Gene filtering and data mining for gene microarray experiments

A. O. Hero
Dept. EECS*, Dept BME†, Dept. Statistics#
University of Michigan - Ann Arbor

http://www.eecs.umich.edu/~hero

Collaborators: G. Fleury, ESE - Paris
S. Yoshida, A. Swaroop, UM - Ann Arbor
T. Carter, C. Barlow, Salk - San Diego

Outline

1. Gene filtering problem
2. Multi-objective analysis
3. Applications
Kellog Sensory Gene Microarray Node: Objectives

Establish genetic basis for development, aging, and disease in the retina

Figure 1: Sample gene trajectories over time.
Figure 2: Affymetrix GeneChip microarray.
Figure 3: cDNA spotted array.
Figure 4: Oligonucleotide (GeneChip) system (pathbox.wustl.edu).
Figure 5: Oligonucleotide PM/MM layout (pathbox.wustl.edu).
(Affymetrix) Output for Each Gene Probe

- **Avg-diff**: avg differences between 20 PM and MM pairs
- **Log-avg**: log of ratios between 20 PM and MM pairs
- **Positive probe pairs**: number of matches to PM
- **Negative probe pairs**: number of matches to MM
- **Absolute Call**: P,A,M
Reference Datasets

1 (2001H) Affy human retinal aging study (Yosida, Swaroop)
- Y group: 8 individuals in age range 16-19 yrs
- O group: 8 individuals in age range 72-80 yrs

Figure 6: Responses for a gene in human retinal aging study.
2 (2001FW) Fred Wright’s human fibroblast mixing experiment

(http://thinker.med.ohio-state.edu/projects/fbss/index.html)

- 18 individuals in 3 groups of 6 subjects

Figure 7: Responses for a gene in FW human fibroblast mixture study.
3 (2001M) Affy mouse retinal aging study (Yosida, Barlow, Lockhart, Swaroop)

- 24 mice in 6 groups of 4 subjects

Figure 8: Responses for a gene in mouse aging study.
4 (2002M) Affy mouse differential study (Yosida Swaroop)

- 12 knockout mice in 3 groups of 4 subjects
- 12 wildtype mice in 3 groups of 4 subjects

Figure 9: Differential responses for a gene in mouse k (left) vs w (right) study.
Objective: Classify time trajectory of gene i into one of K classes
Figure 11: Gene i is old dominant while gene j is young dominant

Objective: extract gene trajectories \((n)\) from sequence of repeated \((m)\) microarray experiments over time samples \((t)\)

\[y_{itm}(n), \quad n = 1, \ldots, N, \quad t = 1, \ldots, T, \quad m = 1, \ldots, M. \]
Clustering and filtering Methods

Principal approaches:

- Hierarchical clustering (kdb trees, CART, gene shaving)
- K-means clustering
- Self organizing (Kohonen) maps
- Vector support machines

Validation approaches:

- Significance analysis of microarrays (SAM)
- Bootstrapping cluster analysis
- Leave-one-out cross-validation
- Replication (additional gene chip experiments, quantitative PCR)
Gene Filtering via Multiobjective Optimization

Gene selection criteria: for n-th gene $\xi_1(Y(n)), \ldots, \xi_P(Y(n))$

Possible $\xi_p(Y(n))$’s for finding uncommon genes

- Squared mean change from $t = 1$ to $t = T$:
 \[
 \xi_1(Y(n)) = |\bar{y}_{T*}(n) - \bar{y}_{1*}(n)|^2
 \]

- Standard deviation at $t = 1$:
 \[
 \xi_2(Y(n)) = (y_{1m}(n) - \bar{y}_{1*}(n))^2
 \]

- Standard deviation at $t = T$:
 \[
 \xi_3(Y(n)) = (y_{Tm}(n) - \bar{y}_{T*}(n))^2
 \]
Some possible scalar functions:

- t-test statistic (Goss et al. 2000): $T(n) = \frac{\xi_1(Y(n))}{\frac{1}{2} \xi_2(Y(n)) + \frac{1}{2} \xi_3(Y(n))}$

