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Abstract

The massive scale and variability of microarray gene data creates new and challenging problems of signal

extraction, gene clustering, and data mining, especially for temporal studies. Most data mining methods for

�nding interesting gene expression patterns are based on thresholding single discriminants, e.g. the ratio of

between-class to within-class variation or correlation to a template. Here a di�erent approach is introduced

for extracting information from gene microarrays. The approach is based on multiple objective optimization

and we call it Pareto front (PF) analysis. This method establishes a ranking of genes according to estimated

probabilities that each gene is Pareto-optimal, i.e., that it lies on the Pareto front of the multiple objective

scattergram. For illustration the analysis is illustrated in the context of ranking the most aberrant non-linear

genes in Fred Wright's GeneChip study.
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1 Introduction

Microarray analysis of temporal gene expression pro�les o�ers one of the most promising avenues for exploring

genetic factors underlying disease, regulatory pathways controlling cell function, organogenesis and development;

see Lockhart et al. (1996); Lee et al. (1999); Livesey et al. (2000) or DeRisi et al. (1997) for background. Gene

microarrays can potentially identify RNA expression levels of thousands of genes in a time sequence of tissue

samples, thereby providing valuable information about complex gene expression patterns over time. Recent

advances in bioinformatics have brought us closer to realizing this potential. However, the massive scale and

variability of microarray gene data creates new and challenging problems of clustering and data mining. One

of these problems is the so-called gene �ltering problem, also called gene screening and gene selection, which is

to reliably extract genes exhibiting interesting expression pro�les from the thousands of hybridization indices

generated by the microarray. The most common approach to gene �ltering are signi�cance tests implemented

by thresholding a set of test statistics, e.g. paired T-tests of mean di�erences, Fisher tests of variance, or Mann-

Whitney rank tests. These can be found on most of the commercial and freeware packages used for statistical

gene analysis such as the SAM MS Excel add-on distributed by Stanford University (2001) or the Microarray

Suite and Data Mining Tool (DMT) distributed by A�ymetrix (2002). Such approaches can yield a list of genes

that are ranked in order of statistical signi�cance according to observed p-values.

This paper describes a di�erent approach to gene selection, denoted Pareto-optimal �ltering, which is based on

the ordinal theory of multiple objective optimization pioneered by the economist and sociologist Vilfreda Pareto

(1848-1923). Pareto-optimality is a founding principle for social choice and decision-making in mathematical

economics (See papers by Arrow et al. (2002); Arrow and Herv�e (1986) and Pareto website of The New School

(2001)). As discussed in Steuer (1986) this principle has since been applied to many other �elds. Since V.

Pareto's name has many other associations in probablity and statistics, it is important to emphasize that the

proposed method of Pareto-optimal gene �ltering is completely unrelated to Pareto analysis or Pareto graphs

for statistical process control and quality assessment, to the Pareto principle of management science, or to the

Pareto probability density, e.g., as in the Pareto model of income distribution.

To apply Pareto-optimal gene �ltering the experimenter computes a number of ranking criteria for each gene,

generating a point cloud of criterion vectors which is called the multicriterion scattergram. For example, to

select the most monotonic pro�les over time the ranking criteria might be chosen as the di�erences in gene

expression level over successive time points. The objective of Pareto-optimal �ltering is to isolate genes that

achieve a compromise between maximizing (or minimizing) the competing gene-ranking criteria, i.e. to �nd

the "winning" pro�les. Such genes lie on the so-called Pareto front of the multicriterion scattergram and are
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the non-dominated genes, see Sec. 3 for de�nitions. Stripping o� genes from successive Pareto fronts in the

multicriterion scattergram yields a sequence of Pareto fronts at increasing depths in the data, called the �rst,

second, third, . . . , Pareto fronts, respectively. This sequence of fronts reveals a hierarchy of the highest scoring

gene pro�les. In two recent conference papers Fleury et al. (2002a,b) and a paper submitted to Nature-Genetics

Yoshida et al. (2002), we applied Pareto-optimal �ltering to discover young- and old- dominant mouse retina

genes in GeneChip experiments and the discovered genes were validated using RT-PCR techniques. The purpose

of the present paper is to present the general Pareto �ltering methodology, introduce a Bayesian formulation of

Pareto �ltering, and to illustrate them on a widely available data set created expressly for testing gene �ltering,

classi�cation, and di�erential expression estimation.

As the gene indices are randomly sampled from multiple subjects there can exist substantial statistical

sampling errors that complicate the Pareto-optimal analysis. These sampling errors can be handled by cross-

validation producing what can be called a resistant Pareto front (RPF) of genes, de�ned as those genes that land

on the Pareto front with high relative frequency under resampling. As the RPF method does not rely on any

distributional assumptions on the data it is very exible, allowing treatment of arbitrary ranking criteria such as

dependent and non-linear functions of the data. However, when the data distribution can be characterized, even

approximately, RPF has obvious drawbacks. Principal among these drawbacks is the high computational load

of cross-validation which can make RPF methods impractical to implement for large sample size. To address

these drawbacks a Bayesian approach is presented for Pareto-optimal gene �ltering: the posterior Pareto front

(PPF) method.

