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ABSTRACT

The problem of finding the maximum likelihood estimator of a
commonly observed model, based on data collected by a sensor
network under power and bandwidth constraints is considered. In
particular, a case where the sensors cannot fully share their data
is treated. An iterative algorithm that relaxes the requirement of
sharing all the data is given. The algorithm is based on a local
Fisher scoring method and an iterative information sharingpro-
cedure. The case where the sensors share sub-optimal estimates
is also analyzed. The asymptotic distribution of the estimates is
derived and used to provide means of discrimination betweenes-
timates that are associated with different local maxima of the log-
likelihood function. The results are validated by a simulation.

1. INTRODUCTION

The advent of a large number of applications for sensor networks
has increased interest in the fields of distributed detection, estima-
tion and quantization (see e.g. [1] and references therein). There
have been two major streams in the research on distributed infor-
mation gathering. The first, often called data fusion, uses heuris-
tics in order to provide ad hoc methods for distributed informa-
tion systems (see [2] and references therein). The other area of
research uses information theory in order to gain insight ondis-
tributed systems, to derive bounds on their performance, and to
construct algorithms for detection and estimation (see e.g. [3], [4],
and [5]). Recently, Nowak [6] treated the problem of Maximum
Likelihood (ML) estimation of the Gaussian mixture model bya
sensor network and offered the Decentralized Expectation Maxi-
mization (EM) algorithm.

In the present paper, we adopt a different approach. We use
asymptotic statistical theory in order to characterize certain aspects
of the distributed system and to offer methods for performing esti-
mation under power and bandwidth constraints.

The general setting considered in this paper is the following.
A network of sensors is distributed in order to collect measure-
ments of a common physical phenomenon. The data are collected
for a parameter estimation task. This problem becomes trivial un-
der any of the following conditions: (1) all the data can be shared
by the sensors, or (2) a sufficient statistic is available andcan be
shared by the sensors. In these cases, maximum likelihood estima-
tion can be performed and it is asymptotically optimal. However,
if bandwidth and power constraints prevent sharing all the data
and a sufficient statistic is not available, then questions arise as to
how close we can get to optimal performance and by what means.
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For simplicity, we do not treat quantization issues. However, our
results are extendable to quantized data and communication.

First we describe a simple information sharing method, which
ensures that all sensors can compute the ML estimator (MLE) of
the full data set collected by the sensor network. This can lead to
a major reduction in the amount of transmitted information in the
network without any loss of performance. Second, we presenta
sub-optimal reduced communication method in which each sensor
computes a stationary point of its local likelihood function but not
necessarily the MLE. These sub-optimal estimates are shared by
the sensors. To aggregate these estimates, we apply an asymptotic
theorem to approximate their distribution, which leads to awell
posed Gaussian mixture framework. Finally, we validate andpro-
vide additional insight on the theoretical results by a simulation.

2. PROBLEM FORMULATION

Consider the following distributed estimation problem. A network
of L sensors is geographically distributed in order to collect data
for an estimation task. Each of these sensors collects independent
P × 1 random vectorsyl,t, t = 1, . . . , nl; l = 1, . . . , L, drawn
independently from the same distribution with densityf(y; θ0).
The K × 1 vector parameterθ0 is unknown but the density is
known to lie in a parametric class{f(y; θ) : θ ∈ Θ}. This
scenario corresponds toL sensors that observe the same physical
phenomenon through independent noisy channels.

Denote byL(Yl; θ) = 1
nl

∑nl

t=1 log f(yl,t; θ), whereYl =

[yl,1 yl,2 . . . yl,nl
], the local likelihood of sensorl, which is the

normalized log-likelihood function of the measurements available
to sensorl. It is known that under some regularity conditions on
f(y; θ): asnl → ∞, 1

nl

∑nl

t=1 log f(yl,t; θ) → E {log f(y; θ)}
uniformly in Θ for almost every sequence{yl,t}. Here and in
the sequel,E {·} denotes the expectation with respect to the true
densityf(y, θ0). Therefore,

E {log f(y; θ)} =

∫
log (f(y; θ)) f(y, θ0)dy

△
= a(θ0, θ) ,

which will be called the ambiguity function.
Denote byY = [Y1 Y2 . . . YL] thefull data set that is col-

lected by the sensor network, and byL(Y; θ)= 1
L

∑L
l=1 L(Yl; θ)

the normalized log-likelihood function associated with these data,
which will be called theglobal likelihood.

