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Abstract— A new technique which we call Iterative However, in military, homeland security, or firefighting
Redeployment of lllumination and Sensing (IRIS) is applications, the deployment of bulky or long-baseline
introduced and applied to See-Through-the-Wall radar gSTW radar platforms might entail risks that could com-
imaging. IRIS is applicable to adaptive sensing scenarios o mise mission objectives or endanger those who are
where the medium is illuminated and measured multiple o h\0ing the radar. In these situations, it is essential
times using different illiminator/sensor configurations,e.g., . . L .
position, bandwidth, or polarization. These configuratiors that the size of the illumination and SenS|.ng platforms
are adaptively selected to minimize uncertainty in the im- °€ Small and that the radar deployment time, e.g., the
age reconstruction. The IRIS algorithm has the following Daseline of a SAR system, be short. To gain back some of
features: (1) use of a sparse Bayesian image model thatthe performance lost by downsizing the radar we propose
captures the free-space dominated propagation character- an adaptive deployment strategy that we call iterative
istics of interiors of man-made structures such as caves and redeployment of illumination and sensing (IRIS). IRIS
residences; (2) iterative reconstruction of both an |mage aIIOWS ohe to rapldly Iearn the propagatlon envn‘onment,
and an image confidence map from the posterior likelihood adapt the configuration of the radar, e.g., its placement

in the form of_athresholded Lan_dweber recursion, (3) use at the exterior of a building, and continuously improve
of the Bayesian model to predict the best redeployment he | duri he deol

configuration of the illuminator platform given the current the |mage. uring the eP qyment process.

image and confidence map. For the STW application we ~One unique characteristic of STW that the IRIS ap-

approximate the forward operator by a matrix formulation ~ Proach exploits is that in man-made structures most of
of wavenumber migration. A simulated STW application the image volume is empty space, i.e., interiors are only
is provided that illustrates the IRIS algorithm. sparsely populated with scatter centers. This allows us to
implement fast image reconstruction and derive an image
confidence map that measures the degree of uncertainty
that a scatterer exists at any specified location in the
Imaging with See-Through-the-Wall (STW) radar ismage. Regions of the image with high uncertainty may
of high interest to military, homeland security, angeed to be reimaged with a different illumination/sensor
search-and-rescue operations due to its ability to proviggnfiguration. The optimal redeployment configuration,
information on activities and conditions behind Wa”%g’ sensor position’ can be determined on the ﬂy
Tracking suspicious individuals, detection of weaponsy choosing the one that would maximize information
caches, layout mapping, and fire rescue are exampiRsn in interesting regions of the image where scatterer
of STW applications. For such applications STW rad@pnfidence, as predicted by the confidence map, is low.
must have the following properties: rapid deploymenfaformation gain is computed by placing a virtual emitter
small (even portable) size, and the ability to perfori the low confidence region and applying the reciprocity
fast image reconstruction from limited angle viewssrinciple. This forms the basis for the IRIS approach.
In general, to maximize resolution and signal-to-noise The elements of the IRIS approach are illustrated in
performance one should deploy as powerful a radar @g. 1 and 2. The former figure illustrates the iterations
possible, i.e., high transmit energy and long baselinger the block operation in 2. The algorithm starts with
This research was partially supported by the Army Researd! initial position of the sensor/illuminator and an irlitia

Office, grant number DAAD19-02-1-0262. Authors can be conthct€Stimate of t_he image, which COUId_ be_ very Cr_Ude1 eg.,
at {j amar bl e, ravi vr, hero} at unich. edu an all blank image, or could use prior information, e.g.,

I. INTRODUCTION



Initial Green

Function aproximation we describe the Bayesian iterative image reconstruction

ouput . ] — il reconsiructed algorithm using a linear model. Each iteration involves
ofsenser ﬂﬁfg application of a forward channel matrix and an adjoint
T channel matrix to the most recent reconstructed image
B N s and predicted measurement residual, respectively. In this
— [=E section we introduce induce sparseness inducing priors
—E for reconstruction of the image and confidence map on
EEEmT T e scatterer locations in the image. In Sec Il we introduce a
- T fast "reverse wavenumber migration” approximation to
i _ the forward and adjoint operators that uses 2D FFTs,
(TS e phase correction, and interpolation. In Sec. IV we de-
T j* scribe the information gain metric that IRIS uses to adapt

the illumination to mitigate regions of poor confidence.
Fig. 1.  Block diagram of IRIS algorithm iterated over the cord=inally, in Sec. V we show simulation results for a STW

