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Motivating Applications
Entropic Euclidean Graphs
A variant: K-point entropic graphs

Application to US image registration




Pattern Matching and Image Retrieval

DATABASE




Adaptive radar sensor management

Figure 1. SAR clutter image, target on boundary at column 305.




Image Registration

(a) Imagel; (b) Imagelg (c) Registration result

Figure 2: A multidate image registration example




Common Processing System

Images,
patterns
Feature Feature
— Extractor Fitness
Criterion

L

Objective: For given fitness criterio®, find operatof which
minimizes/maximizes)

Our focus: entropic fitness criterioQ( f)

f: feature density ovex € RY




Some Popular EntropicQ’s

1. Shannon Entropy of feature denstity

Q(f) = H(f) :—/f(x)lnf(x) dx

2. KL Divergence between feature densitieg

Q(f.9)=D(fllg) = [ F(9In (%) dx

3. Jensen difference between feature densftigs
Q(f,9) =H(ef +(1—¢)g) —eH(f) — (1—¢g)H(9)

4. Mutual information within joint feature densitfk v

Qlfxy) = MI(X,Y) //fxy Xy) |n< f?i)%@)) dx




Issue How to estimate entropi@ from measured data?
Some possibilities:
1. Assume parameteric models fiorg, fx y

2. Quantize feature space and use histograms

3. Non-parameteric density estimationfofg, fx y

Our Strategy: construct “entropic graphs” on features




A Set of Feature Samples and a Euclidean Spanning Graph

128 random samples




Minimal Euclidean Graphs: MST

Let T, = T(X,) denote the possible sets of edges in the class of acyclig
graphs spanning, (spanning trees).

The Euclidean Power Weighted MST achieves

MST :
LYST(Xn) = min [l

neen




Minimal Euclidean graphs: k-NNG

Let Ny i (Xn) denote the possible setsloédges connecting poirg to all
other points inX.
The Euclidean Power WeightéeNNG is




MST for Two Different Samples

128 random samples MST

Figure 3:




Large n behavior of MST

MST length, Unif. dist. (red), Triang. dist (blue) MST normalized compensated length
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T

Triang.

MST length

Figure: MST and log MST weights as function of the number of samplgs.
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Asymptotics: the BHH Theorem

Define the MST length functional

Ly(Xe) =min 5 [l

”een

Theorem 1 [Beardwood, Halton&Hammersley:1959] Let
Xn={X1,..., %y} be an i.i.d. realization from a Lebesgue density f wit
supportS c [0, 1]¢.

jim Ly(Xn) /@08 = g /3 F)@Vddx  (as)

N—o00

Or, lettinga = (d —vy)/d

1

1_a|nLy(Xn)/n°‘ — Hq(f)+c  (as)




Rényi Entropy and Divergence

e Rényi Entropy of orden [Rényi:61,70 ]

Ha ——In/f

e Rényia-divergence of fractional order € [0, 1]

1 f
Da(fa || o) m|n/ fo(f(l)) dx

1—
O(_1|n/8ff‘fo i

— a-Divergence vs. Kullback-Liebler divergence

lim D (14| o) /flln—dx




Clustering via K-MST

Assumef Is a mixture density of the form
where

e fyis a known (uniform) outlier density

e f11s an unknown target density

e £c [0,1] is unknown mixture parameter




K-point Minimal Spanning Tree (K-MST)

k-MST (k=99): 1 outlier rejection (k=98): 2 outlier rejection

0 0.5 1 0.5

k-MST (k=62): 38 outlier rejection (k=25): 75 outlier rejection
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Figure 4: Clustering an annulus density from uniform noise via k-MST.




K-MST Stopping Rule

k—-MST length as function of k selection criterion

k-MST length
criterion(k)

F|g ure 5 Left: k-MST curve for 2D annulus density with addition of uniform “outliers” has a knee in the vicinity-&€ & 35.




Greedy partioning approximation to K-MST
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Figure 6: A smallest subset;Bis the union of the two cross hatched cell
shown for the case of m5and k= 17.




