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Abstract— A new technique which we call Iterative
Redeployment of Illumination and Sensing (IRIS) is
introduced and applied to See-Through-the-Wall radar
imaging. IRIS is applicable to adaptive sensing scenarios
where the medium is illuminated and measured multiple
times using different illiminator/sensor configurations,e.g.,
position, bandwidth, or polarization. These configurations
are adaptively selected to minimize uncertainty in the im-
age reconstruction. The IRIS algorithm has the following
features: (1) use of a sparse Bayesian image model that
captures the free-space dominated propagation character-
istics of interiors of man-made structures such as caves and
residences; (2) iterative reconstruction of both an image
and an image confidence map from the posterior likelihood
in the form of a thresholded Landweber recursion, (3) use
of the Bayesian model to predict the best redeployment
configuration of the illuminator platform given the current
image and confidence map. For the STW application we
approximate the forward operator by a matrix formulation
of wavenumber migration. A simulated STW application
is provided that illustrates the IRIS algorithm.

I. I NTRODUCTION

Imaging with See-Through-the-Wall (STW) radar is
of high interest to military, homeland security, and
search-and-rescue operations due to its ability to provide
information on activities and conditions behind walls.
Tracking suspicious individuals, detection of weapons
caches, layout mapping, and fire rescue are examples
of STW applications. For such applications STW radar
must have the following properties: rapid deployment,
small (even portable) size, and the ability to perform
fast image reconstruction from limited angle views.
In general, to maximize resolution and signal-to-noise
performance one should deploy as powerful a radar as
possible, i.e., high transmit energy and long baseline.
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However, in military, homeland security, or firefighting
applications, the deployment of bulky or long-baseline
STW radar platforms might entail risks that could com-
promise mission objectives or endanger those who are
deploying the radar. In these situations, it is essential
that the size of the illumination and sensing platforms
be small and that the radar deployment time, e.g., the
baseline of a SAR system, be short. To gain back some of
the performance lost by downsizing the radar we propose
an adaptive deployment strategy that we call iterative
redeployment of illumination and sensing (IRIS). IRIS
allows one to rapidly learn the propagation environment,
adapt the configuration of the radar, e.g., its placement
at the exterior of a building, and continuously improve
the image during the deployment process.

One unique characteristic of STW that the IRIS ap-
proach exploits is that in man-made structures most of
the image volume is empty space, i.e., interiors are only
sparsely populated with scatter centers. This allows us to
implement fast image reconstruction and derive an image
confidence map that measures the degree of uncertainty
that a scatterer exists at any specified location in the
image. Regions of the image with high uncertainty may
need to be reimaged with a different illumination/sensor
configuration. The optimal redeployment configuration,
e.g., sensor position, can be determined on the fly
by choosing the one that would maximize information
gain in interesting regions of the image where scatterer
confidence, as predicted by the confidence map, is low.
Information gain is computed by placing a virtual emitter
in the low confidence region and applying the reciprocity
principle. This forms the basis for the IRIS approach.

The elements of the IRIS approach are illustrated in
Fig. 1 and 2. The former figure illustrates the iterations
over the block operation in 2. The algorithm starts with
an initial position of the sensor/illuminator and an initial
estimate of the image, which could be very crude, e.g.,
an all blank image, or could use prior information, e.g.,
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Fig. 1. Block diagram of IRIS algorithm iterated over the core
operation illustrated in Fig. 2.

Fig. 2. Block diagram of the core operation in the IRIS algorithm.

building interior wall layout. using an iterative Bayesian
MAP estimation strategy, the initial image is combined
with the SAR measurements data in a “backprojection
step” (involving the adjoint of the Greens function and
computed via EM iterations in (1)) that produces an up-
dated image and an approximate image confidence map
(expression (3)). The confidence map is used to select
regions of the image that could not be reconstructed with
high confidence from the SAR measurements. Features
extracted from the confidence image are used to estimate
likely positions of scatterers and approximate the ”for-
ward projection” (Greens function) characterizing wave
propagation inside the building. The induced information
gain field over possible sensor/illuminator redeployment
configurations (expression (4) is simulated using this
Greens function when a virtual transmitter is placed
in a region of the image having low confidence). This
information gain field is used to select among candidate
positions for redeployment and the same operation is ap-
plied to the new image, confidence map, and redeployed
sensor/illuminator data.

