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Abstract. The asymptotic distribution of estimates that are based on
a sub-optimal search for the maximum of the log-likelihood function
is considered. In particular, estimation schemes that are based on a
two-stage approach, in which an initial estimate is used as the start-
ing point of a subsequent local maximization, are analyzed. We show
that asymptotically the local estimates follow a Gaussian mixture dis-
tribution, where the mixture components correspond to the modes of
the likelihood function. The analysis is relevant for cases where the log-
likelihood function is known to have local maxima in addition to the
global maximum, and there is no available method that is guaranteed
to provide an estimate within the attraction region of the global max-
imum. Two applications of the analytic results are offered. The first
application is an algorithm for finding the maximum likelihood estima-
tor. The algorithm is best suited for scenarios in which the likelihood
equations do not have a closed form solution, the iterative search is
computationally cumbersome and highly dependent on the data length,
and there is a risk of convergence to a local maximum. The second ap-
plication is a scheme for aggregation of local estimates, e.g. generated
by a network of sensors, at a fusion center. This scheme provides the
means to intelligently combine estimates from remote sensors, where
bandwidth constraints do not allow access to the complete set of data.
The result on the asymptotic distribution is validated and the perfor-
mance of the proposed algorithms is evaluated by computer simulations.

Keywords – Maximum likelihood, mixture models, clustering, sensor
networks, data fusion.

1 Introduction

The maximum likelihood (ML) estimation method introduced by Fisher [1] is
one of the standard tools of statistics. Among its appealing properties are con-
sistency and asymptotic efficiency [2]. Furthermore, its asymptotic Gaussian
distribution makes the asymptotic performance analysis tractable [2]. However,
one drawback of this method is the fact that the associated likelihood equations



required for the derivation of the estimator rarely have a closed form analytic
solution. Therefore, suboptimal iterative maximization procedures are used. In
many cases, the performance of these methods depends on the starting point.
In particular, if the likelihood function of a specific statistical model does not
have a known strictly convex property and there is no available method that is
guaranteed to provide a starting point within the attraction region of the global
maximum, then there is a risk of convergence to a local maximum, which leads
to large-scale estimation errors.

The first part of this paper considers the asymptotic distribution of estimates
that are based on a sub-optimal search for the ML estimate. In particular, esti-
mators that are based on a two-stage approach, in which an initial estimate is
used as the starting point of a subsequent iterative search that converges to a
maximum point, are analyzed and shown to be asymptotically Gaussian mixture
distributed. The results are linked to previous results by Huber [3], White [4],
and Gan and Jiang [5] as explained in detail below.

In the second part of the paper, two applications of the analytical results are
presented. The first is an algorithm for finding the ML estimate. The algorithm is
best suited for scenarios in which the likelihood equations do not have a closed
form solution, the iterative search is computationally cumbersome and highly
dependent on the data length, and there is a risk of convergence to a local max-
imum. The algorithm is performed in two stages. In the first stage, the data are
divided into sub-blocks in order to reduce the computational burden, and local
estimates are computed from each block. The second stage involves clustering of
these local estimates using a finite Gaussian mixture model, which is a classic
problem in statistical pattern recognition (e.g. [6], [7], and references therein.)
The second application arises in distributed sensor networks. In particular, con-
sider a case where a large number of sensors are distributed in order to perform
an estimation task. Due to power and bandwidth constraints the sensors do not
transmit the complete data but rather only a suboptimal estimate. As will be
shown, the analytical results provide the means for combining these sub-optimal
estimates into a final estimate.

