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Accomplishments in years H-w_

Guiding principle: include power constraints up-front
1. Register-length, power, and optimal bit allocation
(Gupta)

1.1. Reduced register-length non-adaptive filtering
1.2. Reduced register-length adaptive filtering

2. Successive weight updating, power, and convergence
(Godavarti)

3. Proximal point bundle methods for function optimization
(Chretien)
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Impact on SP Applications

matched filters and correlators

channel equalization

space-time processing

adaptive anti-jam and noise cancelation
adaptive multipath combining

adaptive nulling and beamforming arrays

adaptive source separation
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[. Register-Length vs. Power]
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Figure 1: Fixed point B-bit register

Define:

e B — number of bits available
e RR(k) — process auto-correlation E|d;d] ]

e 1) — power dissipated per bit transition

Power dissipation per unit time for B bit register with Gaussian data:

Py < Bn- {1 _ ;eerZB\/QR(O) — 2R(1)]_1)]
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Power vs. Resolution for AR(1) Process
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Figure 2: Normalized power versus bit width b as a function of AR parameter a;.

For |a1| < 0.8, power increases approximately linearly as a function of B.
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Full Resolution FIR Filter
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Figure 3: Infinite precision FIR filter implemented as tapped delay line
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Reduced Resolution FIR Filter

Qu(Yr) = Q4 (Q. (W) Qa(X}))

Qg Qg Qg
é - é@a Vi)

Figure 4: Finite precision FIR filter implemented as tapped delay line
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Full Resolution FIR Adaptive Filter|
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Figure 5: Adaptive channel equalizer using LMS with training sequence yy.
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Reduced Resolution FIR Adaptive Filter|
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Figure 6: Adaptive channel equalizer using LMS with training sequence sg. Qg and Q. are uniform scalar quantizers using
By +1 and B. + 1 bits, respectively. Scaling factor a is used to prevent overflow.
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Quantized Algorithm: Mathematical Model

o()4() quantizes to By + 1 data bits
o().() quantizes to B, + 1 coefficient bits
Quantized FIR Digital Filter
Qulir) = Qa (Qu(X1)Q(Wy)) = X[ Wy + g}

Quantized LMS Algorithm
Wi = Wi + Qe (p Qu(Xi)er) = Wy + g

er = Qalyr) — QalUr) = yx — Ur +




Hero, ARO-MURI Review - July 1999 10

Define:

e total bit width: By = By + B.
e data bit allocation factor: p = By/Br

Under white ¢, assumption

MSEexcess =: g = e 27201 4 2725

where

Q= ﬁv g = %v (for Quantized FIR filter)

Qe = gy O = %v (for Quantized LMS)

6a?
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Filter Power Dissipation

Define

e 1); = power per table-lookup per bit

® 71, = power per logic gate

e p = vector length (# of filter taps)

total power /iteration of complex FIR filter

Table lookup mult.
Pr=|(32p — 12)Bq + 16pB, — 8p — 4] n, + [8pBa + 4pB.| n,
Partial product mult.

Pr = [28pByB. + (52p — 12) By + 28pB. + 36p — 4]n,

11
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total power /iteration of complex LMS filter:
Pr = 24p(3B; + B. — 2) + 32p|n, + 24pBan;, (Table lookup mult.)

Pr = [56pB3 + 138pB, + 24pB. + 72p|n,, (Partial product mult.)
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LMS Power Dissipation|

LMS Power Dissipation with Table Lookup Multiplier LMS Power Dissipation with Partial Product Multiplier

LMS Multiplier Power Comparison
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Figure 7. LMS Power Dissipation vs. By and B, with table lookup and partial product accumulation multipliers
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FIR Filter Power Dissipation

FIR Power Dissipation with Table Lookup Multiplier FIR Power Dissipation with Partial Product Multiplier FIR Multiplier Power Comparison
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Figure 8: FIR Filter Power Dissipation vs. By and B, with table lookup and partial product accumulation multipliers
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Increase in MSE due to @cmsigiob_
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Figure 9: Fzcess MSE as a function of By and B, for single pole IIR channel.
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Optimal bit allocation strategy for fixed Py

Relation between total bit allocation and power (table lookup)

B Pr + 16pn,
MJ p—
Eb&m@ + w%wv T w%i

Optimal bit allocation factor p:

. . kX o k%
BuEm@ = o 2 2(1=p v\wﬂ._.c&w 207" Br

16
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MSE Performance vs. Pr|

MSE and Bit Allocation vs. P T
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Figure 10: Optimal data bit allocation factor under Pr constraint and MSE as a function of Pr.
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Performance under different bit allocations|
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Figure 11: MSFE as a function of Pr for various bit allocation factors.
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Experimental Validation]

LMS Learning Curve
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Figure 12: Quantized LMS (channel identification) learning curve.
additive noise, Training sequence passed through 31-tap FIR channel. Parameters are: o
n = 1/32) b= 31) fmzn = 1078'




Hero, ARO-MURI Review - July 1999 20

Experimental Results for Blind Equalization (CMA)

JCMA CMA Perf. vs. Energy
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Figure 13: CMA Objective function, Joyra, vs By, B. and power-optimal bit allocation
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Main conclusions for reduced resolution strategies

e Significant By and Pr reductions are possible for many DSP
applications

e Analysis yields MSE-optimal LMS bit allocation strategies for fixed
mﬂ = m& + mm and wﬂ.

