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Abstract

Image registration requires the specification of a class of
discriminatory image features and an appropriate image-
dissimilarity measure. Entropic spanning graphs produce
a consistent estimator of feature entropy and divergence.
We compare direct estimators with non-parametric “plug-
in” density estimators, on single pixels and independent
image component feature vectors. We have also investi-
gated a technique for minimum spanning tree construc-
tion with significantly lower memory and time complex-
ity. On the basis of misregistration errors with decreasing
SNR, the minimal graph entropy estimator can have bet-
ter performance than indirect estimators. In general, mis-
registration errors are lower with higher dimensional ICA
feature vectors as compared to single pixels.

1 Introduction

The focus application of this paper is co-registration of
a pair of ultrasound images of the breast, called the ref-
erence and the secondary images, respectively. Accu-
rate registration of 3D breast ultrasound image volumes
is an essential part of whole breast imaging for detection
of asymptomatic breast lesions. Such lesions are missed
by community practitioners in up to 45% of women with
dense breasts. Here we shall examine cases where the
target image correspond to transformed versions of the
reference image, e.g. rotation and translation. To date
the most effective methods for medical image registration
have been pixel and voxel based and include: color his-
togram matching, texture matching using cross correla-
tion, and, more recently, mutual information maximiza-
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tion on pixel coincidence histograms [2], e.g. as used
in Radiology at the University of Michigan (the MIAMI-
Fuse c

�
registration algorithm). While these methods are

adequate for some applications, there will always be cases
of spurious image qualities such as high speckle to noise
ratios, in ultrasound images which will limit registration
accuracy and even prevent convergence.

In [1] these authors presented an approach to image
registration which gets around the disadvantages of pixel
based registration techniques such as the ones previously
mentioned. The key to our approach was the inclusion of
highly specific image features, such as ICA basis vectors
extracted from ultrasound images, and use of a general-
ized information divergence matching criterion based on
the Chernoff bound of detection theory. ICA is an itera-
tive method which is closely related to the projection pur-
suit technique of non-linear regression and was applied to
images by Olshausen, Hyvärinen and others [5, 7]. ICA
bases are relevant and robust features of an image and cap-
ture non-local spatial information ignored by standard sin-
gle pixel techniques.

The objective here is to assess the characteristics of the
distribution of the feature vectors in the reference and tar-
get image, using discriminants such as entropy or other in-
formation divergence criteria. For example the mutual in-
formation method of image registration searches through
a number of coordinate transformations to find the one
that minimizes the entropy of joint pixel distributions. En-
tropic spanning graphs such as minimum spanning trees
(MST’s) span a set of feature vectors and produce a con-
sistent estimator of feature entropy and divergence. The
MST is constructed over the set of joint feature vectors
from the target and reference image to yield Jensen’s en-
tropy difference. We compare and contrast this approach
with non-parametric “plug-in” density estimation, using
histograms, over feature vectors. In [1] we introduced
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image independent vectors as feature vectors for registra-
tion and reported an increase in the discriminating abil-
ity of the mutual � -information matching criteria. Mu-
tual alpha-information is a ranking discriminant applied
to joint densities estimated from histograms.We study the
discrimination properties of these estimators using both
single pixels and independent image components.

2 � -Jensen Difference Function

The � -Jensen index function has been independently pro-
posed by Ma [3] and He et al [6] for image registration
problems. Let ��� and ��� be two densities and �	� [0, 1]
be a mixture parameter. The � -Jensen difference is the
difference between � -entropies of the mixture

��
�������������������� (1)

and the mixture of the � -entropies of ��� and ��� :����� � �"!#� � !#� � � 
 ��� � �� � �����$�%��&� � ��' � ��� �(� � �)�*�&�$���+� ��� �,� � �.- (2)

where �/�0�213!4���#5 The � -Jensen difference is a measure of
dissimilarity between � � and � � : as the � -entropy

�6� �,�7�
is concave in � it is clear from Jensens inequality that��� � �8�"!9����!9���:�;
�1 iff ���<
��=� a.e.

The � -Jensen difference can be motivated as an index
function as follows. Assume two sets of labeled feature
vectors >+��
@?�>BADCDE�GF CDH �#IKJKJKJ I L�M and >"�N
@?=>OAPCDE��F CPH �9IKJKJKJ I L=Q
are extracted from images R � and R � , respectively. As-
sume that each of these sets consist of independent re-
alizations from densities � � and � � respectively. Define
the union >S
T> �VU > � containing WX
YW � �ZW �
unlabeled feature vectors. Any consistent entropy es-
timator constructed on the unlabeled > APCDE ’s will con-
verge to