As contrasted to the RPF method, the PPF method ranks each gene according to its posterior probability

that it belongs to the Pareto front. This probability is computed using prior densities on various unknown

parameters in the sampling error distribution. In particular, one can assume conditionally independent Gaussian

gene indices and assign non-informative priors on the mean and variance for each time sampled gene. Using an

asymptotic approximation to an extreme-value distribution yields an expression for the posterior probability

whose complexity increases in the number of ranking criteria and not in the number of samples. The PPF

analysis is applied to a set of ranking criteria de�ned as linear functions, called pro�le contrasts, of the prior

mean expression levels of each gene pro�le. When the pro�le contrast matrix of coeÆcients of these contrasts

is an orthogonal matrix and the mean expression levels are uncorrelated Gaussian the ranking criteria satisfy

the statistical independence assumptions. For illustration, PPF and RPF analyses are applied and compared

to Fred Wright's data set, described in Lemon et al. (2002), for detection of the most aberrant genes violating

linearity in the A�ymetrix human �broblast mixture experiment.

The outline of the paper is as follows. In Sec. 2 a brief review of microarray data analysis is presented and
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in Sec. 3 the Pareto-optimal gene �ltering approach is introduced. In Sec. 4 the general PPF gene �ltering

method is developed and in Sec. 5 linear contrast functions are considered. Finally in Sec. 6 PPF analysis is

applied to �nding aberrant genes in Fred Wright's human �broblast mixing data.

2 Gene Filtering in Microarrays

The ability to perform accurate genetic di�erentiation between two or more biological populations is a problem

of great interest to geneticists and other researchers. For example, in a temporally sampled population of mice

one is frequently interested in identifying genes that have interesting patterns of gene expression over time, called

a gene expression pro�le. Gene microarrays have revolutionized the �eld of experimental genetics by o�ering

to the experimenter the ability to simultaneously measure thousands of gene sequences simultaneously. A gene

microarray consists of a large number N of known DNA probe sequences that are put in distinct locations on

a slide. See one of the following references for more details: Kadota et al. (2001); Brown and Botstein (1999);

Bassett et al. (1999); Fitch and Sokhansanj (2000). After hybridization of an unknown tissue sample to the gene

microarrays, the abundance of each probe present in the sample can be estimated from the measured levels of

hybridization (responses). Two main types of gene microarrays are in wide use: photo-lithographic gene chips

and uorescent spotted cDNA arrays. An example of the former is the A�ymetrix (2000) product line. An

example of the later is the protocol of the National Human Genome Research Institute (NHGRI) (2001).

The study of di�erential gene expression between T populations requires hybridizing several (M) samples

from each population to reduce response variability. De�ne the measured response at the n-th gene chip probe

location for the m-th sample at time t

ytm(n); n = 1; : : : ; N; m = 1; : : : ;M; t = 1; : : : ; T:

When several gene chip experiments are performed over time they can be combined in order to �nd genes with

interesting expression pro�les. This is a data mining problem for which many methods have been proposed in-

cluding: multiple paired t-tests; linear discriminant analysis; self organizing (Kohonen) maps (SOM); principal

components analysis (PCA); K-means clustering; hierarchical clustering (kdb trees, CART, gene shaving); and

support vector machines (SVM) (See Hastie et al. (2000); Allzadeh and etal (2000) and Brown et al. (2000)).

Validation methods have been widely used and include: signi�cance analysis of microarrays (SAM); bootstrap-

ping cluster analysis; and leave-one-out cross-validation (See Tusher et al. (2001) and Kerr and Churchill (2000)).

Most of these methods are based on �ltering out pro�les that maximize some criterion such as: the ratio of

between-population-variation to within-population-variation; or the temporal correlation between a measured

pro�le and a pro�le template.
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3 Multiple Objective Gene Filtering

As contrasted to maximizing scalar criteria, multiple objective gene �ltering seeks gene pro�les that strike an op-

timal compromise between maximizing several criteria. This is closely related to multiple objective optimization

in which the concept of Pareto-optimal solutions play a crucial role. These solutions are almost never unique

and are variously called the Pareto-optimal set, the Pareto front, the Pareto frontier, and the Edgeworth-Pareto

front (See book by Stadler (1988) or Steuer (1986)). Pareto optimality theory has been applied to a wide

range of application areas including: economics, sociology, psychology, operations research, and evolutionary

computing (See above referenced books and articles by Zitzler and Thiele (1999) and Arrow and Herv�e (1986)

for examples).