- R^2 statistic (Hastie et al. 2000): $R^2(n) = \frac{T_n}{1 + T_n}$

- H statistic (Sinha et al. 1998): $H(n) = \frac{\xi_1(Y(n))}{\sqrt{\xi_2(Y(n)) \xi_3(Y(n))}}$

Objective: find genes which maximize or minimize the selection criteria
Aggregated Criteria

Let \(\{W_p\}_{p=1}^P \) be experimenter’s cost “preference pattern”

\[
\sum_{p=1}^{P} W_p = 1, \quad W_i \geq 0
\]

Find optimal gene via:

\[
\max_n \sum_{p=1}^{P} W_p \xi_p(Y(n)), \quad \text{or} \quad \max_n \prod_{p=1}^{P} (\xi_p(Y(n)))^{W_p}
\]

Q. What are the set of optimal genes for all preference patterns?

A. These are non-dominated genes (Pareto optimal)

Defn: Gene \(i \) is dominated if there is a \(j \neq i \) s.t.

\[
\xi_p(Y(i)) \leq \xi_p(Y(j)), \quad p = 1, \ldots, P
\]
Pareto Optimality: increasing criteria

Figure 12: For increasing criteria A, B, C are non-dominated genes and form the (first) Pareto front. A second Pareto front is formed by genes D, E.
Pareto Optimality: inc/dec criteria

Figure 13: a). Non-dominated property, and b). Pareto optimal fronts, in dual criteria plane.
Figure 14: $\xi_1 = \text{mean change vs } \xi_2 = \text{pooled standard deviation}$ for 8826 human retina genes (2001H). Superimposed are T-test boundaries.
Figure 15: First (circle) second (square) and third (hexagon) Pareto optimal fronts on (2001H) data.
Profile Selection Criteria

1. Profile contrasts for trajectory \(\{y_{mt}(n)\}_t \)

\[
\begin{bmatrix}
\xi_1(n) \\
\vdots \\
\xi_P(n)
\end{bmatrix}
=
\begin{bmatrix}
a_{11} & \cdots & a_{1T} \\
\vdots & \ddots & \vdots \\
a_{P1} & \cdots & a_{PT}
\end{bmatrix}
\begin{bmatrix}
\bar{y}_{1*}(n) \\
\vdots \\
\bar{y}_{T*}(n)
\end{bmatrix}
\]

\[
A_2 = \begin{bmatrix}
-1 & 1 \\
1 & 1
\end{bmatrix}, \quad A_2' = \begin{bmatrix}
1 & -1 \\
1 & 1
\end{bmatrix},
\]

\[
A_3 = \begin{bmatrix}
-1 & 0 & 1 \\
1 & -2 & 1 \\
1 & 1 & 1
\end{bmatrix}, \quad A_3' = \begin{bmatrix}
-1 & 1 & 0 \\
-1 & -1 & 2 \\
1 & 1 & 1
\end{bmatrix},
\]
2. Profile monotonicity for trajectory \(\{y_{mt}(n)\}_t \)

\[
\xi_2(n) = \prod_{t=2}^{T} I(\bar{y}_{*t}(n) - \bar{y}_{*(t-1)}(n))
\]

3. Profile divergence of trajectories \(\{w_{mt}(n)\}_t, \{k_{mt}(n)\}_t \)

\[
\xi_1(n) = \sum_{t=1}^{T} \bar{k}_{*t}(n) \log \frac{\bar{k}_{*t}(n)}{\bar{w}_{*t}(n)}
\]

4. Combinations of above
Accounting for Sampling Errors: Cross-validation

- Leave-one-out cross validation

Let $Y^{-m}(n)$ denote one possible set of $T \times (M - 1)$ samples

Cross-validation Algorithm:

Do $m = 1, \ldots, M^T$:

Compute $(\xi_1(Y^{-m}(n)), \xi_2(Y^{-m}(n)))$

Find Genes in First 3 Pareto fronts: G^{-m}

End

Resistant Genes = $\cap_{m=1}^{M^T} G^{-m}$
Accounting for Sampling Errors: Posterior Pareto Analysis

