeness.

Based on this result, tests for global maximum can be constructed as follows.

Choose a function e(y, θ) having mean zero at the point θ∗, that is

h(θ∗) = E {e(y, θ∗)} = 0. (3.18)

The function e(y, θ) will be called the global maximum validation function. Under
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H0 and when (3.18) is satisfied, the statistic

Sn = nhT
n (θ̃n)V −1

n (θ̃n)hn(θ̃n) (3.19)

with V −1
n (θ̃n) computed by (3.13) is asymptotically Chi-Squared distributed with Q

degrees of freedom, denoted by χ2
Q. Denote by Fχ2

Q
(·) the χ2

Q cumulative distribution

function. Therefore, a false alarm level α test of the hypotheses (3.6) is made by

comparing Sn to F−1
χ2

Q

(1 − α), which is the critical value of the χ2
Q distribution for

the desired false alarm level. If Sn exceeds the critical value, H0 is rejected and one

concludes that the iterative local search should be re-initiated in the hope of con-

vergence to a different maximum. Otherwise, the null hypothesis cannot be rejected

and θ̃n is declared the final estimate.

When the model is correctly specified, θ∗ = θ0 and Eq. (3.18) becomes

h(θ0) = E
{
e(y, θ0)

}
=

∫
e(y, θ0)f(y, θ0)dy = 0. (3.20)

A global maximum validation function e(y, θ) satisfying (3.20) can be constructed

from any random function, e.g. call it e(y, θ), by replacing it with the centered

statistic:

e(y, θ) = e(y, θ) −
∫
e(y, θ)f(y; θ)dy. (3.21)

This construction ensures that the mean of the validation function at the true pa-

rameter is zero. Under this construction, hn(θ̃n) (3.10) becomes

hn(θ̃n) =
1

n

n∑

t=1

e(yt, θ̃n) −
∫
e(y, θ̃n)f(y; θ̃n)dy (3.22)

and the property h(θ0) = E {e(y, θ0)} = 0 holds. This manipulation requires an

analytical solution of the integral in (3.22) or its approximation via numerical inte-
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gration.

Two tests for global maximum that are available in the literature fall into this

framework. Taking e(y, θ) to be the vector valued function defined as

[e(y, θ)]q =
∂2 log f(y; θ)

∂θiq∂θjq

+
∂ log f(y; θ)

∂θiq

∂ log f(y; θ)

∂θjq

(3.23)

where [·]q denotes the vector’s q’th element, and the indices iq and jq, q = 1, . . . , Q,

are chosen so that V (θ∗) is nonsingular, we obtain White’s information matrix

test [122] which was used by Gan and Jiang as their test for global maximum [49].

This test is motivated by the fact that when the model is correctly specified, An(θ̂n)

defined in (3.14), and Bn(θ̂n), defined by

Bn(θ) =
1

n

n∑

t=1

∇θ log f(yt; θ)∇T
θ log f(yt; θ) (3.24)

converge a.s. as n → ∞ to the -FIM and FIM, respectively; an idea that was

originally used by White in his test for model mismatch [122]. Hence, when the

model is correctly specified, (3.18) is satisfied since the expected value of the sum at

θ0 vanishes. Gan and Jiang noted that White’s test suffers from slow convergence

rates to unit power, i.e., it requires a large number of samples to detect local maxima

with high probability. A test with better convergence rates was recently proposed by

Biernacki [21]. The cost of this improvement is increased complexity due to the need

to evaluate an integral of the type (3.22). The validation function e(y, θ) associated

with Biernacki’s test is the scalar function

e(y, θ) = log f(y; θ) −
∫

log f(y; θ)f(y; θ)dy (3.25)

82



which is a special case of (3.21). Hence,

hn(θ̃n) =
1

n

n∑

t=1

log f(yt; θ̃n) −
∫

log f(y; θ̃n)f(y; θ̃n)dy. (3.26)

This test is closely related to Cox’s tests of separate families of hypotheses [33], [34].

The choice (3.25) of e(y, θ) leads to a test that compares the log-likelihood eval-

uated at θ̃n to its expected value, which is calculated as if θ̃n is the true param-

eter. The test requires the evaluation of an integral (3.26) of dimension P - the

dimension of y. This might be prohibitive in real time applications, although in

Sec. 3.5.1 below, a closed form expression for the case of Gaussian distributed yt is

given. In [20, 21] the variance estimator required for the construction of Sn (3.19)

is consistent for E
{
e(y, θ0)eT (y, θ0)

}
rather than for V (θ0) (3.12). From (3.28) be-

low, it can be seen that under the null hypothesis H0 and when the model is cor-

rectly specified, E
{
e(y, θ0)eT (y, θ0)

}
is an upper bound on the asymptotic variance

of
√
nhn(θ̃n) (3.26). The bound is tight when either B(θ0) is large, e.g., at high signal

to noise ratio, or when H(θ0) is small, i.e., the expectation of the gradient of e(y, θ)

is small, but in general the variance estimator of [20, 21] leads to a test with a false

alarm level smaller than the specified value.

3.2.2 Moments Matching Tests

Moments matching tests were previously proposed as tests for model mismatch

(see e.g. [114]) but were not applied to the problem of discrimination of local maxima.

The tests are based on the property that the moments of the distribution induced by

the estimated parameter should be in good agreement with the empirical moments of

the data. Therefore, these tests are especially suited for cases in which the underlying

physical model specifies a simple parametrization of one of the moments of the data.
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For example, assume that the mean of y is modelled by µ(θ), i.e. µ(θ) =
∫
yf(y; θ)dy,

where µ(·) is a pre-specified non-linear function, then to construct a test, which is

based on the first moment, e(y, θ) is taken to be

e(y, θ) = y − µ(θ).

This choice of e(y, θ) leads to the empirical estimate

hn(θ̃n) =
1

n

n∑

t=1

yt − µ(θ̃n).

It is clear that under a correctly specified model, equation (3.18) is satisfied. If

the model is not correctly specified but the specification of the mean is correct, the

condition

h(θ∗) = E {y} − µ(θ∗) = 0 (3.27)

will still hold if the parametric class {f(y; θ) : θ ∈ Θ} belongs to the linear expo-

nential family [124].

If the mean of the data does not depend on θ or is weakly dependent, one can

improve the test by including higher order moments. For example, one can spec-

ify e(y, θ) as one or more elements of the difference between sample and ensemble

covariance matrices:

[e(y, θ)]q = [y]iq [y]jq
− [R(θ)]iq ,jq

, q = 1, . . . , Q

where for matrices [·]q,k denotes the (q, k) element, and [R(θ)]iq ,jq
=
∫

[y]iq [y]jq
f(y; θ)dy

is pre-specified from the underlying model.
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3.2.3 Covariance Matrix Estimation

It is possible to exploit properties of the null hypothesis H0 (3.6) in order simplify

and improve the estimator (3.13) of the covariance matrix of
√
nhn(θ̃n) (see e.g. [49,

88, 114, 122, 124]). Under H0

√
nhn(θ̃n) equals

√
nhn(θ̂n), and since by construction

h(θ∗) = 0, it is possible to drop the term hn(θ̃n), which appears in (3.13) after

substituting θ̃n. Furthermore, when the model is correctly specified, under H0, the

asymptotic covariance matrix of
√
nhn(θ̃n) simplifies to

E
{
e(y, θ0)eT (y, θ0)

}
−H(θ0)B−1(θ0)HT (θ0) (3.28)

where B(θ) and H(θ) are given in (3.3) and (3.11), respectively, and since a correct

model specification is assumed, expectations are taken with respect to the density

f(y, θ0). Using this property, the following covariance estimators can be considered.

The first is based on the data and the form (3.28):

V̂n(θ̃n) =
1

n

n∑

t=1

e(yt, θ̃n)eT (yt, θ̃n) (3.29)

−Hn(θ̃n)B−1
n (θ̃n)HT

n (θ̃n)

where Bn(θ) and Hn(θ) are defined in (3.24) and (3.11), respectively. In the cor-

rect model case, under H0 the estimator (3.29) converges a.s. to the covariance

matrix (3.28) [121, Lemma 3.1], and hence it is positive definite a.s. for sufficiently

large n. The second estimator is given by

V n(θ̃n) =

∫
e(y, θ̃n)eT (y, θ̃n)f(y, θ̃n)dy − (3.30)

H(θ̃n)B
−1

(θ̃n)H
T
(θ̃n)
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where

B(θ) =

∫
∇θ log f(y; θ)∇T

θ log f(y; θ)f(y; θ)dy

and

H(θ) =

∫
∇T

θ e(y, θ)f(y; θ)dy.

It should be noted that under H1 or under model mismatch, these estimates are

not necessarily consistent and the estimator (3.29) is not necessarily positive definite.

A number of authors investigated ways of estimating the covariance matrix in

scenarios in which unexpected dependencies between the measurements may occur

(see e.g. [124], [89] and references therein). Methods for eliminating the requirement

for covariance matrix estimation altogether were recently proposed in [27] for the

problem of model testing in non-linear regression.

3.3 Power Analysis

In order to derive the power function, the asymptotic distribution of θ̃n under H1

needs to be determined. Therefore, assumptions on the structure of the ambiguity

function (3.2) at different local maxima are required. Assume that the system of

equations ∇a(θ) = 0, has a finite number of solutions in Θ and each one of these

solutions is an interior point of Θ. In addition, at each of these points, the matrix

∇2a(θ) is either negative definite or positive definite. The ambiguity function a(θ)

has its global maximum at θ∗; denote by θm, m = 1, . . . ,M , the other M local

maxima of a(θ).

Theorem 1. For sufficiently large n, Ln(Yn; θ) has M+1 local maxima for almost ev-

ery sequence {yt}t≥1. Furthermore, the location of these relative maxima are strongly

consistent estimates for θ∗ and θm, m = 1, . . . ,M .
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Proof. The outline of the proof goes as follows. First we prove that, for sufficiently

large n, the norm of the first derivative vector of Ln(Yn; θ) is strictly positive outside

of arbitrary small neighborhoods of the local maxima and local minima of a(θ). Then,

we prove that when restricted to these neighborhoods, Ln(Yn; θ) is either strictly

convex or strictly concave and hence has a single minimum or a single maximum,

respectively.

Under the assumptions made, [57, Thm. 2] gives the following uniform strong

law of large numbers:

Ln(Yn; θ) → E {log f(y; θ)} (3.31)

∇θLn(Yn; θ) → E {∇θ log f(y; θ)}

∇2
θLn(Yn; θ) → E

{
∇2

θ log f(y; θ)
}

as n→ ∞ uniformly in Θ for almost every sequence {yt}t≥1.

Denote the relative minimum points for the ambiguity function by φj ∈ Θ, j =

1, . . . , J , J ≥ 0. By the assumption, ∇θa(θ) = 0 at the points θ∗, θm,m = 1, . . . ,M

and φj, j = 1, . . . , J and only at these points. In addition, the matrix ∇2a(θ) is

negative definite at the points θ∗, θm,m = 1, . . . ,M and positive definite at the points

φj, j = 1, . . . , J . Denote the eigenvalues of the matrix ∇2a(θ) by λk(θ), k = 1, . . . , K.

Therefore,

max
k

{λk(θ
∗)} < 0

max
k

{λk(θ
m)} < 0, ∀m = 1, . . . ,M

and

min
k

{λk(φ
j)} > 0, ∀j = 1, . . . , J.
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The eigenvalues are continuous functions of the matrix element and the operations

max and min are also continuous in their arguments. Therefore, there are disjoint

open neighborhoods N ∗, Nm, and Mj around θ∗, θm and φj, respectively, m =

1, . . . ,M , j = 1, . . . J , that satisfy the following conditions:

sup
θ∈N ∗

max
k

{λk(θ)} ≤ δ < 0 (3.32)

sup
θ∈Nm

max
k

{λk(θ)} ≤ δ < 0, ∀m = 1, . . . ,M

inf
θ∈Mj

min
k

{λk(θ)} ≥ δ > 0, ∀j = 1, . . . , J.

Denote

Θ̃ = Θ \
[
N ∗
⋃
(

M⋃

m=1

Nm

)
⋃
(

J⋃

j=1

Mj

)]
.

Since Θ̃ is also compact, and |∂a(θ)/∂θk| is bounded and continuous for all k, we

have

inf
θ∈eΘ K∑

k=1

|∂a(θ)/∂θk| = min
θ∈eΘ K∑

k=1

|∂a(θ)/∂θk| = δ.

Since by the assumption all the stationary points of a(θ) are outside of Θ̃, δ is strictly

positive.

Next, we prove that there exist N1 such that ∀n > N1,

K∑

k=1

|∂Ln(Yn; θ)/∂θk| > δ/2, ∀θ ∈ Θ̃, w.p. 1

i.e., for sufficiently large n, the function Ln(Yn; θ) has no stationary points in Θ̃ for

almost every sequence {yt}t≥1. To this end, choose N1 such that for all n > N1,

|∂a(θ)/∂θk − ∂Ln(Yn; θ)/∂θk| <
δ

2K
,

∀k = 1, . . . , K, ∀θ ∈ Θ̃, w.p. 1
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which can always be found by (3.31). Therefore,

K∑

k=1

|∂a(θ)/∂θk − ∂Ln(Yn; θ)/∂θk| <
δ

2
,

∀θ ∈ Θ̃, w.p. 1

and hence, ∀n > N1,

K∑

k=1

|∂Ln(Yn; θ)/∂θk| >
δ

2
, ∀θ ∈ Θ̃, w.p. 1

and the claim is proved.

Next, we prove that there exist N2 such that ∀n > N2, Ln(Yn; θ) is concave over

N ∗
, Nm

,m = 1, . . . ,M and convex over Mj
, j = 1, . . . , J , where N denotes the

closure of the set N . Denote the eigenvalues of ∇2Ln(Yn; θ) by λn
k(θ), k = 1, . . . , L.

We consider one specific neighborhood N ∗
, and prove that

max
θ∈N

∗
max

k
{λn

k(θ)} < δ

2
< 0, ∀n > N2, w.p. 1 (3.33)

where δ was defined in (3.32), i.e., Ln(Yn; θ) is concave over N ∗
.

By the construction, the maximal eigenvalue is uniformly continuous over N ∗
.

Therefore,

max
k

{λn
k(θ)} → max

k
{λk(θ)}, ∀θ ∈ N ∗

, w.p. 1

and (3.33) follows. The same argument holds for the proof of concavity of Ln(Yn; θ)

over the rest of the neighborhoods Nm
, m = 1, 2, . . . ,M and the convexity of

Ln(Yn; θ) over Mj
, j = 1, . . . , J .

For each set Nm
, by (3.31) as n increases Ln(Yn; θ) will eventually be greater

at θm than at any point on the boundary of Nm
, w.p. 1. Therefore, Ln(Yn; θ) will
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attain a single local maximum at an interior point of Nm, w.p. 1 (not necessarily at

θm). A similar argument holds for N ∗
and for a minimum point in Mj and the first

part of the theorem is proved.

Finally, since the sets N ∗, Nm,m = 1, . . . ,M can be taken arbitrarily small,

the maximum points of Ln(Yn; θ) are strongly consistent estimates of θ∗, θm,m =

1, . . . ,M .

Theorem 1 ensures that as n increases the relative maxima of the log-likelihood

function occur close to the relative maxima of the ambiguity function and only at

these locations. This implies that the relative maxima of the log-likelihood function

are asymptotically Gaussian distributed. More specifically, let Θm be a closed neigh-

borhood of θm, in which θm is the highest relative maximum of a(θ). Define the m’th

local-MLE by

θ̂m
n = arg max

θ∈Θm
Ln(Yn; θ), m = 1, . . . ,M. (3.34)

If the optimization method used to solve (3.1) is certain to find a relative maximum

of Ln(Yn; θ), then Theorem 1 asserts that for sufficiently large n, θ̃n will be equal to

one of the local-MLEs θ̂m
n , w.p. 1. The local-MLE θ̂m

n is the MLE associated with

the model {f(y, θ) : θ ∈ Θm} and therefore falls into the mismatch model framework

of White [122]. Hence we have the following.

Corollary 1. For all m:

1. θ̂m
n

a.s.→ θm as n→ ∞, and

2.
√
n
(
θ̂m

n − θm
)

D→ N (0, C(θm)).

In addition, by (3.15)-(3.17) we obtain the following:
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Corollary 2. For all m:

√
n
[
hn(θ̂m

n ) − h(θm)
]

D→ N (0, V (θm))

Vn(θ̂m
n )

a.s.→ V (θm) element by element. In addition, assuming that V (θm) is nonsin-

gular,

n
[
hn(θ̂m

n ) − h(θm)
]T
V −1

n (θ̂m
n )
[
hn(θ̂m

n ) − h(θm)
]

(3.35)

is asymptotically distributed as χ2
Q.

From Corollary 2 it is clear that for the test to have power against θ̂m
n , h(θm) must

not equal 0. Otherwise the statistic has the same asymptotic χ2
Q distribution under

both hypotheses H0 and H1 (3.6). On the other hand, if h(θm) 6= 0 the consistency

of the test can be established.

Corollary 3. Assume θ̃n = θ̂m
n . If h(θm) 6= 0 then

Pr{Sn > F−1
χ2

Q

(1 − α)} → 1

for every choice of level α ∈ (0, 1).

Proof. Under the assumption, hn(θ̃n)
a.s.→ h(θm) by [121, Lemma 3.1]. Therefore, since

Vn(θ̂m
n )

a.s.→ V (θm) element by element and we assumed that V (θm) is nonsingular,

Pr{Sn > ε} → 1

for all ε > 0, by [124, Thm. 8.13].

Implied from corollary 3 is the consistency of the test: If h(θm) 6= 0 for all

m = 1, . . . ,M , then

Pr{Sn > F−1
χ2

Q

(1 − α)|H1} → 1 (3.36)
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for every choice of level α ∈ (0, 1), i.e., the test is consistent. This result extends the

results of [49] and [21], which established under a correctly specified model (each for

their own global maximum validation function) that if the only solution to the set

of equations

∫
∇θ log f(y, θ)f(y, θ0)dy = 0

∫
e(y, θ)f(y, θ0)dy = 0

is θ0, then
√
nhn(θ̃n)

D→ N(0, V (θ0)) iff θ̃n = θ̂n.

Furthermore, Corollary 2 implies that under H1, and particularly when θ̃n = θ̂m
n ,

the distribution of the test statistic Sn is approximately non-central χ2
Q with non-

centrality parameter

nδm = nhT (θm)V −1(θm)h(θm)

denoted by χ2
Q(nδm) [58]. We denote the χ2

Q(nδm) cumulative distribution function

by Fχ2
Q

(nδm)(·). The finite sample power of the test against a local maximum at θm

can be approximated by [58, p. 468]

1 − Fχ2
Q

(nδm)

[
F−1

χ2
Q

(1 − α)
]
. (3.37)

Therefore, the power of a given test against a local maximum at θm is characterized

by

δm = hT (θm)V −1(θm)h(θm) (3.38)

which will be called the power characteristic of the test as a function of θm. The

power characteristic is a basis of comparison between tests.
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3.4 Misspecified Models

In general, it is difficult to discriminate between the cases of: (a) θ̃n a local max-

imum in a correctly specified model; and (b) θ̃n a global maximum in a misspecified

model. Under model mismatch, the probability of mistakenly rejecting θ̃n as the

global maximum, increases with the number of samples.

If the test statistic is designed under the assumption that the model is correctly

specified but the actual underlying distribution is outside the assumed parametric

family, then (3.18) may be violated. In this case, even when θ̃n = θ̂n, hn(θ̃n)
a.s.→

h(θ∗) 6= 0 and, similar to the discussion in the previous section, Sn is approximately

distributed as χ2
Q(nǫ) with non-centrality parameter nǫ = nhT (θ∗)V −1(θ∗)h(θ∗), in-

stead of the assumed central chi-squared. In this case, as n tends to infinity, the

probability of mistakenly rejecting θ̃n as the global maximum increases to one re-

gardless of the test threshold, and is approximately given by

1 − Fχ2
Q

(nǫ)

[
F−1

χ2
Q

(1 − α)
]
.

3.4.1 A Bound on the Non-Centrality Parameter

It is possible to bound the non-centrality parameter ǫ, induced by the model

mismatch, in terms of the Renyi divergence between f(y; θ∗) and true underlying

density g(y). Consider the case in which e(y, θ) is a scalar function and satisfies

∫
e(y, θ)f(y, θ)dy = 0, ∀θ ∈ Θ.

In this case the non-centrality parameter simplifies to

nǫ = nh2(θ∗)/V (θ∗).

93



Since θ∗ minimizes D (g(y)||f(y, θ)) with respect to θ,

∫
∇θ log f(y, θ)|θ=θ∗ g(y)dy = 0.