The outline of the paper is as follows. In Sec. II

we describe the Bayesian iterative image reconstruction
algorithm using a linear model. Each iteration involves
application of a forward channel matrix and an adjoint
channel matrix to the most recent reconstructed image
and predicted measurement residual, respectively. In this
section we introduce induce sparseness inducing priors
for reconstruction of the image and confidence map on
scatterer locations in the image. In Sec III we introduce a
fast ”reverse wavenumber migration” approximation to
the forward and adjoint operators that uses 2D FFTs,
phase correction, and interpolation. In Sec. IV we de-
scribe the information gain metric that IRIS uses to adapt
the illumination to mitigate regions of poor confidence.
Finally, in Sec. V we show simulation results for a STW
SAR application and conclude in Sec VI.

II. I MAGE RECONSTRUCTION ANDSCATTERER

PROBABILITY MAPPING

Most image reconstruction approaches can be inter-
preted as solutions to a cost function minimization prob-
lem, e.g., minimization of the sum of squared residual
errors between the observed measurements and measure-
ments synthesized with a candidate reconstructed image.
The starting point is the linear vector measurement
modelY = HX+N , whereY is a vector of radar return
amplitudes measured over time and/or space,H is the
transfer function, or forward operator matrix, associated
with the medium,X is the vectorized image or scene,
and N is a vector of residual errors associated with
assuming the linear model.

For a candidate imageX the sum of squared residuals
cost function isL(X) = ‖Y − HX‖2 where “‖ · ‖”
denotes the Euclidean norm. The least squares image
reconstruction algorithm minimizesL(X) and is given
by the closed form expression (assuming that matrixH
is full column rank)

X̂ = [HT H]†HT Y,

where HT is the hermitian transpose, also called the
adjoint matrix, ofH and [HT H]† is the pseudoinverse
of the matrix HT H. The forward operatorH and its
hermitian transpose are fundamental to this imaging
approach and Sec. 3 describes an approximation to these
matrices for radar imaging applications.

When prior information, e.g., smoothness or sparsity,
on properties of the image is available a Bayesian
image reconstruction approach is justified. Letf(X) be
a density function that captures this prior information
and assume that the model error residualN is a vector
of independent identically distributed (i.i.d.) Gaussian
random variables with zero mean and varianceσ2, The
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maximum a posteriori (MAP) reconstruction maximizes
the posterior densityf(X|Y ) = f(Y |X)f(X)/f(Y ) or
equivalently minimizes the objective function

L(X) = ‖Y − HX‖2/(2σ2) + log f(X)

Only in rare cases, e.g., Gaussianf(X), is the minimizer
of L(X) available in closed form. However, this MAP
reconstruction can always be implemented iteratively
using the Expectation-Maximization (EM) algorithm [1].
As shown in [2] the EM algorithm performs image
reconstruction by iterating two nested operations the ”E”
(deconvolution) step and the ”M” (denoising) step:

(E) Ẑ(n) = X̂(n) + αHT (Y − HX̂(n)) (1)

(M) X̂(n+1) = arg min
X

(‖Ẑ(n) − X‖2

2σ2
+ log f(X)

)

.

A. Sparse Bayesian image model

We adopt a model for the joint image densityf(X)
that reflects inherent sparseness (many zero entries in
the vectorX) introduced in [3] for molecular imaging
applications. As we will see this model also yields a
confidence map estimate. Adopting the notationX =
[x1, . . . , xP ]T the model isf(X) =

∏P
i=1 g(xi) whereg

is the marginal density

g(x) = (1 − w)δ(x) +
wa

2
e−a|x| (2)

δ(x) is a dirac delta function (point mass at zero),
w ∈ [0, 1], a > 0 are parameters, which are generally
unknown and must be estimated. With this model the
EM algorithm (1) gives an M step, which is closed form
and is equivalent to applying a soft thresholding function
to each of the variableŝZ(n) [3]. Furthermore, this
model gives an iterative approximation to the posterior
probability P (xi = 0|Y ) that thei-th pixel is zero [4]:

P (xi = 0|Y ) ≈
1−w√
2πσ2

e−
z
2

2σ2

fz(z)
(3)

fz(z) =
1 − w√
2πσ2

e−
z
2

2σ2 + A(w, a, σ, z) + B(w, a, σ, z),
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A(w, a, σ, z) =
aw

4

(
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2
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An image of the values ofP (xi = 0|Y ) over all
pixel indicesi will be called the “probability map” of
scatterers in the reconstructed image.