Multi-objective gene �ltering can be motivated by the following simple example. Let there be T = 2 time

points and de�ne �(i) = [�1(i); �2(i)]
T the true unobserved expression levels of the i-th gene at each of these

times. Let an experimenter have P gene selection criteria which, when applied to this gene response, gives the

vector criterion:

�(i) = [�1(�(i)); : : : ; �P (�(i))]
T :

Gene i is said to be better than gene j in the p-th criterion if �p(i) > �p(j).

When it is desired to �lter out strongly increasing gene pro�les, one set of selection criteria might be (P = 2):

�1(�) = �2 � �1; �2(�) = �2 + �1: (1)

If �1and �2 are positive valued and a proportional increase in the pro�le is more meaningful to the experimenter

then she might prefer the criteria

�1(�) = log�2=�1; �2(�) = log
p
�2�1: (2)

If the measured pro�le of the i-th gene has vector mean � = �(i) for which �1 and �2 are both large then this

gene would be of interest to the experimenter. For �ltering out such genes one might consider thresholding a

compound scalar �ltering criterion, e.g. the weighted arithmetic average of (1)

J�(�) = �(�2 � �1) + (1� �)(�2 + �1); (3)

or of (2)

J�(�) = � log(�2=�1) + (1� �) log
p
�2�1; (4)

where 0 < � < 1. An obvious issue that arises in selecting such a scalar criteria is: what is the most suitable

choice of the weight �? One way out of this dilemma is to investigate the entire set of genes which maximize

5



J� for some choice of �. As shown by Das and Dennis (1997), it turns out that these genes are in a set called

the Pareto front which results from multiple objective optimization of the pair [�1(�i); �2(�i)]
T over i.

Multiple objective optimization captures the intrinsic compromises among conicting objectives. Consider

Fig. 1 and suppose that ranking criteria �1 and �2 are to be maximized. The collection of points in the �gure

are called the multicriterion scattergram. It is obvious that genes A, B and C are \better" than genes D and

E because both criteria are higher for the former than for the latter. Note that no gene among A, B and C

dominates the other in both criteria �1 and �2. Multi-objective �ltering uses this "non-dominated" property

as a way to establish a preference relation among genes A, B, C, D and E. More formally, gene i is said to be

dominated if there exists some other gene g 6= i such that for some p = q

�p(i) < �q(g) and �p(i) � �p(g); p 6= q:

The set of non-dominated genes are de�ned as those genes that are not dominated. All the genes which are

non-dominated constitute a curve which is called the (�rst) Pareto front. A second Pareto front can obtained

by stripping o� the points on the �rst front and computing the Pareto front on the remaining points - which

for the example in Fig. 1 would be genes D and E.

o  A

o B

o D

o C
o E

ξ

ξ

2

1

Figure 1: A hypothetical multicriterion scattergram for genes A,B,C,D,E plotted as vectors in the plane described by a

pair of ranking criteria �1 and �2. A, B, C are non-dominated genes and form the (�rst) Pareto front. A second Pareto

front is formed by genes D,E.

The above methods are applicable when the criteria �1 through �P are perfectly observable. However, as these

criteria depend on the true mean values �(i) of the i-th gene pro�le, the criteria are only partially observed

through a random sample from the underlying population. In Yoshida et al. (2002); Fleury et al. (2002a,b)
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we applied a non-parametric monotonicity criterion for detecting interesting monotonic gene temporal pro�les

based on fytm(i)gt;m;i, the measured abundances for each probe i, time point t and random sample m. First

a set of TM time trajectories were de�ned for each gene, corresponding to all possible time paths through the

sets of M samples at each of T time points. For each trajectory the sign of the slope between each time point

was extracted to capture instantaneous increase or decrease of each gene trajectory. The set of TM sign pro�les

summarized the monotonic properties of a gene's temporal evolution pattern. For each gene several criteria

were then computed including: the proportion of the TM trajectories satisfying a speci�c evolution pattern, e.g.

monotonicity of gene pro�le; the strength of the evolution pattern, e.g. the gene response di�erence between

�rst and last time points; or the negative curvature of the pro�le. The Pareto fronts were cross-validated using

simple leave-one-out resampling methods. The cross-validation was used for ranking the genes according to

the number of resampling sets in which a speci�c gene appears on the �rst Pareto front. A cumulative cross-

validation was also performed to determine the number of times a gene appears in one of the �rst ten Pareto

fronts. The result of this analysis yielded a set which is called the resistant Pareto fronts (RPF).