Extended BHH Theorem for Greedy K-MST

Fix p € [0,1]. If k/n — p then the length of the greedy patrtitioning
K-MST satisfies [Hero&Michel:IT99]

Ly(X50/(on))® = By min | fexixeAdx  (as)

or, alternatively, with

Ho(fIxe A) = —In/f (X|x € A)dx

ni)/(Len])* = Buya min Ha(flxeA)  (as)




Density of X

Watgr filled density

Agymptotic délisity of X se€® by k-MST 40
X

Figure 7:Waterpouring contruction of minimum entropy density.




k-MST Influence Function

MST for planar Gaussian k—MST for planar Gaussian
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F I g ure 8: MST and k-MST influence curves for Gaussian density on the plane.




Extension of BHH to Divergence Estimation?

Question: How to go from

—In/f X)dx to —In/f

e g(x): areference density oRY

e Assumef < g, i.e. for allx such thag(x) = 0 we havef (x) = 0.

e Make measure transformatid(x) such thadx — g(x)dxon [0, 1]¢.
Then forY, = M(Xp)




Original data exact inverse transform

' Y s
@\@%Z
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tranfd data, 2D cdf estd

Figure 9: Top Left: i.i.d. sample from triangular distribution, Top Right: exag
transformation, Bottom: after application of exact and empirical transformatiorgs.
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Clustering Example

Xn IS a sample from the mixture

f(x) = (1—¢€)g(x) +eh(x)

h(x) is uniform density orf0, 1]?

g(x) is triangular density of0, 1]?
€ IS unknown

Objective: Detect deviation df from triangular and cluster the uniform
variates in the sample




Illustration

N:256, 820.9, h=(green,unif), g=(red,triang) ROC, a div. test, N:256,€:.1,.3,.5,.7,.9 ; f:h(HO)

l [

06 08
PFA

F|gure 10 Left: A sample from triangle-uniform mixture density wite= 0.9 in the transformed domailf,. Right: ROC curves of
thresholdedx-divergence test for deviation from g. Curves are decreasirggoiver the range € {0.1,0.3,0.5,0.7,0.9}




Clustering lllustration

N=256, € =0.9, h=(green,unif), g=(red,triang)

N=256, € =0.9, h=(green,unif), g=(red,triang)

1 [ty ooty g ] 1o

0.2 0.4 0.6 0.8 0.2 0.4 0.6
Clustering in transformed data domain Clustering in original data domain

F|g ure 1 1 .Left: the K-MST implemented on the transformed scatteMfptvith k= 230. Right: same K-MST displayed in the original
data domain.




Bounds on Minimax Convergence Rate

Theorem 2 (Hero,Costa&Ma 2001)Letd>2and1<y<d-1.
Assume X ..., X, are i.i.d. random vectors ové0, 1]¢ with density

fe>q(B,1), B, >0, having supporS c [0,1]9. Assume also thatzf
IS Integrable. Then,

o) (n—rl(dﬁ)) <

D] 1/p

sup E [ Ly(Xa,..., %) /@0 4 /S fA9/9(x)dx

feZq(B,l)
<0 (n—rg(d, )) :




Extension to Partition Approximations
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Figure 12:Partition approximation.




Theorem 3 (Hero,Costa&Ma 2001) Let L7'(X,) be a partition
approximation to L(Xn). Under the same hypotheses as in the previous
proposition, if im) = O(m"~Y)

O <n—r1(d,[3)> <

IO] 1/p

sup E [ Ly (X, .., Xa) /@Ay / £ (0=9)/d(x)dlx
fesq(B,) S

<0 (n—rg(d,y)> ’

a 1

r3(d7y) — d-1 A
= a+1 d

This bound is attained by choosing the progressive-resolution sequende
d—

m=m(n) = /[ ot+1))
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Application: Registration of Breast Images

T e v i T T T et

.
——

Figure 13: Three ultrasound breast scans. From top to bottom are: gase
151, case 142 and case 162.