Denote byθ̂ = arg maxθ∈Θ L(Y; θ) the global maximum
likelihood estimator (GMLE), which is the MLE based on the
global likelihood, and bŷθl = arg maxθ∈Θ L(Yl; θ) the lth lo-
cal MLE (LMLE) which is based on the data of sensorl.

In many practical scenarios, bandwidth and power constraints
prevent the sensors from sharing all of their data. Instead,only



partial information can be shared.

3. FISHER SCORING WITH ITERATIVE
INFORMATION SHARING

When the maximization problem required for finding the MLE is
intractable, iterative methods are often used. These methods gen-
erate a sequence{θi}i≥1 which converges to a relative maximum
of the log-likelihood function. If the log-likelihood function is not
strictly convex overΘ, several initializations may be required in
order to find the MLE.

In the context of sensor networks these methods can be used
to iteratively find the GMLE without sharing the full data set. One
possible method is Fisher scoring [7], in whichθi is updated by

θi+1 = θi + I
−1(θi)∇L(Y; θi)

= θi + I
−1(θi)

1

L

L∑

l=1

∇L(Yl; θi) . (1)

where I(θ) = −E
{
∇2L(Y; θ)

}
, and for any functiong(θ),

∇g(θ) and∇2g(θ) denotes the vector of partial derivatives and
the Hessian matrix ofg(θ) with respect toθ, respectively. We call
∇L(Y; θi) theglobal score function. The second equality in (1)
follows from the independent sensors assumption. Under broad
conditions{θi}i≥1 converges to a relative maximum of the global
likelihood.

Without information sharing, each sensor can only implement
the local updates

θl,i+1 = θl,i + I
−1(θl,i)∇L(Yl; θl,i), l = 1, . . . , L , (2)

which will converge to a relative maximum of the local likelihood.
∇L(Yl; θi) is called thelocal score function of sensorl. If suf-
ficient bandwidth is available, a simple information sharing proto-
col can be deployed to perform the iterations in (1) in a distributed
manner and to ensure that the sequence{θi}i≥1 converges to a rel-
ative maximum of the global likelihood. Similar to the distributed
implementation of the EM algorithm in [6], messages are cyclicly
passed between sensors in sequential order. In the first cycle, θ1

is shared by the sensors. Givenθi,
∑L

l=1 ∇L(Yl; θi) is summed
cumulatively as each sensor receives the running sum from the
previous sensor, adds its local contribution, and sends theupdated
sum to the next sensor. In an additional cycle, the last sensor shares
the total sum with the network and each sensor computesθi+1 ac-
cording to (1). The procedure ends either when the relative change
in the estimator’s value is small or the sum of the score function
values is close enough to zero. As mentioned before, severalini-
tializations may be required in order to find the GMLE.

4. AGGREGATION OF SUBOPTIMAL LOCAL
ESTIMATES

As the above information sharing protocol requires sharingdata at
each iteration of (1), it may not be practical. Here we consider a
scenario where the information is shared only once, after the con-
vergence of each local search in (2). Denote byθ̃l the relative max-
imum of L(Yl; θ) that the iterations of thelth sensor converged
to. Note thatθ̃l does not necessarily equal the LMLÊθl. Denote
the information shared by the sensors by{θ̃l, ηl}L

l=1, whereηl is
an additional statistic shared by the sensors (e.g.L(Yl; θ̃l) or the

empty set). The question then arises as to how to treat the large
number of estimates, some of which may correspond to conver-
gence to the highest relative maximum and some to other relative
maxima. Two questions will be answered below: (1) given the
collection of estimates{θ̃l}L

l=1, how to aggregate them and find
an estimate forθ0? and (2), how to use additional statistics of the
data to improve and simplify the estimation ofθ0?

The approximation of the asymptotic distribution of a sub-
optimal estimator will lead to an estimate forθ0. To this end we
make the following assumption. Assume thata(θ0, θ) has a finite
number of relative maxima and minima with negative definite and
positive definite Hessian matrices, respectively. Assume that all
sensors collect the same number of samples and denote it byn.
Then, the mathematical treatment is the same for all sensorsand
hence the subscriptl is omitted. Denote the relative maxima of
a(θ0, θ) by θm, m = 0, . . . , M .