4 Posterior Pareto Filtering

The posterior Pareto front analysis introduced here casts the cross-validation ranking procedure described above

into a Bayesian framework. The posterior probability p(ijY ) that a particular gene i is on the �rst Pareto front

is easily expressed using the de�nition of non-dominance and the assumption that the criteria vectors f�(j)gj
are statistically independent given the chipset data Y . In the following expressions the notation �(i) � �(j)

means that �p(i) � �p(j) for p = 1; : : : ; P , and Ec denotes the complement of event E:

p(ijY )
= P

�\j 6=i ��(i) � �(j)
	c jY �

=

Z
dP (�(i)jY )

Y
j 6=i

P
��
�(i) � �(j)

	c jY; �(i)�

or when the posterior density f�(i)jY (u) of �(i) is available

p(ijY )
Z

duf�(i)jY (u)
Y
j 6=i

�
1� P

�
�(j) � ujY �� : (5)

This expression requires evaluating a multidimensional integral over P -dimensions. For the case of two criteria

(P = 2) the posterior probability reduces to:

p(ijY ) =
Z Z

du1du2f�1(i);�2(i)jY (u1; u2)
Y
j 6=i

�
F�1(j)jY (u1) + F�2(j)jY (u2)� F�1(j);�2(j)jY (u1; u2)

�
; (6)

7



where F�1(i);�2(i)jY (u1; u2) is the bivariate conditional distribution function of �1(i); �2(i): F�1(i);�2(i)jY (u1; u2) =R u1
�1 dv1

R v2
�1 du2F�1(i);�2(i)jY (v1; v2).

4.1 Pareto Filtering of Gene Expression Pro�les

Start with the additive model for the (log) gene pro�le measurement

ymt(i) = �t(i) + �mt(i)

where �mt(i) are zero mean noise samples and m = 1; : : : ;M , t = 1; : : : ; T and i = 1; : : : ; N . Given a prior

f(�t(i); �t(i)
2) on the mean �t(i) and the variance �

2
t (i) of ymt(i) the posterior probabilities (5) can be computed.

In the sequel, the non-informative prior described in Geisser and Corn�eld (1963) is adopted

f�t(i);�2t (i)
(u; s) =

c

sa=2
; u 2 IR; s 2 IR+

where c is a positive normalizing constant and a > 0.

Two special cases are of interest to us: (i) time varying variances f�2t (i)gt; and (ii) non-time varying variances
�2t (i) = �2� (i), t; � = 1; : : : ; T . The former case is easier to treat than the latter.

4.1.1 Time varying variances

Consider the following model for �t(i) and �mt(i): (i) f�t(i)gti and f�2t (i)gti are independent sets of i.i.d.

random variables; (ii) given these random variables Y = fytm(i)gti are independent jointly Gaussian random

variables with respective means f�t(i)gti and variances f�2t (i)gti; (iii) fytm(i)gm are conditionally i.i.d.

It is easily shown that under the above assumptions the means f�t(i)gti are conditionally independent given

Y with marginal posterior density equal to the student-t density

f�t(i)jY (u) = k(Yti)

�
1 +

(u� �̂t(i))
2

�̂2t (i)

��(M�a+2)=2

; (7)

where �̂t(i) =M�1
P

m ytm(i), �̂
2
t (i) =M�1

P
m(ytm(i)��̂t(i))2, Yti = fytm(i)gm, and k(Yti) is the measurement-

dependent normalizing factor given in Geisser and Corn�eld (1963):

k(Yti) =
1

�̂t(i)
p
�

�( 1
2
(M � a+ 2))

�( 1
2
(M � a+ 1))

: (8)

The associated distribution function can be approximated using either the largeM Gaussian approximation to

the student-t or the L1 approximation
�R u
�1 gq(v)dv

�1=q
� supv�u g(v), where q > 0. The latter approximation
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improves as q gets large. The L1 approach has computational advantages as it yields a closed form expression

- as contrasted with the Gaussian approximation that gives an expression involving integrals of the Gaussian

density. Applying the L1 approximation to the integral of (7) yields

F�t(i)jY (u) �
�
1 +

(�̂t(i)� u)2+
�̂2t (i)

��(M�a+2)=2

:

where (x)+ is the function equal to x when x > 0 and equal to zero otherwise.

4.1.2 Non-time varying variances

Next consider the following model: (i) �2t (i) = �2(i); (ii) f�t(i)gti and f�2(i)gi are independent sets of i.i.d.
random variables; (ii) given these random variables Y = fytm(i)gti are independent jointly Gaussian random

variables with respective means f�t(i)gti and variances f�2t (i)gti; (iii) fytm(i)gm are conditionally i.i.d.

Due to (i) the mean pro�le f�t(i)gt is no longer a conditionally independent sequence given Y . The joint

posterior density of �(i) = [�1(i); : : : ; �T (i)]
T takes the form of a multivariate student-t

f�(i)jY (u1; : : : ; uT ) = k(Yi)

 
1 +

TX
t=1

(ut � �̂t(i))
2

�̂2(i)

!�(TM�a+2)=2

;

where �̂2(i) = T�1M�1
P

t

P
m(ytm(i)� �̂t(i))

2, Yi = fytm(i)gtm, and k(Yi) is a scale factor similar to (8).