2 Problem Formulation

The independent random vectors yn, n = 1, . . . , N have a common probability
density function (p.d.f.) f(y;θ), which is known up to a vector of parameters
θ = [θ1θ2 . . . θK ]T ∈ Θ. The unknown true parameter vector will be denoted by
θ0. The log-likelihood of the measurements under f(y;θ) is

LN (Y;θ) =
N∑

n=1

ln f(yn;θ) , (1)

where Y = [y1 y2 . . . yN ]. The ML estimator (MLE) for θ, which will be denoted
by θ̂N is

θ̂N = arg max
θ

LN (Y;θ) . (2)
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In many cases, the above maximization problem does not have an analytical so-
lution, and a sub-optimal maximization technique is used. One possible method
could be the following. First, a sub-optimal algorithm generates a rough estimate
for θ. Then, this rough estimate is used as the starting point of an iterative al-
gorithm, which searches for the maximum of the log-likelihood function. Among
those are the standard maximum search algorithms, such as the steepest ascent
method, Newton’s algorithm, the Nelder-Mead method, and the statistically de-
rived expectation maximization algorithm [8] and its variations. This class of
methods will be referred to as two-stage methods, and the resulting estimator
will be denoted by θ̃N . If the starting point of the search algorithm is within
the attraction region of the global maximum (with respect to the specific search-
ing technique), then this approach leads to the MLE. However, if the likelihood
function has more than one maximum and if the staring point is not within the
attraction region of the global maximum, then the algorithm will converge to a
local maximum resulting in a large-scale estimation error. In the next section,
the asymptotic p.d.f. of θ̃N is derived. The derivation is performed using con-
ditional distributions, where the conditioning is on the location of the initial
estimator in Θ.

3 Asymptotic Analysis

The maximization of LN (Y;θ) is identical to the maximization of 1
N LN (Y;θ),

which, due to the law of large numbers, converges almost surely (a.s.) to the
ambiguity function

1
N

N∑
n=1

ln f(yn;θ) → Eθ0 {ln f(y;θ)} a.s.

=
∫
Y

ln (f(y;θ)) f(y;θ0)dy
4
= g(θ0,θ) , (3)

where Eθ0 {·} denotes the statistical expectation with respect to the true pa-
rameter θ0, and Eθ0 {ln f(y;θ)} is assumed to be finite for all θ ∈ Θ. Therefore,
asymptotically, the two-stage method will result in an estimate which is in the
vicinity of one of the local maxima of the ambiguity function. The ambiguity
function has its global maximum at the true parameter θ0 [9], and it is assumed
to have a number of local maxima in Θ at points which will be denoted by
θm, m = 1, . . . , M . All the local maxima satisfy

∂g(θ0,θ)
∂θk

∣∣∣∣
θ=θm

= 0, m = 0, . . . , M, k = 0, . . . , K , (4)

by definition, and we assume that

∂Eθ0 {ln f(y;θ)}
∂θ

= Eθ0

{
∂ ln f(y;θ)

∂θ

}
(5)
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for all θ ∈ Θ.
The computation of the asymptotic p.d.f. is done using conditional probabil-

ity density functions. The conditioning is on the event that the initial estimate
is within the attraction region of the m’th maxima, which will be denoted by
Θm, i.e.

f(θ̃N ) =
M∑

m=0

f(θ̃N |Θm)P(Θm) , (6)

where f(θ̃N ) is the distribution of θ̃N
1, f(θ̃N |Θm) is the distribution of θ̃N

given that the initial estimate was in Θm, and P(Θm) is the probability that the
initial estimate was in Θm. The prior probabilities P(Θm) are assumed to be
known in advance and can be found by empirical analysis of the initial estimator.
These probabilities do not play a key role in the derivation or the applications
discussed in the sequel. Here we implicitly assume that the entire space Θ can
be divided into disjoint subsets Θm, each of which is the attraction region of
one of the maxima of g(θ0,θ), and that

⋃M
m=0 Θm = Θ.