Theorem 1 Under the above assumption,∃N such that∀n > N ,
L(Y; θ) hasM +1 local maximaw.p.1, and the location of these
relative maxima are strongly consistent estimates forθm, m =
0, . . . , M .

Proofs for all theorems are given in [8]. In order to derive the
asymptotic distribution of an estimator associated with a relative
maximum, consider the following setting. LetΘm be a closed
neighborhood ofθm, in which θm is the highest relative maxi-
mum ofa(θ0, θ). Define them’th local MLE by
θ̂m = arg maxθ∈Θm L(Y; θ). Define the matricesA(θ) =
E

{
∇2 log f(y; θ)

}
and

B(θ) = E
{
∇ log f(y; θ) · ∇T log f(y; θ)

}
, and when the in-

verse exists, the matrix

C(θ) = A
−1(θ)B(θ)A−1(θ) . (3)

Theorem 2 Under the assumptions made above, for allm: (1)
There exist a measurablêθm for all n, (2) θ̂m a.s.→ θm asn → ∞,

and (3)
√

n
(
θ̂m − θm

)
D→ N (0K×1,C(θm)).

For θ̂0 = θ̂, Theorem 2 is the standard existence, consistency,
and asymptotic Gaussian distribution of the MLE, withC(θ0)
equals to the inverse of the Fisher information matrix (FIM).

Furthermore, consider anyQ×1 vector valued functione(y,θ),
which is bounded and twice differentiable with respect toθ with
bounded derivatives. Define the vectorshn(θ) = 1

n

∑n
t=1 e(yt, θ)

andh(θ) = E {e(y,θ)} and theQ×K partial derivatives matrix
[H(θ)]q,k = E {∂eq(y, θ)/∂θk}. When the expectation exists,
define the(Q + K) × (Q + K) matrix

W(θ) = E

{[
A−1(θ)∇ log f(y; θ)

e(y, θ) − h(θ) −H(θ)A−1(θ)∇ log f(y; θ)

]

×
[

A−1(θ)∇ log f(y; θ)
e(y,θ) − h(θ) − H(θ)A−1(θ)∇ log f(y; θ)

]T
}

.

Assume thatW(θm) is nonsingular for allm. In practice, this
assumption is satisfied by an appropriate choice ofe(y,θ).

Theorem 3 Under the assumptions made above, for allm,

√
n

[
θ̂m − θm

hn(θ̂m) − h(θm)

]
D→ N

(
0(K+Q)×1,W(θm)

)
.



Theorems 1- 3 provide the means for approximating the asymp-
totic density ofθ̃l, denoted byf

θ̃l
(θ; θ0), and the asymptotic joint

density ofθ̃l and a statistic that is based on the data and the esti-
mator, denoted byf

θ̃l,hn(θ̃l)
(θ,x; θ0). If the iterative local search

in (2) is certain to find a relative maximum of the local likelihood,
then Theorem 1 guarantees that for sufficiently largen the final es-
timate will be in the vicinity of one of theM + 1 relative maxima
of a(θ0, θ) w.p.1. Then, definingDm as the event that the esti-
mator θ̃n is in Θm and denoting its probability byPn(Dm; θ0),
we obtain that for sufficiently largen, Dm1

⋂
Dm2 = ∅ and

P(
⋃M

m=0 Dm) = 1. In general,Pn(Dm; θ0) depends onn, the
true parameter and the initialization method.

Corollary 1 Under the assumptions made above, for sufficiently
largen,

f
θ̃l

(θ; θ0) ≈
M∑

m=0

Pn(Dm; θ0)

(2π)K/2
√

det(1/nC(θm))

exp
{
−n

2
(θ − θ

m)T
C

−1(θm)(θ − θ
m)

}
,

whereC(θ0) = −A(θ0) = B(θ0) and

f
θ̃l,hn(θ̃l)

(θ, x;θ0) ≈
M∑

m=0

Pn(Dm; θ0)

(2π)K/2
√

det(1/nW(θm))
×

exp

{
−n

2

[
θ − θm

x − h(θm)

]T

W
−1(θm)

[
θ − θm

x − h(θm)

]}
.

When the information sharing makes all the local estimates
available, Corollary 1 provides the means to find a good approx-
imation to the GMLEθ̂ through a well-posed Gaussian mixture
problem. The theory asserts that these sub-optimal estimates are
drawn from a distribution, which is approximately a multivariate
Gaussian Mixture. Furthermore, the cluster correspondingto local
estimates which are close to the highest maximum of the global
likelihood has the property that its covariance matrix is close to
the inverse of the FIM evaluated at the mean of this cluster ofesti-
mates. This property can be used to discriminate between relative
maxima.