Therefore, denoting

d(y, θ) = e(y, θ) −H(θ)A−1(θ)∇T
θ log f(y, θ)

we obtain

h(θ∗) = E {e(y, θ∗)} = E {d(y, θ∗)}

=

∫
[d(y, θ∗) − h(θ∗)] [g(y) − f(y, θ∗)] dy.

By the Cauchy-Schwartz inequality

h2(θ∗) ≤
∫

[d(y, θ∗) − h(θ∗)]2 g(y)dy ×
∫

[g(y) − f(y, θ∗)]2

g(y)
dy

= V (θ∗)

(∫
f 2(y, θ∗)

g(y)
dy − 1

)

implying that

ǫ =
h2(θ∗)

V (θ∗)
≤ exp [D2 (f(y, θ∗)||g(y))] − 1

where

Dα(f1(y)||f2(y)) =
1

α− 1
log

∫
fα

1 (y)f 1−α
2 (y)dy

is the Renyi divergence between f1(y) and f2(y) with parameter α.

Therefore, when a bound on D2 (f(y, θ∗)||g(y)) is available, say Bǫ, it is possible

to set the threshold of the test according to a χ2
Q(n [exp(Bǫ) − 1]) distribution, i.e.,
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reject the null hypothesis if

Sn > F−1
χ2

Q
(n[exp(Bǫ)−1])

(1 − α). (3.39)

This choice of threshold leads to a test, the level of which decreases to zero, instead

of increasing to one. Since

F−1
χ2

Q
(n[exp(Bǫ)−1])

(1 − α) > F−1
χ2

Q

(1 − α)

for all α [58], this adjustment decreases the power of the test. However, as long as

the the power characteristic of the test at a local maximum δm (3.38) is larger than

exp(Bǫ)− 1, the test will detect such a local maximum with probability approaching

one as n tends to infinity.

Often it is difficult to compute a bound on D2 (f(y, θ∗)||g(y)), especially due to

the computation required for θ∗. When the true underlying distribution and the

assumed parametric model are both embedded in a larger parametric class and are

sufficiently close to one another, it is possible to approximate the Renyi divergence by

the Kullback-Leibler distance defined below. This leads to a simple approximation

of Bǫ.

Suppose that the parametric class {f(y; θ) : θ ∈ Θ} is embedded in a larger class

{f̃(y; θ, γ) : θ ∈ Θ, γ ∈ Γ ⊂ R
K′} such that f(y; θ) = f̃(y; θ, γ0) for all θ ∈ Θ,

and that the true underlying density is g(y) = f̃(y; θ0, γ1), with θ1 close to θ0. This

setting was recently treated in [126], where the parameter vector γ was referred to

as the background parameter.

In this case, the local equivalence and symmetry of f-divergence measures [3, p.

95



85] can be used to approximate the Renyi divergence

D2 (f(y, θ∗)||g(y)) = D2

(
f̃(y; θ∗, γ0)||f̃(y; θ0, γ1)

)

by

2D1

(
f̃(y; θ0, γ1)||f̃(y; θ∗, γ0)

)

up to terms of order O (||θ∗ − θ0||3 + ||γ0 − γ1||3), where

D1 (f1(y)||f2(y)) = lim
α→1

Dα (f1(y)||f2(y))

=

∫
log

(
f1(y)

f2(y)

)
f1(y)dy

is the Kullback-Leibler distance between f1(y) and f2(y).

Furthermore, θ∗ minimizes D1

(
f̃(y; θ0, γ1)||f̃(y; θ, γ0)

)
over θ ∈ Θ. Hence,

D1

(
f̃(y; θ0, γ1)||f̃(y; θ∗, γ0)

)
≤

D1

(
f̃(y; θ0, γ1)||f̃(y; θ0, γ0)

)
.

Therefore, D2 (f(y, θ∗)||g(y)) can be bounded by 2D1

(
f̃(y; θ0, γ1)||f̃(y; θ0, γ0)

)
up

to terms of order O (||θ∗ − θ0||3 + ||γ0 − γ1||3). The advantage of the bound is that

it does not require the difficult evaluation of θ∗.

3.4.2 Tests Insensitive to a Pitman Drift

Assume again that the parametric class {f(y; θ) : θ ∈ Θ} is embedded in a larger

class {f̃(y; θ, γ) : θ ∈ Θ, γ ∈ Γ ⊂ R
K′} such that f(y; θ) = f̃(y; θ, γ0) for all θ ∈ Θ.

Denote by β = [θT , γT ]T the concatenated parameter vector and assume that there

exist integrable functions a(y) and b(y) such that a(y)b(y) is integrable as well with
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respect to ν, and for almost all y, f̃(y; β) ≤ a(y) and | log f̃(y; β)|, |∇β log f̃(y; β)|2,

|∇2
β log f̃(y; β)|, |e(y, θ)|2, and |∇θe(y, θ)| are each less than b(y) for all β ∈ Θ × Γ,

where for matrices | · | denotes the maximum valued element. Furthermore, assume

that the support of f̃(y; β) in independent of β. Assume that the true underlying

distribution depends on n, hence denoted by gn(y), and is given by

gn(y) = f̃(y; θ0, γ0 + γ/
√
n) (3.40)

for some fixed γ ∈ Γ, and denote the limiting distribution by g(y). In the context

of model specification tests, this type of local alternative is called a Pitman drift.

Newey [88] investigated the power of M-tests to such local alternatives. Applying

Newey’s result to our setting we obtain that if e(y, θ) satisfies

∫
e(y, θ)f(y; θ)dy = 0, ∀θ ∈ Θ

then under H0,
√
nhn(θ̃n)

D→ N
(
Dγ, V (θ0)

)
(3.41)

where in the definition of V (θ) (3.12), the expectation is taken with respect to the

density f(y, θ0) and the term h(θ0) vanishes. The term D in (3.41) is

D =

∫
e(y, θ0) ∇T

γ log f̃(y; θ0, γ)
∣∣∣
γ=γ0

f(y; θ0)dy

−H(θ0)A−1(θ0)B̃(θ,γ)(β
0)

where the expectations in the definition of A(θ) and H(θ), (3.3) and (3.11), respec-

tively, are taken with respect to the density f(y, θ0) as well. β0 = [θ0T , γ0T ]T and

the matrix B̃(θ,γ)(β) is the upper right K ×K ′ block of the FIM associated with the
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density f̃(y; β), that is,

B̃(β) =

∫
∇β log f̃(y; β)∇T

β log f̃(y; β)f̃(y; β)dy, (3.42)

and it is assumed that B̃(β) is non-singular for all β ∈ Θ × Γ. Hence, Sn, defined

in (3.19), is asymptotically non-central chi-squared distributed with Q degrees of

freedom and non-centrality parameter

δ = γ′D′V −1(θ0)Dγ.

In [88] this result is used to assess and optimize the power of M-tests against local

alternatives. Here, our goal is reversed; we would like the tests to be insensitive to

small deviations from the assumed model. Specifically, note that

H(θ0) =

∫
∇θ e(y, θ)|θ=θ0 f(y; θ0)dy

= −
∫
e(y, θ) ∇T

θ log f̃(y; θ, γ0)
∣∣∣
θ=θ0

f(y; θ0)dy.

Therefore, considering the space of zero-mean L2 functions of y with inner product

〈f1(y), f2(y)〉 =

∫
f1(y)f2(y)f(y; θ)dy

our objective is to construct a global maximum validation function e(y, θ), with

elements orthogonal to the space spanned by the K +K ′ set of functions

∇β log f̃(y; β)
∣∣∣
γ=γ0

. (3.43)

By this construction, both terms of the matrix D are zeroed out, i.e., the test is
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insensitive to the Pitman drift regardless of the vector γ. Denoting the classes of

log-likelihood functions {log f(y; θ) : θ ∈ Θ} and {log f̃(y; θ, γ) : θ ∈ Θ, γ ∈ Γ} by F

and G, respectively, Fig. 3.1 gives a geometrical interpretation of the construction of

e⊥(y, θ).

Given any global maximum validation function e(y, θ) that satisfies

∫
e(y, θ)f(y; θ)dy = 0, ∀θ ∈ Θ,

its orthogonal component with respect to the vector (3.43), denoted by e⊥(y, θ), is

e⊥(y, θ) = e(y, θ) −
[
E(β)B̃−1(β)∇β log f̃(y; β)

]
γ=γ0

(3.44)

where E(β) is the K × (K +K ′) matrix of inner products between the elements of

e(y, θ) and the functions in (3.43), given by

E(β) =

∫
e(y, θ)∇T

β log f̃(y; β)f(y; θ)dy. (3.45)

This can be verified by computing the matrix

∫
e⊥(y, θ) ∇T

β log f̃(y; β)
∣∣∣
γ=γ0

f(y; θ)dy.

At any local maximum θ̃n,
∑n

t=1 ∇θ log f(yt; θ̃n) = 0 and therefore, computing h⊥n (θ̃n) =
∑n

t=1 e
⊥(yt, θ̃n) reduces to

h⊥n (θ̃n) =
n∑

t=1

e(yt, θ̃n) −

E (β) B̃2(β)
n∑

t=1

∇γ log f̃(yt; β)

∣∣∣∣∣
θ=eθn,γ=γ0
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where B̃2(β) is the (K+K ′)×K ′ matrix composed of the right K ′ columns of B̃−1(β)

defined in (3.42). Furthermore, under the null hypothesis H0, a consistent estimator

for the covariance matrix of
√
nh⊥n (θ̃n) is

1

n

n∑

t=1

e⊥
(
yt, θ̃n

)
e⊥
(
yt, θ̃n

)T

since the termH(θ) (3.11), which appears in (3.28), is zero by construction of e⊥(y, θ).

When closed form expressions for E(β) and B(β) are available, the covariance matrix

can also be consistently estimated under H0 by

Ṽn(θ̃n) =

∫
e(y, θ̃n)eT (y, θ̃n)f(y, θ̃n)dy −

E(θ̃n, γ
0)B−1(θ̃n, γ

0)ET (θ̃n, γ
0). (3.46)

In summary, tests for global maximum which are based on e⊥(y, θ) are locally

insensitive to model mismatch of the type defined in (3.40) for any γ ∈ Γ.

Another motivation for using e⊥ (y, θ) can be obtained from the Taylor expansion

of h(θ∗) around γ0. Assuming the derivatives can be taken inside the integrals, we

obtain that the zeroth order (constant) term is identically zero and the first order

(linear) term is zeroed by the construction of e⊥ (y, θ).

In practice, we expect these tests to be less sensitive to small deviations from the

model. An example in which this is the case is given in Sec. 3.5.1.

3.5 Applications

The asymptotic regime adopted throughout the paper, raises the question of

small sample performance. In this section, tests for global maximum will be derived

and evaluated through simulations for several parameter estimation problems. In the
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Figure 3.1: Geometrical interpretation of the construction of tests insensitive to
Pitman drift.

simulations the following aspects were studied. First, the accuracy of setting the test

threshold to F−1
χ2

Q

(1 − α) for a level α test was evaluated. Second, we evaluated how

fast the power of the test approaches 1, as the number of samples increases, and the

accuracy of the finite sample power approximation (3.37). Finally, the sensitivity of

the tests to a misspecified model is examined. The threshold adjustment procedure

and the construction of tests that are orthogonal to deviations from the model are
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demonstrated.

3.5.1 Direction Finding in Array Signal Processing

For a review of the problem of direction finding using antenna arrays see e.g. [41]

or [67]. The characterization of the MLE under possible model mismatch has been

recently addressed in [47] and [126].

Here we adopt the standard narrow band model of [111]. We consider the esti-

mation of the directions of two uncorrelated narrow band Gaussian sources using a

uniform linear array of P = 4 sensors with λ/2 spacing between elements (λ is the

wavelength of wavefronts propagating across the array). The received signal model

is given by

yt = D(θ)st + wt

where yt ∈ CP is the noisy data vector at the array elements,

D(θ) = [d(θ1) d(θ2)]

where [d(θ)]p = exp{jpπ cos(θ)}, p = 0, 1, 2, 3 is the steering vector, st contains

the two signal components, and wt is a temporally and spatially complex white

circular Gaussian noise. This signal model corresponds to the so called stochastic

signal model in which the received signal at the array is distributed as a temporally

white zero-mean complex circular Gaussian random vector with covariance matrix

C(θ) = D(θ)KsD
H(θ) + σ2I, where, due to an uncorrelated sources assumption,

Ks = diag(σ2
s1, σ

2
s2), σ

2
s1 and σ2

s2 are the two source variances, and σ2 is the noise

variance. Hence, the density of y is given by

f(y, θ) =
1

πP det (C(θ))
exp

[
−yHC−1(θ)y

]
. (3.47)
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The variances σ2, σ2
1, and σ2

2 are assumed known. The only unknowns are the

sources directions, θ = [θ1, θ2]
T . In the simulations the true unknown parameters

were taken to be θ = [π/2, π/2 + 0.4]T and the other known parameters were set to

σ2
s1 = σ2

s2 = 1, and σ2 = 2. In Fig 3.2, the log-likelihood surface calculated from 200

samples is shown and it is seen that it has two relative maxima.

Recall that the global maximum validation function of Biernacki’s test is given

by

e(y, θ) = log f(y; θ) −
∫

log f(y; θ)f(y; θ)dy

= − log
(
πP
)
− log (det (C(θ))) − yHC−1(θ)y

+ log
(
πP
)

+ log (det (C(θ)))

+

∫
yHC−1(θ)yf(y; θ)dy

= P − yHC−1(θ)y.

Hence

hn(θ̃n) =
1

n

n∑

t=1

e(yt, θ̃n)

= P − 1

n

n∑

t=1

yH
t C

−1(θ̃n)yt

= P − tr
(
C−1(θ̃n)Ĉ

)

where

Ĉ =
1

n

n∑

t=1

yty
H
t .

Under the null hypothesis and assuming the model is correctly specified, a closed

103



0
0.5

1
1.5

2
2.5

3

0
0.5

1
1.5

2
2.5

3

−15.5

−15

−14.5

−14

−13.5

θ
1

θ
2

L
(Y

n
;θ

)

GLobal maximum 

Local maximum 

Figure 3.2: The log-likelihood function of the direction finding problem.
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form expression for the variance can be computed through (3.30), where

[
H(θ)

]
1,i

=

∫
∂e(y, θ)/∂θif(y, θ)dy

=

∫
yHC−1(θ)

∂C(θ)

∂θi

C−1(θ)yf(y, θ)dy

= tr

(
C−1(θ)

∂C(θ)

∂θi

)
, i = 1, 2

∫
e2(y, θ)f(y, θ)dy =

∫ [
P − yHC−1(θ)y

]2
f(y, θ)dy

= P

and B̃(θ) is the FIM for this problem [61, p. 565], given by

[
B(θ)

]
i,j

= tr

[
C−1(θ)

∂C(θ)

∂θi

C−1(θ)
∂C(θ)

∂θj

]
. (3.48)

Hence

V (θ̃n) = P −H(θ̃n)B(θ̃n)H
T
(θ̃n)

and the test statistic is given by

Sn = n
[
P − tr

(
C−1(θ̃n)Ĉ

)]2
/V (θ̃n). (3.49)

The threshold is set according to a χ2 distribution with one degree of freedom.

We compare Biernacki’s test to a test which is based on the real part of the

first off-diagonal element of the covariance matrix. To compare the first off-diagonal

element of the covariance matrix at the candidate relative maximum to its uncon-

strained estimate from the data, the global maximum validation function is taken to
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be

e(y, θ) = yHMy − tr (MC(θ))

where M is the symmetric Toeplitz matrix whose first row is [0, 1, 0, 0], and hence

hn(θ̃n) =
1

n

n∑

t=1

e(yt, θ̃n)

= tr
(
MĈ

)
− tr

(
MC(θ̃n)

)
.

For this choice of e(y, θ) we have

[
H(θ)

]
1,i

= −tr

(
M
∂C(θ)

∂θi

)
, i = 1, 2 (3.50)

and by [61, p. 564]

∫
e2(y, θ)f(y, θ)dy =

∫ [
yHMy − tr (MC(θ))

]2
f(y, θ)dy

= tr (MC(θ)MC(θ)) .

Hence

V (θ̃n) = tr
(
MC(θ̃n)MC(θ̃n)

)
−H(θ̃n)B(θ̃n)H

T
(θ̃n)

the test statistic is given by

Sn = n
[
tr
(
MĈ

)
− tr

(
MC(θ̃n)

)]2
/V (θ̃n) (3.51)

and, again, the threshold is set according to a χ2 distribution with one degree of

freedom.

The power performance of Biernacki’s test and a Covariance based test were
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evaluated for increasing n for levels that were set to 0.01 and 0.001. 1000 Monte

Carlo iterations were used. At each iteration the global maximum and the local

maximum were found and the tests were applied to both maxima to evaluate the

performance. When the number of samples is very small (e.g. n = 20), the likelihood

function my be distorted and the two relative maxima may collapse into one. Such

cases were eliminated from the analysis. The results are summarized in Fig. 3.3.

While not presented here, we observed that the empirical levels of both tests were in

good agreement with the specified values.

Model Mismatch

In this section the performance of the tests (3.49) and (3.51) under model mis-

match is evaluated. The assumed model used for the estimation is the same as in the

previous section (3.47). The samples were generated according to the model (3.47)

but with covariance matrix

C(θ, γ) = D(θ)KsD
H(θ) + σ2R(γ), (3.52)

where R(γ) is a symmetric Toeplitz matrix whose first row is [1, γ, γ2, γ3], which

corresponds to a first order AR spatial noise covariance [85], and in the simulation

γ = 0.1.

For both Biernacki’s test and the covariance based test the effect of model mis-

match on the level was evaluated for three cases: (a) The increase in level due to

model mismatch when the tests are performed without any adjustment, (b) The

threshold correction described in Sec. 3.4.1, and (c) The performance of the orthog-

onal counterparts given in Sec. 3.4.2.

To perform the threshold correction described in Sec. 3.4.1, the Kullback-Leibler

distance needs to be estimated. In the simulation, it was assumed that it is known
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Figure 3.3: Direction finding: power when the model is correctly specified.
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that the parameter γ, which controls the deviation from the model, ranges between

zero (correct model) and 0.1. At every Monte Carlo iteration, given a relative max-

imum θ̃n,

c = max
γ∈[0,1]

D1

(
f̃(y; θ̃n, γ)||f(y; θ̃n)

)

was computed, using the known formula for the Kullback-Leibler distance between

two Gaussian densities (e.g. [74]), where f(y; θ) is given in (3.47) and f̃(y; θ, γ) is the

same density but with covariance matrix C(θ, γ) (3.52). Then, the null hypothesis

was rejected if

Sn > F−1
χ2

Q
(n[exp(2c)−1])

(1 − α).

The simulation results show that, as anticipated, the level decreases rather than

increases with the number of samples (see Fig. 3.4, where CT is a shorthand notation

for ’corrected threshold’).

To construct the orthogonal counterparts of the two tests, e⊥(y, θ) is found

through (3.44). For Biernacki’s test the elements of E(β) (3.45), which is a 1 × 3

vector is this case, are given by

[E(β)]i = −tr

(
C−1(β)

∂C−1(β)

∂βi

)
, i = 1, 2, 3

where, as defined earlier, β = [θT , γ]T . For the covariance based test the elements of

E(β) are given by

[E(β)]i = tr

(
M
∂C−1(β)

∂βi

)
, i = 1, 2, 3.

The FIM B̃(β) is also available in closed form as given in (3.48). Using the closed

forms for E(β) and B̃(β), the variance for the two tests was computed through (3.46).

In Fig. 3.4 it is seen that while the original tests suffer from increased level as the
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number of samples increase, the orthogonal counterparts are unaffected by this type

of model mismatch.

3.5.2 Estimation of Gaussian Mixture Parameters

The problem of estimation of Gaussian mixture parameters arises in both non-

parametric density estimation (see e.g. [90] and references therein) and a variety of

clustering problems (see e.g. [43] and references therein). The MLE for this problem

is usually found by using the EM algorithm [81]. In [43], the authors describe a

method that finds the global maximum with good performance. However, even this

state of the art method is not certain to find the global maximum, and therefore,

tests for global maximum are useful.

Here we consider the univariate case, in which the independent scalar measure-

ments are generated by the following two component univariate Gaussian mixture

density

f(y; θ) =
2∑

l=1

pl√
2πσ2

l

exp

{
−(y − ηl)

2

2σ2
l

}
(3.53)

where the parameter vector consists of the two means θ = [η1 η2]
T . The number

of components, the variances, and the mixing probabilities are assumed known. In

the simulation, the true parameter is θ = [0, 3]T , the variances are σ2
1 = 1 and

σ2
1 = 0.5, the mixing probabilities are p1 = 1 − p2 = 0.35 and it is known that

Θ = [−1, 4] × [−1, 4]. The likelihood surface over Θ of a realization of 200 samples

generated according to this model is presented in Fig. 3.5 and two relative maxima

appear.