For large N , given that the initial estimate is in Θm, θ̃N is assumed to be in
the close vicinity of θm, and the asymptotic conditional p.d.f. can be found using
an analysis similar to that presented in [10] for the standard MLE and similar to
Huber’s derivation of the asymptotic p.d.f. of M-estimators [2]. The regularity
conditions on LN (Y;θ), which are needed for the derivation, are summarized
in [3], and will be recalled during the derivation. One major difference of the
present derivation from these other methods is that the Taylor expansion is
performed around θm, which is not necessarily the true parameter, nor is it the
global maximum (or minimum) of the target function. In order to give a self-
contained treatment, we give the complete derivation for the case of a scalar
parameter. For the case of a vector of parameters, we only state the final result.

3.1 Scalar Parameter Case

From the mean value theorem we have

∂LN (Y; θ)
∂θ

∣∣∣∣
θ=θ̃N

=
∂LN (Y; θ)

∂θ

∣∣∣∣
θ=θm

+
∂2LN (Y; θ)

∂2θ

∣∣∣∣
θ=θ

(θ̃N − θm) , (7)

where θm < θ < θ̃N , assuming that the derivatives exist and are finite. Since θ̃N

is a local maximum of the log-likelihood function, we have

∂LN (Y; θ)
∂θ

∣∣∣∣
θ=θ̃N

= 0 . (8)

Therefore,

√
N(θ̃N − θm) =

1√
N

∂LN (Y;θ)
∂θ

∣∣∣
θ=θm

− 1
N

∂2LN (Y;θ)
∂2θ

∣∣∣
θ=θ

. (9)

1 The dependency on the true parameter θ0 has been omitted in order to simplify the
notation.
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Next, ∂2LN (Y;θ)
∂2θ in the denominator is written explicitly

1
N

∂2LN (Y; θ)
∂2θ

∣∣∣∣
θ=θ

=
1
N

N∑
n=1

∂2 log f(yn; θ)
∂θ2

∣∣∣∣
θ=θ

. (10)

Since θm < θ < θ̃N and θ̃N → θm as N → ∞ a.s., we must have θ → θm as
N →∞ a.s.. Hence

1
N

∂2LN (Y; θ)
∂2θ

∣∣∣∣
θ=θ

→ Eθ0

{
∂2 log f(yn; θ)

∂θ2

∣∣∣∣
θ=θm

}
a.s.

4
= A(θm) , (11)

due to the law of large numbers, where Eθ0

{
∂2 log f(yn;θ)

∂θ2

∣∣∣
θ=θm

}
is assumed to be

finite. In order to evaluate the numerator of (9), the following random variables
are defined

xn =
∂ ln f(yn; θ)

∂θ

∣∣∣∣
θ=θm

n = 1, . . . , N . (12)

Since the yn’s are independent and identically distributed, so are the xn’s. There-
fore, by the Central Limit Theorem, the p.d.f. of the numerator of (9) will con-
verge to a Gaussian p.d.f. with mean

Eθ0

{
1√
N

N∑
n=1

∂ log f(yn; θ)
∂θ

∣∣∣∣
θ=θm

}
= 0 (13)

and variance

Eθ0


(

1√
N

N∑
n=1

∂ log f(yn; θ)
∂θ

∣∣∣∣
θ=θm

)2
 = Eθ0

{(
∂ log f(yn; θ)

∂θ

∣∣∣∣
θ=θm

)2
}

4
= B(θm) , (14)

where we assume that B(θm) is finite. Next, Slutsky’s theorem [11] is invoked.
The theorem says that if xn converges in distribution to x and zn converges in
probability to a constant c than xn/zn converges in distribution to x/c. There-
fore, we arrive at the following result

√
N(θ̃N − θm) a∼ N

(
0,

B(θm)
A2(θm)

)
(15)

or, equivalently,

θ̃N
a∼ N

(
θm,

B(θm)
NA2(θm)

)
, (16)

where a∼ denotes convergence in distribution. In the case where θm is the true
parameter θ0, we obtain the standard asymptotic Gaussian distribution of the
MLE

θ̃N
a∼ N

(
θo, I−1(θ0)

)
, (17)
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where I(θ0) = NA(θ0) is the Fisher Information (FI) of the measurements.
However, it should be noted that in the general case A(θm) 6= −B(θm).