Analogously to the case of unequal variances, the associated distribution function can be approximated by a

multivariate L1 approximation to (9):

F�(i)jY (u1; : : : ; uT ) �
 
1 +

X
t

(�̂t(i)� ut)
2
+

�̂2(i)

!�(TM�a+2)=2

: (9)

5 Pro�le Contrasts

5.1 Pro�le Amplitude Criterion

To simplify the presentation the time sampled means �p(i) = �p(i), p = 1; : : : T are initially adopted as the

criteria of interest. This will be called the pro�le amplitude criterion and we focus on the case of time varying

variances for concreteness. This will be generalized to a set of contrast functions applied to the means in the next

subsection. Using the expressions (7) and (9) in (6) gives an expression for p(ijY ) which only requires numerical
evaluation of one-dimensional integrals (as compared with T -dimensional integrals if the exact non-asymptotic

distribution function was used).
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5.2 Pro�le Constrast Criteria

Let the vector criterion �(i) = [�1(i); : : : ; �P (i)]
T be de�ned as a linear function of the mean pro�le vector:

�(i) = A�(i);

where A = ((aij)) is a P � T contrast matrix. The vector �(i) will be called the pro�le contrasts for gene i.

To retain the simplicity of the approximations to p(ijY ), it is necessary that the component criteria in �(i) be

statistically independent when conditioned on Y . At a minimum this requires P � T . Assume as above that

the components of � are conditionally independent. A suÆcient condition for independent �p's is that non-zero

elements of each of the rows of A do not overlap each other, i.e. aikajk = 0, for all i 6= j and all k. When

the variances are not time varying a weaker suÆcient condition is that A be an orthogonal matrix, AAT = I

since the joint density f�(i)jY (u) in (9) is invariant to orthogonal transformations of u� �̂(i). Furthermore, as

the Pareto fronts are invariant to monotonic increasing transformations of the �p's, an even weaker suÆcient

condition is AAT = diag(aii)= a diagonal matrix. This latter case is illustrated below.

5.3 Examples of Pro�le Contrasts

Specialize to the case of non-time-varying variances and T = 2, T = 3 and T = 4 for concreteness. Consider

the corresponding candidate T � T contrast matrices

A2 =

2
4 �1 1

1 1

3
5 ;

A
0

2 =

2
4 1 �1

1 1

3
5 ;

A3 =

2
6664
�1 0 1

1 �2 1

1 1 1

3
7775 ;

A
0

3 =

2
6664
�1 1 0

�1 �1 2

1 1 1

3
7775 ;
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A4 =

2
6666664

�1 1 0 0

�1 �1 2 0

�1 �1 �1 3

1 1 1 1

3
7777775
;

A
0

4 =

2
6666664

1 0 0 �1
0 �1 1 0

1 0 0 1

0 1 1 0

3
7777775
:

As all of these matrices satisfy AAT = diagonal, the posterior Pareto analysis can be applied to any subset

of �p's in the vector � = A� depending on the problem at hand. Applying the posterior Pareto front analysis to

�(i) = A2�(i) will extract 2 time-point gene pro�les which are monotonic increasing (large �1) and/or have strong

average expression levels (large �2). When applied to �(i) = A
0

2�(i) the analysis will extract strong monotonic

decreasing genes from the 2 time-point pro�les. Applying the posterior Pareto front analysis to �(i) = A3�(i)

will extract strong 3 time-point gene pro�les which are end-to-end increasing and have large positive curvature

(large �2). If A3 is replaced with A
0

3 then the analysis will �nd strong pro�les which are monotonic increasing.

Using only the �rst two rows of A
0

3 will extract both strong and weak monotonic increasing pro�les. If the

density of �2(i) is truncated to zero over the range For 4 time-points A4 will perform similar services as A3

while A
0

4 will �lter out \mexican hat" pro�les. Note that independence of these linear contrasts is preserved

under non-linear transformations since the constrasts are conditionally Gaussian given �; �2. The contrasts can

also be constrained to satisfy positivity, lie in a sector, etc.

Of interest are general ways to construct meaningful contrast matrices A which are unitary, so as to maintain

multiple criteria independence for computational simplicity, yet to capture desired shape characteristics of

temporal expression pro�les. One possible method is to de�ne a contrast matrix B whose rows capture some

set of desired linearly independent properties of the pro�le and then apply the PPF with the orthogonalized

contrast matrix A = [chol(BBT )]�1B, where chol(B �BT ) is the Cholesky decomposition of BBT . For example

the following matrix might be proposed as an alternative to A
0

3 in the previous section for capturing strong

monotone increasing pro�les given by

B =

2
6664
�1 1 0

0 �1 1

1 1 1

3
7775 :
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It turns out that the aforementioned Cholesky orthogonalization procedure yields

A =

2
6664
�1=p2 1=

p
2 0

�1=p6 �1=p6 2=
p
6

1=
p
3 1=

p
3 1=

p
3

3
7775 ;

which is equal (up to a left multiplication by a positive diagonal matrix) to the contrast matrix A
0

3.