The performance of the global maximum tests was evaluated as the number of

samples n increases. 1000 Monte Carlo iterations were generated. At each iteration,

Biernacki’s test and a mean based test were performed on both the global and the
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Figure 3.4: Direction finding: level under model mismatch.
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local maxima. As in the previous section, Biernacki’s global maximum validation

function is given by

e(y, θ) = log f(y; θ) −
∫

log f(y; θ)f(y; θ)dy (3.54)
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and therefore,

hn(θ̃n) =
1

n

n∑

t=1

log f(yt; θ̃n) −
∫

log f(y; θ̃n)f(y; θ̃n)dy.

A closed form expression to the integral in (3.54) is not available. Hence, in the

simulations, numerical integration is used. The variance Vn(θ̃n) required for the

construction of the test statistic Sn (3.19) was calculated through (3.13). Note

that Hn(θ), required for calculating Vn(θ̃n), simplifies under the null hypothesis,

i.e. θ̃n = θ̂n, to

Hn(θ̃n) =
1

n

n∑

t=1

∇T
θ e(yt, θ)

∣∣∣∣∣
θ=eθn

=
1

n

n∑

t=1

∇T
θ log f(y; θ)

−
∫

∇T
θ log f(y; θ)f(y; θ)dy

−
∫

log f(y; θ)∇T
θ f(y; θ)dy

∣∣∣∣
θ=eθn

= −
∫

log f(y; θ)∇T
θ f(y; θ)dy

∣∣∣∣
θ=eθn

which was calculated in the simulation by numerical integration.

The global maximum validation function of the mean based test is given by

e(y, θ) = y − [pη1 + (1 − p)η2]

which leads to

hn(θ̃n) =
1

n

n∑

t=1

yt − (pη̃1 + (1 − p)η̃2). (3.55)

Similar to the previous test, the variance required for the test statistic was calculated
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through (3.13), where, for this test, the vector Hn(θ̃n) is given by

Hn(θ̃n) = − [p, (1 − p)] .

The level of the tests was set to 0.01 and the empirical power was estimated from

10, 000 Monte Carlo iterations and compared to the analytic approximation (3.37).

The results are summarized in Fig. 3.6 and it can be seen that the analytical power

approximation predicts the empirical power well. It can be seen that the power

of the mean based test is better than that of Biernacki’s test. For other choices of

parameters different results may be obtained. While not reported here, the empirical

level of both tests was in good agreement with its specified value.

3.5.3 Estimation of Superimposed Exponentials in Noise

For a review of the problem of estimating the parameters of superimposed expo-

nentials in noise see, e.g., [111]. Consider the following model

yt =
K∑

k=1

αk exp{jΩkt} + wt, t = 1, . . . , n

where wt is a white circular Gaussian noise with unknown variance σ2. The un-

known parameters are the frequencies of the exponentials [Ω1, . . . ,ΩK ], their complex

valued amplitudes [α1, . . . , αK ] and the noise variance. The number K of compo-

nents is assumed known and was set to 3, hence there are 10 unknown parameters.

The unknown parameters were set to [Ω1,Ω2,Ω3] = [0.4, 0.5, 0.6], [α1, α2, α3] =

[exp(j2), 0.8 exp(j3), 1.2 exp(j5)], and σ2 = 1.

Under this generating model, the data are independent but not identically dis-

tributed. They are distributed as non-zero time-varying mean circular Gaussian pro-
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cess. Hence, the treatment in Sec. 3.2.1 does not cover this problem. Furthermore,

since the MLE for this problem is super efficient [98], the more general framework of

White [124] for constructing tests in dynamical models does not cover this problem

either. However, a detailed statistical asymptotic analysis for this problem is avail-

able in the literature and can be used to construct a test for global maximum. In

particular, in [98] it was shown that the MLE is asymptotically normal distributed

under an appropriate normalization. Based on this analysis, we propose a test which

is based on the autocorrelation function. In particular, our test is based on the fact

that at the true parameter,

E

{[
yt −

K∑

k=1

αk exp(jΩkt)

]
×

[
yt−1 −

K∑

k=1

αk exp(jΩk(t− 1))

]∗}
=

E
{
ete

∗
t−1

}
= 0,

and hence, given the local maximum θ̃n, we construct a test from the real part of the

statistic

hn(θ̃n)=
1

n− 1

n∑

t=2

[
yt −

K∑

k=1

α̃k exp(jΩ̃kt)

]
×

[
yt−1 −

K∑

k=1

α̃k exp(jΩ̃k(t− 1))

]∗
.

It is shown in the Appendix that under the null hypothesis, the real part of this

statistic is asymptotically distributed as a zero-mean Gaussian random variable with

variance σ2/2. Hence, since under the null hypothesis σ̃2 is a consistent estimator
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for σ2, the statistic

n

(
ℜ{hn(θ̃n)}

)2

σ̃2/2

is asymptotically χ2 distributed with one degree of freedom, and can be used to

discriminate between local and global maxima. In Fig. 3.7 the performance of this

test is presented when the level is set to 0.01. The empirical level and power of the

test were estimated from 1000 Monte Carlo iterations. It is seen that the asymptotic

approximation to the level α is accurate for n greater then 300 and the power of the

test approaches 1 when n is greater then 100.

3.6 Concluding Remarks

This paper has investigated a method for detecting a case in which a local search

for the maximum likelihood has stagnated at a local maximum. This is a useful

tool for exploring solutions of the global optimization problem associated with the

ML method. Because existing tests are sensitive to model mismatch, the general

treatment given here is necessary for practical implementation of this tool. The

framework given for the construction of tests and the power analysis enable us to

pose fundamental questions of optimality: Given a statistical model, what is the

best choice of e(y, θ) in terms of achieving maximum power for a given level with

minimum sensitivity to model mismatch? This remains an open question.

It is possible to generalize the above concept to non-i.i.d. measurements. A

unified treatment of the MLE under a possible model mismatch and the construction

of model mismatch tests for dynamic models is given in [124] and an example is

which the measurements are i.n.i.d. was treated in Sec. 3.5.3. The concept of using a
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Figure 3.7: Exponentials in noise: performance when the model is correctly specified.

statistical test for discriminating between global and local maxima can be generalized

to other M-estimators [55], or any other optimization problem in which a statistical

characterization of the global maximum is available.
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3.7 Asymptotic Distribution of M-tests

The proof follows White’s methodology [124]. Given the assumptions that the ele-

ments of e(y, θ) are twice differentiable with respect to θ for every y, and that the ele-

ments of the vector ∇θe(y, θ) and the matrices e(y, θ)∇T
θ log f(y, θ) and e(y, θ)eT (y, θ)

are dominated by functions integrable with respect to G for all θ ∈ Θ, the mean value

theorem for random functions, given as Lemma 3 in [57], guarantees the existence of

measurable Θ-valued functions θn such that

√
nhn(θ̂n) =

√
nhn(θ∗) +Hn(θn)

√
n
(
θ̂n − θ∗

)
(3.7.56)

where each θn lies on the segment joining θ̂n and θ∗. Each row of Hn depends on

a different θn, but since it makes no difference asymptotically, the above shorthand

notation is used. From (3.5)
√
n
(
θ̂n − θ∗

)
converges in distribution. Furthermore,

θ̂n
a.s.→ θ∗ and therefore θn

a.s.→ θ∗ as well. From Theorem 2 in [57], applied on the

elements ofHn(θ), we haveHn(θ)
a.s.→ H(θ) uniformly in θ, and therefore using Lemma

3.1 of White [121], Hn(θn)−H(θ∗)
a.s.→ 0. Using these intermediate results we obtain

from 2c.4(xa) of Rao [97] that

[
Hn(θn) −H(θ∗)

]√
n
(
θ̂n − θ∗

)
P→ 0. (3.7.57)

Equation (A.2) of [122] asserts that

A−1(θ∗)
1√
n

n∑

t=1

∇ log f(yt, θ
∗) +

√
n
(
θ̂n − θ∗

)
P→ 0.
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Therefore, by the finiteness of H(θ∗), we have

H(θ∗) ×[
A−1(θ∗)

1√
n

n∑

t=1

∇ log f(yt, θ
∗) +

√
n
(
θ̂n − θ∗

)]

P→ 0.

Adding and subtracting Hn(θn)
√
n
(
θ̂n − θ∗

)
and rearranging terms, we obtain

[
H(θ∗) −Hn(θn)

]√
n
(
θ̂n − θ∗

)
+

Hn(θn)
√
n
(
θ̂n − θ∗

)
+

H(θ∗)A−1(θ∗)
1√
n

n∑

t=1

∇ log f(yt, θ
∗)

P→ 0.

But from (3.7.57) the first term converges to zero in probability, and hence,

Hn(θn)
√
n
(
θ̂n − θ∗

)
+

H(θ∗)A−1(θ∗)
1√
n

n∑

t=1

∇ log f(yt, θ
∗)

P→ 0.

Substituting Hn(θn)
√
n
(
θ̂n − θ∗

)
=

√
nhn(θ̂n)−√

nhn(θ∗) from (3.7.56), adding and

subtracting
√
nh(θ∗), and rearranging terms, we obtain

√
n
[
hn(θ̂n) − h(θ∗)

]
− 1√

n

n∑

t=1

[e(yt, θ
∗) − h(θ∗)−

H(θ∗)A−1(θ∗)∇ log f(yt, θ
∗)
] P→ 0.

From the Lindeberg-Lévy central limit theorem the second term converges in proba-

bility to a zero mean multivariate normal density, with covariance matrix V (θ∗) and

therefore, from 2c.4(xd) of Rao [97], so does the first term, and the first part of the
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theorem is proved. The consistency of Vn(θ̂n) for V (θ∗) follows from Lemma 3.1 of

White [121] given the assumptions, and the consistency guarantees that V −1
n (θ̂n) ex-

ists for sufficiently large n, since the determinant of a matrix is a continuous function

of its elements. The last part of the theorem follows from Lemma 3.3 of White [120]

and the proof is completed.

3.8 Asymptotic Distribution of the Test Statistic

for Exponentials in Noise

The derivation is given under the null hypothesis, hence θ̃n = θ̂n. Using the mean

value theorem we obtain

hn(θ̂n) = hn(θ0) + ∇Thn(θ)(θ̂n − θ0) a.s..

Using the martingale central limit theorem [22] with the filtration

{Ft = σ(e1, . . . , et)},

we obtain that hn(θ0) converges in distribution to a zero-mean Gaussian random

variable with variance σ2/2, since E {hn(θ0)|Fn−1} = 0 and E {h2
n(θ0)} = σ2/2.

Next, we show that the second term is oP (1). First split the second term into two

components

∇Thn(θ)(θ̂n − θ0)=n−3/2∇T
Ωhn(θ)n3/2(Ω̂n − Ω0) +

n−1/2∇T
αhn(θ)n1/2(α̂n − α

0).
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It is possible to show that both n−3/2∇T
Ωhn(θ) and n−1/2∇T

αhn(θ) converge to zero

in probability. Therefore, since it was shown in [98] that both n3/2(Ω̂n − Ω0) and

n1/2(α̂n − α
0) converge in distribution, we have that this term converges to zero in

probability. This establishes the asymptotic normality of hn(θ̂n). In [98] it was also

shown that σ̂2 converges to the true value of σ2 a.s.. Therefore, by Lemma 3.3 of

White [120], we obtain that the test statistic is asymptotically χ2 distributed.
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CHAPTER 4

Classification Reduction of Policy Search

4.1 Introduction

There has been increased interest in applying tools from supervised learning to

problems in reinforcement learning. The goal is to leverage techniques and theo-

retical results from supervised learning for solving the more complex problem of

reinforcement learning [9]. In [70] and [42], classification is incorporated into ap-

proximate policy iterations. In [7], regression and classification are used to perform

dynamic programming. In [84] nonlinear regression is coupled with Q-learning [112]

to construct an approximate dynamic programming algorithm, and regression-type

generalization errors are derived for the resulting estimated policy. Bounds on the

performance of a policy that is built from a sequence of classifiers are derived in [72]

and [73].

A common theme of these methods is viewing the multi-stage decision process as

a sequence of single-stage decision processes and applying techniques from supervised

learning to handle the computational complexity of the solution. This approach is

reminiscent of Bellman’s celebrated dynamic programming method [11] for finding

the optimal policy for controlling a Markov decision process. The challenge in ap-
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plying this approach to the RL problem is in controlling three sources of error: (1)

without knowing the optimal policy, one cannot sample from the distribution that it

induces on the stochastic system’s state space, as a result is it difficult to determine

how to allocate the approximation resources over the state space, (2) finding the

optimal decision rule at a certain stage hinges on knowing the optimal decision rule

for future stages, this is never available when approximate solutions are involved,

and (3) without a model, ensemble expectations must be replaced by empirical av-

erages, which leads to estimation errors. For example, in [7] the first source of error

is handled by assuming that it is possible to sample from a distribution that is at

least close to the one induced by taking optimal actions. In [84], the fact that the

distribution induced by random action selection supports the one induced by the

optimal policy, is used to bound the effect of model mismatch. The second source of

error can be controlled by investigating the effect of using an approximate policy for

future stages [7] [84]. Another approach is to bound from above the return from the

optimal policy by the return from hindsight selection rules that maximizes the sum

of reward on every trajectory and not just on the average [72], [125]. Finite sample

upper bounds were used to bound the third source of errors in, e.g., [62], and [84].

Similar to [72], we adopt the generative model assumption of [62] and tackle

the problem of estimating competitive policies for controlling a T -step stochastic

decision process, within an infinite class of policies, from a set of trajectory trees

of the decision process. Under the generative model assumption, it is possible to

generate realizations of the system’s evolution for arbitrary histories. In [72] the T-

step reinforcement learning problem was converted to a set of weighted classification

problems by trying to fit a set of classifiers, one per each decision epoch, to the

collection of the maximal reward paths on the trajectory trees. A bound relates

the performance of these classifiers, for the task of fitting the maximal paths, to
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the performance of the policy constructed by combining the single stage classifiers.

When the process is stochastic, the actions that maximize the instantaneous sum of

rewards are often not the actions that maximize the expected sum of reward. This

mismatch leads to an inherent error that does not approach zero as the number of

trajectory trees grows.

In this paper we take a different approach. Through an approximate dynamic

programming algorithm we estimate a competitive policy by solving a sequence of

single-stage reinforcement learning subproblems that are further reduced to super-

vised learning problems. Our single-stage reduction is exact and is different from

the one proposed in [72]; it gives more weight to regions of the state space in which

the difference between the possible actions in terms of future reward is large, rather

than giving more weight to regions in which the maximal future reward is large.

Since minimizing the empirical 0 − 1 loss associated with the supervised learning

problems is often intractable, a common strategy of many off-the-self methods is to

instead minimize a surrogate loss function. Using a recent result from the classifica-

tion literature [8], we analyze the effect of this type of surrogate approximation on

our estimated policy.

Finally, we derive finite sample generalization error bounds of the type given

in [84] for the policy estimated by the proposed algorithm. The approach we take

is similar to the one in [84]. Namely, we first write the generalization error in terms

of measures whose empirical counterparts are minimized by the algorithm, and then

invoke uniform convergence results to bound these terms. However, the rates we

establish are faster than the ones in [84], except for the case in which the approxima-

tion class is a linear space, for which we establish the same rates. Our finite sample

bounds are also closely related to the convergence rate analysis in [62]. While in [62]

it is assumed that all decision rules are optimized simultaneously, which poses an
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intractable optimization problem, it is shown here that the same convergence rates

apply for the case in which the decision rules are estimated sequentially and the

estimated decision rules for later stages define the optimization problem for earlier

stages.

4.2 Preliminaries

We consider a discrete finite horizon stochastic (but not necessarily Markovian)

decision process and adopt the notation in [84]. In a stochastic decision process an

agent collects observations of a system’s state and takes actions which effect the sys-

tem’s future states. Each observation is, in general, a composition of state variables

and noisy measurements of partially observable state variables. The actions belong

to a finite set of actions called the action space A = {0, 1, . . . , L}. We assume for sim-

plicity and without loss of generality, that A is the same for all decision epochs. A tra-

jectory though the decision processes is the sequenceO0, A0, O1, A1, . . . , OT , AT , OT+1

of random variables, where Ot ∈ Ot and At ∈ A are the observation and action at

time t, t = 0, 1, . . . , T , and OT+1 ∈ OT+1 is the final observation after which the

agent does not take an action. Uppercase letters denote random variables and low-

ercase letters denote their realizations. Denote (O0, O1, . . . , Ot) and (A0, A1, . . . , At)

by Ot and At, respectively. The decision process begins as the agent obtains its

first observation O0. At every time t, t = 0, 1, . . . , T , the agent takes an action At,

observes Ot+1 and receives a reward rt(Ot,At, Ot+1) and we assume that the reward

takes values in [0, 1]. The goal of the agent is to select its action so that the expected

sum of rewards is maximized. A non-stationary policy is a sequence of action selec-

tion rules for each of the decision epochs and is denoted by π = (π0, π1, . . . , πT ). A

deterministic selection rule πt maps possible histories (ot, at−1) to the action space.
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When a deterministic policy is used to choose actions, the joint density function of

the sequence of random variables O0, A0, O1, A1, . . . , OT , AT , OT+1 is given by

f0(o0)I(a0 = π0(o0))
T∏

t=1

ft(ot|ot−1, at−1)I(at = πt(ot, at−1))fT (oT+1|oT , aT ), (4.2.1)

where I is the indicator function, which equals one when its argument is true and

zero otherwise, f0(o0) is the density of the initial observation, and ft(ot|ot−1, at−1)

is the density of Ot given the past observations and actions. A random selection

rule πpt
specifies a conditional distribution over the action space conditioned on past

observations and actions, pt(·|ot, at−1), according which the actions are selected at

random. When a random policy is used to choose actions, the joint density function

of the sequence O0, A0, O1, A1, . . . , OT , AT , OT+1 is instead given by

f0(o0)p0(a0|o0)
T∏

t=1

ft(ot|ot−1, at−1)pt(at|ot, at−1)fT (oT+1|oT , aT ), (4.2.2)

where pt is the conditional action distribution associated with the random decision

rule πpt
. In general a policy can be a mix of random and deterministic decision rules.

We denote an expectation of a function of OT+1,AT under policy π by

Eπ {f(OT+1,AT )} .

Note that the subscript π specifies the density with which we integrate in the expec-

tation. For example, the expectation of f(OT+1,AT ) under a policy which dictates

random action selection for times t = 0, 1, . . . , j according to the conditional distri-

butions p0, p1, . . . , pj, and deterministic action selection for time j + 1, j + 2, . . . , T
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according to the mappings πj+1, πj+2, . . . , πT is denoted by

Eπp0
,πp1

,...,πpj
,πj+1,πj+2,...,πT

{f(OT+1,AT )} .

It is seen from (4.2.1) and (4.2.2) that when computing the expectation of a function

f(Oj+1,Aj), which does not depend on actions and observations beyond time t =

j + 1, the decision rules for actions Aj+1, . . . , AT can be specified arbitrarily, and

hence will sometimes be denoted by

E(π0,π1,...,πj ,·) {f(Oj+1,Aj)} .

Alternatively, when computing expectations of functions conditioned on Ot = ot,At =

at, one can specify arbitrary action selection rules up to time t, and hence the ex-

pectation of a function f(OT+1,AT ) conditioned on Ot = ot,At = at will sometimes

be denoted by

E(·,πt+1,πt+2,...,πT ) {f(OT+1,AT )|Ot = ot,At = at} .

The value function of a policy π for observation o0 is the expected sum of rewards

conditioned on the value of the initial observation, when actions are taken according

to the policy and it is denoted by

Vπ(o0) = Eπ

{
T∑

t=0

r(Ot,At, Ot+1)|O0 = o0

}
. (4.2.3)

The t-value function of a policy π is the expected sum of rewards under that policy
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from time t on, conditioned on the observations Ot and actions At−1:

Vπ,t(ot, at−1) = Eπ

{
T∑

j=t

r(Oj,Aj, Oj+1)|Ot = ot,At−1 = at−1

}
. (4.2.4)

Note that Vπ,0(o0) = Vπ(o0). It is seen from (4.2.1) and (4.2.2) that due to the

conditioning on Ot = ot,At−1 = at−1, only the last T − t + 1 decision rules of π

define the underlying distribution that enters into the expectation in (4.2.4). Hence,

Vπ,t(ot, at−1) will sometimes be denoted by V(·,πt,πt+1,...,πT ),t(ot, at−1)

The optimal policy π∗ = (π∗
0, π

∗
1, . . . , π

∗
T ) is the policy that maximizes the value

function

Vπ∗(oo) = max
π

Vπ(o0) (4.2.5)

simultaneously for all o0 ∈ O0. It is well known that the optimal policy satisfies

Vπ∗,t(ot, at−1) = max
π

Vπ,t(ot, at−1),

for every t and can be found through dynamic programming [11], [93]: starting from

Vπ∗,T+1 = 0, solve for t = T, T − 1, . . . , 0

Vπ∗,t(ot, at−1) = max
at∈A

E {r(Ot,At, Ot+1) + Vπ∗,t+1(Ot+1,At)|Ot = ot,At = at} ,

π∗
t (ot, at−1) ∈ arg max

at∈A
E {r(Ot,At, Ot+1) + Vπ∗,t+1(Ot+1,At)|Ot = ot,At = at} ,

where, for time t, the expectation is computed with respect to the distribution of

Ot+1 conditioned on (Ot = ot,At = at), and hence, no policy needs to be specified.

