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ABSTRACT
Motivation: Many exploratory microarray data analysis tools
such as gene clustering and relevance networks rely on
detecting pairwise gene co-expression. Traditional screening
of pairwise co-expression either controls biological signifi-
cance or statistical significance, but not both. The former
approach does not provide stochastic error control, and the
later approach screens many co-expressions with excessively
low correlation.
Methods: We have designed and implemented a statistically
sound two-stage co-expression detection algorithm that con-
trols both statistical significance (False Discovery Rate, FDR)
and biological significance (Minimum Acceptable Strength,
MAS) of the discovered co-expressions. Based on estimation
of pairwise gene correlation, the algorithm provides an initial
co-expression discovery that controls only FDR, which is then
followed by a second stage co-expression discovery which
controls both FDR and MAS. It also computes and thresholds
the set of FDR p-values for each correlation that satisfied the
MAS criterion.
Results: We validated asymptotic null distributions of the
Pearson and Kendall correlation coefficients and the two-
stage error-control procedure using simulated data. We then
used yeast galactose metabolism data (Ideker et al. 2001) to
illustrate the advantage of our method for clustering genes
and constructing a relevance network. In gene clustering, the
algorithm screens a seeded cluster of co-expressed genes
with controlled FDR and MAS. In constructing the relevance
network, the algorithm discovers a set of edges with controlled
FDR and MAS.
Availability: The method has been implemented in an R
package ”GeneNT” that is freely available from: http://www-
personal.umich.edu/vzhud/genent.htm.
Contact: zhud@umich.edu
Supplementary Information: Supplemental material can be
found at: http://www-personal.umich.edu/vzhud/genent.htm

∗to whom correspondence should be addressed

1 INTRODUCTION
The emergence and development of DNA miroarray tech-
nology (Affymetrix oligonucleotide expression arrays and
cDNA arrays) enable researchers to interrogate gene expres-
sion levels simultaneously on the genome scale (Lockhart
et al., 1996, Schena et al., 1995, DeRisi et al., 1997). The
development of statistically sound and biologically meaning-
ful techniques to analyze gene expression data is essential
for transforming raw experimental data into scientific know-
ledge. Gene expression data have been subjected to a variety
of statistical analyses, such as detecting differentially expres-
sed genes (e.g. Tusher et al., 2001, Zareparsi et al., 2004),
clustering genes/samples (e.g. Eisen et al., 1998, McLach-
lan et al., 2002), and cancer classification (e.g. Golub et al.,
1999, Alizadeh et al., 2000).

Detection of co-expressed genes from microarray data has
attracted much attention since many co-expressed genes are
found to have functional relationships, e.g. lying in the same
signal transduction pathway (Eisen et al., 1998, DeRisi et al.,
1997). Hierarchical clustering (Eisen et al., 1998) and rele-
vance network construction (Butte and Kohane, 2000, Farkas
et al., 2003) are two important exploratory techniques. Both
of these techniques are based on discovering pairs of co-
expressed genes, which is one of the fundamental objectives
in functional genomics and system biology. While not neces-
sarily true in many higher Eukaryotes (Boutanaev et al.,
2002), pairwise gene co-expression as prescribed by the stan-
dard two-component model (Nixon et al., 1986) characterizes
gene co-expression in Bacteria, single-celled Eukaryotes,
Archaea and higher Plants (Stock et al., 2000).

Clearly, there is a need for statistical methodology for high
throughput screening of co-expressed gene pairs with stocha-
stic error and strength of association controls. Two issues
have to be considered in developing such a methodology,
namely, choice of screening statistic and choice of screening
acceptance and rejection criteria.

Several methods have been adopted to measure the strength
of association between expression profiles of gene pairs, such
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as: Euclidean distance (Tamayo et al., 1999), Pearson corre-
lation coefficient (Zhou et al., 2002), coherence (Butte et al.,
2001), mutual information (Butte and Kohane, 2000), edge
detection (Filkov et al., 2002), and dominant spectral compo-
nent analysis (Yeung et al., 2004). Each of these methods has
advantages and disadvantages. To select co-expressed gene
pairs, the common practice is to calculate a sample correla-
tion for each pair of genes and then to select the top pairs
by correlation thresholding (Butte et al., 2000, Zhou et al.,
2002, and Farkas et al., 2003). This approach controls biolo-
gical significance by screening only strongly correlated pairs,
e.g. those exceeding a minimum acceptable strength (MAS)
level specified by the threshold. However, it does not account
for statistical sampling uncertainty and thus does not control
error rate. Another approach (Lee et al., 2004) is to control
only statistical significance: screen co-expressed gene pairs
whose strength of association is different from zero using p-
value thresholding, e.g. as determined by a specified level
of false discovery rate (FDR). This approach does not con-
trol biological significance and can lead to screening-in some
weakly correlated gene pairs that are difficult to verify by
follow-up experiments such as real time RT-PCR.