6 Pareto Filtering Application

The PPF and RPF analysis methods were applied to Fred Wright's dataset described in the paper by Lemon

et al. (2002) and available at the web address provided in the citation. The analysis software was written and

implemented in Matlab. Fred Wright's data set was obtained from a mixing experiment which the authors

designed for empirically validating and comparing various di�erential gene expression methods of analysis. As

explained in Lemon et al. (2002) three populations of genes were hybridized to A�ymetrix HuGeneFL chips:

serum starved human �broblast cells; serum stimulated human �broblast cells; and a 50-50 mixture of these

cells. A total of 18 chips were processed corresponding to 6 replications within each of the three populations

mentioned above. Each HuGeneFL chip contains the same 7129 gene probes. For each gene probe the sequence

of hybridization levels from the \stimulated(t=1)," \50-50(t=2)," and \starved(t=3)," populations was de�ned,

in that order, as a gene expression pro�le. This provides a suitable test dataset for testing PPF and RPF since

the true pro�les should be linearly increasing or decreasing over the three \time points." Any extracted non-

monotone gene pro�les must either be due to statistical estimation errors, uncontrolled uctuations in sample

concentrations during hybridization, or other experimental errors.

In Figs. 3 and 4 the multicriterion scattergram of the 7129 mean contrasts are shown for the avgdi� and the

Li-Wong reduced indices. These indices are extracted from the a�ymetrix .cel �les and measure the di�erential

expression levels between PM and MM oligonucleotides on the Gene Chip. See paper by Lemon et al. (2002)

for more details. Each point on this contrast plane is a vector containing the �rst two elements of vector A
0

3�̂(i)

where �̂(i) is sample mean of over the six replicates in each group for a given gene. If the data were noiseless then

all the contrast points would fall in the upper right and lower left sectors corresponding to monotonic increasing

and monotonic decreasing gene expression pro�les, respectively. One measure of the quality of the experiment

is the proportion of genes falling outside of these two sectors, i.e. the aberrant genes having non-monotonic

pro�les. As expected the Li-Wong reduced indices are better in this quality measure.
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6.1 Sign-based Pareto analysis

The objective is to determine the most aberrant inverted V-shaped gene pro�les. These are genes whose means

lie within the lower right sector of the multicriterion scattergram in Fig. 4. As a preprocessing step a standard

non-linear pro�le �lter was applied using a Fisher test to screen gene pro�les having large residual linear

regression errors inconsistent with a linearity hypothesis. Speci�cally, each gene pro�le was regressed onto the

linear model

ytm(i) = a(i)t+ b(i) + �tm(i); t = 1; 2; 3;

where f�tm(i)gtm is i.i.d. Gaussian additive noise with variance �2 and a; b are undetermined linear-model

coeÆcients. The regression gives an error residual for the i-th gene

R(i) = [y
��
(i)]T [I ��][y

��
(i)];

where � is the 3 � 3 matrix which orthogonally projects IR3 onto the aÆne subpace fy 2 IR3 : y = a[1; 2; 3] +

b[1; 1; 1]ga;b2IR, and [y
��
(i)]T = 1

M

PM
m=1[y1m; y2m; y3m]

T is the mean vector for the i-th gene pro�le. With s(i)

the (pooled) sample variance estimate of �2 the statistic F (i) = R(i)=s(i) is distributed as Fisher-F on 2 and

M � 3 degrees of freedom. The 1� p quantile of this distribution gives a threshold on F (i) above which a gene

is classi�ed as having a non-linear pro�le at signi�cance level p. This preprocessing eliminated all but 98 genes

from the 7129 total number of genes studied. In the sequel these will be called the \non-linear" gene pro�les.

A simple modi�cation of the sign-based Pareto analysis method we adopted in Yoshida et al. (2002); Fleury

et al. (2002b,a) can be applied to �nding the most aberrant non-linear pro�les. In Fig. 5 the multicriterion

scattergram is displayed. The non-linear genes are displayed with crosses. The �rst criterion in the �gure is

the contrast de�ned by A = [�1; 2;�1], which measures twice the di�erence between the middle point and the

average of the two other points in each pro�le. The second criterion is the number of \virtual" pro�les whose

shapes match a convex cap pro�le. Speci�cally, for each gene generate all 63 = 216 possible trajectories through

the 3 sets of 6 replicated measurements of hybridization levels. The ranking is de�ned from the proportions of

these trajectories which have slope of positive sign followed by slope of negative sign. This ranking criterion will

be called \non-parametric" since the sign-based shape criterion does not depend on the sharpness or assymetry

of the inverted V pro�le shape. Figure 6 shows the �rst �ve Pareto fronts computed on the full set of 3 � 6

non-linear gene samples indicated as crosses on Figure 5. These fronts were computed by successively stripping

o� genes found to lie on the previous Pareto fronts and rerunning Pareto analysis on the remaining points.