Since π∗ maximizes Vπ(o0) for every o0, it also maximizes the average value func-

tion

V (π) = E {Vπ(O0)} (4.2.6)
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where the expectation is taken with respect to the density f0(o0) (4.2.1). It is the

unique maximizer if the distribution of f0(o0) is positive for all o0. In this case,

when optimizing over all possible policies, the maximization of (4.2.5) and (4.2.6)

are equivalent. When optimizing (4.2.6) over a restricted class of policies, which

does not contain the optimal policy, the distribution over the initial state specifies the

importance of different regions of the observation space in terms of the approximation

error. For example, assigning high probability to a certain region of the observation

space will favor policies that well approximate the optimal policy over that region.

Alternatively, maximizing (4.2.6) when the distribution of O0 is a point mass at o0

is equivalent to maximizing (4.2.5) for that specific o0.

In the following sections, an algorithm is proposed, for fining a competitive policy

from within a restricted class of policies that may or may not contain the optimal

policy, from a limited amount of data. The algorithm uses a random policy to gener-

ate the distribution of the observations and, starting from the last stage, sequentially

estimates the best decision rules for each of the stages given the decision rules that

have already been obtained for the following stages. Here, we describe the procedure

in terms of ensemble expectations. This can be seen as characterizing the behavior

in the limit of an infinite data set. Consider a restricted class of policies of the form

Π = {π = (π0, π1, . . . , πT )|π0 ∈ Π0, π1 ∈ Π1, . . . , πT ∈ ΠT}, that is, the policy class

is a composition of T + 1 classes of single stage decision rules. For every t, the class

Πt is a collection of decision rules that specify the action to take given any possible

history (ot, at−1). Define the policy (π̂0, π̂1, . . . , π̂T ) ∈ Π recursively as follows,

π̂T ∈ arg max
πT∈ΠT

Eπq0
,πq1

,...,πqT−1
,πT

{r(OT ,AT , OT+1)} , (4.2.7)
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where qt(a|ot, at−1) = 1/(L+ 1)∀a ∈ A, and

π̂t ∈ arg max
πt∈Πt

Eπq0
,πq1

,...,πqt−1
,πt,bπt+1,...,bπT

{
T∑

j=t

r(Oj,Aj, Oj+1)

}
, (4.2.8)

for t = T − 1, T − 2, . . . , 0. Note that

Eπq0
,πq1

,...,πqt−1
,πt,bπt+1,...,bπT

{
T∑

j=t

r(Oj,Aj, Oj+1)

}
=

Eπq0
,πq1

,...,πqt−1
,πt,bπt+1,...,bπT

{
r(Ot,At, Ot+1) +

E(·,bπt+1,...,bπT )

{
T∑

j=t+1

r(Oj,Aj, Oj+1)|Ot+1,At

}}
=

Eπq0
,πq1

,...,πqt−1
,πt,bπt+1,...,bπT

{
r(Ot,At, Ot+1) + V(·,bπt+1,...,bπT )(Ot+1,At)

}

Hence, (4.2.8) is equivalent to

π̂t ∈ arg max
πt∈Πt

Eπq0
,πq1

,...,πqt−1
,πt,bπt+1,...,bπT

{
r(Ot,At, Ot+1) + V(·,bπt+1,...,bπT ),t(Ot+1,At)

}
.

The random action selection rules qt, t = 0, . . . , T assign a positive density to any

possible observations and actions history. Hence, if the policy class Π contains π∗,

then π̂ = (π̂0, π̂1, . . . , π̂T ) = π∗.

4.3 The Data Generating Process

Following the generative model assumption of [62], we assume that the initial

distribution of O0 and the conditional distribution of Ot+1 given ot, at are unknown

but it is possible to generate realization of O0 and realizations of Ot+1 conditioned on

arbitrary histories ot, at. Furthermore, it is shown in [62] that a finite horizon stochas-
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tic decision process with a generative model can be reduced to an equivalent process

with a binary action space. Hence we assume hereafter that A = {−1, 1}. Given the

generative model, n trajectory trees are constructed in the following manner. The

root of each tree is a realization of O0. Given the realization of O0, realizations of

the next observation O1 given the two possible actions, denoted by Oa
1 , a ∈ A, are

generated. Note that in order to avoid notational explosion, this notation omits the

dependence on the value of the initial observation O0, but the likelihood of observing

oa
1 at the leaf following a root whose value is o0 is

f1(o
a
1|o0, a), a = ±1.

The two realizations of O1 are the roots of two subtrees. These iterations con-

tinue to generate a depth T + 1 tree. Denote by O
at−1

t , where at = (a0, a1, . . . , at),

the random variable generated at the node that follows the sequence of actions

a0, a1, . . . , at−1. This random variable is a realization of Ot conditioned on the se-

quence of actions and sequence of observations that appear on the path of the tree

that leads to it. Hence the likelihood of O
at−1

t taking value o
at−1

t is

ft(o
at−1

t |oat−1

t−1 , at−1), at−1 ∈ {−1, 1}t,

where o
at−1

t−1 is a shorthand notation for (o0, o
a0

1 , o
a0,a1

2 , . . . , o
at−1

t ), i.e., the realizations

of the observations up to time t − 1 on the path that leads to O
at−1

t . In Fig. 4.1 a

binary trajectory tree of depth T +1 = 3 is given. Let G be the collection of random

variables that appear on the trajectory tree and denote by E the expectation with

respect to these random variables.

Since we consider the problem of estimating good policies from n trajectory trees,

it will be useful to express the average value function of a policy in terms of the
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Figure 4.1: A binary trajectory tree of depth T + 1 = 3.

random variables that appear on the trajectory tree. For a deterministic policy π we

have

Eπ

{
T∑

t=0

r (Ot,At, Ot+1)

}
=

E





∑

aT∈{−1,1}T+1

T∏

t=0

I
(
πt(O

at−1

t , at−1) = at

) T∑

t=0

r(O
at−1

t , at, O
at

t+1)



 .

To write the average value function of the policy (πq0
, . . . , πqj−1

, πj, . . . , πT ) we define

the binary action variables B0, B1, . . . , Bj−1 independent identically distributed with

Bi ∈ {−1, 1} and Pr{B = 1} = 1/2, which are independent of the other random

variables in the problem. These binary random variables represent the random action
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selection of the random policy πq. Then

Eπq0
,...,πqj−1

,πj ,...,πT

{
T∑

t=0

r(Ot,At, Ot+1

}
=

E





∑

aT∈{−1,1}T+1

j−1∏

t=0

I (Bt = at)
T∏

t=j

I (πt(O
at−1

t , at−1) = at)
T∑

t=0

r(O
at−1

t , at, O
at

t+1)



 .

4.4 Problem Formulation

Consider a class of deterministic policies Π, i.e., each element of Π is a sequence

of T + 1 deterministic decision rules. It is possible to estimate the average value

function V (π) (4.2.6) of any policy in the class from the set of trajectory trees by

simply averaging the sum of rewards on each tree along the path that agrees with

the policy [62]. Denote by V̂ i(π) the observed value on the i’th tree along the path

that corresponds to the policy π. Then, the average value function of the policy π is

estimated by its empirical average value function

V̂n(π) = n−1

n∑

i=1

V̂ i(π) =

En





∑

aT∈{−1,1}T+1

T∏

t=0

I
(
πt(O

at−1

t , at−1) = at

) T∑

t=0

r(O
at−1

t , at, O
at

t+1)



 . (4.4.9)

In [62], the authors show that for policy classes with finite VC-dimension [5] (to be

discussed below), with high probability over the data set, V̂n(π) converges uniformly

over Π to V (π) (4.2.6) with rates that depend on the VC-dimension of Π. This

result motivates the use of policies π with high V̂n(π), since with high probability

these policies have high values of V (π). However, maximizing V̂n(π) over an infinite

class of policies is computationally prohibited [6], [62] [12].

In this paper, we consider policy classes of the form Π = {(π0, π1, . . . , πT ) : πo ∈
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Π0, π1 ∈ Π1, . . . , πT ∈ ΠT}, where for each t, Πt is a class of single-stage decision

rules, and tackle the problem of estimating the optimal policy based on a set of

trajectory trees.

4.5 Binary Single-Stage Reinforcement Learning

Problem

We begin with the single stage RL problem first, since it enables us to isolate

the effect of finite data (Theorem 2) and surrogate optimization (Theorem 3) from

the ones of distribution mismatch and error propagation that arise in multi-stage

problems. The results in this section are then used to establish our two main results

in the next section. Consider the following binary single-stage reinforcement learning

problem. An agent observes O0 ∈ O0 and can choose between one of two actions,

A = {−1, 1}. Upon choosing action A0 ∈ A the agent observes O1, which is also

the final observation, and a reward r(O0, A0, O1) is received. Under the generative

model assumption, it is possible to generate O1 given any value of (O0, A0). Denote

by (O0, O
−1
1 , O1

1) the random variables generated by the generative model. That is,

O0 is generated according to the distribution of the initial observation, and given the

value of O0, O1 is generated independently for the two possible actions, denoted by

O−1
1 and O1

1. The likelihood of a realization (o0, o
−1
1 , o1

1) is given by

f0(o0)f1(o
−1
1 |o0,−1)f1(o

1
1|o0, 1).

Denote an expectation with respect to this density by E, and given n realizations of

(O0, O
−1
1 , O1

1) denote by En the corresponding empirical expectation.

Let Π be a class of policies π : O0 → A. The average value function of a policy
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π is given by (4.2.6)

V (π) = Eπ {r(O0, A0, O1)} .

As a special case of (4.4.9), it is possible to write this expectation with respect to E:

E
{
r(O0,−1, O−1

1 )I(π(O0) = −1) + r(O0, 1, O
1
1)I(π(O0) = 1)

}

=

∫

O0

∫

O1

∫

O1

[
r(o0,−1, o−1

1 )I(π(o0) = −1) + r(o0, 1, o
1
1)I(π(o0) = 1)

]
×

f0(o0)f1(o
−1
1 |o0,−1)f1(o

1
1|o0, 1)do0do

−1
1 do1

1

=

∫

O0

∫

O1

r(o0,−1, o−1
1 )I(π(o0) = −1)f0(o0)f1(o

−1
1 | − 1)do0do

−1
1

+

∫

O0

∫

O1

r(1, o1
1)I(π(o0) = 1)f0(o0)f1(o

1
1|o0, 1)do0do

1
1

=

∫

O0

[∫

O1

r(o0,−1, oo0,−1
1 )f1(o

−1
1 |o0,−1)do−1

1 I(π(o0) = −1)

+

∫

O1

r(o0, 1, o
1
1)f1(o

1
1|o0, 1)do1

1I(π(o0) = 1)

]
f0(o0)do0

=

∫

O0

[
∑

a0∈A

∫

O1

r(o0, a0, o
a0

1 )f1(o
a0

1 |o0, a0)do
a0

1 I(π(o0) = a0)

]
f0(o0)do0

=

∫

O0

∑

a0∈A

∫

O1

r(o0, a0, o1)f1(o1|o0, a0)I(π(o0) = a0)f0(o0)do1do0

= Eπ {r(O0, A0, O1)} .

Therefore, it is possible to consistently estimate V (π) = Eπ {r(O0, A0, O1)} by

V̂n(π) = En

{
r(O0,−1, O−1

1 )I(π(O0) = −1) + r(O0, 1, O
1
1)I(π(O0) = 1)

}
.

Assuming that the sup is attainable, let π̃ be any policy satisfying

V (π̃) = sup
π∈Π

V (π).

136



As proposed in [62], let π̂n be any policy satisfying

π̂n ∈ arg max
π∈Π

V̂n(π), (4.5.10)

where the maximum exists since V̂n(π) can take a finite number of values.

To derive a finite sample upper bound on the performance of π̂n relative to those

of π̃, we need to restrict the size of the policy class Π. As originally applied to Markov

decision processes in [62], we use the VC-dimension [5] to express this restriction. For

a class Π of binary valued functions from space X to {−1, 1} and a set {xi}n
i=1 ⊂ X

denote by Π|{xi}n
i=1

the set {[π(x1), π(x2), . . . , π(xn)]|π ∈ Π} ⊂ {−1, 1}n. We say

that a set {xi}n
i=1 ⊂ X is shattered by Π if the cardinality of Π|{xi}n

i=1
is 2n, where

the cardinality of a set S, denoted by |S|, is the number of distinct elements.

Definition 1. The VC-dimension of a class Π of binary valued functions from

space X to {−1, 1} is the largest n, for which there exists a set {xi}n
i=1 ⊂ X of

cardinality n that is shattered by Π. If no such number exists, we say that the VC-

dimension of Π is infinity.

Another interpretation is the following [5]. For any finite set S ⊂ X , every

function π in Π defines a dichotomy: S1 = {x ∈ S : π(x) = 1} and S−1 = {x ∈

S : π(x) = −1}, S−1

⋃
S1 = S, S−1

⋂
S1 = ∅. Then the VC-dimension of Π is the

cardinality of the set with the largest number of elements for which members of Π

can realize all possible dichotomies.

Given a collection of n realizations of the trajectory tree of the single-stage pro-

cess, {oi
0, o

−1i
1 , o1i

1 }n
i=1 ⊂ O0 × O1 × O1, there are 2n possible policy realizations,

which correspond to all the combinations of taking action −1 or action 1 on each

of the trees. When the policy class is a class of binary valued functions, that has a

finite VC-dimension d, then, by Sauer’s lemma [119], the number of possible policy
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realizations grows with n in a polynomial rate, rather than as 2n. This property is

important for the uniform convergence results that we invoke below.

To account for the interaction between the binary functions that define the pol-

icy and the reward function we use the definition of the P-dimension [119], which

generalizes the VC-dimension to real valued functions. Consider a class F of real

valued functions from a space X to [0, R]. A set S = {x1, x2, . . . , xn} ⊂ X is said to

be P-shattered by F if there exists a real vector c ∈ [0, R]n, such that, for every

binary vector e ∈ {−1, 1}n, there exists a corresponding function fe ∈ F , such that

sgn (fe(x
i) − ci) = ei, i = 1, 2, . . . , n, where sgn(x) equals one if x > 0 and zero

otherwise.

Definition 2. The P-dimension of a class F of real valued functions from a space

X to [0, R] is the largest n for which there exists a set {xi}n
i=1 ⊂ X of cardinality n

that is P-shattered by F . If no such n exists, we say the P-dimension of F is infinity.

In the following theorem and in the other theorems in this chapter, the number

of trajectory trees required to achieve a given performance guarantees is bounded

by the VC-dimension or the P-dimension of the policy class. One approximation

class for which bounds on the VC-dimension and the P-dimension exist is the class

of Neural Networks. In [5] and [119] bounds on the VC-dimension and P-dimension

a number of Neural Network architectures are given. The bounds depend on the

number of layers, the size of the weights, and the form of the activation function.

Theorem 2. Assume that Π has a finite VC-dimension d. Then with probability

greater than 1 − δ over the set of trajectory trees,

V (π̃) − V (π̂n) ≤ 2ǫ
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for n satisfying

4

(
8en

ǫd

)d

exp

(−nǫ2
32

)
≤ δ.

Proof. For every π ∈ Π, define the reward f : O0 ×O1 ×O1 → [0, 1] by

fπ(o0, o
−1
1 , o1

1) = r(o0,−1, o−1
1 )I(π(o0) = −1) + r(o0, 1, o

1
1)I(π(o0) = 1),

and let F = {fπ : π ∈ Π}. We first show that the P-dimension of F is less than or

equal to d and then invoke theorem 7.2 of [119]. Consider a set S = {oi
0, o

−1i
1 , o1i

1 }m
i=1 ⊂

O0×O1×O1 of m realizations of the trajectory tree of the underlying single stage de-

cision process. For this set to be P-shattered by F , we must have that the cardinality

of the set

F|S = {[f(o1
0, o

−11
1 , o11

1 ), f(o1
0, o

−12
1 , o12

1 ), . . . , f(om
0 , o

−1m
1 , o1m

1 )] : f ∈ F} ⊂ R
m

is at least 2m. Otherwise, comparing this set of vectors to a threshold vector

c ∈ R
m cannot lead to the 2m distinct binary vectors required for P-shattering.

However, the cardinality of F|S is bounded above by the cardinality of the set

Π|S = {[π(x1), π(x2), . . . , π(xm)] : π ∈ Π} ⊂ {−1, 1}m since any distinct vector

[π(x1), π(x2), . . . , π(xm)] contributes at most one element to F|S corresponding to

the map defined by fπ. Note that we write ’at most’ one element, since the cardinal-

ity of F|S can actually be smaller than that of Π|S due to cases in which the reward

is the same for both actions. For the cardinality of ΠS to be 2m, m must be smaller

than or equal to the VC-dimension of Π. Therefore the P-dimension of F is less than

or equal to d.

By [119, Theorem 7.2] we have that with probability greater than 1 − δ over the
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set of trajectory trees,

sup
f∈F

|E
{
f(o0, o

−1
1 , o1

1

}
− En

{
f(o0, o

−1
1 , o1

1

}
| ≤ ǫ,

which is equivalent to

sup
π∈Π

|V (π) − V̂n(π)| ≤ ǫ, (4.5.11)

for n satisfying

4

(
8en

ǫd

)d

exp

(−nǫ2
32

)
≤ δ. (4.5.12)

This result (4.5.11) and (4.5.12) is a special case of [62, Theorem 3.2], in which only

convergence rates are provided.

Result (4.5.11) and (4.5.12) imply that for such an n, with probability greater

than 1 − δ,

V (π̂n)>V̂n(π̂n) − ǫ

≥V̂n(π̃) − ǫ

>V (π̃) − 2ǫ,

where the first and third inequalities follow from (4.5.11), and the second inequality

holds since π̂n maximizes V̂n. The statement of the theorem follows.

The theorem asserts that by minimizing the empirical value V̂n(π) one is guar-

anteed to find a policy whose performance are close to the best possible within the

restricted class. However, the empirical risk minimization (4.5.10) is computation-

ally demanding (see e.g. [6] and [12]) and can only be solved for small n and simple

policy classes. As an alternative, we propose to reduce the reinforcement learning

problem to a weighted classification problem and replace the problematic 0 − 1 loss
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with a convex smooth surrogate function.

Consider a class F of real valued functions f : O0 → [−1, 1]. Each f ∈ F

induces a policy πf (o0) = sgn [f(o0)] , o0 ∈ O0. To formulate (4.5.10) as a weighted

classification problem, note that

V (πf )=E
{
r(O0,−1, O−1

1 )I(sgn [f(O0)] = −1) + r(O0, 1, O
1
1)I(sgn (f(O0)) = 1)

}

=E
{
max{r(O0,−1, O−1

1 ), r(O0, 1, O
1
1)}
}
−

E

{
|r(O0,−1, O−1

1 ) − r(O0, 1, O
1
1)|I

(
sgn[f(O0)] 6= arg max

a∈A
r(O0, a, O

a
1)

)}
.