operation illustrated in Fig. 2. SAR application and conclude in Sec VI.
TR Il. IMAGE RECONSTRUCTION ANDSCATTERER
| PROBABILITY MAPPING
- R conatnucton —— R mage Most image reconstruction approaches can be inter-
Datd ™| Conﬁ‘deme _l“ Extraction preted as so!ufuo.ns t_o a cost function minimization prob-
Mapper Fwar:mdjoim lem, e.g., minimization of the sum of squared residual
Equation Solver errors between the observed measurements and measure-
ments synthesized with a candidate reconstructed image.
o The starting point is the linear vector measurement

modelY = HX + N, whereY is a vector of radar return

amplitudes measured over time and/or spdgeis the

Fig. 2. Block diagram of the core operation in the IRIS algorithniransfer function, or forward operator matrix, associated
with the medium,X is the vectorized image or scene,
and N is a vector of residual errors associated with

To next stage

building interior wall layout. using an iterative Bayesia@sSsuming the linear model.
MAP estimation strategy, the initial image is combined For a candidate imag& the sum of squared residuals
with the SAR measurements data in a “backprojecti&®st function isL(X) = Y — HX|* where 9 - ||”
step” (involving the adjoint of the Greens function andénotes the Euclidean norm. The least squares image
computed via EM iterations in (1)) that produces an upeconstruction algorithm minimize5(X) and is given
dated image and an approximate image confidence nipthe closed form expression (assuming that matfix
(expression (3)). The confidence map is used to selé&full column rank)
regions of the image that could not be reconstructed with X = (HTH] HTY,
high confidence from the SAR measurements. Features ’
extracted from the confidence image are used to estimaiigere H” is the hermitian transpose, also called the
likely positions of scatterers and approximate the "fomdjoint matrix, of  and [H” H|' is the pseudoinverse
ward projection” (Greens function) characterizing wavef the matrix H” H. The forward operato! and its
propagation inside the building. The induced informatidfermitian transpose are fundamental to this imaging
gain field over possible sensor/illuminator redeploymeapproach and Sec. 3 describes an approximation to these
configurations (expression (4) is simulated using thigatrices for radar imaging applications.
Greens function when a virtual transmitter is placed When prior information, e.g., smoothness or sparsity,
in a region of the image having low confidence). Thisn properties of the image is available a Bayesian
information gain field is used to select among candidai@age reconstruction approach is justified. lf¢f<) be
positions for redeployment and the same operation is apdensity function that captures this prior information
plied to the new image, confidence map, and redeploygad assume that the model error residivals a vector
sensor/illuminator data. of independent identically distributed (i.i.d.) Gaussian
The outline of the paper is as follows. In Sec. Itandom variables with zero mean and varianée The



Place in 2D

maximum a posteriori (MAP) reconstruction maximizes Pt . Swolt | | Fi‘l”?'l
the posterior density' (X|Y) = f(Y|X)f(X)/f(Y) or Format Comp. Interp.
equivalently minimizes the objective function Fig. 3. Block diagram of wavenumber migration. The SAR

9 9 measurementy” are input to the block at the left of diagram and
L(X) = ||Y - HXH /(2‘7 ) + log f(X) the reconstructed imag¥ is output at the block on the right.

Only in rare cases, e.g., GaussifiX ), is the minimizer
of L(X) available in closed form. However, this MAP
reconstruction can always be implemented iteratively
using the Expectation-Maximization (EM) algorithm [1]. The form of the matrices? and H” in the EM
As shown in [2] the EM algorithm performs imageteration (1) will depend on the specific application and
reconstruction by iterating two nested operations the "Etodality used to illuminate and sense the environment.
(deconvolution) step and the "M” (denoising) step:  For SAR imaging we develop an approximation to
these matrices that is based on a matrix formulation
(1) of wavenumber migration. Wavenumber migration was
first developed as a way of imaging seismic data for oil
exploration. It was applied to synthetic aperture radar
imaging in the early 90s. [5]. Wavenumber migration
A. Sparse Bayesian image model is implemented by rebinning the frequency-wavenumber
spectrum @ —k domain) into a 2D Fourier spectrum plus

We adopt a model for the joint image densprX)_ a.correction factor determined by a Stolt interpolation
that reflects inherent sparseness (many zero entrleﬁéf

the vectorX) introduced in [3] for molecular imaging o .
. . . . Wavenumber migration can be interpreted as compo-
applications. As we will see this model also yields a.

confidence manp estimate. Adopting the notatisn— sition of several operators, which can implemented as

" 2p]T thz model isf(X) _p H% (1) where_ a sequence of matrix operations (See block diagram in

islt’hé 'r’nalrg inal densit — L= 9 g Fig. 3). This gives a compact mathematical form for the
9 y image reconstructiolX = UY where