In summary, the conditional p.d.f. f(θ̃N |Θm) is asymptotically Gaussian with
mean θm and variance B(θm)

NA2(θm) , which equals I−1(θ0) only in the case where

m = 0. Using this result, we can state that the asymptotic distribution of θ̃N

in (6) is a Gaussian mixture with weights P(Θm), m = 0, . . . , M , which depend
on the p.d.f. of the initial estimator.

3.2 Generalization to a Vector of Parameters

In the case of a vector of parameters, the conditional p.d.f. f(θ̃N |Θm) is asymp-
totically multivariate Gaussian with vector mean θm and covariance matrix

Cm
4
= Covθ0(θ̃N ) =

1
N

A−1(θm)B(θm)A−1(θm) , (18)

which equals 1
N I−1(θ0) - the Fisher Information Matrix (FIM) - in the case

where m = 0, i.e. θm is the global maximum. The kl elements of the matrices
A(θ) and B(θ) are given by

{A(θ)}kl = Eθ0

{
∂2 log f(yn;θ)

∂θk∂θl

}
, (19)

and

{B(θ)}kl = Eθ0

{
∂ log f(yn;θ)

∂θk

∂ log f(yn;θ)
∂θl

}
. (20)

Therefore the asymptotic p.d.f. of θ̃N is a multivariate Gaussian mixture.
The result (18) on the asymptotic conditional p.d.f. coincides with results

reported in [4] in the context of misspecified models. Indeed, under the assump-
tion θ̃N ∈ Θm, m 6= 0, the estimation problem can be viewed as a misspecified
model. The family of distributions is correct but the domain of θ does not con-
tain the true parameter. In addition, the conditional p.d.f. f(θ̃N |Θm) can be
found from Huber’s work on M-estimators [2] by taking the target function that
is minimized to be the negation of the log-likelihood function restricted to the
attraction region of the specific local maximum.

The covariance (18) being equal to the inverse FIM is a necessary but not
sufficient condition for θm to be the global maximum. In particular, it is possible
to construct a special parametric model in which A(θm) equals −B(θm) for θm

which is not the global maximum [5].
The following proposition summarizes the result presented in this section.

Proposition 1. Under the assumptions made above, an estimator θ̃N asymp-
totically follows a Gaussian mixture distribution with mean vectors θm and co-
variance matrices Cm specified in (18), i.e.

fθ̃N
(t;θ0) →

M∑
m=0

P(Θm)
(2π)K/2

√|Cm|
exp

{
−1

2
(t− θm)T C−1

m (t− θm)
}

as N →∞, ∀ t ∈ Θ .
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4 Applications

4.1 An Algorithm for Finding the MLE Based on the Asymptotic
Distribution Result

In the present section, we propose an algorithm for finding the MLE that exploits
the asymptotic results of the last section. As mentioned above, the algorithm
was designed for scenarios in which the likelihood equations do not have a closed
form solution, and, therefore, one must rely on iterative search over Θ to find the
MLE. If, in addition, the iterative search becomes computationally cumbersome
for large data length, it might be impossible to perform the search algorithm on
the log-likelihood function of the entire data set. In such cases, one can divide
the complete data set into sub-blocks and find an estimator for each sub-block.
These estimators will be referred to as sub-estimators. If the ambiguity function
has one global maximum, then the average of the sub-estimators will closely
approximate the MLE. However, if the ambiguity function has local maxima in
addition to the global maximum, then some of the sub-estimators might converge
to those local maxima and contribute large errors to the sub-estimators’ average.
A possible solution to this problem could be to cluster the sub-estimators and to
choose the cluster whose members have the largest average log-likelihood value.
However, if the dimension of the parameter vector is large and the local maxima
of the ambiguity function are close to each other in Θ, the clustering problem
becomes numerically intractable as well. Furthermore, as will be shown later,
two remote local maxima might have nearly identical log-likelihood values. In
such a case, the hight of the likelihood is not reliable for discriminating local
from global maxima.