Regarding the choice of screening statistic, the Pearson
correlation coefficient has been one of the most popular
choices because it is easily computed and its performance
is often comparable to more complex and computational
intense methods (Yeung et al., 2004, Kwon et al., 2003).
However, the Pearson correlation coefficient can only cap-
ture linear relationships between gene expression profiles.
To circumvent this limitation, we propose to use the non-
parametric Kendall rank correlation coefficient that is able to
capture both linear and nonlinear associations between gene
expression profiles. We decided to explore the Pearson and
Kendall correlation coefficient measures because their asym-
ptotic distributions are available, as required by our two-stage
screening procedure to be described below.

Regarding the choice of screening acceptance criteria, a
two-stage statistical hypothesis testing scheme is applied in
order to decide on whether the strength of association is sta-
tistically significant at the specified MAS level. The test is
non-standard because: 1) MAS is ordinarily greater than 0;
2) many comparisons have to be tested simultaneously. Our
method is directly inspired by the two-stage screen methodo-
logy of (Hero et al., 2004) that controls both False Discovery
Rate (FDR) and Minimum Acceptable Difference (MAD) in
detecting differentially expressed genes.

We demonstrate the application of our two-stage screening
algorithm by constructing relevance networks and clustering
co-expressed genes from yeast galactose metabolism data
(Ideker et al., 2000). This data represents approximately 6200
gene expression levels on two-color cDNA microarrays col-
lected over 20 physiological/genetic conditions (nine mutant
and one wild type strains incubated in either GAL-inducing
or non-inducing media).

The outline of the paper is as follows. In Section 2, we
describe the proposed two-stage multicriteria approach. In
Section 3, we first show the approach indeed controls FDR at
the specified MAS level using synthetic data, and then illu-
strate it for yeast galactose metabolism data. In Section 4, we
discuss advantages of our method, model assumptions and
restrictions.

2 METHODS
2.1 Measures of the strength of association
There are many possible discriminants for strength of asso-
ciation between two variables, which we generally denote
as a real number Γ. Under a Gaussian linear hypothe-
sis, the Pearson correlation coefficient ρ is an appropriate
metric. A robust distribution-free alternative is the Ken-
dall rank correlation coefficient (Kendall’s τ ). The Pearson
(Bickel and Doksum, 2000) and Kendall correlation coeffi-
cients (Hollander and Wolfe, 1999) are special cases of the
generalized correlation coefficient (Daniel, 1944). We define
{gp}

G
p=1 as the indices of G gene probes on the microarray;

{Xgp}
G
p=1 as normalized probe responses (random varia-

bles); and {{xgp(n)
}G

p=1}
N
n=1 as realizations of {Xgp}

G
p=1

under N i.i.d. microarray experiments.

2.1.1 Pearson correlation coefficient. The population
Pearson correlation coefficient between random variables
Xgi and Xgj (defined as long as var(Xgi), var(Xgj ) are
positive) is:

ρ(Xgi , Xgj ) =
cov(Xgi , Xgj )

√

var(Xgi)var(Xgj )
. (1)

The sample Pearson correlation coefficient ρ̂ is an asympto-
tically consistent unbiased estimator of ρ:

ρ̂i,j =
SXgi

,Xgj
√

SXgi
,Xgi

SXgj
,Xgj

, (2)

where SXgi
,Xgi

, SXgj
,Xgj

, and SXgi
,Xgj

are sample varian-
ces and covariances given by

SXgi
,Xgi

= (N − 1)−1
N
∑

n=1

(Xgi(n) − Xgi)
2,

SXgj
,Xgj

= (N − 1)−1
N
∑

n=1

(Xgj (n) − Xgj )
2,

SXgi
,Xgj

= (N − 1)−1
N
∑

n=1

(Xgi(n) − Xgi)(Xgj(n) − Xgj ),

and Xgi = N−1
∑N

n=1 Xgi(n), Xgj = N−1
∑N

n=1 Xgj(n)

are sample means.
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2.1.2 Kendall rank correlation coefficient. Kendall’s τ
statistic is a measure of correlation that captures both linear
and non-linear associations. The parameter τ is defined as
τ = P+ − P−, where, for any two independent pairs of
observations (xgi(n)

, xgj(n)
), (xgi(m)

, xgj(m)
) from the popu-

lation: P+ = P [(xgi(n)
− xgi(m)

)(xgj(n)
− xgj(m)

) ≥ 0] and
P− = P [(xgi(n)

−xgi(m)
)(xgj(n)

−xgj(m)
) < 0]. An unbiased

estimator of τ is given by the Kendall τ statistic:

τ̂i,j = 2
∑∑

1≤n≤m≤N

Knm

N(N − 1)
, (3)

here Knm is a indicator variable defined as Knm =
sgn(xgi(n)

−xgi(m)
)sgn(xgj(n)

−xgj(m)
) for each set of pairs

drawn from {Xgi}
G
i=1 and {Xgj}

G
j=1.