��� �8�� � �[�&�\�]�+�&� � � as W_^ ` where�Z
ba8c8d L=egf W ��h W . This motivates the following con-
sistent minimal-graph estimator of Jensen difference for�i
*W7� h W :�kj��� �8�"!9� � !9� � � 
 j��� �,> �lU > � ��m � j� � �n>���)�*�&�$���+� j� � �n>"�o�np (3)

where �q�r�213!4���#! j��� �,> ��U > � � is the minimal graph en-
tropy estimator constructed on the W point union of both
sets of feature vectors and

j��� �,> � � , j��� �n> � � are con-
structed on the individual sets of W � and W � feature vec-
tors, respectively. We can similarly define the density-
based estimator of Jensen difference based on the entropy

estimates of the form constructed on > �sU > � , > � and> � . For some indexing problems the marginal entropies? ��� �,� C � F�tCPH � over the database are all identical so that the
indexing function ? �6� � �� � �����$�%���� C � F tCPH � is equiva-
lent to ? ����� � �"!#� � !#� C � F tCDH �
3 Minimum Spanning Tree and

Renyi Entropy

The minimum spanning tree (MST) is a graph-theoretic
technique, which determines the dominant skeletal pat-
tern of a point set by mapping the shortest path of nearest
neighbor connections. Given a set >"Lu
v?�w��x!yw�z�!45D5P5D5P!yw�L F
of n, i.i.d vectors > C in {}| each with density � , a spanning
tree is a connected acyclic graph which passes through
all coordinates associated with > L . In this graph all W
points are connected by WB�u� edges ?�~ C F . For a given real
weight exponent ��� (0,1) the minimum spanning tree is
the spanning tree which minimizes the total edge weight� �,>;L��"
�d6c8��#���N� �]� ~ �#� (4)

where � ~ � denotes Euclidean (L2) norm of the edge. The
overall length of the MST can be used to construct a
strongly consistent estimator of Lebesgue continuous den-
sities [3].

The MST length
� L 
 � �,> L � is plotted as a function

of W in Fig. 1 for the case of uniformly and non-uniformly
distributed points for � =1. It is intuitive that the length of
the MST spanning the more concentrated non-uniform set
of points increases at a slower rate than does the MST
spanning the uniformly distributed points. This fact mo-
tivates the application of MST to test randomness of a
set of points. The length function when normalized by� W produces sequences that converge within a constant
factor to the alpha entropies with � =1/2, as illustrated in
Fig. 1 .Furthermore by changing the value of � in Eqn.4,
one can change the convergent limit to the � -entropy for��
��(����� h ��� . The MST is an entropic spanning graph
as its normalized log-length converges (a.s.) within a con-
stant to an alpha-entropy. Specifically, Renyi entropyj��� �,> L �"
�� h �������� ' � W � �n> L � h W � � � W��7� I � - (5)

is an asymptotically unbiased and almost surely consistent
estimator of the � -entropy of � where �)� I � is a constant
bias criterion independent of � . In image registration,



when two images are properly matched, corresponding
regions of interest should overlap and the resulting joint
probability distribution is highly concentrated. Thus the
Renyi entropy of the overlapped images should achieve
the minimum. This would be reflected in the length of
the MST. A transformation that minimizes Renyi entropy
can be calculated, since misregistration would increase
the dispersion of the joint probability distribution.

0 10000 20000 30000 40000 50000
0

50

100

150
Effect of entropy on MST Length

M
S

T
 L

en
g

th

Number of points, N

Uniform Dist.
Gaussian Dist.

0 10000 20000 30000 40000 50000 60000
0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7
Normalized MST length functions, red: Unif. blue: Gauss.

Number of Points

N
o

rm
al

iz
ed

 M
S

T
 le

n
g

th

Figure 1: Length functions
� L of MST (left) and

� L /
� W

(right) as a function of n for the uniform and normal dis-
tributed points in Figure.

As contrasted with density based estimates of entropy,
the MST estimator enjoys the following properties: it has
a faster asymptotic convergence rate, especially for non
smooth densities and for low dimensional feature spaces;
it completely by-passes the complication of choosing and
fine-tuning parameters such as histogram bin size, density
kernel width, complexity and adaptation speed; the � pa-
rameter in the � -entropy function is varied by varying the
inter-point distance measure used to compute the weight
of the MST [3]. On the other hand the need for combina-
torial optimization may be a bottleneck for a large number
of feature samples. To overcome this problem, we suggest
the following technique.

3.1 Computational Accelaration of the
Kruskal MST Algorithm

The Kruskal Algorithm [4] is widely believed to be the
fastest algorithm to solve the MST problem for sparse
graphs. Edges, sorted by their weights, are maintained in
a list and the algorithm grows the tree an edge at a time.
Cycles are avoided within the tree by discarding edges
that connect two sub-trees already joined through a prior
established path. The time complexity of the algorithm is
of ����� ����� �s� where � is the initial number of edges in
the graph. The memory requirement is of ����� � .

In the present application, for lack of a better starting

point, the intial estimate of the MST has all the possible
edges within the point set. This results in � z edges for �
points; a time requirement of ����� z � and a memory re-
quirement of ����� z � . The number of points in the graph
is the total number of pixels participating in the registra-
tion from the two images. If each image has �
	�� pixels,
the total number of points in the graph is �	���	����
150,000 for ultrasound images of size 256 	 256. Desk-
top processors cannot fulfill memory requirements of the
standard Kruskal algorithm in this case. Even with larger
machines, the algorithm has a forbidding time require-
ment for tree construction.

