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ABSTRACT

We consider the problem of analyzing data for which no straight
forward and meaningful Euclidean representation is available.
Specifically, we would like to perform dimensionality reduc-
tion to such data for visualization and as preprocessing for
clustering. In these cases, an appropriate assumption would
be that the data lies on a statistical manifold, or a manifold
of probability density functions (PDFs). In this paper we
propose using the properties of information geometry in or-
der to define similarities between data sets. This has been
done using the Fisher information distance, which requires
knowledge of the parametrization of the manifold; knowl-
edge which is usually unavailable. We will show this met-
ric can be approximated using entirely non-parametric meth-
ods. Furthermore, by using multi-dimensional scaling (MDS)
methods, we are able to embed the corresponding PDFs into
a low-dimensional Euclidean space. We illustrate these meth-
ods on simulated data generated by known statistical mani-
folds. Rather than as an analytic or quantitative study, we
present this framework as a proof of concept, demonstrating
our methods which are immediately applicable to problems
of practical interest.

1. INTRODUCTION

The fields of statistical learning and machine learning are used
to study problems of inference, which is to say gaining knowl-
edge through the construction of models in order to make de-
cisions or predictions based on observed data [1]. In some
problems, the observations can be represented as points in a
Euclidean space with the L2-norm as a natural dissimilarity
metric. Solutions to problems of dimensionality reduction,
clustering, classification have been formulated using the Eu-
clidean representation. Unfortunately, when no obvious nat-
ural Euclidean representation for the data is available, such
inference tasks require independent solutions. A straightfor-
ward strategy is to express the data in terms of a low dimen-
sional feature vector for which the curse of dimensionality is
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alleviated. This initial processing of data as real-valued fea-
ture vectors in Euclidean space, which is often carried out
in an ad hoc manner, has been called the “dirty laundry” of
machine learning [2]. This procedure is highly dependent on
having a good model for the data and in the absence of such
model may be highly suboptimal, resulting in much informa-
tion loss. When a statistical model is available, the process of
obtaining a feature vector can be done optimally by extract-
ing the model parameters for a given data set and thus char-
acterizing the data through its lower dimensional parameter
vector. We are interested in extending this approach to the
case in which the data follows an unknown parametric statis-
tical model. These types of problems have been presented in
document classification [3], face recognition [4], texture seg-
mentation [5], and shape analysis [6].

In this paper, we present a framework to handle such prob-
lems in which a model for the data is unavailable. Specifi-
cally, we focus on the case where the data is high-dimensional
and no lower dimensional Euclidean manifold gives a suffi-
cient description. In many of these cases, a lower dimensional
statistical manifold can be used to assess the data for vari-
ous learning tasks. Our framework includes characterization
of data sets in terms of a non-parametric statistical model,
a geodesic distance as an information metric for evaluating
distance between data sets, and a dimensionality reduction
procedure to obtain a feature vector representation of a high-
dimensional data set for the purposes of both clustering and
visualization. While none of our methodologies are individu-
ally uncommon, the combination of them all into a common
framework is, to our knowledge, a link which has not yet been
presented.

This paper is organized as follows: Section 2 describes
a background in information geometry and statistical mani-
folds. Section 3 gives the formulation for the problem we
wish to solve, while Section 4 develops the algorithm for the
methods we use. We illustrate the results of using our meth-
ods in Section 5. Finally, we draw conclusions and discuss
the possibilities for future work in Section 6.



2. BACKGROUND ON INFORMATION GEOMETRY

Information geometry is a field that has emerged from the
study of geometrical structures on manifolds of probability
distributions. It is largely based on the works of Shun’ichi
Amari [7] and has been used for analysis in such fields as sta-
tistical inference, neural networks, and control systems. In
this section, we will give a brief background on the methods
of information geometry that we utilize in our framework.
For a more thorough introduction to information geometry,
we suggest [8] and [9].