Therefore, we resort to a solution that circumvents the clustering require-
ment. To this end, we first employ the component-wise EM for mixtures (CEM)
algorithm proposed by Figueiredo and Jain in [7]. Recall that according to the
asymptotic result presented in the previous section, if the length of each data
sub-block is large enough, the sub-estimators are random variables drawn from
a Gaussian mixture distribution with means equal to the locations of the local
maxima of the ambiguity function and covariance matrices as specified by (18).
Therefore, the CEM can be used to estimate these mean and covariance pa-
rameters. The estimated means serve as candidates for the final estimate, and
the estimated covariance matrices provide the means for discerning the global
maximum using the procedure described below.

As can be seen from the derivation in Sec. 3, at the global maximum the
covariance matrix of the estimates equals the inverse of the FIM. Therefore, in
order to decide which local maxima are close to the global maximum, we can
compare the estimated covariance matrices to the inverse of the FIM computed
by an analytical or a numerical calculation, and choose the one having the best
fit to this inverse FIM.

In order to explicitly state the algorithm, recall the statistical setting of our
problem. The independent random vectors yn, n = 1, . . . , N have a common
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p.d.f. f(y;θ), which is known up to the parameter vector θ that is to be esti-
mated. The algorithm is as follows:

1. Divide the entire data set into L sub-blocks of length Ns.
2. Find an estimator, which is a maximum of the log-likelihood of each of the

sub-blocks, θ̂l
Ns

; l = 1, . . . , L, by some local optimization algorithm2.
3. Run the CEM algorithm on θ̂l

Ns
; l = 1, . . . , L to find the estimated means

and covariance matrices of the Gaussian mixture model.
4. Compute either analytically or numerically the inverse of the FIM at each

of the estimated means of the Gaussian mixture.
5. Choose the final estimate θ̂final to be the mean of the cluster that has

the best fit between its estimated covariance and the inverse of the FIM
evaluated at its mean (in the Forbenius norm sense, for example).

As for choosing the length Ns of the data sub-block, we will see in the simulations
described below that the choice of Ns in the range of

√
N gives the best results.

Furthermore, since the covariance matrices of the clusters are known to be close
to the inverse of the FIM, we use the FIM to initialize the CEM algorithm.
Next, we present simulation results that validate the asymptotic p.d.f. stated in
Prop. 1 and present a study of the performance of the proposed estimator.

4.2 Estimating Cauchy Parameters on a Non-Linear Manifold

Consider the following estimation problem, which is related to the estimation of
a parameter, e.g. an image or a shape, embedded in a non-linear smooth mani-
fold. The data are independent random vectors y1, y2, . . . , yN each of which is
composed of three independent Cauchy random variables, with parameter α = 1
and mode (median)

µ(θ) =

µ1(θ)
µ2(θ)
µ3(θ)

 =

 θ
θ sin(θ)
θ cos(θ)

 , (21)

i.e.,

f(yi; θ) =
1/π

1 + (yi − µi(θ))2
, i = 1, 2, 3 . (22)

These data can be considered as noisy measurements in IR3 of the mode of the
Cauchy density, which is constrained to lie on the manifold (a spiral) defined
by (21). Since there exists no finite dimensional sufficient statistic for the mode
of the Cauchy density, the complexity of the estimation problem increases in
the number of samples. The ambiguity function associated with this estimation
problem is depicted in Fig. 1(a) for different values of the true parameter θ0,
and a cross section is presented in Fig. 1(b) for θ0 = 5 - the value used in our
simulations. Numerical calculations showed that the ambiguity function has two

2 We assume that P(Θ0) > 0.
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Fig. 1. Multi-modal ambiguity function.

maxima in this region. One is the true parameter θ0 = 5 and another local
maximum at θ1 = 0.82. Further analysis revealed that the regions of attraction
associated with these modes are the open intervals Θ0 = (2.56, 6) and Θ1 =
(0, 2.56), respectively. In addition, the analytical result (16) predicts that in
cases where the search algorithm converges to θ0, the estimate will be Gaussian
with mean θ0 and variance B(θ0)