MI Registration of Gray Levels (Viola&Wells:ICCV95)

e X: aN x Nimage (lexicographically ordered)
e X(k): image gray level at pixel locatick
e Xpo andX;j: primary and secondary images to be registered

Hypothesis {(Xo(K), X (k) }N°, are i.i.d. r.v.s with j.p.d.f

fO,i(X07X1)7 X0,X1 € {07 177255}

Mutual Information (MI) criterion : T = argmax|-il\7ll

whereMI is an estimate of

M (fo;) / / foi (X0, X1) In foji (%0, %) /(fo(%o) fi (x1)) dx d%.




(b) Imagel T

Figure 14: Single Pixel Coincidences (Left and right: reference imh8ge
at @ and rotated image’ at &)




Single-Pixel Scatterplot(ZF,Z[)P_,

F|g ure 15 :Grey level scatterplots. 1st Col: target=reference slice. 2nd Col: target = reference+1 slice.




Higher Level Features

Disadvantages of single-pixel features:
e Only depends on histogram of single pixel pairs

¢ Insensitive to spatial reording of pixels in each image

¢ Difficult to select out grey level anomalies (shadows, speckle)

e Spatial discriminants fall outside of single pixel domain

e Alternative: Aggregate spatial features




Local Tags

(b) Imagel T

Figure 16: Local Tag Coincidences




Generalization: a-MI Registration of Coincident Features

e X: aN x N US image (lexicographically ordered)

e Z=Z7(X): ageneral image feature vector ilaimensional feature
space

Let {Zo(K)}_; and{Zi(k)}|_, be features extracted froipy andX; atK
pairs of identical spatial locations

a-MI coincident-feature criterion

T = argmax Ml

whereMl 4 is an estimate of

Mig(foi) = ai_lmg / / (8. (20,21) 120 (20) 1% (z1)d21dm.  (2)




o-MI and Decision Theoretic Error Exponents

Ho : Zo(k),Z (k) independent
Hi :  Zp(k),Z (k) o.w.

Bayes probability of error

Chernoff bound

Iiminf}IogPe( )=— sup {(1—a)Mlqy(foj)}.

N—e N ael0,1]




|ICA Features

Decomposition oM x M tag image¥ (k) acquired ak=1,...,K spatial
locations

P
Y(K) = apS
p=1

o {SI[_,: statistically independent components
e &y projection coefficients of tay (k) onto componen$,
e {S}_, andP: selected via FastICA

e Feature vector for coincidence processing:

Z(K) = [, ..., ap]"




ICA feature basis for US breast images

Figure 17:Estimated ICA basis set using FastiICA




Simpler Objective Function: a-Jensen Difference

1. Extract features from reference and transformed target images:
Xm={X}il; and Yn={Yi},

2. Construct following MST function oKX, andY

n

JR— a_
AL =InLy(XnUYn)/(n+m) n+m

InLy(Xpm)/m" — InLy(Yy)/n®

N+ m

3. Minimize AL, over transformations producing,.

(1—a) AL — Hg(efx+ (1—g)fy) —eHq (fx) — (1 —€)Hq (fy)

whereg =




Illustration

misaligned points MST demonstration
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Figure 18: MST demonstration for misaligned images




Aligned points MST demonstration
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Figure 19:MST for aligned images. “x” denotes reference while “0” denotesja
candidate image in the DEM database.
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Quantitative Performance Comparisons for US Registration

Effect of Additive Noise on peak of objective function

—¥— alphaJensen Diff MST on 8D-ICA

-©~ alphaMI on single pixels w/ Hitograms
-A- alphaJensen on 8D-ICA using Histograms
—¢ alphaJensen on single pixels w/ MST
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Figure 20: US registration MSE comparisons.




Conclusions

. Entropic graphs can be used to estintadentropy andx-divergence

. MST and k-NN applied to high dimensional feature-based image
registration

. Clustering using entropi€-point graphs

. Extensions to larger class of continuous quasi-additive graphs
(Yukich)