U =Q,'eQr,

o(z) 'S 1a dlracodelta function (pow;]t_ rr?ass at Zer?I)and 1 is a 1D FFT, placing the observations into the
w € [0,1], a > 0 are parameters, which are genera Yrequency-wavenumber(z—k ) space(), is the matrix

unknown and must be estimated. With this model trfﬁ]plementation of a 2D FFT and the phase compensation

EM glgonthm (1) gives an M step, which is c_Iosed for_r‘%md Stolt interpolation and are folded into the matbix
and is equivalent to applying a soft thresholding fur‘Ct'a\:‘he matrix¥ an be identified as an approximation to the
to each of the variablesZ(™ [3]. Furthermore, this seudo-inversélr” ]~ HT of the forward operatoHl
model gives an iterative approximation to the posterigr The Stolt interpolation is a 1D interpolation betwéen
probability P(z; = 0]Y’) that thei-th pixel is zero [4] sampled frequencies in the wavenumber domain. To
implement this operation as a matrix we start with the

I1l. REVERSE MIGRATION APPROXIMATION

(BE) 2" =X™ 4 oHT (Y — HX™)

7(n) _ x||2
7HZ X —i—logf(X)).

(M) XD = arg rr};n( 557

wa

gla) = (1 = w)d(a) + Freol @

2

l—w 5z simple two point (linear) interpolator. If we denote the
P(x; =0]Y) = A (3) set of observations by[n, m| wheren corresponds to
1_ j(z) the n-th spatial location along the synthetic aperture
f2(2) = w2 e 22 + A(w,a,0,2) + B(w, a,0,z), and m corresponds to then-th transmitted frequency,
V2ro then the Stolt interpolation can be written @&, m] —
where amy[n,m] + bpylnim + 1] for frequency dependent
Q0 4 2 a2u2imes interpolation coefficients,,, b,,:
Alw,a,0,z) = ﬂ(1—erf( "))e%,
4 \/i p— k;n*km b _karl*k»lm
aw 2 — a0, a®02 2 mT L kM L —k
B(w,a,0,2) = —(14erf(Z e 2 . m+l T Pm m+1 7 m

corresponding to a vector interpolation of the fokm—
An image of the values ofP(z; = 0]Y) over all AY whereA is a sparse matrix. Herk,, = 27 f,,/c is
pixel indicesi will be called the “probability map” of the wavenumber at the:-th frequency and:/, is the
scatterers in the reconstructed image. wavenumber atn-th interpolated frequency.



2D Place in

o Inverse Phase k of a building and assume that the space of possible
(Uneomp Format configurations are locations where the baseline of a small
Fig. 4. Block diagram of reverse wavenumber migration approxX8AR sensor could be placed at the building exterior (see
mation to the fC?I’W&I’d operatdf. The imageX is input to the block F|g 5) The proposed IRIS approach uses the confidence
?ﬁetﬁo'cekﬂo%f t‘:}':%irgm_ and the SAR measuremeitare output at o1 14 jdentify regions of the image that were poorly
resolved, i.e., pixels that have poor confidence values
(P(z; = 0]Y) near 0.5). It then simulates the RF field at
the building exterior that would be created by placing

@hair &m &[QQ} a (virtual) transmitter in one of the poor confidence

regions of interest. From this simulated field we can

WG RO extract information about the best location to redeploy
o o the illumination/sensing platform.

For this purpose we define the predicted information
gain as a measure of how much a given sensor position
Emely Space merir might enhance the ability to detect the presence or
S absence of a scatterer in the vicinity of the virtual
Sink o transmitter. The value of redeploying the sensor at a
particular location can be measured by the variation of
the RF field at that location produced by perturbing
Fig. 5. 2D scenario used to illustrate the IRIS approach. Room @€ location of the virtual transmitter. Define the energy
10 x 10 meters and a SAR sensor with 1 meter baseline can be pladsgquency spectrunt, ,(w) of the RF field measured at
at any position parallel to top or bottom walls at exterior of buildinqocationy due to an omnidirectional transmitter placed at
locationz, and for a location;, defineE), = E,, ,,. The
spectral variation produced by perturbing the location
from a reference locatior; to a new locationz, can
be measured by the Kullback-Liebler (KL) divergence