NA2(θ0) = 1
NA(θ0) = 0.074

N , and in cases where the
search algorithm converges to θ1, the estimate will be Gaussian with mean θ1 and
variance B(θ1)

NA2(θ1) = 0.31
N . Since the initial estimate is uniformly distributed, it is

easily found that P(Θ0) = 0.57 and P(Θ1) = 0.43. In practice, these values are
estimated by the CEM algorithm, even though they play no role in determining
the final estimate.

In our simulations, N = 200 and the local optimization algorithm is Matlab’s
routine ’fminsearch’, which implements the Nelder-Mead algorithm on the log-
likelihood function. The starting point for the algorithm is chosen randomly
in the interval [0, 6]. 1000 Monte Carlo trials showed good agreement with the
analytical predictions (16). In order to verify the Gaussian mixture distribution
of the estimates, they were divided into two groups, one contained the estimates
that were around θ0 and the second contained the estimates around θ1. Then,
the two groups were centralized according to the predicted mean, divided by
the predicted standard deviation, and compared against the standard Gaussian
distribution. The resulting Q-Q plots are depicted in Figs. 2(a) and 2(b).

Next, the performance of this algorithm was examined. The entire data record
was divided into sub-blocks for several choices of block lengths. The CEM was
used to find the estimated number of clusters, their means, and variances. The
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Fig. 2. Validation of the Gaussian mixture distribution.

variance of each cluster was compared to the inverse of the Fisher information
at the mean of each cluster. The Fisher information for this statistical problem
can be found analytically to be I(θ) = 2+θ2

2α2 . The final estimate was the mean
of the cluster that its variance was closer to the inverse of I(θ) evaluated at the
mean.

The probability of deciding on the wrong maximum, which will be referred
to as the probability of large error, and the small error performance in cases
where the decision was correct were estimated using 500 Monte Carlo trials. As
expected, the small error performance improved as the number of samples in
each sub-block increases. However, the probability of a large scale error has a
minimum point with respect to the sub-block length as seen in Fig. 3. Thus, there
is an optimum sub-block length for minimizing the influence of large errors. An
intuitive explanation of this phenomenon is the following. When the sub-block
size is too large, the Gaussian mixture approximation is good but the number of
samples available for the CEM estimation is small, resulting in poor covariance
estimation which leads to estimation errors. On the other hand, when the number
of sub-blocks is large the amount of data available to the CEM algorithm is large.
However, since the number of samples at each sub-block is small, the data are far
from being distributed as a Gaussian mixture, and the variance of the estimator
around the true parameter no longer equals the inverse of the Fisher information,
which again results in estimation errors.
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√
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4.3 Aggregation of Estimates from Remote Sensors

The present section, addresses a scenario in which the division of the entire
data sample into sub-blocks is imposed by the system design. Consider the fol-
lowing distributed processing problem. A large number of low power sensors
are geographically distributed in order to perform an estimation task. Each of
these sensors collects data generated independently by a common parametric
model f(y;θ), which has a multi-modal ambiguity function. Due to power and
bandwidth constraints, the sensors do not transmit the complete data to the
central processing unit, but rather each performs a suboptimal local search on
the log-likelihood function and transmits only its local estimate. The question
then arises as to how to treat the large number of estimates, some of which
may correspond to successful convergence to the global maximum and some to
erroneous local maxima.