Given prior on mean expression levels $\bar{\xi}_p(n) = E[\xi_p(Y(n))]$ find

$$
p(i|Y) = P \left(\cap_{j \neq i} \left\{ \xi(i) \leq \xi(j) \right\}^c | Y \right) = \int dP(\xi(i)|Y) \prod_{j \neq i} P \left(\left\{ \xi(i) \leq \xi(j) \right\}^c | Y, \xi(i) \right)
$$

Case of two criteria ($P = 2$)

$$
p(i|Y) = \int \int du_1 du_2 f_{\xi_1(i),\xi_2(i)|Y}(u_1, u_2) \prod_{j \neq i} \left[F_{\xi_1(j)|Y}(u_1) + F_{\xi_2(j)|Y}(u_2) - F_{\xi_1(j),\xi_2(j)|Y}(u_1, u_2) \right]
$$
PPA under Gaussian distributed criteria

1. Assume conditionally independent Gaussian model
 \(\varepsilon_{mt}(n) \sim \mathcal{N}(0, \sigma_t^2(n)) \)
 \[
 y_{mt}(n) = \mu_t(n) + \varepsilon_{mt}(n)
 \]

2. Assume non-informative prior
 \[
 f_{\mu_t(n), \sigma_t^2(n)}(u, s) = \frac{c}{s^{a/2}}, \quad u \in \mathbb{R}, \ s \in \mathbb{R}^+
 \]
 then (large \(M \)):
 \[
 F_{\mu_t(i)\mid Y}(u) \approx \left(1 + \frac{(\hat{\mu}_t(i) - u)^2}{\hat{\sigma}_t^2(i)}\right)^{-(M-a+2)/2}
 \]
Figure 16: 8 ranked monotone decreasing gene profiles.
Figure 17: Multicriterion scattergram for first two rows of \bar{A}_3.
Figure 18: Multicriterion scattergram for $A = [-1, 1, 0; -1, -1, 2]$. 98 genes are non-linear profiles (p-value of 0.1).
Figure 19: The first five Pareto fronts for the genes with non-linear profiles shown in Fig. 18.
Figure 20: 17 genes in first Pareto front with non-zero probability by cross-validation.
Figure 21: The 8 top cross-validation ranked gene profiles remaining on the first Pareto front.
Figure 22: PPF and posterior probabilities of belonging to the first Pareto front.
Figure 23: The 8 top posterior ranked gene profiles remaining on the first Pareto front.
Non-parametric Pareto filter criterion: Virtual Profiles

Figure 24: Left: two virtual profiles in the data set. Right: the set of all $3^6 = 729$ virtual profiles for a gene in Fred Wright’s dataset.
Pareto Filtering using Virtual Sign-Profiles

Define trend vector: $\psi(n) = [b_1, \ldots, b_{T-1}]$, $b_i \in \{0, 1\}$

- Old dominant filtering criteria:
 - Maximum end-to-end increase
 \[
 \xi_1(Y(n)) = \overline{y}_{T*}(n) - \overline{y}_{1*}(n) = \max
 \]
 - Maximum number of monotone increasing T^M virtual time profiles
 \[
 \xi_2(Y(n)) = \frac{\# \text{ virtual profiles having } \psi(n) = [1, \ldots, 1]}{T^M}
 \]
Figure 25: Multicriterion mean scattergram for the virtual profile ranking and mean end-to-end increase criteria.
Figure 26: The first five Pareto fronts.
Figure 27: The 8 top cross-validation ranked gene profiles.
Table: The top scoring genes (Affymetrix nomenclature).