Therefore, (4.5.10) is equivalent to

f̂n∈arg min
f∈F

En

{
|r(O0,−1, O−1

1 ) − r(O0, 1, O
1
1)| × (4.5.13)

I

(
sgn[f(O0)] 6= arg max

a∈A
r(O0, a, O

a
1)

)}

= arg min
f∈F

En

{
|r(O0,−1, O−1

1 ) − r(O0, 1, O
1
1)|I (sgn[f(O0)] 6= Y )

}

where Y = arg maxa∈A r(O0, a, O
a
1), which is a weighted classification problem with

examples oi
0, targets yi, and weights |r(oi

0,−1, o−1i
1 ) − r(oi

0, 1, o
1i
1 )|. Solving (4.5.13)

is just as difficult as solving (4.5.10). For many function classes F , however, it is

much easier to solve

f̂n
φ ∈ arg min

f∈F
En

{
|r(O0,−1, O−1

1 ) − r(O0, 1, O
1
1)|φ (f(O0)Y )

}
, (4.5.14)

where φ is a convex surrogate for the 0 − 1 loss. For example, one can minimize a

truncated squared error loss by using neural networks [23], an exponential loss by

using Boosting [45], the scaled deviance using logistic regression [46], and the hinge

loss by using support vector machines [103]
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Below we show that, for restricted classes F , a uniform convergence result can

guarantee that

∣∣E
{
|r(O0,−1, O−1

1 ) − r(O0, 1, O
1
1)|φ (f(O0)Y )

}
−

En

{
|r(O0,−1, O−1

1 ) − r(O0, 1, O
1
1)|φ (f(O0)Y )

}∣∣→ 0 (4.5.15)

almost surely, as n→ ∞, uniformly over F . This implies that with high probability,

for sufficiently large n, f̂n
φ given by (4.5.14) is close to

f̃φ = arg min
f∈F

E
{
|r(O0,−1, O−1

1 ) − r(O0, 1, O
1
1)|φ (f(O0)Y )

}
,

where we assume that the minimum exists. Alternatively, this implies that

E
{
|r(O0,−1, O−1

1 ) − r(O0, 1, O
1
1)|φ

(
f̂n

φ (O0)Y
)}

is close to

E
{
|r(O0,−1, O−1

1 ) − r(O0, 1, O
1
1)|φ

(
f̃φ(O0)Y

)}
,

with high probability over the data set. First, we apply the result in [8] to show that

this also implies that V (π bfn
φ
) is close to V (π∗) with high probability. Then we prove

uniform convergence of the type (4.5.15).

Note that minimizing

E
{
|r(O0,−1, O−1

1 ) − r(O0, 1, O
1
1)|φ (f(O0)Y )

}

is equivalent to minimizing

E

{
|r(O0,−1, O−1

1 ) − r(O0, 1, O
1
1)|

E
{
|r(O0,−1, O−1

1 ) − r(O0, 1, O1
1)|
}φ (f(O0)Y )

}
,
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since the constant

c = E
{
|r(O0,−1, O−1

1 ) − r(O0, 1, O
1
1)|
}

does not depend on f , and we assume that c 6= 0. This is equivalent to minimizing

Ẽ {φ (f(O0)Y )} ,

where Ẽ is the expectation with respect to the distribution induced by the change of

measure associated with the multiplication by
|r(O0,−1,O−1

1
)−r(O0,1,O1

1
)|

E{|r(O0,−1,O−1

1
)−r(O0,1,O1

1
)|} . Note that

c ≤ 1 and that

min
f

Ẽ {I(sgn[f(O0)] 6= Y } = Ẽ {I (π∗(O0) 6= Y )} ,

since the optimal policy π∗ is invariant to change of measure.

Applying the result in [8] we obtain that if the surrogate loss φ is convex, differ-

entiable at 0, and φ′(0) < 0, conditions that hold for all the algorithms mentioned

above, then, for any function f ,

ψ
(
Ẽ {I(sgn[f(O0)] 6= Y } − Ẽ {I(π∗(O0) 6= Y }

)

≤ Ẽ {φ (f(O0)Y )} − Ẽ
{
φ
(
f ∗

φ(O0)Y
)}
,

where ψ is a convex function that can be derived from φ, invertible on [0, 1], ψ(0) = 0,

and, assuming the minimum exists, we let

f ∗
φ = arg min

f
E
{
|r(O0,−1, O−1

1 ) − r(O0, 1, O
1
1)|φ (f(O0)Y )

}
.

Furthermore, it is shown that this bound is the tightest possible without placing
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further restriction on the underlying distribution. For a convex function g : R → R

with g(0) = 0, it holds that for any λ ∈ [0, 1] and x ∈ R, g(λx) ≤ λg(x) (see [101]

or [8]). Therefore,

ψ
(
E
{
|r(O0,−1, O−1

1 ) − r(O0, 1, O
1
1)|I (sgn[f(O0)] 6= Y )

}
−

E
{
|r(O0,−1, O−1

1 ) − r(O0, 1, O
1
1)|I (π∗(O0) 6= Y )

})
=

ψ
(
c
[
Ẽ {I (sgn[f(O0)] 6= Y )} − Ẽ {I (π∗(O0) 6= Y )}

])
≤

cψ
(
Ẽ {I (sgn[f(O0)] 6= Y )} − Ẽ {I (π∗(O0) 6= Y )}

)
≤

c
[
Ẽ {φ (f(O0)Y )} − Ẽ

{
φ
(
f ∗

φ(O0)Y
)}]

=

E
{
|r(O0,−1, O−1

1 ) − r(O0, 1, O
1
1)|φ (f(O0)Y )

}
−

E
{
|r(O0,−1, O−1

1 ) − r(O0, 1, O
1
1)|φ

(
f ∗

φ(O0)Y
)}

The invertibility of ψ on [0, 1] implies that

E
{
|r(O0,−1, O−1

1 ) − r(O0, 1, O
1
1)|I(sgn[f(O0)] 6= Y

}
−

E
{
|r(O0,−1, O−1

1 ) − r(O0, 1, O
1
1)|I(π∗(O0) 6= Y

}

≤ ψ−1
(
E
{
|r(O0,−1, O−1

1 ) − r(O0, 1, O
1
1)|φ (f(O0)Y )

}
−

E
{
|r(O0,−1, O−1

1 ) − r(O0, 1, O
1
1)|φ

(
f ∗

φ(O0)Y
)})

.
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This result implies that

V (π∗) − V (π bfn
φ
) =

E
{
max{r(O0,−1, O−1

1 ), r(O0, 1, O
1
1)}
}
−

E
{
|r(O0,−1, O−1

1 ) − r(O0, 1, O
1
1)|I (π∗(O0) 6= Y )

}
−

E
{
max{r(O0,−1, O−1

1 ), r(O0, 1, O
1
1)}
}

+

E
{
|r(O0,−1, O−1

1 ) − r(O0, 1, O
1
1)|I

(
sgn[f̂n

φ (O0)] 6= Y
)}

≤ ψ−1
(
E
{
|r(O0,−1, O−1

1 ) − r(O0, 1, O
1
1)|φ

(
f̂n

φ (O0)Y
)}

−

E
{
|r(O0,−1, O−1

1 ) − r(O0, 1, O
1
1)|φ

(
f ∗

φ(O0)Y
)})

. (4.5.16)

Next rewrite the argument of ψ−1 in the upper bound as

E
{
|r(O0,−1, O−1

1 ) − r(O0, 1, O
1
1)|φ

(
f̂n

φ (O0)Y
)}

−

E
{
|r(O0,−1, O−1

1 ) − r(O0, 1, O
1
1)|φ

(
f ∗

φ(O0)Y
)}

=

E
{
|r(O0,−1, O−1

1 ) − r(O0, 1, O
1
1)|φ

(
f̂n

φ (O0)Y
)}

−

inf
f∈F

E
{
|r(O0,−1, O−1

1 ) − r(O0, 1, O
1
1)|φ (f(O0)Y )

}
+

inf
f∈F

E
{
|r(O0,−1, O−1

1 ) − r(O0, 1, O
1
1)|φ (f(O0)Y )

}
−

E
{
|r(O0,−1, O−1

1 ) − r(O0, 1, O
1
1)|φ

(
f ∗

φ(O0)Y
)}

(4.5.17)

The first term is called the estimation error and the second term is called the ap-

proximation error, which we denote by γ(F). Assuming the inf is attainable, let

E
{
|r(O0,−1, O−1

1 ) − r(O0, 1, O
1
1)|φ

(
f̃φ(O0)Y

)}
=

inf
f∈F

E
{
|r(O0,−1, O−1

1 ) − r(O0, 1, O
1
1)|φ (f(O0)Y )

}

for some f̃φ ∈ F .
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Before stating the following theorem, which provides a finite sample upper bound

on the estimation error, we need to define the external covering number of a set.

Define the average 1-norm on R
n by ||v||a1 = 1

n

∑n
i=1 |vi|. A set v1, v2, . . . , vk is an

external ǫ-cover with respect to the average 1-norm of a set S ⊂ R
n if for any u ∈ S

there exists vj such that ||u − vj||a1 < ǫ. It is called an external ǫ-cover since the

vectors v1, v2, . . . , vk need not be in S. The cardinality of the set with the smallest

number of elements that is an external ǫ-cover of F|{xi}n
i=1

with respect to the average

1-norm is called the external ǫ-covering number of F|{xi}n
i=1

with respect to the

average 1-norm and denoted by L(ǫ,F|{xi}n
i=1
, || · ||a1).

Theorem 3. Suppose F has finite P-dimension d, and that φ satisfies a Lipschitz

condition

|φ(x1) − φ(x2)| ≤ µ|x1 − x2|, x1, x2 ∈ [−1, 1] (4.5.18)

for some µ. Then with probability greater than 1 − δ over the set of trajectory trees,

V (π∗) − V (π bfn
φ
) ≤ ψ−1 (2ǫ+ γ(F))

for n satisfying

8

(
16eµ

ǫ
ln

16eµ

ǫ

)d

exp(−mǫ2/32) < δ.

Proof. The proof is based on a uniform convergence result which is very similar to

Theorem 7.5 of [119], where the only difference is in the form of the loss function.

Let LF be the class of functions mapping O0 ×O1 ×O1 ×{−1, 1} to [0, 1] defined by

LF = {lf (o0, o
−1
1 , o1

1, y) = |r(o0,−1, o−1
1 ) − r(o0, 1, o

1
1)|φ(f(o0)y) : f ∈ F}.
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To apply the proof of Theorem 7.5 in [119] we need to bound the external covering

number of LF in terms of the covering number of F .

Given the set S = {oi
0, o

−1i
1 , o1i

1 , y
i}2n

i=1 ⊂ O0 ×O1 ×O1 × {−1, 1}, we show that

L(ǫ,LF |{oi
0
,o−1i

1
,o1i

1
,yi}2n

i=1
, || · ||a1) ≤ L(ǫ/µ,F|{oi

0
}2n

i=1
, || · ||a1). (4.5.19)

Suppose (v1, v2, . . . , vk), vj ∈ R
2n is an external ǫ/µ cover for F|{oi

0
}2n

i=1
. We show

that the set of k vectors (w1, w2, . . . , wk), wj ∈ R
2n defined by

wj
i = |r(oi

0,−1, o−1i
1 ) − r(o0, 1, o

1i
1 )|φ(vj

i y
i), 1 ≤ i ≤ 2n, 1 ≤ j ≤ k,

is an external ǫ cover for LF |{oi
0
,o−1i

1
,o1i

1
,yi}2n

i=1
, which implies (4.5.19). To see this

consider an arbitrary lf ∈ LF . Since (v1, v2, . . . , vk), vj ∈ R
2n is an external ǫ/µ

cover for F|{oi
0
}2n

i=1
, there exists an index j for which

||f |{oi
0
}2n

i=1
− vj||a1 =

1

2n

2n∑

i=1

|f(oi
0) − vj

i | ≤ ǫ/µ,
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where f |{oi
0
}2n

i=1
= [f(o1

0), f(o2
0), . . . , f(o2n

0 )]. The Lipschitz condition implies that

||lf |{oi
0
,o−1i

1
,o1i

1
,yi}2n

i=1
− wj||a1 =

1

2n

2n∑

i=1

∣∣∣|r(oi
0,−1, o−1i

1 ) − r(oi
0, 1, o

1i
1 )| ×

φ(f(oi
0)y

i) − |r(oi
0,−1, o−1i

1 ) − r(oi
0, 1, o

1i
1 )|φ(vj

i y
i)
∣∣∣ =

1

2n

2n∑

i=1

|r(oi
0,−1, o−1i

1 ) − r(oi
0, 1, o

1i
1 )| × |φ(f(oi

0)y
i) − φ(vj

i y
i)| ≤

1

2n

2n∑

i=1

|φ(f(oi
0)y

i) − φ(vj
i y

i)| ≤

µ
1

2n

2n∑

i=1

|f(oi
0)y

i − vj
i y

j| =

µ
1

2n

2n∑

i=1

|f(oi
0) − vj

i | ≤ ǫ,

where the first inequality holds since r ∈ [0, 1], which is what we need to show. Hence

for any 2n-set we have

L(ǫ,LF |{oi
0
,o−1i

1
,o1i

1
,yi}2n

i=1
, || · ||a1) ≤ L(ǫ/µ,F|{oi

0
}2n

i=1
, || · ||a1) ≤ 2

(
2eµ

ǫ
ln

2eµ

ǫ

)d

,

where the second inequality follows from [119, Corollary 4.2] since F has P-dimension

d. Given this bound we follow the steps in [119] to obtain that with probability

greater than 1 − δ over the set of trajectory trees,

sup
f∈F

|E
{
|r(S−1

1 ) − r(S1
1)|φ(f(S0)Y )

}
− En

{
|r(S−1

1 ) − r(S1
1)|φ(f(S0)Y )

}
| < ǫ

for n satisfying

8

(
16eµ

ǫ
ln

16eµ

ǫ

)d

exp(−mǫ2/32) < δ.
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Next note that since f̂n
φ is the minimizer of the empirical expectation,

En

{
|r(O0,−1, O−1

1 ) − r(O0, 1, O
1
1)|φ

(
f̃φ(O0)Y

)}
−

En

{
|r(O0,−1, O−1

1 ) − r(O0, 1, O
1
1)|φ

(
f̂n

φ (O0)Y
)}

is greater than or equal to zero. Therefore,

E
{
|r(O0,−1, O−1

1 ) − r(O0, 1, O
1
1)|φ

(
f̂n

φ (O0)Y
)}

−

E
{
|r(O0,−1, O−1

1 ) − r(O0, 1, O
1
1)|φ

(
f̃φ(O0)Y

)}
≤

∣∣∣E
{
|r(O0,−1, O−1

1 ) − r(O0, 1, O
1
1)|φ

(
f̂n

φ (O0)Y
)}

−

En

{
|r(O0,−1, O−1

1 ) − r(O0, 1, O
1
1)|φ

(
f̂n

φ (O0)Y
)}∣∣∣+

∣∣∣E
{
|r(O0,−1, O−1

1 ) − r(O0, 1, O
1
1)|φ

(
f̃φ(O0)Y

)}
−

En

{
|r(O0,−1, O−1

1 ) − r(O0, 1, O
1
1)|φ

(
f̃φ(O0)Y

)}∣∣∣ ≤ 2ǫ

with probability greater than 1 − δ, and the statement of the theorem follows

from (4.5.16) and (4.5.17).

When comparing Theorem 3 with Theorem 2 it is seen that the computational

advantage of the surrogate optimization has a cost: we can no longer guarantee that

as the number of samples increase the estimated policy approaches the best within

the approximation class. Only when γ(F) = 0, this type of consistency holds.
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4.6 An Approximate Dynamic Programming Ap-

proach

This section generalize the results of the previous section to the multi-stage case.

We describe an approximate dynamic programming algorithm for approximating

π̂ (4.2.7), (4.2.8) from a set of n trajectory trees and derive finite sample upper bounds

on its generalization error. The algorithm estimates π̂T , π̂T−1, . . . , π̂0 sequentially,

starting from

π̂n
T ∈ (4.6.20)

arg max
πT∈ΠT

En





∑

aT∈{−1,1}T+1

T−1∏

t=0

I (Bt = at) ×

I
(
πT (O

aT−1

T , aT−1) = aT

)
r(O

aT−1

T , aT , O
aT

T+1)
}
,

which can be performed by randomly selecting a leaf at stage T from each trajectory

tree and solving the single stage reinforcement learning algorithm from time T to

T + 1. Given π̂n
T , π̂

n
T−1, . . . , π̂

n
t+1, we can form the empirical counter part of (4.2.8),

by choosing a random leaf at stage t from each tree and considering the immedi-

ate reward following each of the actions plus the reward accumulated by following

decision rules π̂n
t+1, π̂

n
t+2, . . . , π̂

n
T for stages t+ 1 and on. That is,

π̂n
t ∈ arg max

πt∈Πt

(4.6.21)

En





∑

aT∈{−1,1}T+1

t−1∏

t=0

I (Bt = at) I (πt(O
at−1

t , at−1) = at)×

T∏

τ=t+1

I (π̂n
τ (Oaτ−1

τ , aτ−1) = aτ )
T∑

t=0

r(Oaτ−1

τ , aτ , O
aτ

τ+1)

}
.
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Next a finite sample bound on the generalization error of π̂n = (π̂n
0 , π̂

n
1 , . . . , π̂

n
T ) is

derived. The following lemmas will be useful in deriving the bound. For i ≤ j, we

use the shorthand notation πqi,...,j
for (πqi

, . . . , πqj
), πi,...,j for πi, . . . , πj, and similarly

for π∗ and π̂. The lemma are derived first in terms of distribution over random

trajectories OT+1,AT rather than in terms of random variables on the trajectory

tree since the notation is more manageable this way. Then, the results are translated

to expectations with respect to E, i.e., with respect to random variables on the

trajectory tree.

The following lemmas are used to relate the results of the previous section for

the single-stage problem to the multi-stage problem. The observation distribution

in (4.2.7), and (4.2.8) is induced by a random policy rather than by the optimal

policy. The following lemma relates the expectation of a positive function with

respect to these to distributions.

Lemma 6. Fix 0 ≤ j ≤ T . For a random policy πp = πp0
, πp1

, . . . , πpT
with

pt(a|ot, at−1) ≥ 1/L, for all a ∈ A and 0 ≤ t ≤ T , a deterministic policy π, and a

function f(oT+1, aT ) ≥ 0, we have

Eπp0,...,j
,πj+1,...,T

{f(OT+1,AT )} ≤ LEπp0,...,j−1
,πj,...,T

{f(OT+1,AT )}

Proof. The integration in Eπp0,...,j
,πj+1,...,T

{f(OT+1,AT )} is with respect to the den-

sity

f0(o0)p0(a0|o0)

j∏

t=1

ft(ot|ot−1, at−1)pt(at|ot, at−1) ×

T∏

t=j+1

ft(ot|ot−1, at−1)I(at = πt(ot, at−1))fT (oT+1|oT , aT ).
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The integration in Eπp0,...,j−1
,πj,...,T

{f(OT+1,AT )} is with respect to the density

f0(o0)p0(a0|o0)

j−1∏

t=1

ft(ot|ot−1, at−1)pt(at|ot, at−1) ×

T∏

t=j

ft(ot|ot−1, at−1)I(at = πt(ot, at−1))fT (oT+1|oT , aT ).

Hence

Eπp0,...,j
,πj+1,...,T

{f(OT+1,AT )} =

Eπp0,...,j−1
,πj,...,T

{
I(aj = πj(oj, aj−1))

pj(aj|oj, aj−1)
f(OT+1,AT )

}
.

The result follows since 0 ≤ I(aj=πj(oj ,aj−1))

pj(aj |oj ,aj−1)
≤ L and f is non-negative.

The next lemma is helpful for analyzing the consequences of using π̂n
t+1, . . . , π̂

n
T

rather than the optimal policy when estimating π̂n
t .

Lemma 7. For the random policy πq = (πq0
, . . . , πqT

), the optimal policy π∗, and the

policy π̂, we have for j = 0, . . . , T − 1,

Eπq0,...,j−1
,π∗

j,...,T

{
T∑

t=j

r(Ot,At, Ot+1)

}

≤ Eπq0,...,j−1
,π∗

j ,bπj+1,...,T

{
T∑

t=j

r(Oj,Aj, Oj+1)

}

+2Eπq0,...,j
,π∗

j+1,...,T

{
T∑

t=j+1

r(Ot,At, Ot+1)

}

−2Eπq0,...,j
,bπj+1,...,T

{
T∑

t=j+1

r(Ot,At, Ot+1)

}

Proof. The proof follows from the previous lemma and the use of conditional expec-
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tations.