— B. = B; is MSE-optimal for high power
— B. > B, is MSE-optimal for low power

e For FIR matched filter B. = B, is nearly optimal for By and Pr

e simulations have borne out theoretical results for medium to high Bp
regimes
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Future Work on Low-Power Adaptive Filtering]

e Increase accuracy of MSE approximations

— Nonlinear quantizer models

— Non-white noise models
e Eixtend analysis to filters with different resolutions for each coefficient:
Qc(wr) = |QUw)), Qelwy), ..., QH(wh )]

e Eixtend to Probability of Error determination for typical
communications settings

e Eixtend to Blind Equalization (CMA)
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[I. Partial Update LMS and Power|

Partial Update LMS: only p, of p coefficients updated /iteration
Advantages:

e Computational savings
e Memory savings

e Power savings

_ Do
pru-LmMs _ pLms Po |
p

Requirement: condition on gain p to guarantee convergence

23
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Sequential Partial Update LMS Algorithm

Sequential Partial Update LMS Algorithm

- Set of odd weight vectors {Wy

: Set of even weight vectorsdWy

| Xok

D Xek
: Update when k odd

: Update when k even

Figure 14: Block diagram of the Sequential Partial Update LMS algorithm
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Comparison of Weight Trajectories|

Comparison of LMS weight Updating

2.5F ;

1.5F .

0.5F .
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iteration

Figure 15: Weight Update Trajectories for = 0.2 and p = 0.4
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Description: Partial Update LM

S algorithm|

e Update Equations:

ﬁw; + pmw%& for odd k
* g\mu\i# _ ok
ot S\@L + 0 for even k
| Wok perXok
e Update Equations for expected weight error vector
N - \&m\ﬁm |\\~\m\§®0 m a\mu\a %OH, OQQ, \&
0 i Vo k
I * Vers1|
v —
e * i 0 % E * Ve for even k
{ |§m\§om I — tm\ﬁo a\ou\a
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Example

e 2-tap adaptive filter
e Model
T = Sk + Ug

where W1 o5 = 0.5, W o = 0.4, ny 1s white Gaussian with variance,
0.01 and v is white Gaussian with variance, 0.01.

e {s;}: cyclo-stationary with period 2 having Autocorrelation matrices

R, = 0.1354 —0.5733 — 0.6381%
| —0.5733 + 0.6381% 3.8022

Ry — - 3.8022 1.3533 + 0.3280¢
| 1.3533 — 0.32802 0.1354
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Example contd. |

e Regular LMS condition gives y = 0.33
e Sufficient condition derived here gives u = 0.0254

e Ligenvalues of the update equation for 4 = 0.33 have magnitudes

1.0481 and 0.4605
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Large Step Size Weight Trajectories|
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Figure 16: Trajectory of wy and way for p = 0.33
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Small Step Size Weight Trajectories
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Figure 17: Trajectory of wy y and wqy for p = 0.0254
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Conclusion and Future Work]|

e Conclusions:
— Partial Update LMS algorithm can attain significant power savings
w/o appreciable loss

— Standard LMS condition for selecting i doesn’t guarantee
convergence of the Partial Update LMS algorithm

— Sufficient conditions for selecting p ensuring convergence in mean
were derived
e For future work:
— Extension of current work to update of arbitrary subsets of filter
weights

— Derivation of theoretical results for mean square error convergence
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Proximal Point Methods|

Proximal Point Algorithm (PPA) for optimizing function J(6):
(Rockafellar:STAMT76)

OF1 = argmaxy{J(0) — M\p||0 — 0%||?}, k=1,2,.

PPA with Kullback Penalty (Chretien&Hero:STAM99)

AFt! = argmax, A,\AS — M\ K (0, %i

o K(0, 0F) = rg(y; 0) In LU0 dy. g(y:0) > 0, 1 g(y;0)dy = 1

9(y;6%)

o {)\;} > 0 sequence of relaxation parameters

\e >0,  and My — 0
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Advantages:

L.
2.

Superlinear convergence rates for smooth J(6)

Can be applied to non-differentiable J, e.g. {; CMA
(Chretien&Hero:STAM99).

. Obtain EM-ML algorithm for:

JO)=1nf(Y;0), K, 0%) = E[ln f(X;0)|Y;0%) —In f(Y;0),\" =1

Obtain new class of accelerated EM algorithms for A\¥ # 1
(Chretien&Hero:ISI'T98).

. Successive iterates {6*} produce increasing {J(6%)}.

. Under local quadratic approximation to In f(Y; ) Kullback-PPA

becomes hybrid EM/Newton algorithm

Kullback-PPA generalizes to coordinatewise optimization: hybrid

SAGE/Newton
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Example: Maximum likelihood sequence estimation

1=

k
Y = Zlak_i@i—l—nk kEk=1,....n

Likelihood trajectories
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32.3} — PROX-SAGE (\=g(8")

— EM

szer —  PROX-EM (A=0.6)
32.1} max log I( ©)
320 2I0 4I0 6IO 8I0 100

Figure 18: Likelihood trajectory comparisons for ML sequence estimation
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