2.2 Hypothesis testing scheme
To screen the strongly co-expressed pairs of G genes on each
microarray, we will simultaneously test the Λ =

(

G
2

)

pairs of
composite hypotheses: {Hλ, Kλ : λ = (gi, gj)}.

Hλ : Γgi,gj ≤ cormin versus Kλ : Γgi,gj > cormin,

for gi 6= gj , and gi, gj ∈ (1, 2, ...G) (4)

where cormin is the specified minimum acceptable strength
of correlation. The sample correlation coefficient Γ̂i,j (ρ̂i,j

or τ̂i,j ) could be thresholded to decide on pairwise depen-
dency of two genes in the sample. When we must decide
between the null hypothesis Hλ and the alternative hypothe-
sis Kλ based on such a threshold test, there will generally be
decision errors in the form of false positives (Type I errors:
decide Kλ when Hλ is true) and false negatives (Type II
errors: decide Hλ when Kλ is true). The Per Comparison
Error Rate (PCER) is defined as the number of Type I errors
over the number of independent trials, i.e. the probability of
Type I error. The p-value is the probability that a more impro-
bable sample could have been drawn from the population(s)
being tested given the assumption that the null hypothesis is
true.

For N realizations of any pair of gene probe responses,
{xgi(n)

, xgj(n)
}N

n=1, we first calculate τ̂i,j or ρ̂i,j respectively.
For large N , the PCER p-values for ρi,j or τi,j are:

pρi,j = 2

(

1 − Φ

(

tanh−1(ρ̂i,j)

(N − 3)−1/2

))

(5)

pτi,j = 2

(

1 − Φ

(

K

N(N − 1)(2N + 5)/18
1/2

))

(6)

whrere Φ is the cumulative density function of a standard
Gaussian random variable, and K =

∑∑

1≤n≤m≤N Knm.
The above expressions are based on asymptotic Gaussian
approximations to ρ̂i,j (Bickel and Doksum, 2000) and to
τ̂i,j (Hollander and Wolfe, 1999).

The PCER p-value refers to the probability of Type I error
incurred in testing a single pair of hypothesis for a single
pair of genes gi, gj . It is the probability that purely random
effects would have caused gi, gj to be erroneously selected
based on observing correlation between this pair of genes
only. When considering the Λ multiple hypotheses for all
possible pairs, two adjusted error rates have frequently been
considered in microarray studies. These are family-wise error
rate (FWER) and false discovery rate (FDR)(Benjamini and
Hochberg, 1995). The FWER is the probability that the test
of all Λ pairs of hypotheses yields at least one false posi-
tive in the set of declared positive responses. In contrast, the
FDR is the average proportion of false positives in the set of
declared positive responses. The FDR is dominated by the
FWER and is therefore a less stringent measure of signifi-
cance. As in previous studies (Reiner et al., 2003), we adopt
the FDR to control statistical significance of the selected gene
pair correlations in our screening procedure.

2.3 Two-stage screening procedure
Select a level α of FDR and a level cormin of MAS
significance levels. We use a modified version of the two-
stage screening procedure proposed for gene screening by
(Hero et al., 2004). This procedure consists of two stages,
summarized in Fig 1.

Stage I. For each gene pair λ = (gi, gj) in the set G of all
Λ =

(

G
2

)

gene pairs, test the simple null hypothesis:

Hλ : Γgi,gj = 0 versus Kλ : Γgi,gj 6= 0,

for gi 6= gj , and gi, gj ∈ (1, 2, ...G) (7)

at FDR level α. The step-down procedure of Benjamini
and Hochberg (Benjamini and Hochberg, 1995) is used to
accomplish this.

Stage II. Suppose a number Λ1 pairs of genes, denoted
by the set G1 ⊂ G, pass the Stage I procedure. In Stage
II, we first construct asymptotic PCER Confidence Inter-
vals (PCER-CI’s): Iλ(α) for each Γ (ρ or τ ) in subset G1.
We convert these PCER-CI’s into FDR Confidence Intervals
(FDR-CI’s): Iλ(α) → Iλ(Λ1α/Λ) using the procedure in
(Benjamini and Yekutieli, 2004). A gene pair in subset G1 is
declared to be both statistically significant and biologically
significant if its FDR-CI does not intersect the MAS inter-
val [−cormin, cormin] (see Fig 5). The set of all such gene
pairs is called G2.