2.1. Statistical Manifolds

Let us now present the notion statistical manifolds, or a setM
whose elements are probability distributions. A probability
density function (PDF) on a set X is defined as a function
p : X → R in which

p(x) ≥ 0, ∀x ∈ X (1)
∫

p(x) dx = 1.

We describe only the case for continuum on the set X , how-
ever if X was discrete valued, equation (1) will still apply by
switching

∫
p(x) dx = 1 with

∑
p(x) = 1. If we consider

M to be a family of PDFs on the set X , in which each ele-
ment of M is a PDF which can be parameterized by θ, then
M is known as a statistical model on X . Specifically, let

M = {p(x | θ) | θ ∈ Θ ⊆ Rn}, (2)

with p(x | θ) satisfying the equations in (1). Additionally,
there exists a one-to-one mapping between θ and p(x | θ).

Given certain properties of the parametrization ofM, such
as differentiability and C∞ diffeomorphism (details of which
are described in [9]), the parametrization θ is also a coordinate
system of M. In this case, M is known as a statistical mani-
fold. In the rest of this paper, we will use the terms ‘manifold’
and “statistical manifold” interchangeably.

2.2. Fisher Information Metric

In Euclidean space, the distance between two points is de-
fined as the length of a straight line between the points. On
a manifold, however, one can measure distance by a trace of
the shortest path between the points along the manifold. This
path is called a geodesic, and the length of the path is the
geodesic distance. In information geometry, the distance be-
tween two points on a manifold is analogous to the difference
in information between them, and is defined by the Fisher in-
formation metric. This measures the amount of information a
random variable X contains in reference to an unknown pa-
rameter θ. For the single parameter case it is defined as

I(θ) = E

[(
∂

∂θ
log f(X; θ)

)2

|θ
]

.

If the condition
∫

∂2

∂θ2 f(X; θ) dX = 0 is met, then the above
equation can be written as

I(θ) = −E

[
∂2

∂θ2
log f(X; θ)

]
. (3)

For the case of multiple unknown parameters θ =
[
θ1, . . . , θn

]
,

we define the Fisher information matrix [I(θ)], whose ele-
ments consist of the Fisher information with respect to speci-
fied parameters, as

Iij =
∫

f(X; θ)
∂ log f(X; θ)

∂θi

∂ log f(X; θ)
∂θj

dX.

For a parametric family of PDFs, it is possible to de-
fine a Riemannian metric using the Fisher information matrix,
known as the information metric. This was first presented by
Cramér and Rao. The information-metric distance, or Fisher
information distance, between two distributions p(x; θ1) and
p(x; θ2) in a single parameter family is

DF (θ1, θ2) =
∫ θ2

θ1

I(θ)1/2dθ,

where θ1 and θ2 are parameter values corresponding to the
two PDFs and I(θ) is the Fisher information for the parameter
θ. Extending to the multi-parameter case, we obtain:

DF (θ1, θ2) = min
θ(·):θ(0)=θ1,θ(1)=θ2

∫ 1

0

√(
dθ

dβ

)T

I(θ)
(

dθ

dβ

)
dβ.

(4)
The metric in (4) is key to our approach as it provides

an information-based means of comparing PDFs on the ap-
propriate statistical manifold. The shortest path θ∗ that mini-
mizes (4) does so by considering only routes which lie on the
manifold, guaranteeing that each point along the path θ∗ is a
PDF governed by the M. Other distances that do not restrict
measured paths to the manifold may lead to inaccurate “short
cut” distances; ie paths that consist of PDFs not governed by
M. This is clearly the case with the L2-distance, which only
considers the straight-line path between points.