Fig. 3. Block diagram of wavenumber migration. The SAR
measurementsY are input to the block at the left of diagram and
the reconstructed imageX is output at the block on the right.

III. R EVERSE MIGRATION APPROXIMATION

The form of the matricesH and HT in the EM
iteration (1) will depend on the specific application and
modality used to illuminate and sense the environment.
For SAR imaging we develop an approximation to
these matrices that is based on a matrix formulation
of wavenumber migration. Wavenumber migration was
first developed as a way of imaging seismic data for oil
exploration. It was applied to synthetic aperture radar
imaging in the early 90s. [5]. Wavenumber migration
is implemented by rebinning the frequency-wavenumber
spectrum (Ω−k domain) into a 2D Fourier spectrum plus
a correction factor determined by a Stolt interpolation
[6].

Wavenumber migration can be interpreted as compo-
sition of several operators, which can implemented as
a sequence of matrix operations (See block diagram in
Fig. 3). This gives a compact mathematical form for the
image reconstructionX = ΨY where

Ψ = Q−1
2 ΦQ1,

and Q1 is a 1D FFT, placing the observations into the
frequency-wavenumber (Ω−k ) space.Q2 is the matrix
implementation of a 2D FFT and the phase compensation
and Stolt interpolation and are folded into the matrixΦ.
The matrixΨ an be identified as an approximation to the
pseudo-inverse[HT H]−1HT of the forward operatorH.

The Stolt interpolation is a 1D interpolation between
sampled frequencies in the wavenumber domain. To
implement this operation as a matrix we start with the
simple two point (linear) interpolator. If we denote the
set of observations byy[n, m] wheren corresponds to
the n-th spatial location along the synthetic aperture
and m corresponds to them-th transmitted frequency,
then the Stolt interpolation can be written asy[n, m] →
amy[n, m] + bmy[n[m + 1] for frequency dependent
interpolation coefficientsam, bm:

am =
k′

m − km

km+1 − km

, bm =
km+1 − k′

m

km+1 − km

corresponding to a vector interpolation of the formY →
AY whereA is a sparse matrix. Herekm = 2πfm/c is
the wavenumber at them-th frequency andk′

m is the
wavenumber atm-th interpolated frequency.
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Fig. 4. Block diagram of reverse wavenumber migration approxi-
mation to the forward operatorH. The imageX is input to the block
at the left of diagram and the SAR measurementsY are output at
the block on the right.

Fig. 5. 2D scenario used to illustrate the IRIS approach. Room is
10×10 meters and a SAR sensor with 1 meter baseline can be placed
at any position parallel to top or bottom walls at exterior of building.

The phase correction component of the matrixΦ is
accomplished by adjusting theam and bm coefficients
according to [7]am → ame−j(km−k′

m
)Rs and bm →

ame−j(km+1−k′

m
)Rs , whereRs is the slant range from the

scene center to the aperture. ThusΦ can be represented
as the matrix compositionΦs = BA where B is
diagonal. Thus wavenumber migration takes the form
of a matrix compositionΨ = Q−1

2 BAQ1 of circulant,
diagonal, and sparse matrices. A reverse wavenumber
migration approximation to the forward operatorH can
be extracted by computing the inverse ofΨ resulting in:
H = Q−1

1 A−1B−1Q2, which is illustrated in the block
diagram of Fig. 4.

Note that the while the Stolt matrixA is sparse the
inverse Stolt matrixA−1 is not sparse. However, by
using linear equation solvers of the formX = ΨY
instead of matrix inversion the reverse migration operator
HX = Ψ−1X can still be implemented in (1) using
sparse computations.