First, the number of components, the mean vectors and the
covariance matrices, of the multivariate Gaussian mixturedistri-
bution of{θ̃l}L

l=1 are estimated. The state-of-the-art estimator for
mixture models is the CEM given in [9]. The estimated mean vec-
tors serve as candidates for the final estimate and the estimated
covariance matrices provide the means to find the component that
corresponds to the GMLE. Explicitly, for each component thedis-
tance (e.g. Frobenius norm) between the estimated covariance and
the inverse of the FIM calculated at the point of the mean of this
component is computed and the mean of the component with the
smallest distance is chosen as the final estimate. If the FIM cannot
be computed analytically, it needs to be computed by numerical
integration. As will be shown in section 5, this method provides
reliable discrimination between estimates that are associated with
the global maximum and estimates that are associated with local
maxima without the need to cluster each estimate separately.

If additional information is shared by the sensors, it can be
used to improve the clustering and to provide additional discrim-
ination. For example, if the data shared by the sensors is theset
{θ̃l, L(Yl; θ̃l)}L

l=1, then the final estimate can be the mean of the
cluster of estimates with the highest average log-likelihood value.

5. SIMULATION RESULTS

We simulated a network ofL 2D position estimating sensors and
evaluated two cases: (1) The GMLE under the iterative infor-
mation sharing discussed in section 3, and (2) The partial infor-
mation sharing discussed in section 4. In the simulation,n =
50 samples for each of theL sensors were generated according
to the following bivariate Gaussian mixture densityf(y; θ) =∑2

j=1 αjf(y; µj), wheref(y; µj) is a bivariate Gaussian den-

sity with unknown meanµj = [µj1 µj2]
T , and known covariance

matrix R = 0.2I, whereI is the identity matrix, and wherey =
[y1 y2]

T . The known mixing probabilities areα1 = 1−α2 = 0.4.
The parameter vectorθ = [µ11 µ12 µ21 µ22]

T is known a-priori to
lie in Θ = [0, 3] × [0, 3] × [0, 3] × [0, 3]. We chose a scenario
in which the number of samples is small in order to demonstrate
that our method is not restricted to the asymptotic regime. Note
that the Gaussian mixture model of the sensors’ data has nothing
to do with the Gaussian mixture model of Theorem 3, which is
an asymptotic distribution for the aggregation of the sub-optimal
estimates.

Each sensor uses local Fisher scoring via (2) to compute its
estimate, where each starting pointθ1 is generated randomly, ac-
cording to a uniform distribution onΘ. Using this method, we
observed that about half of the sensors found an estimate which is
in the vicinity of the true parameter. The other half stagnated at a
local maximum.

The ambiguity function has two maxima inΘ, one at the true
parameterθ0 = [1 2 2 1] and one atθ1 = [2.05 0.95 1.08 1.92]T .
Therefore, Corollary 1 asserts that the aggregate distribution of
the estimates{θ̃l}L

l=1 is approximately a two component 4D mul-
tivariate Gaussian mixture, where the vector means of the two
components are the locations of the two maxima of the ambigu-
ity function and the covariance matrices areC(θ0) and C(θ1)
given in (3). A realization of 4D estimates generated byL = 200
sensors is presented in Fig. 1. Each sub-figure corresponds to a
projection of the 4D estimates onto a 2D subspace, which is either
the first two or the last two coordinates. This collection of esti-
mates is used to find a final estimate via the aggregation method
described earlier. Clearly, there is a better fit between theestimated
covariance and the computed FIM at the cluster that corresponds
to estimates in the vicinity of the highest relative maximumof the
ambiguity function. The mean of this cluster of estimates isused
as the approximation to the GMLE.