In many practical situations, the experimenter may not
be comfortable in specifying a MAS or FDR criterion in
advance. In this situation, it is useful to solve the inverse pro-
blem: what is the most stringent pair of criteria (α , cormin)
that would cause a particular subset of gene pairs to be inclu-
ded in the screen G2. The inverse screening procedure is
displayed in Fig 2.
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Stage I (step-down): control of FDR at MAS = 0.

1. Specify FDR level α and MAS level cormin.

2. Compute a list of PCER p-values: p1, p2, ..., pΛ

corresponding to Λ =
(

G
2

)

pairs of composite
hypotheses: {Hλ, Kλ : λ = (gi, gj)} from {ρ̂i,j}
or {τ̂i,j}.

3. Sort the list of PCER p-values in increasing order,
i.e. p(1), p(2), ..., p(Λ).

4. Find the index k0 where k0 = max{k : p(k) ≤
kα
Λν }.

5. Set initial screening G1 as those k0 = Λ1 gene
pairs having p-values: p(1), p(2), ..., p(k0).

In step 4, ν = 1 if the test statistics can be assumed
statistically independent or positively dependent,
where ν = 1

P

Λ
λ=1

λ−1
under the general dependency

assumption.

Stage II: control of FDR and MAS = cormin.

1. Construct Λ1 different (1−α)×100% PCER-CI’s
Iλ(α) for ρ or τ of each gene pair in G1 (Appendix
5.1).

2. Convert these PCER-CI’s into Λ1 different (1 −
α) × 100% FDR-CI’s using formula (Benjamini
and Yekutieli, 2004): Iλ(α) → Iλ(Λ1α/Λ).

3. Select the subset G2 containing Λ2 of Λ1

gene pairs whose FDR-CI’s do not intersect
[−cormin, cormin].

Fig. 1. Two-stage direct screening procedure yields a subset G2

of all possible gene pairs G whose strength of association exceeds
MAS level cormin at FDR level α.

3 RESULTS
3.1 Validating the two-stage algorithm
3.1.1 Validating asymptotic null distribution. Here we
verify that the proposed two-stage algorithm controls FDR
at a specified MAS level using simulated data. Since the p-
values are based on asymptotic distribution approximations
(eq. 5 and eq. 6), we display in Fig 3a the goodness of
fit of the ρ̂ sampling distribution to the Gaussian distribu-
tion using QQ plots. Note that there is good agreement to
the Gaussian distribution for N ≥ 10. Moreover, since the
construction of confidence intervals requires estimation of
sampling distribution variance, the accuracy of the variance
approximation is vital. This can be evaluated by the mean

1. Compute a list of PCER p-values: p1, p2, ..., pΛ

corresponding to Λ =
(

G
2

)

pairs of composite
hypotheses: {Hλ, Kλ : λ = (gi, gj)} from {ρ̂i,j}
or {τ̂i,j}.

2. Sort the list of PCER p-values in increasing order,
i.e. p(1), p(2), ..., p(Λ).

for any gene pair λ0 ∈ {gi, gj}
G
i,j=1:

• Find the minimal α = α(λ0) such that the PCER-
CI Iλ0(α) does not intersect [−cormin, cormin].

• Compute the integer index N(α(λ0)) =
∑Λ

k=1 I(p(k))k ≤ α(λ0)), where I(A) is an
indicator function of the truth of statement A. The
FDR p-value of the gene pair λ0 is then simply pi,
where i = N(α(λ0)).

endfor

Fig. 2. Inverse screening procedure allows the FDR p-value of a
gene pair’s (λ0) strength of association to be computed.

squared approximation error (MSE) at the sample size N :

MSE(N)
ρ = Λ−1

∑

1≤i<j≤G

(S
(N)

tanh−1(ρ̂i,j)
− (N − 3)−1/2)2,

(8)

MSE(N)
τ = Λ−1

∑

1≤i<j≤G

(S
(N)
τ̂i,j

− (
2

N(N − 1)

2(N − 2)

N(N − 1)2

N
∑

i=1

(Cr − C) + 1 − τ̂ ))2,

(9)

where S
(N)

tanh−1(ρ̂i,j )
and S

(N)
τ̂i,j

denote standard errors of

tanh−1(ρ̂i,j) and τ̂i,j at the sample size N . The definitions
of Cr and C̄ can be found in Appendix 5.1. The ρ̂ variance
approximations are seen to be in good agreement even for
small sample sizes (N > 10) from Fig 3b.