| PPF linear contrast | P(\(I|Y\)) | RPF linear contrast | P(\(I|Y\)) | RPF non-parametric | P(\(I|Y\)) |
|---------------------|------------|---------------------|------------|--------------------|------------|
| AFFX-ThrX-5-at | 0.999 | AFFX-DapX-5-at | 1 | AFFX-LysX-3-at | 1 |
| HG3342-HT3519-s-at | 0.998 | AFFX-ThrX-5-at | 1 | D63880-at | 1 |
| AFFX-DapX-5-at | 0.998 | AFFX-ThrX-M-at | 1 | HG831-HT831-at | 1 |
| HG831-HT831-at | 0.996 | HG3342-HT3519-s-at | 1 | U73779-at | 1 |
| AFFX-ThrX-M-at | 0.986 | HG831-HT831-at | 1 | V00594-at | 1 |
| X69111-at | 0.984 | U14394-at | 1 | U14394-at | 0.847 |
| U14394-at | 0.974 | V00594-at | 1 | AFFX-ThrX-5-at | 0.431 |
| AFFX-LysX-3-at | 0.962 | X69111-at | 1 | AFFX-DapX-5-at | 0.245 |
| V00594-at | 0.955 | U45285-at | 0.944 | AFFX-PheX-3-at | 0.222 |
| U45285-at | 0.932 | AFFX-LysX-3-at | 0.917 | AFFX-HSAC07/X00351-5-at | 0.203 |
| AB000115-at | 0.899 | AFFX-HSAC07/X00351-5-at | 0.806 | AB000115-at | 0.167 |
| AFFX-HSAC07/X00351-5-at | 0.866 | AB000115-at | 0.417 | U00954-at | 0.167 |
| U73779-at | 0.837 | U73779-at | 0.13 | U45285-at | 0.167 |
| AFFX-DapX-M-at | 0.678 | V00594-s-at | 0.074 | U75362-at | 0.167 |
| Y09912-ma1-at | 0.67 | U75362-at | 0.037 | AFFX-ThrX-M-at | 0.157 |
| U75362-at | 0.56 | AFFX-PheX-5-at | 0.028 | HG1980-HT2023-at | 0.032 |
| AFFX-DapX-3-at | 0.555 | U03399-at | 0.009 | AFFX-PheX-M-at | 0.028 |
| V00594-s-at | 0.554 | U00954-at | 0.055 | U30998-at | 0.028 |
| HG1980-HT2023-at | 0.483 | Y09912-ma1-at | 0.028 | | |
| HG3044-HT3742-s-at | 0.441 | | | | |
| D43636-at | 0.399 | | | | |
| L27624-s-at | 0.387 | | | | |
| U03399-at | 0.378 | | | | |
| S69170-s-at | 0.321 | | | | |
| AFFX-PheX-5-at | 0.315 | | | | |

Figure 28: The top scoring genes (Affymetrix nomenclature).
Mouse Retina Aging Study (2001M)

1st Pareto Front for Mouse Genes

Figure 29: Ranked first posterior Pareto front gene trajectories (Affy mouse study).
Three-objective Pareto Filtering

Objective Extract “aging genes” in (2001M) study

- Strictly increasing filtering criteria:
 - Maximum end-to-end increase

\[
\xi_1(Y(n)) = \bar{y}_{T_+}(n) - \bar{y}_{1_+}(n) = \max
\]

- Maximum number of monotone increasing T^M virtual time profiles

\[
\xi_2(Y(n)) = \frac{\# \text{ virtual profiles having } \psi(n) = [1, \ldots, 1]}{T^M}
\]

- no plateau

\[
\xi_3(Y(n)) = [\bar{y}_{t+1,*}(n) - 2\bar{y}_{t,*}(n) + \bar{y}_{t-1,*}(n)]^2 = \min
\]
Figure 30: First Pareto fronts for each pair of criteria taken from the set \((\xi_1, \xi_2 \text{ and } \xi_3)\).
Figure 31: Third posterior Pareto front for (affy mouse study).
Figure 32: Top ranked gene profile is *Mus musculus* 5' end cDNA (Unigene 86632)
Conclusions

1. Multi-criterion data mining can perform robust and flexible gene filtering
2. Cross-validation can account for statistical sampling uncertainty
3. Non-informative priors can be used to find posterior front probabilities
4. Genetic priors: phylogenetic trees, BLAST database, etc?