Eπq0,...,j−1
,π∗

j,...,T

{
T∑

t=j

r(Ot,At, Ot+1)

}

= Eπq0,...,j−1
,π∗

j,...,T

{
r(Oj,Aj, Oj+1) +

T∑

t=j+1

r(Ot,At, Ot+1)

}

= Eπq0,...,j−1
,π∗

j,...,T

{
r(Oj,Aj, Oj+1) +

Eπq0,...,j−1
,π∗

j,...,T

{
T∑

t=j+1

r(Ot,At, Ot+1)
∣∣∣Oj+1,Aj

}}

= Eπq0,...,j−1
,π∗

j,...,T

{
r(Oj,Aj, Oj+1) + V(·,π∗

j+1,...,T
),j+1(Oj+1,Aj)

}

= Eπq0,...,j−1
,π∗

j,...,T

{
r(Oj,Aj, Oj+1) + V(·,bπj+1,...,T ),j+1(Oj+1,Aj)

}

+Eπq0,...,j−1
,π∗

j,...,T

{
V(·,π∗

j+1,...,T
),j+1(Oj+1,Aj) − V(·,bπj+1,...,T ),j+1(Oj+1,Aj)

}

Proceed with the first term:

Eπq0,...,j−1
,π∗

j,...,T

{
r(Oj,Aj, Oj+1) + V(·,bπj+1,...,T ),j+1(Oj+1,Aj)

}

= Eπq0,...,j−1
,π∗

j ,bπj+1,...,T

{
r(Oj,Aj, Oj+1) + V(·,bπj+1,...,T ),j+1(Oj+1,Aj)

}

= Eπq0,...,j−1
,π∗

j ,bπj+1,...,T

{
r(Oj,Aj, Oj+1) +

E(·,bπj+1,...,T )

{
T∑

t=j+1

r(Ot,At, Ot+1|Oj+1,Aj

}}

= Eπq0,...,j−1
,π∗

j ,bπj+1,...,T

{
r(Oj,Aj, Oj+1) +

Eπq0,...,j−1
,π∗

j ,bπj+1,...,T

{
T∑

t=j+1

r(Ot,At, Ot+1|Oj+1,Aj

}}

= Eπq0,...,j−1
,π∗

j ,bπj+1,...,T

{
T∑

t=j

r(Oj,Aj, Oj+1)

}
,
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where the first inequality holds since the function

r(Oj,Aj, Oj+1) + V(·,bπj+1,...,T ),j+1(Oj+1,Aj)

does not depend on the actions and observations following Ot+1 and so the decision

rules for actions At+1, . . . , AT can be specified arbitrarily. The second equality follows

from the definition of V(·,bπj+1,...,T ),j+1(Oj+1,Aj). The third inequality holds since,

due to the conditioning on Oj+1 and Aj, it is possible to specify the decision rules

for A0, . . . , Aj arbitrarily. The fourth equality follows from the properties of the

conditional expectation. As for the second term:

Eπq0,...,j−1
,π∗

j,...,T

{
V(·,π∗

j+1,...,T
),j+1(Oj+1,Aj) − V(·,bπj+1,...,T ),j+1(Oj+1,Aj)

}

≤ 2Eπq0,...,j
,π∗

j+1,...,T

{
V(·,π∗

j+1,...,T
),j+1(Oj+1,Aj) − V(·,bπj+1,...,T ),j+1(Oj+1,Aj)

}

by Lemma 6 with L = 2, since

V(·,π∗

j+1,...,T
),j+1(Oj+1,Aj) − V(·,bπj+1,...,T ),j+1(Oj+1,Aj)

is non-negative by the definition of π∗. Next,

Eπq0,...,j
,π∗

j+1,...,T

{
V(·,π∗

j+1,...,T
),j+1(Oj+1,Aj)

}

= Eπq0,...,j
,π∗

j+1,...,T

{
Eπq0,...,j

,π∗

j+1,...,T

{
T∑

t=j+1

r(Ot,At, Ot+1)|Oj+1,Aj

}}

= Eπq0,...,j
,π∗

j+1,...,T

{
T∑

t=j+1

r(Ot,At, Ot+1)

}

154



and

Eπq0,...,j
,π∗

j+1,...,T

{
V(·,bπj+1,...,T ),j+1(Oj+1,Aj)

}

= Eπq0,...,j
,bπj+1,...,T

{
V(·,bπj+1,...,T ),j+1(Oj+1,Aj)

}

= Eπq0,...,j
,bπj+1,...,T

{
Eπq0,...,j

,bπj+1,...,T

{
T∑

t=j+1

r(Ot,At, Ot+1)|Oj+1,Aj

}}

= Eπq0,...,j
,bπj+1,...,T

{
T∑

t=j+1

r(Ot,At, Ot+1)

}
.

Combining these together, we obtain the result.

In the following lemma the difference between the value of a given policy and

the value of the optimal policy is expresses in terms that are minimized by the

approximate dynamic programming algorithm (4.6.20), (4.6.21).

Lemma 8. For the policies πq, π
∗, and π̂, we have

V (π∗) − V (π̂) ≤
T∑

τ=0

2τ

[
Eπq0,...,τ−1

,π∗
τ ,bπτ+1,...,T

{
T∑

t=τ

r(Ot,At, Ot+1)

}
−

Eπq0,...,τ−1
,bπτ,...,T

{
T∑

t=τ

r(Ot,At, Ot+1)

}]
.

Proof. By definition

V (π∗) − V (π̂) = Eπ∗

[
T∑

t=0

r(Ot,At, Ot+1)

]
− Ebπ [ T∑

t=0

r(Ot,At, Ot+1)

]
.

155



Applying Lemma 7 on the first term once we get

V (π∗) − V (π̂) = Eπ∗

[
T∑

t=0

r(Ot,At, Ot+1)

]
− Ebπ [ T∑

t=0

r(Ot,At, Ot+1)

]

≤ Eπ∗
0
,bπ1...,T

[
T∑

t=0

r(Ot,At, Ot+1)

]
− Ebπ [ T∑

t=0

r(Ot,At, Ot+1)

]

+2Eπp0
,π∗

1,...,T

[
T∑

t=1

r(Ot,At, Ot+1)

]
− 2Eπp0

,bπ1,...,T

[
T∑

t=1

r(Ot,At, Ot+1)

]
.

Applying it again on the third term we get

≤ Eπ∗
0
,bπ1...,T

[
T∑

t=0

r(Ot,At, Ot+1)

]
− Ebπ [ T∑

t=0

r(Ot,At, Ot+1)

]

+2Eπp0
,π∗

1
,bπ2,...,T

[
T∑

t=1

r(Ot,At, Ot+1)

]
− 2Eπp0

,bπ1,...,T

[
T∑

t=1

r(Ot,At, Ot+1)

]

+22Eπp0,1
,π∗

2,...,T

[
T∑

t=2

r(Ot,At, Ot+1)

]
− 22Eπp0,1

,bπ2,...,T

[
T∑

t=2

r(Ot,At, Ot+1)

]
.
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Applying it additional T − 2 times we get

V (π∗) − V (π̂)

≤ Eπ∗
0
,bπ1...,T

[
T∑

t=0

r(Ot,At, Ot+1)

]
− Ebπ [ T∑

t=0

r(Ot,At, Ot+1)

]

+2Eπq0
,π∗

1
,bπ2,...,T

[
T∑

t=1

r(Ot,At, Ot+1)

]
− 2Eπq0

,bπ1,...,T

[
T∑

t=1

r(Ot,At, Ot+1)

]

+22Eπq0,1
,π∗

2
,bπ3,...,T

[
T∑

t=2

r(Ot,At, Ot+1)

]
− 22Eπq0,1

,bπ2,...,T

[
T∑

t=2

r(Ot,At, Ot+1)

]

...

+2T−1Eπq0,...,T−2
,π∗

T−1
,bπT

[
T∑

t=T−1

r(Ot,At, Ot+1)

]

−2T−1Eπq0,...,T−2
,bπT−1,T

[
T∑

t=T−1

r(Ot,At, Ot+1)

]

+2T Eπq0,...,T−1
,π∗

T
[r(OT ,AT , Ot+1)] − 2T Eπq0,...,T−1

,bπT
[r(OT ,AT , OT+1)] ,

which is the result.

Next, we tie the expectations to the empirical expectations used to estimate the

policy π̂n. First recall that for any j

Eπq0
,...,πqj−1

,πj ,...,πT

{
T∑

t=0

r(Ot,At, Ot+1

}
=

E





∑

aT∈{−1,1}T+1

j−1∏

t=0

I (Bt = at)
T∏

t=j

I
(
πt(O

at−1

t , at−1) = at

) T∑

t=j

r(O
at−1

t , at, Oat

t+1)




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which can be simplified to

E





∑

[aj ,...,aT ]∈{−1,1}T+1−j

T∏

t=j

I
(
πt(O

[Bj−1,aj,t−1]
t , [Bj−1, aj,t−1]) = at

)
×

T∑

t=j

r(O
[Bj−1,aj,t−1]
t , [Bj−1, aj,t], O

[Bj−1,aj,t]
t+1 )

}
,

where aj,t = (aj, aj+1, . . . , at). Therefore, the previous lemma can be expressed in

terms of expectations with respect to the elements on the trajectory tree. Through

an abuse of notation we use the shorthand notation

γπq0,j−1
,πj,...,T

(OT+1,BT )

for the argument in the last expectation.

Lemma 9. For the policies πq, π
∗, and π, we have

V (π∗) − V (π̂) ≤
T∑

τ=0

2τ
[
E
{
γπq0,τ−1

,π∗
τ ,bπτ+1,...,T

(OT+1,BT )
}
− E

{
γπq0,τ−1

,bπτ,...,T
(OT+1,BT )

}]

Now we relate the difference between the average value functions to the distance

between ensemble expectations and empirical expectations, using the trick in [84,

page 1087].
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Lemma 10. For τ = 0, . . . , T ,

E
{
γπq0,τ−1

,π∗
τ ,bπτ+1,...,T

(OT+1,BT )
}
− E

{
γπq0,τ−1

,bπτ,...,T
(OT+1,BT )

}

≤
∣∣∣E
{
γπq0,τ−1

,π∗
τ ,bπτ+1,...,T

(OT+1,BT )
}
− En

{
γπq0,τ−1

,π∗
τ ,bπτ+1,...,T

(OT+1,BT )
}∣∣∣

+
∣∣∣E
{
γπq0,τ−1

,bπτ,...,T
(OT+1,BT )

}
− En

{
γπq0,τ−1

,bπτ,...,T
(OT+1,BT )

}∣∣∣

+
(
En

{
γπq0,τ−1

,π∗
τ ,bπτ+1,...,T

(OT+1,BT )
}
− En

{
γπq0,τ−1

,bπτ,...,T
(OT+1,BT )

})+

,

where (x)+ is the positive part of x.

Note that if π∗
τ ∈ Πτ and we replace π̂ with π̂n then the last term is zero since

π̂n
τ is the maximizer of

En

{
γπq0,τ−1

,πτ ,bπn
τ+1,...,T

(OT+1,BT )
}

over Πτ .

The following lemma is a uniform convergence result that we then use to bound

the terms in Lemma 9.

Lemma 11. If the VC-dimension of the classes Πτ ,Πτ+1, . . . ,ΠT are dτ , dτ+1, . . . , dT ,

respectively, then, the probability over the set of trajectory trees that

sup
πτ∈Πτ ,...,πT∈ΠT

∣∣∣E
{
γπq0,τ−1

,πτ,...,T
(OT+1,BT )

}
− En

{
γπq0,τ−1

,πτ,...,T
(OT+1,BT )

}∣∣∣ > ǫ

is less then or equal to

4

(
8en(T − τ + 1)

ǫdsum,τ

)dsum,τ

exp

(
−nǫ

2

32

)
,

where dsum,τ =
∑T

t=τ dt.
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Remark 5. If π∗ /∈ Π but one wishes to include π∗ in the above sup, then the bound

holds if we replace dsum,τ with dsum,τ =
∑T

t=τ (dt + 1).

Proof. The result follows from Theorem 7.2 of [119]. To apply the theorem we need

to compute a bound on the P-dimension of the associated function class. For any

πτ ∈ Πτ , . . . , πT ∈ ΠT , let hπτ ,...,πT
be

hπ1,...,πT
(G,B0, . . . , Bτ−1) =

∑

aT∈{−1,1}T+1

τ−1∏

t=0

I (Bt = at)
T∏

t=τ

I
(
πt(O

at−1

t , at−1) = at

) T∑

t=τ

r(O
at−1

t , at, Oat

t+1)

and let

H = {hπ1,...,πT
: π1 ∈ Π1, . . . , πT ∈ ΠT} .

In order for H to P-shatter a set of size m, functions from H must realize at least

2m values when realized on this set. However, the number of possible realizations

is bounded by the product of the numbers of realizations of each of the indicator

functions on the same set. If m ≥ max{d1, . . . , dT}, then by Sauer’s lemma [119] this

product is bounded by
∏T

t=1(em/dt)
dt ≤ (em/dmin)dsum , where dsum =

∑T
t=1 dt and

dmin = min{d1, . . . , dT}. Hence,

m < dsum log2(em/dmin)

Clearly, anym > dsum does not satisfy this inequality. Therefore, m < dsum, implying

that the P-dimension of H is less the or equal to dsum. Finally, note that functions in

H take values in [0, T − τ +1]. The lemma now follows from [119, Theorem 7.2].

Using the union bound we can bound the probability of a large difference between

160



ensemble and empirical means for some 0 ≤ τ ≤ T :

Pr

{
T⋃

τ=0

sup
πτ∈Πτ ,...,πT∈ΠT

∣∣∣E
{
γπq0,τ−1

,πτ,...,T
(OT+1,BT )

}

−E
{
γπq0,τ−1

,πτ,...,T
(OT+1,BT )

} ∣∣∣ > ǫ

}

≤
T∑

τ=0

Pr

{
sup

πτ∈Πτ ,...,πT∈ΠT

∣∣∣E
{
γπq0,τ−1

,πτ,...,T
(OT+1,BT )

}

−E
{
γπq0,τ−1

,πτ,...,T
(OT+1,BT )

} ∣∣∣ > ǫ

}

≤
T∑

τ=0

4

(
8en(T − τ + 1)

ǫdsum,τ

)dsum,τ

exp

(
−nǫ

2

32

)
.

This is equivalent to the statement: with probability greater than 1− δ over the set

of trajectory trees,

sup
πτ∈Πτ ,...,πT∈ΠT

∣∣∣E
{
γπq0,τ−1

,πτ,...,T
(OT+1,BT )

}
− E

{
γπq0,τ−1

,πτ,...,T
(OT+1,BT )

}∣∣∣ < ǫ

simultaneously for all τ , for n satisfying

T∑

τ=0

4

(
8en(T − τ + 1)

ǫdsum,τ

)dsum,τ

exp

(
−nǫ

2

32

)
< δ. (4.6.22)

This directly leads to the following theorem.

Theorem 4. Let Π = {(π0, π1, . . . , πT ) : π0 ∈ Π0, . . . , πT ∈ ΠT} be a class of

deterministic policies with V C − dim(Πt) = dt, t = 0, 1 . . . , T . If π∗ ∈ Π then with

probability greater than 1 − δ over a set of random trajectory trees,

V (π∗) − V (π̂n) ≤ 2ǫ
T∑

τ=0

2τ

161



for n satisfying (4.6.22).

If π∗ /∈ Π then with probability greater than 1− δ over a set of random trajectory

trees,

V (π∗) − V (π̂n) ≤ 2ǫ
T∑

τ=0

2τ

+
T∑

τ=0

2τ
(
En

{
γπq0,τ−1

,π∗
τ ,bπn

τ+1,...,T
(OT+1,BT )

}
− En

{
γπq0,τ−1

,bπn
τ,...,T

(OT+1,BT )
})+

for n satisfying (4.6.22) with dsum,τ replaced with dsum,τ .

Remark 6. One can upper bound the term

En

{
γπq0,τ−1

,π∗
τ ,bπn

τ+1,...,T
(OT+1,BT )

}
,

which cannot be computed, by maxπτ
En

{
γπq0,τ−1

,πτ ,bπn
τ+1,...,T

(OT+1,BT )
}
. This term

can be easily computed by averaging the cumulative reward resulting from taking the

maximizing action at stage τ on the randomly chosen leaf on every tree, given that

the actions at the following stages are taken according to π̂n
τ+1, π̂

n
τ+2, . . . , π̂

n
T .

As mentioned earlier, when the policy class is large, it is difficult to solve

π̂n
τ ∈ arg max

πτ∈Πτ

En

{
γπq0,τ−1

,πτ ,bπn
τ+1,...,T

(OT+1,BT )
}
. (4.6.23)

Next, it is shown that (4.6.23) can be solved via the reduction to classification ap-

proach presented in Sec. 4.5, i.e., by introducing a class of real valued functions

and solving a sequence of single stage reinforcement learning problems through a

weighted classification reduction and using a surrogate φ for the 0 − 1 loss. Then, a

finite sample upper bound for the performance of a policy estimated in this manner

is given.
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Consider the classes Ft, t = 0, 1, . . . , T of functions mapping possible histories

(ot, at−1) to [−1, 1], t = 0, 1, . . . , T , respectively. Assume each Ft has a finite P-

dimension and denote these by d0, d1, . . . , dT . Each of the function classes induces

a policy class; for ft ∈ Ft, πt(ft)(ot, at−1) = sgn (f(ot, at−1)) , t = 0, . . . , T . Let

Πt(Ft) = {πt(ft) : ft ∈ Ft}, t = 0, 1, . . . , T . Note that by [119, Lemma 10.1],

VC − dim (Πt(Ft)) ≤ dt, t = 0, 1, . . . , T .

We start with the last stage. First we write the optimization problem

f̂n
T ∈ arg max

fT∈FT

En

{
γπq0,T−1

,πT (fT )(OT+1,BT )
}
. (4.6.24)

as a weighted classification problem.

E
{
γπq0,T−1

,πT (fT )(OT+1,BT )
}

=

E





∑

aT∈{−1,1}

I
(
πT (fT )(O

BT−1

T ,BT−1) = aT

)
r
(
O

BT−1

T , [BT−1, aT ], O
[BT−1,aT ]
t+1

)


 =

E
{
I
(
πT (fT )(O

BT−1

T ,BT−1) = −1
)
r
(
O

BT−1

T , [BT−1,−1], O
[BT−1,−1]
t+1

)
+

I
(
πT (fT )(O

BT−1

T ,BT−1) = 1
)
r
(
O

BT−1

T , [BT−1, 1], O
[BT−1,1]
t+1

)}
=

E

{
max

aT∈{−1,1}

{
r
(
O

BT−1

T , [BT−1, aT ], O
[BT−1,aT ]
t+1

)}}
−

E
{∣∣∣r

(
O

BT−1

T , [BT−1,−1], O
[BT−1,−1]
t+1

)
− r

(
O

BT−1

T , [BT−1, 1], O
[BT−1,1]
t+1

)∣∣∣×

I

(
πT (fT )(O

BT−1

T ,BT−1) 6= arg max
aT∈{−1,1}

{
r
(
O

BT−1

T , [BT−1, aT ], O
[BT−1,aT ]
t+1

)})}
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Therefore, (4.6.24) is equivalent to

f̂n
T ∈ arg min

fT∈FT

En

{

∣∣∣r
(
O

BT−1

T , [BT−1,−1], O
[BT−1,−1]
t+1

)
− r

(
O

BT−1

T , [BT−1, 1], O
[BT−1,1]
t+1

) ∣∣∣×

I

(
πT (fT )(O

BT−1

T ,BT−1) 6= arg max
aT∈{−1,1}

{
r
(
O

BT−1

T , [BT−1, aT ], O
[BT−1,aT ]
t+1

)})}
.

By defining the random variable

Y = arg max
aT∈{−1,1}

{
r
(
O

BT−1

T , [BT−1, aT ], O
[BT−1,aT ]
t+1

)}
,

we can write the optimization as a weighted classification problem

Af̂n
T ∈ arg min

fT∈FT

En

{

∣∣∣r
(
O

BT−1

T , [BT−1,−1], O
[BT−1,−1]
t+1

)
− r

(
O

BT−1

T , [BT−1, 1], O
[BT−1,1]
t+1

) ∣∣∣×

I
(
πT (fT )(O

BT−1

T ,BT−1) 6= Y
)}

.