3.1.2 Validating the error control procedure. In order to
validate our FDR and MAS error control procedure, we
simulated pairwise gene expression data based on known
population covariances (Appendix 5.2). The actual FDR at
a MAS level is calculated as a ratio of the number of scree-
ned gene pairs whose corresponding population correlation
parameters Γi,j are less than the MAS level specified, divi-
ded by the total number of screened gene pairs. The actual
MAS is the minimum true discovery of population correla-
tion Γi,j among the screened pairs. We specified 16 pairs of
(FDR,MAS) criteria (Four FDR levels: 0.2, 0.4, 0.6, 0.8; Four
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Fig. 3. Verification of Gaussian null sampling distribution and
variance approximation for Pearson correlation coefficient (eq. 8).
(a) QQ plot of transformed sampling distribution of Pearson corre-
lation coefficient ρ̂ versus Gaussian distribution. (b) Mean squared
approximation errors (MSE) of the variances of transformed sample
Pearson correlation coefficients ρ̂.

MAS levels: 0.2, 0.4, 0.6, 0.8), and each is plotted as a dif-
ferent upper case English alphabet (Red) in Fig 4. The 16
corresponding pairs of actual (FDR,MAS) criteria are also
shown in Fig 4 using the same set of lower case English
alphabets (Blue). It can be observed that generally the actual
FDR’s (lower case) fall below the specified constraint (upper
case) and the actual MAS’s (lower case) fall above the speci-
fied constraints (upper case). Any deviations of actual FDR’s

and MAS’s from their specified levels are due to the con-
servative asymptotic approximation (eq.5 and eq.6). Observe
that use of Kendall correlation (Fig 4b) leads to more signifi-
cant overestimation of error rates than the Pearson correlation
(Fig 4a). Overestimation of error rates will translate into a
reduction of power in discovering co-expressed pairs at the
specified levels.
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Fig. 4. Verification of two-stage error control procedure based on
Pearson correlation coefficient (a) and Kendall correlation coeffi-
cient (b). Sample size N = 20.
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Fig. 5. Curves specify lower endpoints (a) and upper endpoints (b)
of the 5% FDR-CI’s on the positive Pearson correlation coefficients
(a) and negative Pearson correlation coefficients (b) for the galac-
tose metabolism study. Only those gene pairs whose FDR-CI’s do
not intersect [−cormin, cormin] are selected by the second stage
of screening. When the MAS strength of association criterion is
cormin = 0.5, these gene pairs are obtained by thresholding the
curves as indicated.

3.2 Constructing relevance networks with
controlled FDR and MAS

For the yeast galactose metabolism dataset, a subset of 997
differentially expressed genes were identified by Ideker et
al using a generalized likelihood ratio test procedure (Ideker
et al., 2000). Genes having a likelihood ratio statistic λ ≤ 45

were selected as differentially expressed, i.e. whose mRNA
levels differed significantly from the reference under one or
more treatments.

Fig 5a and 5b illustrate the direct implementation of the
two-stage procedure to screen positively or negatively corre-
lated gene pairs based on the Pearson correlation coefficient.
The direct screening procedure is constrained by FDR level
α = 0.05 and MAS level cormin = 0.5. Stage I of the screen
discovered Λ1 = 153, 983 out of Λ =

(

997
2

)

= 496, 506 gene
pairs having FDR ≤ 0.05, leaving 153,983 correlation coef-
ficients for which FDR-CI’s must be constructed. Recall that
gene pair passes the Stage II screening if the FDR-CI does
not intersect the interval [−0.5, 0.5]. Λ2 = 18, 135 of the
153,983 gene pairs passed the Stage II screening and were
declared to be both “biologically” and “statistically” signifi-
cant. Similarly, using Kendall correlation coefficient, there
were Λ1 = 95, 205 gene pairs that passed the Stage I screen,
and only Λ2 = 3, 552 gene pairs passed the Stage II screen
constrained by the same MAS and FDR criteria as above
(STable 1).

Although for Gaussian distributed pairs the Kendall rank
correlation coefficient has lower discovery power compared
to the Pearson correlation coefficient, our screening proce-
dure was nevertheless able to pull out many non-linearly
correlated gene pairs that were missed by the Pearson correla-
tion procedure. For example, the link between gene “RPC40”
and gene “YDR516C” passed both Stage I and II screening
(α = 0.015, cormin = 0.5) when using Kendall correlation
coefficient (τ̂ =-7.5e-01, FDR p-value = 6.2e-04, FDR-CI =
[-9.7e-01, -5.4e-01]), but they failed to pass even the first
screening when the Pearson correlation coefficient was used
(ρ̂ =-6.3e-01, FDR p-value = 1.2e-02). From the scatter plot,
we can observe an obvious non-linear correlation for this
gene pair (Fig 6). The poor linear fit can be verified by fitting
a simple linear regression model and observing R2 = 0.36.