Finally leave-one-out cross validation was performed to determine the resistant genes that for which a high

proportion of the 216 resampled 3� 5 trajectories remained on the �rst Pareto front. Fig. 7 shows the top 8

resistant pro�les ranked in terms of relative frequency of remaining on the �rst front.
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6.2 Contrast-based Pareto Analysis

Linear contrast criteria on the non-linear gene pro�les were implemented to determine a ranking of the most

aberrant inverted V-shaped pro�les. For this the following contrast matrix is adopted

A =

2
4 �1 1 0

1 1 �2

3
5 ;

which takes large values for the inverted-V shaped pro�les. Figure 8 displays the multicriterion scattergram

which is simply a 90o rotation of that in Fig. 4. The crosses in the �gure indicate the 98 non-linear genes.

Both Bayesian (PPF) and cross-validation leave-one-out (RPF) methods for the contrast functions were

investigated. While many di�erent values for the prior parameter a have have been investigated for Bayesian

PPF analysis, we only present results for a = 2 here. Increasing a makes the computed posterior probabilities

more conservative (smaller) as the tails of the posterior densities become heavier. Figure 9 shows the �rst

�ve Pareto fronts computed on the full data set without any cross-validation. Figures 10 and 12 show the

results of PPF and RPF analysis in the multiple criteria plane. The contours around each point denotes the

standard error (one standard deviation) circle and the annotation at the centers of the circles is the computed

posterior probability (PPF), or relative frequency (RPF), that the gene belongs to the �rst Pareto front. These

plots illustrate how statistical uncertainty in the multiple criteria plane (standard error contours) translates to

probability that a gene lies on the �rst Pareto front.

Figures 11 and 13 show the eight top scoring trajectories under PPF and cross-validated RPF analysis,

respectively. In each sub-panel the indicated piecewise linear line passes through the means of the 6 replicates

for each of the 3 time samples. The top ranked 25 gene pro�les under each criterion are shown in Table 2 along

with their probability scores. Note that in the RPF linear contrast analysis all 17 of the positively ranked genes

appear in the �rst 25 top PPF-ranked gene list. Note also that in the RPF non-parametric analysis there is a

highly ranked gene (D63880-at) which is low ranked (not among �rst 25) by linear contrast PPF and not at all

ranked by RPF. This discrepancy can be explained by the large variance of this gene pro�le at the midpoint -

see top right panel in Fig. 7. This variance a�ects both of the linear contrast criteria but has less e�ect on the

sign criterion used by the non-parametric RPF method.

7 Conclusion

This paper introduced a new method of gene �ltering based on analysis of the Pareto fronts of a speci�ed

multiple criterion objective function applied to each gene. These techniques also have applicability to general
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PPF linear contrast P(i|Y) RPF linear contrast P(i|Y) RPF non-parametric P(i|Y)
AFFX-ThrX-5-at         0.999 AFFX-DapX-5-at         1 AFFX-LysX-3-at         1
HG3342-HT3519-s-at     0.998 AFFX-ThrX-5-at         1 D63880-at              1
AFFX-DapX-5-at         0.998 AFFX-ThrX-M-at         1 HG831-HT831-at         1
HG831-HT831-at         0.996 HG3342-HT3519-s-at     1 U73379-at              1
AFFX-ThrX-M-at         0.986 HG831-HT831-at         1 V00594-at              1
X69111-at              0.984 U14394-at              1 U14394-at              0.847
U14394-at              0.974 V00594-at              1 AFFX-ThrX-5-at         0.431
AFFX-LysX-3-at         0.962 X69111-at              1 AFFX-DapX-5-at         0.245
V00594-at              0.955 U45285-at              0.944 AFFX-PheX-3-at         0.222
U45285-at              0.932 AFFX-LysX-3-at         0.917 AFFX-HSAC07/X00351-5-at 0.208
AB000115-at            0.899 AFFX-HSAC07/X00351-5-at 0.806 AB000115-at            0.167
AFFX-HSAC07/X00351-5-at 0.866 AB000115-at            0.417 U00954-at              0.167
U73379-at              0.837 U73379-at              0.13 U45285-at              0.167
AFFX-DapX-M-at         0.678 V00594-s-at            0.074 U75362-at              0.167
Y09912-rna1-at         0.67 U75362-at              0.037 AFFX-ThrX-M-at         0.157
U75362-at              0.56 AFFX-PheX-5-at         0.028 HG1980-HT2023-at       0.032
AFFX-DapX-3-at         0.555 U03399-at  0.009 AFFX-PheX-M-at         0.028
V00594-s-at            0.554 U30998-at              0.028
HG1980-HT2023-at       0.483 Y09912-rna1-at 0.028
HG3044-HT3742-s-at     0.441
D43636-at              0.389
L27624-s-at            0.387
U03399-at              0.378
S69370-s-at            0.321
AFFX-PheX-5-at   0.315