IV. IRIS A DAPTATION VIA INFORMATION GAIN

Assume an initial sensor/illuminator configuration has
been deployed and that an image has been recon-
structed along with its confidence map using the iterative
Bayesian algorithm described in Sec. II. The objective
of IRIS is to find a new sensor configuration that will
allow us to improve upon the initial reconstructed image.
For concreteness, we focus on imaging the interior

of a building and assume that the space of possible
configurations are locations where the baseline of a small
SAR sensor could be placed at the building exterior (see
Fig. 5). The proposed IRIS approach uses the confidence
map to identify regions of the image that were poorly
resolved, i.e., pixels that have poor confidence values
(P (xi = 0|Y ) near 0.5). It then simulates the RF field at
the building exterior that would be created by placing
a (virtual) transmitter in one of the poor confidence
regions of interest. From this simulated field we can
extract information about the best location to redeploy
the illumination/sensing platform.

For this purpose we define the predicted information
gain as a measure of how much a given sensor position
might enhance the ability to detect the presence or
absence of a scatterer in the vicinity of the virtual
transmitter. The value of redeploying the sensor at a
particular location can be measured by the variation of
the RF field at that location produced by perturbing
the location of the virtual transmitter. Define the energy
frequency spectrumEx,y(ω) of the RF field measured at
locationy due to an omnidirectional transmitter placed at
locationx, and for a locationxk defineEk = Exk,y. The
spectral variation produced by perturbing the locationx
from a reference locationx1 to a new locationx2 can
be measured by the Kullback-Liebler (KL) divergence

D(E1‖E2) =

∫

E1(ω) log

(

E1(ω)

E2(ω)

)

dω.

The KL divergence and its generalizations have been
used by many authors in sensor management problems
and are often referred to as the information gain [8]–[10].
We define the information gain at sensor positiony as the
sum of the KL divergences of the RF fields produced by
cross-range perturbationx1 → x2 and range perturbation
x1 → x3 of the virtual transmitter location:

IG(x, y) = D(E1‖E2) + D(E1‖E3). (4)

When viewed as a function ofy this quantity sweeps out
the information gain field.

V. NUMERICAL SIMULATION

We consider a scenario illustrated in Fig. 5. A weapons
cache is hidden in a room surrounded by four exterior
walls and obscured by other interior walls and objects in
the room. A mono-static radar can be placed anywhere
above the top wall or below the bottom wall. The
room is enclosed by a10 × 10 meter wall that is 1/3
meter thick. We evaluate the performance of a short
baseline (1 meter) SAR sensor that can be placed at any
position along the 10 meters of the top or bottom wall
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Fig. 6. Iterative reconstruction of building interior illustrated in
Fig. 5 after 10 iterations and a full 10 meter baseline (left) and 1
meter baseline (right) monostatic SAR illuminator/sensor.

at 1 meter standoff distance. The operating frequency
of the simulated radar was 4.0GHz to 5.0GHz and the
SAR radar baseline was sampled at 10 points (every
10cm) along its 1 meter extent. The simulator modeled
each object on the room with a simple superposition
of dyhedral (spell: dihedral???) scatterers using physical
optics. We assume that the external wall attenuation and
phase parameters are accurately estimated, e.g using the
method of [11].

For an initial sensor position centered at the middle
of the lower wall the two panels of Fig. 6 show the
results of applying ten iterations of the Bayesian iterative
reconstruction algorithm (1) with sparseness prior (2).
The values ofa, w and σ were fixed during the entire
experiment. The right panel of the figure is significantly
lower resolution than the left panel due to its relatively
smaller baseline of 1 meter. The left panel is the re-
construction obtained after the first iteration of the IRIS
procedure.

The probability mapP (xi = 0|Y ) and the associated
entropy map− log P (xi = 0) − log P (xi = 1) are
shown in Fig. 7. The entropy map is maximum for
reconstructed pixels whosea posteriori probability of
being empty space is close to 1/2. The entropy map
therefore measures thea posteriori (lack of) confidence
in the value of that pixel and is called the “confidence
map” of the image. From the confidence map a region
of low confidence is identified, e.g., the region near
the top of the image, and a virtual emitter is simulated
in this region to generate an information gain field for
determining the best redeployment configuration for the
next iteration of IRIS.