Relevance networks are implemented as a graph where
n nodes (genes) are connected by p sets of edges (co-
expressions). Each of the p sets of edges are discovered
using a different similarity measure (Butte et al., 2000, Butte
and Kohane, 2000). Therefore, our constructed networks are
mixed networks with p = 2 in which edges are discovered
using either Pearson correlation coefficients or Kendall corre-
lation coefficients constrained by the same set of (FDR,MAS)
criteria. In relevance networks, genes that are of considerable
interest to the biologist are “hub genes” such as RPL33A and
RPS4A in Fig 7. Hub genes are best connected genes that
dominate a large part of the network topology (Jeong et al.,
2001, Barabàsi, 2004). We constructed five such networks
that are constrained by five pairs of constraints (FDR ≤ 0.05,
cormin = 0.5, 0.6, 0.7, 0.8, 0.9). Most of the “hub genes”
in each discovered network fall into two categories: “RPL”
and “RPS”. The former encodes “Ribosome Protein Large
(60S) subunit,” and the latter encodes “Ribosome Protein
Small (40S) subunit”. Both of these categories are structural
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Fig. 6. A pair of non-linearly correlated genes.

components of the ribosome that is responsible for protein
biosynthesis. Protein biosynthesis plays the central role in
galactose metabolism because galactose is not a primary car-
bon source for yeast, and different types of proteins including
transporters, enzymes, and regulators have to be synthesi-
zed upon induction (Wieczorke et al., 1999). We ranked the
“hub genes” by calculating and sorting average rank of each
“hub gene” over five networks (Table 1, STable 2). Intere-
stingly, the list of “hub genes” contains many hypothetical
Open Reading Frames (ORFs)(STable 2), which are presu-
mably indispensable for galactose metabolism (Jeong et al.,
2001).
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Fig. 7. Network topology visualization. The network is discovered
by constraining FDR ≤ 5% at a MAS level of 0.9. No significant
negative correlation is discovered at this level. The graph is drawn
using Pajek (Batagelj and Mrvar, 1998).

Fig. 7 presents the discovered network topology with a
FDR level of 5% (5% discovered edges are expected to be
false positive) at the MAS level of cormin = 0.9. The net-
work is composed of 89 connected vertices and 132 edges.
Similar to some other biological networks, the network mar-
ginal degree distributions appear to be of the form of a
power-law. This was tested by verifying goodness of fit to
the log-transformed power-law model (R2 = 0.95) i.e.,
log P (Di) = −γ log Di + log η + εi (Barabàsi, 2004). Here
γ and η are shape and intercept parameters, i is the index
of a gene in the network, εi is a residual fitting error, Di is
the number of edges (degree) of ith gene and P (Di) is the
corresponding probability.

3.3 Clustering co-expressed genes
Inspired by the Basic Local Alignment Search Tool (BLAST)
(Altschul et al., 1990), and based on the “guilt-by-
association” assumption (Eisen et al., 1998), we applied the
two-stage screening procedure to cluster co-expressed genes
with controlled FDR and MAS. We sought to demo its app-
lication in metabolic pathway discovery by “rediscovering”
the extensively studied galactose metabolic pathway, which
consists of at least three types of genes including transpor-
ter genes (GAL2, HXTs etc), enzyme genes (GAL1, GAL7,
GAL10 etc) and transcription factor genes (GAL4, GAL80,
GAL3 etc). Some other genes are also involved in galactose
metabolism but their roles are not entirely clear (Rohde et al.,
2000, Ideker et al., 2001). Therefore, our aims are not only to
validate our procedure by rediscovering known co-expressed
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Table 1. Top ten “hub genes”. The rank of each gene is the average
rank over five different networks. Each of five networks is constrai-
ned by a different pair of (FDR,MAS) criteria. The highest ranked
gene is the most connected and stable gene under varying constraints
of (FDR,MAS).

Gene Name Average Rank

RPL42B 4.2
RPS16B 6.2
RPL14A 7.4
RPS3 7.4
GTT2 8.0
RPS4A 9.8
RPL33A 11.6
RPL23B 15.4
RPS7A 15.8
RPS4B 17.2

genes pairs, but also to discover some unknown genes in the
pathway.