Again, the analytical result stated in Prop. 1 provides the means to find
a global estimate through a well-posed Gaussian mixture problem. The data
available for the central processing unit are the local estimates delivered by the
individual sensors. The theory in Sec. 3 asserts that these are drawn from a
Gaussian Mixture model. Furthermore, the cluster corresponding to estimates
which are close to the global maximum has the property that its covariance
matrix is close to the inverse of the FIM evaluated at mean of this cluster of
estimates. As in the previous application, this property will be used to find the
final estimate.
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Simulation Results. We generate 2D sensors data from the following Gaussian
mixture density

f(y;θ) =
2∑

j=1

αjf(y;µj) , (23)

where f(y;µj) is the bivariate Gaussian density

f(y;µj) =
1

2π
√|Cj |

exp
{
−1

2
(y − µj)T C−1

j (y − µj)
}

, (24)

and where y = [y1 y2]
T . Note that the Gaussian mixture model of the new

data (23) has nothing to do with the Gaussian mixture model which is an asymp-
totic distribution for the local estimates θ̂l

N ; l = 1, . . . , L. The parameters vector
θ contains the two vector means µj = [µj1 µj2]

T ; j = 1, 2 in the following order

θ =


µ11

µ12

µ21

µ22

 . (25)

The entries of the covariance matrices Cj ; j = 1, 2 associated with each of the
components and the mixing probabilities α1 and α2 are assumed known. This is
a simple model corresponding to a network of L 2D position estimating sensors.

Each sensor estimates θ from N = 50 samples. The true values for the
location parameters to be estimated were chosen to be

θ0 =


1
2
2
1

 . (26)

The remaining known parameters were chosen to be

C1 = C2 =
[

0.2 0
0 0.2

]
(27)

and
α1 = 0.4; α2 = 0.6 . (28)

The vector means are known a-priori to lie in the rectangle Θ = {[0, 3]× [0, 3]}.
Typical sensor data, generated according to the above model (23) are presented
in Fig. 4. The two circles correspond to the two components.

Each sensor uses the following algorithm to find an estimate. A point is
generated randomly, according to a uniform distribution on the given rectangle
Θ. Then this point is used as the starting point of a local search for a maximum
of the log-likelihood function of the measurement. In our simulation, we used
the Matlab routine ’fminsearch’ which applies the Nelder-Mead algorithm to

12



−0.5 0 0.5 1 1.5 2 2.5 3 3.5
−0.5

0

0.5

1

1.5

2

2.5

3

3.5

Fig. 4. Measured data for a single sensor.

maximize the local log-likelihood function LN (Y;θ) with respect to the unknown
parameters θ. Denote the estimate from the l’th sensor by θ̂l

N .
We have found that the ambiguity function has two maxima in Θ. One

maximum is at the true parameters vector θ0 and the second maximum

θ1 =


2.05
0.95
1.08
1.92

 (29)

corresponds to the reversed model, i.e., switching between the two components.
Therefore, the estimates θ̂l

N ; l = 1, . . . , L available at the processing unit can
be seen as samples drawn from a two component multi-variate (4-dimensional)
Gaussian mixture, where the vector means of the two components are the lo-
cations of the two maxima of the ambiguity function in the parameters space
and the covariance matrices are as presented in (18). The 4-dimensional esti-
mates generated by L = 200 sensors are presented in the Figs. 5(a) and 5(b).
Each sub-figure corresponds to two parameters. In each figure, the circled cluster
correspond to estimates that are close to the global maximum and the second
cluster corresponds to estimates that are close to the local maximum.

An intuitive approach for clustering the two groups of estimates could be
to use the actual values of the log-likelihood at the point of convergence, which
could be transmitted in addition to the estimates to the central processing unit.
However, since the mixing probabilities {α1, α2} are close to {1/2, 1/2}, the two
components are similar and the value of the log-likelihood function at the global
and local maxima are nearly identical. This phenomenon renders impossible
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Fig. 5. Estimates θ̂l
N ; l = 1, . . . , L generated by L = 200 sensors.
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Fig. 6. Histogram of the log-likelihood function values ln f(Y; θ̂l
N ); l = 1, . . . , L ob-

tained from estimates θ̂l
N ; l = 1, . . . , L generated by L = 200 sensors.

the discrimination between ’good’ estimates (global maximum) and erroneous
ones (local maximum), using only the log-likelihood function values. In Fig. 6 a
histogram of the negative log-likelihood function values ln f(Y; θ̂l

N ); l = 1, . . . , L
from one simulation is presented. It is not clear from this histogram that there
are two separable components.