The construction of the information gain field is
illustrated in Fig. 8 for the scenario illustrated in Fig. 5

Fig. 7. confidence map (left) and entropy map (right) associated
with the 1 meter baseline image reconstruction shown in Fig. 6.

Fig. 8. The information gain field is computed by simulating the
variability of the RF spectrum that a virtual transmitter in the vicinity
of a pixel of interest (circle 1 in left panel) would generate at different
locations at the exterior of the building. At right are the induced
RF fields generated by a virtual transmitter at the reference position
(circle 1), cross-range (circle 2), and range (circle 3) perturbations.

and a low confidence region region identified from Fig. 7.
On the right of the figure is the frequency spectrum of the
induced RF field at a candidate redeployment position at
the exterior of the building for the three sensor positions
illustrated in the left panel of the figure. The difference
between the reference spectrum and the horizontally
(cross-range) and vertically (range) perturbed spectra is
measured via the information gain formula (4). On the
left of Fig. 8 at the exterior of the building is the color
coded field corresponding to the information gain. The
distances of the range and cross-range perturbations of
the virtual transmitter have been exaggerated for clarity
of presentation; actual perturbations would produce less
obvious visual differences in the RF spectra.

In Fig. 9 the virtual transmitter positions and induced
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Fig. 9. Virtual transmitter locations and the induced information
gain fields for iteration 2 and 3 of IRIS for the scenario illustrated
in Fig. 5.

Fig. 10. Comparison between final IRIS reconstruction after 4
iterations with 1 meter baseline SAR deployments (shown by black
arrows) versus one shot IRIS reconstruction using 10 meter baseline.
In both cases the reverse wavenumber migration model with EM
implementation of MAP algorithm has been used.

information gain fields are illustrated for iteration 2
and 3 of the IRIS algorithm. Optimal information gain
maximizing SAR positions are indicated by the 1 meter
baseline white arrows at exterior of the building. After
the third iteration of IRIS 4 different sensor positions will
have been deployed (including the initial deployment).

On the right panel of Fig. 10 a composite of the
four reconstructed images (including the final image)
obtained from the three iterations of the adaptive IRIS
algorithm described above. The recovered resolution
using IRIS’s total baseline of 4 meters is comparable
to the resolution of the non-adaptive one-shot 10 meter
baseline shown on the left panel of the figure.

VI. CONCLUSIONS

We presented a new Bayesian iterative approach called
IRIS which allows one to sequentially place sensor
and illuminators around a building in a manner that

successively maximizes the information gain in poorly
resolved regions of the image of the building interior.
The algorithm works adaptively in four steps: (i) It
observes the scene at an initial location and creates a
scattering model of the building (i.e., the environment).
(ii) It generates a confidence map of the locations of
scatterers to reveal poorly-measured areas of the scene
based on the acquired observations. (iii) It places virtual
transmitters at locations of uncertainty in the scene and
utilizes numerical electromagnetic simulations to com-
pute the electric fields exiting the building. (iv) It uses
an information gain criteria to determine the next sensor
redeployment configuration. In this way a high quality
image is formed adaptively from the observations. The
IRIS algorithm was illustrated for STW SAR imaging.

This paper introduced the IRIS concept but more work
is required to make it practical. Firstly, the probability
map estimate forP (xi = 0|Y ) was based on an estimate
of the probabilityP (xi = 0|Z), whereZ denotes the
complete data in the EM algorithm. Using the EM frame-
work it is possible to to obtain better approximations to
the posterior probability which will translate into better
estimates of the confidence image, i.e., the entropy of
the probability map. Secondly, the reverse migration
algorithm can be extended to fully 3D images. Thirdly,
to obtain the final reconstructed image for the simulated
example shown in the paper, we simply superimposed the
scene reconstructions obtained at each iteration of IRIS.
This can be improved by coupling the EM algorithm
reconstructions over different IRIS iterations. Finally, as
presented here, IRIS required human intervention, i.e.,
the placement of the virtual transmitter was manually
determined by selecting regions of interest in the con-
fidence map and looking at the information gain field
images. The general IRIS procedure can be automated
if good rules for region of interest selection can be
developed.
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