We selected gene “GAL7” as the “seed gene” which
encodes the UDP-glucose-hexose-1-phosphate uridylyltrans-
ferase (EC 2.7.7.12). The enzyme catalyzes the transfor-
mation of Galactose-1-P into Glucose-1-P, and the latter
enters the glycolysis pathway through relocating the phos-
phate group. Many genes lying in the galactose metabolic
pathway are rediscovered by our technique under the relative
stringent criteria (α = 0.05, cormin = 0.2) (Fig 8). Known
transcription factor genes (GAL4 and GAL80) were not dis-
coverable from this microarray experiment as the GAL4 and
GAL80 expressions are time shifted and only one time sam-
ple was included. The two-stage procedure also discovers
some unknown genes that we hypothesize to be relevant to
galactose metabolism (STable 3). The pathways discovered
using other “seed genes” in the pathway such as GAL1 and
GAL10 gave similar results (STable 4).

3.4 Performance comparison
In Table 2 and Table 3, we compare the performance of
the proposed two-stage FDR-CI screening algorithm (labe-
led “FDR-CI” in the tables), with two other commonly
used algorithms, called thresholded FDR (labeled “FDR”
in the tables) and thresholded MAS (labeled “MAS” in the
tables). All three algorithms aim to control MAS at a level
of cormin = 0.5. The two-stage FDR-CI and thresholded
FDR algorithms aim to control FDR at a level of α = 0.05 in
addition to MAS. Both of these latter algorithms were imple-
mented as two-stage algorithms with common Stage I, which
is to select pairs of genes G1 that pass the test of associa-
tion with cormin = 0 at a FDR level of 5%. Stage II of
the two-stage FDR-CI algorithm selects G2 as a subset of G1
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Fig. 8. Diagram of the structural module of the galactose meta-
bolic pathway. The shaded squares denote the genes whose gene
products lie in the galactose metabolic pathway “rediscovered” by
our algorithm.

at the specified FDR-CI level of 5%. Stage II of the thres-
holded FDR algorithm simply selects a subset of G1 having
a strength of association greater than 0.5. The single-stage
thresholded MAS algorithm selects a subset of the origi-
nal 496,506 gene pairs by thresholding Pearson correlation
ρ̂i,j ≥ 0.5 (Table 2) and Kendall coefficient τ̂i,j ≥ 0.5 (Table
3) without attemping to control FDR.

The number of screened and discovered gene pairs for the
three algorithms is indicated in the first two columns of Table
2 and Table 3. The maximum and median of the FDR p-
values of the discovered gene pairs are indicated in the third
and fourth columns for each algorithm. The last column
indicates the average length of the FDR-CI’s on correla-
tion coefficients of the discovered gene pairs. We conclude
from Table 2 and Table 3 that the proposed two-stage FDR-
CI algorithm outperforms the other algorithms in terms of:
(1) maintaining the FDR requirement that false positives not
exceed 5% (column 4); (2) ensuring a substantially lower
median FDR p-value than the others (column 5); (3) disco-
vering genes that have tighter (on the average) confidence
intervals on biologically significant (i.e. Γ ≥ 0.5) correlation
coefficients (column 6).

4 DISCUSSION
In this paper, we presented a two-stage procedure for scree-
ning co-expressed gene pairs that controls both biological and
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Table 2. Performance comparison for three algorithms based on Pearson correlation
coefficient for selecting gene pairs with a MAS level of 0.5. Thresholded MAS and
thresholded FDR are significantly worse in terms of statistical significance (p-value)
than the proposed two-stage FDR-CI algorithm (columns 4 and 5). Furthermore, the
average length of the CI’s on ρ’s of the discovered gene pairs are shorter for the
two-stage FDR-CI algorithm than for the other algorithms (column 6).

# Screened # Discovered Max(Pv) Meidan(Pv) AvgFDRCI

MAS 496,506 174,830 2.5e-02 2.1e-03 6.5e-01
FDR 153,983 153,983 1.6e-02 1.4e-03 6.3e-01
FDR-CI 153,983 18,135 1.3e-05 1.3e-06 3.3e-01

Table 3. Performance comparison for three algorithms based on Kendall’s τ sta-
tistic for selecting gene pairs with a MAS level of 0.5. Thresholded MAS and
thresholded FDR are significantly worse in terms of statistical significance (p-value)
than the proposed two-stage FDR-CI algorithm (columns 4 and 5). Furthermore, the
average length of the CI’s on τ ’s of the discovered gene pairs are shorter for the
two-stage FDR-CI algorithm than for the other algorithms (column 6).