In contrast, we can reliably discriminate between the two local maxima based
on the curvature of the parametric model at each local maxima. As was shown in
Sec. 3, the covariance matrices of the two components of estimates are directly
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related to the curvature of the ambiguity function at the two maxima, and at
the global maximum equal the inverse of the FIM. Therefore, the algorithm
proposed in Sec. 4.1 can be applied.

First the number of components, the mean vectors and the covariance ma-
trices, of the estimates are estimated using the CEM algorithm. The estimated
mean vectors serve as candidates for the final estimate and the estimated covari-
ance matrices provides the means to find the component that corresponds to the
global maximum. More explicitly, for each component the distance between the
estimated covariance and the inverse of the FIM calculated at the point of the
mean is computed. In our simulation, the Frobenius norm of the difference ma-
trix was used as the distance measure. Finally, the mean of the component with
the smallest norm is chosen as the final estimate. Since the 4 × 4 dimensional
FIM cannot be computed analytically, it is computed by numerical integration
and then inverted. The kl entry of the FIM is found by numerically calculating
the following integral

FIMkl =
∫ ∞

−∞

∂ log f(y;θ)
∂θk

∂ log f(y;θ)
∂θl

f(y;θ)dy , (30)

where the estimated mean of the candidate component is plugged-in for the
unknown parameters.

The algorithm was tested in the above setting for several possible numbers
of sensors L in order to evaluate two aspects of its performance. The first is
the probability of detecting the global maximum. The second is the small-scale
estimation errors when the global maximum is detected correctly. The algorithm
was run 100 times for L = 50, 100, 150 and 200 sensors. In the case of L = 50
sensors, there were 6 cases of erroneous decisions. For systems of 100, 150, and
200 sensors there was 100 percent success, i.e. the algorithm always detected
the correct maximum. The fact that the estimated covariance matrix of the two
components is small, which is usually the case when the number of samples at
each sensor is sufficiently large, contributed to the success of the CEM stage.
The small-scale estimation errors in cases where the global maximum was de-
tected correctly, were compared to the performance of a clairvoyant estimator
which knows which local estimates are close to the global max. This clairvoyant
estimator averages only those estimates that close to the global maximum. The
performances of the CEM estimator and the clairvoyant estimator are identical.

5 Concluding Remarks

The work presented in this paper is closely related to the work of White [4] on
misspecified models and to the work of Gan and Jiang [5] on the problem of local
maxima. Given a ML estimate, White proposed a test to detect a misspecified
model. Given a local maximizer of the log-likelihood function, Gan and Jiang
offered the same test in order to detect a scenario of convergence to a local
maximum. This test is based on the observation that the two ways to estimate the
FIM from the data given the estimated parameters, i.e., the Hessian form and the
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outer product form, converge to the same value in the case of a global maximum
in a correctly specified model. The test statistic, which is the difference between
those two estimators of the FIM, was shown to be asymptotically Gaussian
distributed. However, as mentioned in [5], the convergence of the test statistic
to its asymptotic distribution is slow and the test suffers from over rejection
in a moderate number of samples. Therefore, this test could not be used to
determine whether or not the sub-estimates of the algorithm proposed in Sec. 4.1
are related to a global maximum. Furthermore, this test requires access to the
data and therefore, could not be used in the estimates fusion problem, discussed
in Sec. 4.3.

In contrast, the present paper considers cases in which the complete data are
divided into sub-blocks, either due to computational burden or due to the system
design. This data partitioning gives direct access to the estimated covariance
matrix of the sub-estimates, which can then be compared to the calculated FIM.
This procedure has considerably better performance and does not require re-
processing the complete data.
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