Finally, introducing the surrogate φ for the 0 − 1 loss we obtain

f̂n
φT ∈ arg min

fT∈FT

En

{

∣∣∣r
(
O

BT−1

T , [BT−1,−1], O
[BT−1,−1]
t+1

)
− r

(
O

BT−1

T , [BT−1, 1], O
[BT−1,1]
t+1

) ∣∣∣×

φ
(
fT (O

BT−1

T ,BT−1)Y
)}

,

which is often a more feasible optimization problem.
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For τ = T − 1, . . . , 0, given f̂n
φT , f̂

n
φT−1, . . . , f̂

n
φτ+1, we write

E
{
γπq0,...,τ−1

,πτ (fτ ),πt+1( bfn
φτ+1

),...,πT ( bfn
φT

)(OT+1,BT )
}

explicitly as

E





∑

[aτ ,...,aT ]∈{−1,1}T+1−τ

I
(
πτ (fτ )(O

Bτ−1

τ ,Bτ−1) = aτ

)

T∏

t=τ+1

I
(
πt(f̂

n
φt)
(
O

[Bτ−1,aτ,t−1]
t , [Bτ−1, aτ,t−1]

)
= at

)
×

T∑

t=τ

r
(
O

[Bτ−1,aτ,t−1]
t , [Bτ−1, aτ,t], O

[Bτ−1,aτ,t]
t+1

)}
=

E { I
(
πτ (fτ ))(O

Bτ−1

τ ,Bτ−1) = −1
)

∑

[aτ+1,...,aT ]∈{−1,1}T−τ

T∏

t=τ+1

I
(
πt(f̂

n
φt)(O

[Bτ−1,−1,aτ+1,t−1]
t , [Bτ−1,−1, aτ+1,t−1]) = at

)
×

T∑

t=τ

r
(
O

[Bτ−1,−1,aτ+1,t−1]
t , [Bτ−1,−1, aτ+1,t], O

[Bτ−1,−1,aτ+1,t]
t+1

)
+

I
(
πτ (fτ )(O

Bτ−1

τ ,Bτ−1) = 1
)

∑

[aτ+1,...,aT ]∈{−1,1}T−τ

T∏

t=τ+1

I
(
πt(f̂

n
φt)(O

[Bτ−1,1,aτ+1,t−1]
t , [Bτ−1, 1, aτ+1,t−1]) = at

)
×

T∑

t=τ

r
(
O

[Bτ−1,1,aτ+1,t−1]
t , [Bτ−1, 1, aτ+1,t], O

[Bτ−1,1,aτ+1,t]
t+1

)}
.

165



Let Fτ (fτ+1, . . . , fT , G,B1, . . . , Bτ−1) be

max
aτ∈{−1,1}

{

∑

[aτ+1,...,aT ]∈{−1,1}T−τ

T∏

t=τ+1

I
(
πt(ft)(O

[Bτ−1,aτ ,aτ+1,t−1]
t , [Bτ−1, aτ , aτ+1,t−1]) = at

)

×
T∑

t=τ

r
(
O

[Bτ−1,aτ ,aτ+1,t−1]
t , [Bτ−1, aτ , aτ+1,t], O

[Bτ−1,aτ ,aτ+1,t]
t+1

)}
.

Let Gτ (fτ+1, . . . , fT , G,B1, . . . , Bτ−1) be

∣∣∣∣∣∣

∑

[aτ+1,...,aT ]∈{−1,1}T−τ

T∏

t=τ+1

I
(
πt(ft)(O

[Bτ−1,−1,aτ+1,t−1]
t , [Bτ−1,−1, aτ+1,t−1]) = at

)
×

T∑

t=τ

r
(
O

[Bτ−1,−1,aτ+1,t−1]
t , [Bτ−1,−1, aτ+1,t], O

[Bτ−1,−1,aτ+1,t]
t+1

)
−

∑

[aτ+1,...,aT ]∈{−1,1}T−τ

T∏

t=τ+1

I
(
πt(ft)(O

[Bτ−1,1,aτ+1,t−1]
t , [Bτ−1, 1, aτ+1,t−1]) = at

)
×

T∑

t=τ

r
(
O

[Bτ−1,1,aτ+1,t−1]
t , [Bτ−1, 1, aτ+1,t], O

[Bτ−1,1,aτ+1,t]
t+1

)∣∣∣∣∣ .

And let Hτ (fτ+1, . . . , fT , G,B1, . . . , Bτ−1) ∈ {−1, 1} be

arg max
aτ∈{−1,1}

{

∑

[aτ+1,...,aT ]∈{−1,1}T−τ

T∏

t=τ+1

I
(
πt(f̂

n
t )(O

[Bτ−1,aτ ,aτ+1,t−1]
t , [Bτ−1, aτ , aτ+1,t−1]) = at

)
×

T∑

t=τ

r
(
O

[Bτ−1,aτ ,aτ+1,t−1]
t , [Bτ−1, aτ , aτ+1,t], O

[Bτ−1,aτ ,aτ+1,t]
t+1

)}
.
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Using this shorthand notation, we have

E
{
γπq0,...,τ−1

,πτ (fτ ),πt+1( bfn
φτ+1

),...,πT ( bfn
φT

)(OT+1,BT )
}

=

E
{
Fτ (f̂

n
φτ+1, . . . , f̂

n
φT , G,B1, . . . , Bτ−1)

}
−

E
{
Gτ (f̂

n
φτ+1, . . . , f̂

n
φT , G,B1, . . . , Bτ−1)×

I
(
πτ (fτ )(O

Bτ−1

τ ,Bτ−1) 6= Hτ (f̂
n
φτ+1, . . . , f̂

n
φT , G,B1, . . . , Bτ−1)

)}
.

Introducing the surrogate φ we let f̂n
φτ be

f̂n
φτ=arg min

fτ∈Fτ

En

{
Gτ (f̂

n
φτ+1, . . . , f̂

n
φT , G,B1, . . . , Bτ−1)×

φ
(
fτ (O

Bτ−1

τ ,Bτ−1)Hτ (f̂
n
φτ+1, . . . , f̂

n
φT , G,B1, . . . , Bτ−1)

)}
.

Hence, we obtain the policy π(f̂n
φ ) = (π0(f̂

n
φ0), . . . , πT (f̂n

φT )), by solving T+1 weighted

classification problems with a surrogate φ. Next we a derive finite sample upper

bound on

V (π∗) − V (π(f̂n
φ )).
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Start from Lemma 9:

V (π∗) − V (π(f̂n
φ )) ≤

T∑

τ=0

Lτ
[
E
{
γπq0,τ−1

,π∗
τ ,πτ+1( bfn

φτ+1
),...,πT ( bfn

φT
)(OT+1,BT )

}
−

E
{
γπq0,τ−1

,πτ ( bfn
φτ+1

),...,πT ( bfn
φT

)(OT+1,BT )
}]

≤
T∑

τ=0

Lτ

[
sup
fτ

E
{
γπq0,τ−1

,πτ (fτ ),πτ+1( bfn
φτ+1

),...,πT ( bfn
φT

)(OT+1,BT )
}
−

E
{
γπq0,τ−1

,πτ ( bfn
φτ+1

),...,πT ( bfn
φT

)(OT+1,BT )
}]

=

T∑

τ=0

Lτ (T − τ + 1)

[
sup
fτ

E

{
γπq0,τ−1

,πτ (fτ ),πτ+1( bfn
φτ+1

),...,πT ( bfn
φT

)(OT+1,BT )

T − τ + 1

}
−

E

{
γπq0,τ−1

,πτ ( bfn
φτ+1

),...,πT ( bfn
φT

)(OT+1,BT )

T − τ + 1

}]
≤

T∑

τ=0

Lτ (T − τ + 1)ψ−1

[
E

{
Gτ (f̂

n
φτ+1, . . . , f̂

n
φT , G,B1, . . . , Bτ−1)

T − τ + 1
×

φ
(
f̂n

φτ (O
Bτ−1

τ ,Bτ−1)Hτ (f̂
n
φτ+1, . . . , f̂

n
φT , G,B1, . . . , Bτ−1)

)}
−

inf
fτ

E

{
Gτ (f̂

n
φτ+1, . . . , f̂

n
φT , G,B1, . . . , Bτ−1)

T − τ + 1
×

φ
(
fτ (O

Bτ−1

τ ,Bτ−1)Hτ (f̂
n
φτ+1, . . . , f̂

n
φT , G,B1, . . . , Bτ−1)

)}]
,

where in the first inequality we assume that the sup is attainable and the second

inequality follows from [8] as in Sec. 4.5. As was done previously, we divide the

bound into an estimation error, which will be bounded with high probability, and an
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approximation error

γτ (Fτ , f̂
n
φτ+1, . . . , f̂

n
φT ) =

inf
fτ∈Fτ

E

{
Gτ (f̂

n
φτ+1, . . . , f̂

n
φT , G,B1, . . . , Bτ−1)

T − τ + 1
×

φ
(
fτ (O

Bτ−1

τ ,Bτ−1)Hτ (f̂
n
φτ+1, . . . , f̂

n
φT , G,B1, . . . , Bτ−1)

)}]
−

inf
fτ

E

{
Gτ (f̂

n
φτ+1, . . . , f̂

n
φT , G,B1, . . . , Bτ−1)

T − τ + 1
×

φ
(
fτ (O

Bτ−1

τ ,Bτ−1)Hτ (f̂
n
φτ+1, . . . , f̂

n
φT , G,B1, . . . , Bτ−1)

)}]
.

Let γτ (F) = supfτ+1∈Fτ+1,...,fT∈FT
γτ (Fτ , fτ+1, . . . , fT ). The estimation error can be

bounded by distances from ensemble means to empirical means:

E

{
Gτ (f̂

n
φτ+1, . . . , f̂

n
φT , G,B1, . . . , Bτ−1)

T − τ + 1
×

φ
(
f̂n

φτ (O
Bτ−1

τ ,Bτ−1)Hτ (f̂
n
φτ+1, . . . , f̂

n
φT , G,B1, . . . , Bτ−1)

)}
−

inf
fτ∈Fτ

E

{
Gτ (f̂

n
φτ+1, . . . , f̂

n
φT , G,B1, . . . , Bτ−1)

T − τ + 1
×

φ
(
fτ (O

Bτ−1

τ ,Bτ−1)Hτ (f̂
n
φτ+1, . . . , f̂

n
φT , G,B1, . . . , Bτ−1)

)}
≤

2 sup
fτ∈Fτ ,...,fT∈FT

∣∣∣∣E
{
Gτ (fτ+1, . . . , fT , G,B1, . . . , Bτ−1)

T − τ + 1
×

φ
(
fτ (O

Bτ−1

τ ,Bτ−1)Hτ (fτ+1, . . . , fT , G,B1, . . . , Bτ−1)
)}

−

En

{
Gτ (fτ+1, . . . , fT , G,B1, . . . , Bτ−1)

T − τ + 1
×

φ
(
fτ (O

Bτ−1

τ ,Bτ−1)Hτ (fτ+1, . . . , fT , G,B1, . . . , Bτ−1)
)}∣∣ .

Next, we bound the P-dimension of the associated function class to obtain a fi-

nite sample upper bound on this term. Let H = {Hτ : fτ ∈ Fτ , . . . , fT ∈ FT}. Let

S be a set of 2n realizations of G and B1, . . . , Bτ−1. We now compute an upper

bound on |H|S|. The question is how many distinct collections of 2n pairs of paths
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following the two possible actions at stage τ can the classes Πτ+1(Fτ+1), . . . ,ΠT (FT )

realize on a set of 2n trajectory trees. Each such two collections of 2n paths (one

collection following action −1 and one following action 1) will result in a collection

of two cumulative rewards which then will be compared pair by pair on every tree

to generate an element in |H|S|. By Sauer’s lemma [119], on the collection of his-

tories {O[Bτ−1,−1]i
τ+1 , [Bτ−1,−1]i}2n

i=1 the policy class Πτ+1(Fτ+1) can realize at most
(

2ne
dτ+1

)dτ+1

distinct policies. Each of these policies is generating a realization of the

2n next histories, on which the policy class πτ+2(Fτ+2) can realize at most
(

2ne
dτ+2

)dτ+2

distinct policies. Continuing until the policy class πT (FT ), we obtain that on the

collection of histories {O[Bτ−1,−1]i
τ+1 , [Bτ−1,−1]i}2n

i=1, the composition of the decision

rules classes can realize at most

T∏

t=τ+1

(
2ne

dt

)dt

distinct policies. Another set of

T∏

t=τ+1

(
2ne

dt

)dt

distinct policies can be realized on the set {O[Bτ−1,1]i
τ+1 , [Bτ−1, 1]i}2n

i=1. Each of the

elements of these two sets define a set of cumulative rewards on the trees. Hence the

comparison of the two rewards on the paths defined by the two collections of distinct

policies can have at most

[
T∏

t=τ+1

(
2ne

dt

)dt

]2

=
T∏

t=τ+1

(
2ne

dt

)2dt

distinct 2n-vectors when realized on the 2n trajectory trees.

Let Gτ = {Gτ : fτ ∈ Fτ , . . . , fT ∈ FT}. As shown above, each element of the
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difference in the definition of Gτ can realize at most

T∏

t=τ+1

(
2ne

dt

)dt

distinct 2n-vectors on the set of histories. Therefore |G|S| is bounded as well by

T∏

t=τ+1

(
2ne

dt

)2dt

.

Now let L = {Gτφ(fτHτ ) : fτ ∈ Fτ , . . . , fT ∈ FT}. Suppose {v1, v2, . . . , vk} is an

external ǫ/µ-cover for Fτ |S. For every vj construct
∏T

t=τ+1

(
2ne
dt

)4dt

vectors that take

all possible values of Gτφ(vjHτ ) (there is a slight abuse of notation, since Gτ and

Hτ , realized on the data, as well as vj are 2n-vectors). Each one of these 2n-vectors

has entrees

Gτ (fτ+1, . . . , fT , G
i, Bi

1, . . . , B
i
τ−1)φ

(
vj

iHτ (fτ+1, . . . , fT , G
i, Bi

1, . . . , B
i
τ−1)

)
,

i = 1, . . . , 2n

for some set of functions fτ+1, . . . , fT . Now consider a sequence fτ , . . . , fT , which

define Gτφ(fτHτ ) an element of L. Then there must exist a vector vj, for which

1

2n

n∑

i=1

|fτ (G
i, Bi

1, . . . , B
i
τ−1) − vj

i | < ǫ/µ.

Assume that φ satisfies the Lipschitz condition (4.5.18). Then, multiplying this

vector, element-wise, with Hτ of fτ , . . . , fT realized on the trajectory trees, taking the

function φ, and multiplying with Gτ of fτ , . . . , fT , again, realized on the trajectory

trees is an external ǫ-cover of L|S by the Lipschitz condition of φ and the argument

171



in the proof of Theorem 3. Hence, we have

L(ǫ,L|S, || · ||a1)≤
T∏

t=τ+1

(
2ne

dt

)4dt

L(ǫ/µ,Fτ |S, || · ||a1)

≤2
T∏

t=τ+1

(
2ne

dt

)4dt
(

2eµ

ǫ
ln

2eµ

ǫ

)dτ

Given this bound [119, Theorem 7.5] asserts that the probability, over n trajectory

trees, that

sup
fτ∈Fτ ,...,fT∈FT

∣∣∣∣E
{
Gτ (fτ+1, . . . , fT , G,B1, . . . , Bτ−1)

T − τ + 1
×

φ
(
fτ (O

Bτ−1

τ ,Bτ−1)Hτ (fτ+1, . . . , fT , G,B1, . . . , Bτ−1)
)}

−

En

{
Gτ (fτ+1, . . . , fT , G,B1, . . . , Bτ−1)

T − τ + 1
×

φ
(
fτ (O

Bτ−1

τ ,Bτ−1)Hτ (fτ+1, . . . , fT , G,B1, . . . , Bτ−1)
)}∣∣ > ǫ

is less then or equal to

4
T∏

t=τ+1

(
2ne

dt

)4dt
(

16eµ

ǫ
ln

16eµ

ǫ

)dτ

exp(−nǫ2/32).

By the union bound, the probability, over n trajectory trees, that

T⋃

τ=0

sup
fτ∈Fτ ,...,fT∈FT

∣∣∣∣E
{
Gτ (fτ+1, . . . , fT , G,B1, . . . , Bτ−1)

T − τ + 1
×

φ
(
fτ (O

Bτ−1

τ ,Bτ−1)Hτ (fτ+1, . . . , fT , G,B1, . . . , Bτ−1)
)}

−

E

{
Gτ (fτ+1, . . . , fT , G,B1, . . . , Bτ−1)

T − τ + 1
×

φ
(
fτ (O

Bτ−1

τ ,Bτ−1)Hτ (fτ+1, . . . , fT , G,B1, . . . , Bτ−1)
)}∣∣ > ǫ
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is less than or equal to

T∑

τ=0

4
T∏

t=τ+1

(
2ne

dt

)4dt
(

16eµ

ǫ
ln

16eµ

ǫ

)dτ

exp(−nǫ2/32).

This leads to the following result

Theorem 5. With probability greater than 1 − δ over a set n of trajectory trees,

V (π∗) − V (π(f̂n
φ )) ≤

T∑

τ=0

2τ (T − τ + 1)ψ−1(2ǫ+ γτ (F))

for n satisfying

T∑

τ=0

4
T∏

t=τ+1

(
2ne

dt

)4dt
(

16eµ

ǫ
ln

16eµ

ǫ

)dτ

exp(−nǫ2/32) < δ.

4.7 Concluding Remarks

Theorems 4 and 5 make no assumptions on the underlying distribution and are in

this sense worst case bounds. The drawback of deriving these worst case bounds is

that they are usually too loss to be of practical use. By imposing regularity conditions

on the underlying distribution, one can obtain faster uniform convergence rates of

the empirical means to their expectation (see e.g. [8, Sec. 3] and references therein),

which then lead to faster convergence rates of the average value functions. Another

handicap of the given bounds is their dependency on the complexity measures of the

approximation classes. For example, the bound [119, p. 412] on the P-dimension of

the feed forward neural network that is reported in the next chapter, is 1.78 × 106.

When plugging this value in Theorem 5, for the T = 4 problem in the next chapter,

one obtains that for the case ǫ = δ = 0.01, n has to be of the order of 1014 for

the bound to hold. In practice we obtained good results with n = 10, 000 samples.
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Hence, to apply the Theorems 4 and 5 to the type of problems described in the next

chapter, tighter bounds on the VC-dimension of neural networks must be derived.

This is beyond the scope of this thesis.

Motivated by the reduction in [62] we focused on the binary action space case.

The approximate dynamic programming algorithm, however, can be applied directly,

without the requirement to first reduce the problem to a binary action problem.

In [25], we provide a reduction of a single-stage reinforcement learning problem to

weighted classification for an arbitrary number of actions. Multi-class weighted clas-

sification problems can be solved by applying weights-sensitive classifiers or by further

reducing the weighted classification problem to a standard classification problem us-

ing re-sampling methods (see [71], [1], and references therein for a description of both

approaches). Theorems 2 and 4 can be easily adapted to the multiple actions case,

while adapting Theorems 3 and 5 will require tailoring to the specific method used

to solve the multi-class weighted classification problems.

The algorithms in [62] and [72] require the construction of the entire trajectory

tree. This requires that an exponential, in the horizon T , number of calls are made to

the random observation generator. It is possible to show that our algorithm requires

only a polynomial number of calls. Hence, our approximate dynamic programming

algorithm provides an additional saving compared to the available methods. We note

that [62] discusses ways to avoid constructing the entire tree. However, in the worst

case scenario, the entire tree construction is unavoidable.

Finally, we note that, while not investigated here, the algorithm and part of its

analysis apply to the case in which the data set is a collection of random trajectories

of the decision process (see [62] and [84]) rather than full trajectory trees.
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CHAPTER 5

Optimal Sensor Scheduling via Classification

Reduction of Policy Search

5.1 Introduction

The advent of agile sensing systems that collect data through a variety of sensing

modalities has brought about new and exciting challenges to the field of signal pro-

cessing. Agile, multi-modal, sensing (see e.g. [68] and [60]) exploit the capability of

controlling the data collection process. Examples of agile sensing systems include a

radar that can control its beam direction, a land mine detector that can deploy radar

or seismic sensors, or a LANDSAT satellite that can control the frequency band of

its radar. The key element that differentiates agile sensing systems from other data

collection systems is a resource allocation constraint that precludes using all sensor

modalities at all times. We formulate agile sensing as an optimization in which the

system must automatically select the best sensing modality based on past observa-

tions to maximize a given objective function while minimizing the data collection

cost.

When formulated as a sequential choice1 of experiments problem [37], the agile

1The key difference from the related sequential design of experiment problem is that instead
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sensing problem consists of an episodic task that is divided into a sequence of decision

epochs. Each episode begins as the first observation is collected. Then, at each

subsequent decision epoch two decisions are made. The first one is to decide if the

amount of information collected thus far is sufficient for making inference (detection

or estimation) on the data with a desired accuracy or whether more observations

are required. This first decision also determines the choices available at the second

decision. If more observations are required, the next best sensor modality needs

to be determined. If the information is deemed sufficient for inference, the final

estimation or detection decision is made. Every sensor modality has an associated

deployment cost and a decision rule must balance the expected information gain

from a sensor deployment, which results in improved inference capabilities, with the

deployment cost. The collection of decision rules, i.e., the sequence of mappings

from past observations to the decision space, is called a policy and the goal is to

find a policy that optimally trades-offs the overall average sensor deployment costs

and the estimation or detection performance, e.g., mean squared estimation error or

classification error rate.

The problem of finding optimal policies for sequential choice of experiments suffers

from the curse-of-dimensionality [11] and scenarios in which a closed form solution

for the optimal policy exists are rare. Past research has focused on the asymptotic

regime in which one assumes a large number of data collection iterations (or sensor

dwells) and low sensor deployment cost (see [63] and references therein). Another

focus has been on “experiment sufficiency” – when is one experiment (or sensor

modality) always better than another experiment (see [50] and references therein).