Figure 2: The top scoring genes (A�ymetrix nomenclature) resulting from PPF and RPF analysis of the most

non-monotone convex cap pro�les for Fred Wright's data (Li-Wong reduced indices). P (ijY ) denotes estimated

probability that given gene belongs to �rst Pareto front obtained from Bayesian analysis (PPF) or leave-one-out

cross-validation (RPF).
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data mining problems involving shape analysis and general selection criteria. The method is very exible and

involves choosing a set of appropriate pro�le contrasts which display desired characteristics of the expression

pro�les. Both cross-validation and Bayesian posterior Pareto methods were presented for ranking genes in order

of the probability that the gene pro�le is Pareto optimal. In contrast to the cross validation methods the

Bayesian method assigns positive probability to all genes and has lower complexity than the non-parametric

cross-validation method for large sample size. On the other hand the non-parametric cross-validation method

may be more robust to outliers which might have more inuence on the sample mean pro�le shape used by the

contrast methods.

As for possible future work, a full bootstrap implementation of the contrast based RPF method would

undoubtedly make it more outlier resistant. However this would greatly increase computational complexity.

Methods of multiple comparisons (Miller (1981)), which have been previously applied to di�erential analysis of

gene microarrays by Storey and Tibshirani (2001) and others, also appear applicable to multicriterion �ltering

and, in particular, to validating Pareto-optimal trajectories. Finally, the multi-criteria methods described in

this paper may be applicable to the PIDEX method of Ge et al. (2001) who propose di�erent ways of combining

pairs of gene selection criteria.
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Figure 3: Multicriterion scattergram of linear contrasts (sample mean contrasts de�ned from the �rst two rows

of A
0

3) for A�ymetrix avgdi� indices for Fred Wright's HuGeneFL mixture study). Annotations are the number

of non-monotone V-shaped pro�les (convex cup pro�les in upper left) and inverted V-shaped pro�les (convex cap

pro�les in lower right).
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Figure 4: Multicriterion mean scattergram of linear contrasts (sample mean contrasts de�ned from the �rst two

rows of A
0

3) for Li-Wong reduced indices in Fred Wright's HuGeneFL mixture study).
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Figure 5: Multicriterion mean scattergram of the non-parametric slope-sign ranking criterion for �ltering the

most aberrant inverted V-shaped gene pro�les for Li-Wong reduced indices in Fred Wright's HuGeneFL mixture

study. Crosses denote the 98 non-linear genes failing the Fisher linear pro�le test at a p-value of 0.1.
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Figure 6: The �rst �ve Pareto fronts (no cross-validation) of the non-parametric inverted V-shape criteria for

the non-linear genes indicated by crosses in Fig. 5.
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Figure 7: The 8 top ranked cross-validated gene pro�les remaining on the �rst Pareto front among the non-linear

genes in Fig. 6. P (ijY ) denotes the relative frequency that each resampled (leave-one-out resamping) pro�le is

Pareto-optimal according to the non-parametric slope-sign criteria. Dashed line is the linear regression line.
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Figure 8: Multicriterion scattergram corresponding to 4 with contrast matrix A = [�1; 1; 0;�1;�1; 2]. Crosses
again indicate the 98 genes having non-linear pro�les at a p-value of 0.1. The contrast A is designed to �lter

genes with signi�cant inverted-V shaped pro�les and the scattergram simply corresponds to rotating Fig. 4 by

90o.
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Figure 9: The �rst �ve Pareto fronts for the genes with non-linear pro�les shown in Fig. 8.
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Figure 10: 17 genes which belong to the �rst Pareto front with non-zero probability, computed by cross-validation

analysis applied to Fig. 9. Constant contours around each point indicate standard errors under equal variance

hypothesis and the relative frequencies of lying on the �rst Pareto front are indicated at the center of relevant

contours.
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Figure 11: The 8 top ranked cross-validated gene pro�les remaining on the �rst Pareto front among the non-

linear genes in Fig. 8. P (ijY ) denotes the relative frequency that each resampled (leave-one-out resamping)

pro�le is Pareto-optimal according to the two linear contrast criteria. Dashed line is the linear regression line.
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Figure 12: Same as in Fig. 10 for the linear contrast PPF method along with standard error constant con-

tours and posterior probabilities of belonging to the �rst Pareto front (prior parameter a = 2 used to compute

posteriors). For clarity, only the �rst 20 top ranking genes are shown.
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Figure 13: Same as Fig. 11 except that gene pro�le ranking is according to computed PPF posterior probabilities

shown on Fig. 12. P (ijY ) denotes the Bayes posterior probability that each pro�le is Pareto-optimal according

to the two linear contrast criteria under the non-informative prior (a = 2).
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