The performance of this method was evaluated as the num-
ber of sensorsL increases. The results are summarized in Fig. 2.
Before estimating the averaged MSE, the cases in which a clus-
tering error has occurred were excluded. WhenL > 100 a clus-
tering error occurred in less then one percent of the trials.First,
the performance of the GMLE and the Cramer Rao bound (CRB)
are presented as a benchmark. The performance of the GMLE us-
ing iterative information sharing corresponds to the Fisher scoring
method presented in section 3. This method attains the (CRB)for
L > 10. The average of LMLEs corresponds to the performance
of a network of sensors that perform a global maximization and, in
contrast to our aggregation method, always find the LMLE. How-
ever, this network performs a crude aggregation rule that simply
averages the local estimates. The aggregation method, given by
clustering estimates according to the Gaussian mixture of Corol-
lary 1 outperforms this crude averaging, even though the quality
of the individual local estimates is worse. In other words, we are
able to compensate for the sub-optimality of the individualsensors
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by additional processing at the aggregation stage. In addition, we
added the performance of a clairvoyant aggregation method which
averages only those estimates that are close to the global maxi-
mum. The degradation in performance of our method in compari-
son to this clairvoyant method is the price we pay for clustering.

Also indicated is the performance of the censored GMLEs,
which is the performance of the GMLE in cases where it found
a maximum at the vicinity of the true parameter. The clairvoyant
average of LMLE’s corresponds to a system with half the number
of sensors but with sensors that always find the closest maximum
to the true parameter. We conclude that our method not only com-
pensates for the sub-optimality of the sensors, but it performs al-
most as if the individual sensors were operating in the asymptotic
regime, in which case the LMLE’s themselves are indeed sufficient
statistics.

If the values of the local likelihood at̃θl are shared among the
sensors, the second part of Corollary 1 can be invoked. The val-
ues of the log-likelihood function at the global and local maxima
are nearly identical and it is not clear from the histogram inFig. 3
that there are two separable components. However, the coupling
of the log-likelihood values with the local estimates improves the
discrimination between the relative maxima. As described in sec-
tion 4, the discrimination between the components of the global
and local maxima can be done by using the estimated means alone,
without the need to calculate the FIM. Our simulations showed that
this simple strategy provides similar results as the previous one.
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The cost of this simplification is increased bandwidth, namely, the
transmission of additional information, the scalarsL(Yl; θ̃l).

6. CONCLUDING REMARKS

The problem of finding the MLE based on data collected by a sen-
sor network under power and bandwidth constraints was consid-
ered. An iterative information sharing protocol which is based on
the Fisher scoring method was given as a method for finding the
global MLE without sharing the full data set. For cases in which
iterative information sharing is prohibited by a bandwidthcon-
straint, an alternative method was given. Instead of iterative infor-
mation sharing, each sensor finds a sub-optimal estimate based on
its local data and shares this estimate once with the other sensors.
An asymptotic theorem was applied to approximate the distribu-
tion of these sub-optimal estimates which provided the means for
aggregating these estimates into a final global estimate. The aggre-
gation method compensates for the sub-optimality of the sensors.

7. REFERENCES

[1] S. Kumar, F. Zhao, and D. Shepherd editors, “Special issue on
collaborative information processing,”IEEE Signal Process-
ing Magazine, vol. 19, no. 2, March 2002.

[2] P. K. Varshney, Distributed Detection and Data Fusion,
Springer-Verlag, 1997.

[3] P. Ishwar, R. Puri, S. S. Pradhan, and K. Ramchandran,
“On compression for robust estimation in sensor networks,”
Proc.of International Symposium on Information Theory
(ISIT), Yokohama, Japan, June 2003.

[4] T.S. Han and S. Amari, “Parameter estimation with multiter-
minal data compression,”IEEE transactions on Information
Theory, vol. 41, no. 6, pp. 1802 –1833, Nov. 1995.

[5] J. F. Chamberland and V.V. Veeravalli, “Decentralized detec-
tion in sensor networks,”IEEE Transactions on Signal Pro-
cessing, vol. 51, no. 2, pp. 407 –416, Feb. 2003.

[6] R. D. Nowak, “Distributed EM algorithms for density esti-
mation and clustering in sensor networks,”IEEE transactions
on signal processing, vol. 51, no. 8, pp. 2245–2253, August
2003.

[7] G. J. McLachlan and T. Krishnan,The EM Algorithm and
Extensions, John Wiley & Sons, 1997.

[8] D. Blatt and A. Hero, “Distributed maximum likelihood for
sensor networks,”In preparation.

[9] M.A.T. Figueiredo and A.K. Jain, “Unsupervised learning of
finite mixute models,”IEEE Trans on Pattern Anal and Ma-
chine Intelligence, vol. 24, pp. 381–396, March 2002.