The phase correction component of the matbixis
accomplished by adjusting the,, and b,, coefficients
according to [7]a, — ame Ik m—kn)Bs and b,, —
ame I kma1—k)E: \whereR; is the slant range from the E
scene center to the aperture. Thkigan be represented D(E1||Es) = /E1(w) log < 1(w)> dw.
as the matrix compositionb, = BA where B is Ez(w)
diagonal. Thus wavenumber migration takes the form The KL divergence and its generalizations have been
of a matrix composition = Q;lBAQl of circulant, used by many authors in sensor management problems
diagonal, and sparse matrices. A reverse wavenumbed are often referred to as the information gain [8]-[10].
migration approximation to the forward operatlircan We define the information gain at sensor positjces the
be extracted by computing the inverseWfresulting in: sum of the KL divergences of the RF fields produced by
H = Q;'A~'B~'Q,, which is illustrated in the block cross-range perturbation — z» and range perturbation
diagram of Fig. 4. x1 — x5 Of the virtual transmitter location:

Note that the while the Stolt matriXd is sparse the —
inverse Stolt matrixA—! is not sparse. Ho?/vever, by IG(z,y) = D(E1|| ) + D(Er| Es). (4)
using linear equation solvers of the fortd = WY When viewed as a function gfthis quantity sweeps out
instead of matrix inversion the reverse migration operatthte information gain field.

HX = ¥~'X can still be implemented in (1) using

sparse computations. V. NUMERICAL SIMULATION
We consider a scenario illustrated in Fig. 5. A weapons
IV. IRIS ADAPTATION VIA INFORMATION GAIN cache is hidden in a room surrounded by four exterior

Assume an initial sensor/illuminator configuration hasalls and obscured by other interior walls and objects in
been deployed and that an image has been rectime room. A mono-static radar can be placed anywhere
structed along with its confidence map using the iteratiedove the top wall or below the bottom wall. The
Bayesian algorithm described in Sec. Il. The objectivom is enclosed by 40 x 10 meter wall that is 1/3
of IRIS is to find a new sensor configuration that wilmeter thick. We evaluate the performance of a short
allow us to improve upon the initial reconstructed imagéaseline (1 meter) SAR sensor that can be placed at any
For concreteness, we focus on imaging the interiposition along the 10 meters of the top or bottom wall
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Fig. 7. confidence map (left) and entropy map (right) associated
Fig. 6. lterative reconstruction of building interior illustrated inwith the 1 meter baseline image reconstruction shown in Fig. 6.
Fig. 5 after 10 iterations and a full 10 meter baseline (left) and 1
meter baseline (right) monostatic SAR illuminator/sensor.
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4 Reference
I Field

at 1 meter standoff distance. The operating frequen
of the simulated radar was 4.0GHz to 5.0GHz and tl
SAR radar baseline was sampled at 10 points (eve
10cm) along its 1 meter extent. The simulator modele
each object on the room with a simple superpositic
of dyhedral (spell: dihedral???) scatterers using phiysi
optics. We assume that the external wall attenuation a
phase parameters are accurately estimated, e.g using
method of [11].

For an initial sensor position centered at the midd
of the lower wall the two panels of Fig. 6 show the
results of applying ten iterations of the Bayesian itegati
reconstruction algorithm (1) Wlt.h spars_eness prlor_ ( ig. 8. The information gain field is computed by simulating the
The values ofa,w and o were fixed during the entire variability of the RF spectrum that a virtual transmitter in the vicinity
experiment. The right panel of the figure is significantlyrf a pixel of interest (circle 1 in left panel) would generate at different
lower resolution than the left pane| due to its re|ative|§cati0ns at the exterior of the building. At right are the induced
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smaller baseline of 1 meter. The left panel is the r F fields generated by a virtual transmitter at the reference position

. . . . ) circle 1), cross-range (circle 2), and range (circle 3) perturbation
construction obtained after the first iteration of the IRI
procedure.

The probability mapP(z; = 0]Y) and the associatedand a low confidence region region identified from Fig. 7.
entropy map—log P(x; = 0) — log P(z; = 1) are On the right of the figure is the frequency spectrum of the
shown in Fig. 7. The entropy map is maximum fonduced RF field at a candidate redeployment position at
reconstructed pixels whose posteriori probability of the exterior of the building for the three sensor positions
being empty space is close to 1/2. The entropy mfustrated in the left panel of the figure. The difference
therefore measures tieeposteriori (lack of) confidence between the reference spectrum and the horizontally
in the value of that pixel and is called the "ConﬁdenC@;ross-range) and vertically (range) perturbed spectra is
map” of the image. From the confidence map a regigAeasured via the information gain formula (4). On the
of low confidence is identified, e.g., the region neaéft of Fig. 8 at the exterior of the building is the color
the top of the image, and a virtual emitter is simulatesbded field corresponding to the information gain. The
in this region to generate an information gain field fofistances of the range and cross-range perturbations of
determining the best redeployment configuration for thRe virtual transmitter have been exaggerated for clarity
next iteration of IRIS. of presentation; actual perturbations would produce less