Here, we take a different approach. We assume that the underlying model is un-

known and aim at finding approximate solutions to the optimal policy. In particular,

of adapting a set of continuous experiment parameters, here we choose from a finite set of fixed

experiments.
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in the absence of a model, optimal policies are approximated from data using a gener-

ative model, where data is generated by a simulator or collected in a field experiment.

It is shown that this problem formulation falls into the class of reinforcement learning

problems and the Classification Reduction of Policy Search (CROPS) methodology

of the previous chapter is applied. Two case studies are reported as well. The first

is the problem of finding sensor scheduling policies for land-mine detection. For this

problem a simulator is used to generate data which is then used for policy search.

The second problem is to perform optimal waveform selection for a multi-band radar

on a land classification satellite. In this application competitive policies are found

from experimental LANDSAT data.

5.2 Problem Formulation

Let X1 ∈ X1, X2 ∈ X2, . . . , XK ∈ XK be K random variables that correspond to

the outputs of K sensors or K sensor modalities. Note that each of these random

variables lies, in general, in a different space. We append each random variable with

its index so that a value of an observation also indicates which sensor was used to

collect it. Let Y ∈ Y be a discrete random variable that represent the state of nature

whose value we try to predict. The presented results can also be applied when Y is

a continuous random variable, whose value we try to estimate, but we focus on the

detection problem for concreteness.

A policy π specifies which sensor to deploy first, say sensor k. Then, based of

the value of Xk, the policy determines if an accurate prediction of Y is possible,

and if so, what is the best prediction, or, otherwise, which is the next best sensor

to deploy to collect additional data. This process continues until either a prediction

of Y is made or all available sensors are deployed. We assume that each sensor can
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be applied at most once and hence, the total number observations is bounded by

K. Therefore, a policy π is sequence of K + 1 decision rules π = [π1, π2, . . . , πK+1].

This assumption is valid when the randomness in the process, e.g. the observation

noise, is governed by clutter that cannot be averaged out by repeated measurements,

rather than by thermal noise. Note that π1 simply indexes the first sensor to deploy

(excluding the possibility of predicting Y without taking any observations), and

hence, π1 ∈ {1, 2, . . . , K}. Also note that πK+1 is used only if at all the decision

epochs the decision was to defer the prediction of Y and deploy another sensor. The

decision rule πK+1 is a map from X1 ×X2 × . . .×XK to Y . If the objective is to try

to minimize the detection error, then it is well known that the optimal map is the

Bayes classifier [54]

π∗
K+1(x1, x2, . . . , xK) = arg max

y∈Y

Pr {Y = y|X1 = x1, X2 = x2, . . . , XK = xK} .

The domain and range of the decision rules for stages 2, . . . , K depend on the se-

quence of sensors deployed up to the decision time. For example, if π1 = k, then

π2 : Xk → ({1, 2, . . . , K} \ k)
⋃

Y .

If π2(xk) ∈ ({1, 2, . . . , K} \ k) then the decision is to take another observation using

sensor π2(xk). Alternatively, if π2(xk) ∈ Y , then the decision is that the amount of

information is sufficient and π2(xk) is the predictor of Y . Instead of explicitly defining

the policy through a sequence of mappings whose domains and ranges depend on past

decisions and observations, we let Z = [X1, . . . , XK ] and define the policy π as a two-

dimensional function of Z. Given, the value of Z, its first argument [π(Z)]1 is the

resulting sequence of sensors that were deployed prior to the final decision and its

178



second argument [π(Z)]2 is the prediction for Y . Note that in general, only a subset

of the elements of Z are observable at the time the final decision is made.

Denote by Pc(π) = Pr{[π(Z)]2 = Y } the probability of correctly predicting the

value of Y based on the data collected according to the policy π, by C([π(Z)]1) the

cost associated with the sequence of sensor deployments [π(Z)]1, e.g., the number of

sensor dwells, and by E {C([π(Z)]1)} the expected cost. We assume that the cost of

the deployment of a sequence of sensors is the sum of the costs of deploying each of

the sensors, and hence, does not depend on the order of deployment. The optimal

policy π∗ is the policy that maximizes

Pc(π) − λE {C([π(Z)]1)} , (5.2.1)

where λ is a tuning parameter that trades off the cost of data collection and the cost

of prediction error. Under certain regularity conditions, the optimal policy can be

defined though backward induction (see e.g. [93]). However, when X1, . . . ,XK are

continuous or discrete and large, the solution becomes intractable. Furthermore, even

when X1, . . . ,XK are finite and relatively small, the backward induction iterations

require computing expectations with respect to the joint distribution of Z and Y .

Here, we allow X1, . . . ,XK to be continuous or discrete and large, and consider

the case in which the joint distribution of Z and Y is unknown. We assume that n

realizations of (Z, Y ) are available and the goal is find a policy that maximizes (5.2.1)

based on this data set. Hence, this is a model free instance of the sequential choice

of experiments problem as formulated in [37], which, to the best of our knowledge,

has not been considered previously in the literature.
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5.3 Stochastic Decision Process Formulation

The formulation of our sequential choice of experiments problem as a finite-

horizon partially observable stochastic decision process discussed in the previous

chapter consists of several elements:

• The decision epochs determine the times at which an action is executed. In the

discrete model adopted here, decision epochs occur at t = 0, . . . , τ . At every

decision epoch either another observation is collected, or a final prediction of Y

is made. In the later case the processes terminates. Therefore, τ is a random

variable that depends on the deployed policy and Z.

• The system’s state is the realization of Y which is fixed throughout the episode.

• The state at time zero is a random variable with distribution D over Y .

• The state of the system cannot be directly observed but instead after every

decision epoch t = 0, . . . , τ , in which the decision is to collect another obser-

vation, a noisy observation Ot of the systems’ state is collected. The domain

and distribution of the observation depends on the underlying systems’ state

Y and the deployed sensor. Denote by Ot = [O0, O1, . . . , Ot] the observations

up to and including time t < τ , and note that Ot is a subset of Z.

• At every decision epoch 0 ≤ t ≤ τ the agent chooses an action at, based on the

past observations, from a set of possible actions – the action space At. Though

not explicitly appearing in the notation, the set of available actions At may

depend on the past actions. In our application, only actions that correspond

to sensors that have not be previously deployed can be taken.

• The action of making the prediction of Y is a termination action that ends the

process.
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• We note that even though in our formulation the state of the system is fixed

throughout the episode, the results can be generalized to the case in which

upon taking action a at state y, the system makes a transition to state y′

according to a transition probability Py,a. In other wards, it is possible to

generalize to the case in which the system’s states evolve as a Markov process.

This generalization is important for cases in which sensor deployment may be

sensed by the target and lead to changes in the target’s state as in [60].

• A reward r(Y, a) is received after each time an action is taken. When a sensor

is deployed to collect another observation, r(Y, a) is minus the cost of deploying

sensor a regardless of the state of the system. In the application below, the

cost is the same for all sensor modalities, and it is denoted by c. When the

final prediction is made a reward of one unit is received only if the prediction

a = Ŷ (Oτ−1) equals Y , i.e., r(Y, a) = I(a = Y ), where I is the indicator

function that equals one when its argument is true and zero otherwise.

• A policy π is a sequence of decision rules, or mappings from past observations

to the action spaces, which specifies the action to take at each decision epoch.

The policy is composed of K + 1 decision rules (π0, π1, . . . , πK), however, if

the termination action is taken prior to decision epoch K then not all decision

rules are executed.

A typical episode is a sequence

a0 → O0 → a1(O0) → O1 → a2(O1) . . .

Oτ−1 → aτ (Oτ−1) = Ŷ (Oτ−1),
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where a0 is the first decision to deploy a sensor before any observations were collected,

O0, O1, . . . , Oτ−1 are the observations whose domains and distributions depend on Y

and the decisions a0, a1, . . . , aτ−1, respectively, and aτ (Oτ−1) is a decision that the

past observations are sufficient for making a prediction on Y , and it specifies the

predictor Ŷ (Oτ−1). The objective is to find a policy π that maximizes the expected

sum of rewards:

V (π) = Eπ

{
τ∑

t=0

r(Y, πt(Ot−1))

}
, (5.3.2)

where the expectation is taken with respect to the joint distribution of Z and Y ,

which, through π, induce a distribution on the observations O0, O1, . . . , Oτ−1. The

expected sum of rewards V (π) is called the value of the policy π.

It is well known that when the underlying joint distribution of the system state

and the observations is known and the observations can take a finite number of pos-

sible values, it is possible to formulate the problems in terms of the information state

and solve for the optimal policy [59]. In our setting, however, the joint distribution is

unknown and the observations are, in general, continuous random variables. Approx-

imating the optimal policy in this case is a classic problem in reinforcement learning.

Here, we adopt the generative model assumption of [62]. Under this assumption,

the initial distribution D and the distribution of the observations conditioned on

the system state and the deployed sensor are unknown but it is possible to generate

realizations of the system state Y according to D and observations conditioned on

arbitrary state Y and deployed sensor. In particular, we assume that we have n re-

alizations of the pair (Z, Y ) denoted by {(Z1, Y1), (Z2, Y2), . . . , (Zn, Yn)}. Note that

given a realization (Z1, Y1) it is possible to generate the entire decision tree associ-

ated with the sequential choice of experiment problem. Given a realization (Z1, Y1)
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and a policy π, it is possible to follow the path that a system that uses π will follow

and compute the sum of rewards for this realization. Prior to the prediction of Y ,

the rewards are minus the sensor deployment costs, and, at the prediction epoch, a

unit reward is received only if Ŷ (Oτ−1) = Y1, where Ŷ (Oτ−1) is chosen by following

the path induced by π.

Now, consider a class of policies Π, i.e., each element π ∈ Π is a sequence of

decision rules π = (π0, π1, . . . , πK). It is possible to estimate the value V (π) (5.3.2)

of any policy in the class from the set of trajectory trees by simply averaging the

sum of rewards on each tree along the path that agrees with the policy [62]. A policy

specifies the action to take at each decision epoch and so there is exactly one path

in every tree that agrees with a given policy. Denote by V̂ i(π) the observed sum of

rewards on the i’th tree along the path that corresponds to the policy π. Then the

value of the policy π is estimated by

V̂n(π) = n−1

n∑

i=1

V̂ i(π). (5.3.3)

In [62], the authors show that with high probability (over the data set) V̂n(π) con-

verges uniformly (over Π) to V (π) with rates that depend on the VC-dimension of

the policy class. This result motivates the use of policies π with high V̂n(π), since

with high probability these policies have high values of V (π).

In the previous chapter it is shown that while the task of finding the global

optimum within a class of non-stationary policies may be overwhelming, the approx-

imate dynamic programming algorithm leads to a sequence of single step reinforce-

ment learning problems which can be reduced to a sequence of weighted classification

problems.
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If the action space is not binary, as in the problem described below, the reduc-

tion leads to a sequence of multi-class weighted classification problems. These can

be solved using re-sampling methods or heuristic extensions of methods for binary

weighted classification (see [1] for both approaches), as done with the application

of the k-nearest neighbor algorithm to be described below. Alternatively, one can

use the reduction of [62] that converts a multi-action RL problem into a binary RL

problem by introducing dummy decision epochs, as done for the application of the

weights-sensitive neural network in the problem below. The reduction is operated on

every stage at which more than two actions are available. Note that it is possible to

describe any action as the answer to at most ⌈log2(L)⌉ ’yes or no‘ questions, where

L is the number of actions, and ⌈x⌉ is the smaller integer larger than or equal to x.

Then, every stage with more than two actions is described by the decision tree asso-

ciated with these binary decision epochs. Once an intermediate decision is made, it

corresponds to a transition to the same state, i.e., the state does not evolve, but the

action space is halved. Only when the decision is between two actions, the chosen

action is executed and a state transition occurs.

5.4 Sensor Scheduling for Land-Mine Detection

This section reviews a sequential choice of experiment problem that arises in the

design of unmanned land-mine detection vehicle. The vehicle carries three sensors for

performing the detection: an EMI sensor, a ground penetrating radar (GPR), and

an acoustic sensor. As can be seen in Figure 5.1, the sensors have different responses

under different types of land-mines and clutter. In addition, deploying a sensor takes

time and energy and hence not all sensors are deployed at every potential land-mine

location. Upon reaching a new location, in which a land-mine is potentially present,
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a policy that trades of the cost of a sensor deployment and detection probability

determines the first sensor to deploy. Based on the collected measurement, either

a prediction regarding the presence of the land-mine is made or a second sensor

is deployed. Finally, based on the output of the first two deployed sensors, either

a prediction regarding the presence of the land-mine is made or a third sensor is

deployed followed by the final prediction based on all three measurements. The goal

is to maximize the probability of correct detection minus a constant c > 0 (5.2.1)

times the number of sensor dwells.

Since there are a total of three sensors Z = [X1, X2, X3]. The state space is binary

Y = {0, 1}, where Y = 0 means no land-mine is present and Y = 1 indicates the

presence of a land-mine. The decision tree associated with this problem is presented

in Figure 5.2.

EMI GPR Seismic

Nail

Rock

Plastic Anti-personnel 
Mine

Plastic Anti-tank Mine

EMI GPR Seismic

Nail

Rock

Plastic Anti-personnel 
Mine

Plastic Anti-tank Mine

Figure 5.1: Sensors signatures for several land-mine and clutter types.

Figure 5.4 summarizes the features extracted from each sensor and their expected

signatures under different scenarios. In the simulation, one of the possible eight

scenarios was first chosen randomly. Then, a realization of each of the features,
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New location

Seismic dataGPR dataEMI data

EMI GPR Seismic

EMI Seismic

Final detection Seismic dataEMI data

Seismic data Final detection

Final detection

New location

Seismic dataGPR dataEMI data

EMI GPR Seismic

EMI Seismic

Final detection Seismic dataEMI data

Seismic data Final detection

Final detection

Figure 5.2: The decision tree associated with the land-mine detection problem.

which together compose Z, is generated as a Gaussian random variable with means

0, 0.5, or 1, corresponding to low, medium, or high, respectively. The covariances

of sensors 1, 2, and 3, were 0.5I, 0.45I and 0.1, respectively, where I is the 2-

dimensional identity matrix. These values of means and covariances were chosen in

correspondence with experiments that were conducted in a sand box [80]. Hence

the marginal distribution of the vector of sensor outputs is a five-dimensional eight-

component Gaussian mixture.

Before searching for the optimal sensor scheduling policy, the classifiers

Ŷ (O1), Ŷ (O2), Ŷ (O3)
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for all possible combinations of sensor selections

X1, X2, X3,

(X1, X2), (X1, X3), (X2, X3),

(X1, X2, X3)

were found by training two-layer feed-forward neural networks, each with ten input

and two output nodes, on 1000 samples of (Z, Y ). By testing the performance of

these classifiers on a separate test set of 1000 samples, we found that the best single

sensor to use for detecting a land-mine is the EMI sensor, that the two best fixed

sensors are GPR plus the Seismic, and that in this scenario the classifier which is

based on the output of all three sensors has a probability of correct detection of

0.887. The search for the optimal sensor scheduling policy was conducted while

these classifiers remained fixed. In other words, only decisions regarding whether or

not to deploy a sensor, and which sensor to deploy next were considered. Since the

classifiers remained fixed during the policy search, once a decision to make prediction

is made, the reward is gained according to the classifier output, without trying to

further optimize its performance.

As explained above, the optimal policy was approximated by introducing dummy

decision epochs, so that all the decisions are binary. We then performed the nonlin-

ear Gauss-Seidel decomposition into a sequence of single-stage binary reinforcement

learning problems. Each subproblem was then converted to a weighted classification

problem that was solved by a weights-sensitive two-layer feed-forward neural network

with seven input and two output nodes.

Figure 5.3 summarizes the results. The horizonal axis is the average number of

sensor dwells and the vertical is the probability of correct detection. The three solid

187



circles correspond to the performance of the best single sensor, best two sensors,

and the performance when all three sensors are deployed, respectively. These points

are connected by a solid line that corresponds to performance that can be achieved

by randomly selecting one of these fixed sensor configurations. The crosses corre-

sponds to the performance (estimated from a 1000 trail test set) obtained by the

approximated optimal sensor scheduling policies. Each cross correspond to a differ-

ent choice of c (5.2.1), ranging from c = 0.2 at the left lower corner and c = 0 at

the outmost upper right cross. When c = 0.2 the price of taking more than a single

measurement is too dear compared to the improvement in the probability of correct

detection and the policy dictates making decision using only a single sensor. As c

decreases, more and more observations are allowed. It is interesting to see that when

c is zero, i.e, the sensor deployment cost is zero, the algorithm does not always deploy

all three sensors, but achieves better performance than when all three sensors are

always deployed. This happens since the classifiers used at the prediction stages are

not the Bayes classifiers (in which more information can never worsen performance)

but rather sub-optimal classifiers that were found by training neural networks.

It is encouraging that by training the neural networks we found a policy that

accounts for generalization errors at the predictor level and do not collect the third

observation when that observation might lead to a worse prediction. In summary, it

can be seen that through sensor scheduling it is possible to achieve better classifi-

cation performance with fewer average number of sensor dwells. The actual sensor

sequences taken under the possible eight scenarios when the policy whose perfor-

mance cross is circled is presented in Figure 5.4. It is seen that the optimal policy

dictates that the first deployed sensor is the GPR sensor even though the optimal

single sensor is the EMI sensor. This is not surprising since an optimal sensor schedul-

ing optimizes the future sum of rewards rather than choosing the sensor whose stand
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Figure 5.3: Performance of sensor-scheduling-based detection compared to detection
under optimal fixed sensor allocations.
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alone performance are the best. Furthermore, only when the underlying system state

is a plastic anti-personal land-mine, which has the weakest signature, does the pol-

icy dictate using all three sensors. In other cases, two sensors are sufficient for the

land-mine detection.

5.5 Waveform Selection for Land Monitoring Satel-

lite

In this section, the optimal sensor scheduling algorithm is applied to real data for

the problem of waveform selection for a LANDSAT land monitoring satellite. The

satellite collects a radar backscatter on a patch of land and the goal is to classify the

land type based on the returned signal. Given a new probing location, the satellite

can transmit one of four possible waveforms. The different waveforms correspond to

different frequency bands. Therefore, Z = [X1, X2, X3, X4]. Each of the observations

X1, . . . , X4 is a 9-dimensional vector taking values in [0, 255]9, and hence, Z is a

36-dimensional vector. There are six land types, and hence Y = {1, 2, . . . , 6}. In the

public data set [109], there are 4435 points in the training set and 2000 in the test set.

For a more detailed explanation of the problem see [54] chapter 13. In this section we

explore, using sensor scheduling, reducing the number of waveform (frequency band)

transmissions. In particular, we find policies that select the first best two frequency

bands and based on the outcome determine if the remaining frequency bands are

required, or whether the first two bands provide sufficient information for classifying

the land type. Hence, at the first decision epoch there are six possible actions leading
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to six possible measured pairs of frequency bands:

{[X1, X2], [X1, X3], [X1, X4], ...

[X2, X3], [X2, X4], [X3, X4]}.

The land type classifiers are the k-nearest neighbors algorithm with k set to

5, as recommended in [54] for the non-sequential problem. Two classifiers for the

policy search were considered. The first is a [7, 5, 2] feed-forward weights-sensitive

neural network with sigmoid activation functions. The neural network is trained to

minimize the objective function (ref to multi stage with surrogate objective) with φ

being the truncated squared error loss. The second is a weights-sensitive k-nearest

neighbor, where k = 30, chosen using leave-one-out cross validation [54]. At every

given point, the k-nearest neighbor algorithm chooses the actions that minimizes

the weighted classification error averaged on the point’s k nearest neighbors in the

training set. The performance are summarized in Figure 5.5. The crosses correspond

to the performance of policies that were found by weights-sensitive k-nearest neighbor

classifiers as c ranges from 0 to 0.18. The squares correspond to the performance of

policies that were found by weights-sensitive [7, 5, 2] feed-forward neural networks for

four values of c. To study the effect of the initial network weights distribution, for

each value of c, the neural networks training was initiated at four random weights

selections, leading to four resulting policies. As can be seen, under both learning

configurations it is possible to obtain a range of trade-offs between sensor deployment

cost and classification performance. Particularly, the policy learned by the k-nearest

neighbor classifier with c = 0.02 almost achieves the same performance as when all

sensor modalities are used, but with a significant reduction in deployment cost. From

comparing the performance of the k-nearest neighbor classifier based policy with the
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Figure 5.5: Performance of sensor scheduling algorithm for the land monitoring
satellite problem.

one based on the neural networks it is seen that the performance achieved by the

two architectures are comparable.
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