# Screened # Discovered Max(Pv) Meidan(Pv) AvgFDRCI

MAS 496,506 31,151 2.0e-02 6.4e-03 6.3e-01
FDR 95,205 31,151 2.0e-02 6.4e-03 6.3e-01
FDR-CI 95,205 3,552 1.4e-03 4.3e-04 4.1e-01

statistical significance. For the discovered co-expressions,
our method also provides an “accuracy” assessment of the
strength of association by constructing confidence intervals
for the strength of each edge. Indeed, for the typically small
sample size microarray data, a simultaneous confidence inter-
val is useful to characterize reliability of the reported strength
of association. We illustrated two potential applications of
our algorithm to discovering relevance networks and to clu-
stering genes, in which the algorithm provides the error rate
control at a biologically detectable level.

The algorithm is sufficiently general to be applied to many
different correlation measures, e.g. Spearman’s or Hotelling’s
dependency statistics. The algorithm can also be extended
to different frameworks such as Gaussian Graphic Models
(GGM) in which partial correlation coefficients are used
as the dependency measures (Whittaker, 1990). Different
groups have developed appraches to infer GGM from small
sample size microarray data (Wang et al., 2003, Schafer and
Strimmer, 2004, Dobra et al., 2004). Schafer and Strimmer
recently presented a procedure that is based on the bootstrap
estimator of the partial correlation coefficient (Schafer and
Strimmer, 2004). Our two-stage algorithm has been exten-
ded to the GGM framework to control biological significance
in addition to statistical significance, and the implementati-
ons are included in our R package ”GeneNT” (available from
http://www-personal.umich.edu/ zhud/genent.htm).

The scope of application of our statistical analysis is expli-
citly that of random sampled, complete observational data.
In this paper, we are not concerned with developing models
of causal gene networks. This would require a different
experimentation and interventation approach to understand
directional influences, rather than the simple observatio-
nal, random sampling paradigm adopted here (Dobra et al.,
2004).

The two-stage procedures can be applied under the inde-
pendency/positive dependency or the general dependency
assumptions (Benjamini and Hochberg, 1995, Benjamini and
Yekutieli, 2001). The implementation of the general depen-
dency procedure (ν = 1

PΛ
λ=1

λ−1
) causes loss of discovery

power. The assumption of independence may not be criti-
cal in the discovery of relevance networks since biological
networks are typically very sparse (Yeung et al., 2002).
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5 APPENDIX
5.1 Construct PCER-CI for ρ

Based on the fact that z (z = tanh−1(ρ̂)) is the monoto-
nic function of ρ̂, the asymptotic PCER (1 − α) × 100%
Confidence Interval: Iλ(α) on each true Pearson correlation
coefficient ρ of the set G1 is: tanh(z −

zα/2

(N−3)1/2 ) ≤ ρ ≤

(z +
zα/2

(N−3)1/2 ), where P (N(0, 1) > zα/2) = α/2.
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5.2 Construct PCER-CI for τ

The asymptotic PCER (1 − α) × 100% Confidence Interval:
Iλ(α) on each true Kendall correlation coefficient τ of the
set G1 is constructed as follows:

• Compute Cr =
∑N

t=1
t6=r

Q((Xr, Yr), (Xt, Yt)), for r =

1, 2, ..., N., where Q((a, b), (c, d)) is given by:

Q((a, b), (c, d)) =











1 if (d − b)(c − a) > 0,

0 if (d − b)(c − a) = 0,

−1 if (d − b)(c − a) < 0.
(10)

• Let C̄ = 1
N

∑N
r=1 Cr and define σ̂τ = 2

N(N−1)
2(N−2)
N(N−1)

∑N
i=1

(Cr − C̄)2 + 1 − τ̂2]

• Iλ(α) : τ̂ − zα/2σ̂τ ≤ τ ≤ τ̂ + zα/2σ̂τ .

5.3 Simulation of pairwise vectors based on
pre-specified population covariances

5.3.1 Pearson correlation coefficient ρ .

• Specify a covariance matrix V and a mean vector µ.

• Form the Cholesky decomposition of V, i.e. find the
lower triangular matrix L such that V = LLT .

• Simulate a vector z with independent N(0, 1) elements.

• A vector simulated from the required multivariate nor-
mal distribution is then given by µ + Lz.

5.3.2 Kendall’s τ .

• Specify a value for τ .

• Simulate an N × N indicator matrix M given τ as
follows:

M [n, m]1≤n<m≤N =

{

1 if Bernulli( 1+τ
2 ) is TRUE,

−1 if Otherwise.
(11)

• Simulate i.i.d pairs (Xr, Yr) (r = 1, 2, ..., N) according
to M matrix and definition

Q((a, b), (c, d)) =

{

1 if (d − b)(c − a) > 0,

−1 if (d − b)(c − a) < 0.

(12)

No tied observations are generated. Alternatively, τ̂ can
be directly calculated from the indicator matrix M without
generating the i.i.d pairs (eq. 3).

11