A significant accelaration can be obtained however by
a process of sparsification of the initial graph before tree
construction. A selection criterion is imposed on the
edges, which ensures that only those edges likely to occur
in the final MST are included in the original graph. While
constructing the edge list, a disc is placed on each point
under consideration. As seen in Fig. 3, only those edges
with lengths smaller than disc radius are accepted into the
list. The edge-length sort algorithm, within Kruskal’s al-
gorithm, now has to sort �����%� number of edges. For
approximately uniform distributions, a constant disc ra-
dius is optimal for all areas within the distribution. More-
over, for non uniform distributions, the disc radius may
be changed to adapt according to the underlying distribu-
tion. This can be achieved by selecting the distance of
the ����� -nearest neighbor (kNN) as the disc radius for a
given point. Further reduction in time and memory re-
quirements can be obtained by first rank-ordering vertex
coordinates along an arbitrary dimension. Now, it is not
necessary to compute all � z edge-lengths. Only those
edges that have lengths less than the disc radius in the di-
mension of ordering need to be considered (Fig. 3). Thus
� z edge length computations can also be avoided. If dur-
ing tree construction the algorithm runs out of edges, ex-
panding the radius of the disc reaps-in additional edges.
Fig. 2 shows bias of the modified MST algorithm as a
function of the radius parameter.

It is straightforward to prove that the resultant tree is a
minimum spanning tree.
Proof: We start by assuming that the Kruskal algorithm
is an optimal algorithm to construct MST [4], which is
based on the following lemma.

Lemma: If Kruskal algorithm does not include an
edge ~k
S���7!���� , then at the time that the algorithm
considered ~ , there was already a path from � to � in



the algorithms’ partial solution (where � and � are the
endpoints of ~ ).
There are 2 conditions to be considered here.�&�x� If point � C is included in the tree, then the path of
its connection to the tree has the lowest weight amongst
all possible non-cyclic connections. To prove this is
trivial. The disc criterion includes lower weight edge
before considering an edge with a higher weight. Hence,
if a path is found by imposing the disc, that path is the
smallest possible non-cyclic path. The non-cyclicity of
the path is ensured in the Kruskal algorithm through a
standard Union-Find data set.� �� If a point � C is not in the tree, it is because all the
edges between � C and its neighbors considered using
the disc criterion of edge inclusion have lead to a cyclic
path (using the lemma above). Expanding the disc radius
would then provide the path which is lowest in weight
and non-cyclic.

If the disc radius is underestimated the tree cannot com-
plete without first including more edges into the list. If it
is overestimated a surplus of edges will result in the edge
list, however the final tree will have the required � �	�
edges only. It has been observed empirically that the op-
timal disc radius includes roughly between 10-20 edges
from neighboring points. This number increases with the
dimensionality of the data. The number of edges � thus
reduces from � z to roughly � 	 �x1 . The memory re-
quirement of the modified algorithm is of �����s� . The
time requirement now optimizes to ����� ����� �s� , where �
is a fraction of � z for large � . Fig. 3 compares the
performance of the standard Kruskal algorithm with our
modified algorithm. The time and memory requirements
are tremendously reduced. Several approaches to further
decrease the time-memory complexity of the Kruskal al-
gorithm have been studied by the authors but for lack of
space cannot be discribed here. The authors have suc-
cessfully constructed minimum spanning trees with up to
1 million points in 8-dimensional space using variants of
the techniques discussed above.

4 Registration Results

Three test cases were chosen from the breast database.
These will be referred to as Case 1, Case 2 and Case 3,
shown in [1]. The image slice chosen from Case 1 con-
tained connective tissue structure which are charecterized
through the edges in the image. Case 2 contained a dis-
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tinct malignant tumor (seen in Fig. 4) , while Case 3 was
degraded due shadowing. We simulated the decorrelating
effect of speckle by registering a slice to a rotated ver-
sion of a proximal but different slice (approximately 2mm
away along the depth of the scan).

Fig. (4) show the representative profiles of the objec-
tive function for case 2 under different transformations.
For single pixel features, the estimates using direct and
indirect estimation methods are approximately equal. For
higher dimensional ICA feature vectors, we observe a pro-
gressive linearization of the profile with increasing dimen-
sionality for the MST based direct estimation techniques.
Computing the histogram estimate of � -MI is exponen-
tially complex, since the number of cells increase expo-
nentially with dimensionality. On the other hand, the bias
of the estimate increases exponentially as dimensionality,
for a fixed number of cells. MST based estimates how-
ever, do not have this drawback and can be computed us-
ing the full 64 dimensions of the ICA features.

Additive noise and speckle typically degrade registra-
tion accuracy. We tested registration accuracy for single
pixel and ICA features, and the discriminating criteria un-
der increasing noise conditions. Fig. (5) plots registra-
tion errors versus increasing levels of additive (truncated)
Gaussian noise to the images. The resultant registration
peak shifts from the perfect alignment position (0 degrees
relative rotation), to some arbitrary value depending on
the SNR, the registration features and entropy estimation
techniques. In general, the performance of higher order
ICA features is seen to be better than those of single pixel
features. Also, for higher order ICA features, the MST
method of entropy estimation demonstrate a greater ro-
bustness to additive noise than histogram based methods.
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