The construction of the information gain field ibvious visual differences in the RF spectra.
illustrated in Fig. 8 for the scenario illustrated in Fig. 5 In Fig. 9 the virtual transmitter positions and induced



Iteration 2 successively maximizes the information gain in poorly
resolved regions of the image of the building interior.
The algorithm works adaptively in four steps: (i) It
observes the scene at an initial location and creates a
scattering model of the building (i.e., the environment).
(i) It generates a confidence map of the locations of
scatterers to reveal poorly-measured areas of the scene
based on the acquired observations. (iii) It places virtual
transmitters at locations of uncertainty in the scene and
utilizes numerical electromagnetic simulations to com-
pute the electric fields exiting the building. (iv) It uses
| i an information gain criteria to determine the next sensor
s Rang ] ’ s Rare ] redeployment configuration. In this way a high quality
Virtual transmitter locations and the induced informatiofl '¢9€ 1S formed adaptively from the observations. The

Virtual Transmitter———=

Down Range [m]
Down Range [m]

Fig. 9.
gzﬂn ?ields for iteration 2 and 3 of IRIS for the scenario illustratedR1S algorithm was illustrated for STW SAR imaging.
in Fig. 5. This paper introduced the IRIS concept but more work
is required to make it practical. Firstly, the probability
5 1m im map estimate foP(z; = 0|Y") was based on an estimate

of the probability P(x; = 0|Z), where Z denotes the
complete data in the EM algorithm. Using the EM frame-
work it is possible to to obtain better approximations to
the posterior probability which will translate into better
estimates of the confidence image, i.e., the entropy of
the probability map. Secondly, the reverse migration
algorithm can be extended to fully 3D images. Thirdly,
to obtain the final reconstructed image for the simulated

Down Range [m]
Down Range [m]

4 3 2 4 0 1 2 3 4 5

1T — 4 —>

10m Aperture 1m  1m Aperture example shown in the paper, we simply superimposed the
scene reconstructions obtained at each iteration of IRIS.

Fig. 10. Comparison between final IRIS reconstruction after This can be improved by coupling the EM algorithm

iterations with 1 meter baseline SAR deployments (shown by blagk - stryctions over different IRIS iterations. Finally, a
arrows) versus one shot IRIS reconstruction using 10 meter baseliné !

In both cases the reverse wavenumber migration model with eRfesented here, IRIS re_qUired huma_m intervention, i.e.,
implementation of MAP algorithm has been used. the placement of the virtual transmitter was manually

determined by selecting regions of interest in the con-
_ _ o _ _ _ fidence map and looking at the information gain field

and 3 of the IRIS algorithm. Optimal information gainf good rules for region of interest selection can be
maximizing SAR positions are indicated by the 1 metefeyejoped.
baseline white arrows at exterior of the building. After
the third iteration of IRIS 4 different sensor positionslwil
have been deployed (including the initial deployment).

On the right panel of Fig. 10 a composite of thej1] A p. Dempster, N. M. Laird, and D. B. Rubin, “Maximum
four reconstructed images (including the final image) likelihood from incomplete data via the em algorithragurnal
obtained from the three iterations of the adaptive RIS ﬁ/‘; R’F‘?V*’:‘J‘e?:g?;‘%‘?-RB- ’\‘1’3\',;,:53‘2% é’\—fgi Joé:irt‘ﬁsﬁolrgvg\-/elet
algorlthm described ab_ove. The recove_red resolutiol béseg image restoration|EEE Trans. on ?mge Processing,
using IRIS’s total baseline of 4 meters is comparable vol. 12, no. 8, pp. 906-916, 2003.
to the resolution of the non-adaptive one-shot 10 metd8] M. Ting, Sgnal Processing for Magnetic Resonance Force

baseline shown on the left panel of the figure. Microscopy. PhD thesis, Dept of EECS, Univ. of Michigan,
P 9 Ann Arbor MI 48109-2122, May 2006.

[4] M. Ting, R. Raich, and A. O. Hero, “Sparse imaging using a
VI. CONCLUSIONS sparse prior,” inProc. |EEE Int. Conf. on Image Processing,
. - (Atlanta, GA), pp. 1261-1264, 2006.
we prgsented anew Bayesian |tera_t|ve approach Ca"TE] C. Cafforio, C. Prati, and F. Rocca, “SAR data focusing
IRIS which allows one to sequentially place sensof " ysing seismic migration techniquesEEE Trans. on Aerosp.
and illuminators around a building in a manner that Electron. and Systems, vol. 27, no. 2, pp. 194-206, 1991.
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