3. PROBLEM FORMULATION

We restrict our attention to problems in which clustering and
visualization of PDFs is desired. A key property of the Fisher
information metric is that it is independent of the parametriza-
tion of the manifold [8]. Although the evaluation remains
equivalent, calculating the FIM requires knowledge of the
parametrization, which is generally not available. We instead
assume that the collection of density functions lie on a man-
ifold that can be described by some natural parametrization.
Specifically, we are given P = {p1, . . . , pn}, where pi ∈ M
is a probability density function and M is a manifold em-
bedded in Rd. Our goal is to find an approximation for the



geodesic distance between points on M using only the infor-
mation available inP . Can we find an approximation function
G which yields

D̂F (pi, pj) = G(pi, pj ;P), (5)

such that D̂F (pi, pj) → DF (pi, pj) as n →∞?
This problem is similar to the setting of classical papers

[10, 11] in manifold learning and dimensionality reduction,
where only a set of points on the manifold are available. As
such, we are able to use these manifold learning techniques to
construct a low-dimensional, information based embedding
of that family. This not only allows for an effective visualiza-
tion of the manifold (in 2 or 3 dimensions), but by embedding
the family into a Euclidean space we can perform clustering
of the PDFs lying on the manifold with existing Euclidean
methods.

3.1. Approximation of Fisher Information Distance

Many metrics have been defined to approximate the Fisher in-
formation distance when the specific parameterization of the
manifold is unknown. An important class of such divergences
is known as the f -divergence [12], in which f(u) is a convex
function on u > 0 and

Df (p‖q) =
∫

p(x)f
(

q(x)
p(x)

)
.

A specific and important example of the f -divergence is
the α-divergence, where D(α) = Df(α) for a real number α.
The function f (α)(u) is defined as

f (α)(u) =





4
1−α2

(
1− u(1+α)/2

)
α 6= ±1

u log u α = 1
− log u α = −1

.

As such, the α-divergence can be evaluated as

D(α)(p‖q) =
4

1− α2

(
1−

∫
p(x)

1−α
2 q(x)

1+α
2 dx

)
α 6= 1,

and

D(−1)(p‖q) = D(1)(q‖p) =
∫

p(x) log
p(x)
q(x)

. (6)

The α-divergence is the basis for many important and well
known divergence metrics, such as the Hellinger distance,
the Kullback-Leibler divergence (6), and the Renyi-Alpha en-
tropy [13].

3.1.1. Kullback-Leibler Divergence

The Kullback-Leibler (KL) divergence is defined as

KL(p‖q) =
∫

p(x) log
p(x)
q(x)

, (7)

which is equal to D(−1) (6). The KL-divergence is a very
important metric in information theory, and is commonly re-
ferred to as the relative entropy of a probability distribution.
The KL-divergence is related to the Hellinger distance, as in
the limit

√
KL(p‖q) → DH(p, q). Kass and Vos also show

the relation between the Kullback-Leibler divergence and the
Fisher information distance,

√
2KL(p‖q) → DF (p, q) as

p → q.
It should be noted that the KL-divergence is not a dis-

tance metric, as it does not satisfy the symmetry, KL(p‖q) 6=
KL(p‖q), or triangle inequality properties of a distance met-
ric. To obtain this symmetry, we will define the the KL-
divergence as:

DKL(p, q) = KL(p‖q) + KL(q‖p), (8)

which is symmetric, but still not a distance as it does not sat-
isfy the triangle inequality. Since the Fisher information is a
symmetric measure,

√
2KL(q‖p) → DF (q, p) = DF (p, q). (9)

Combining (8) and (9), we can approximate the Fisher infor-
mation distance as

√
DKL(p, q) → DF (p, q), (10)

as p → q.
The Fisher information metric is not the only method for

calculating a similarity between PDFs. Another common method
is using the L2 distance, or the integrated squared error (ISE).
In this case, the distance between two densities, p(x) and
q(x), is defined as

D(p, q) =
∫

(p(x)− q(x))2 dx.

We choose to use the KL-divergence as it is a great means
of differentiating shapes of densities. Analysis of (7) shows
that as p(x)/q(x) → ∞, KL(p‖q) → ∞. This property
ensures that the KL-divergence will be amplified in regions
where there is a significant difference in the probability distri-
butions. As such, the difference in the tails of the distributions
is a strong contributor to the KL-divergence.

3.2. Approximation of Distance on Statistical Manifolds

As noted earlier (10),
√

DKL(p1, p2) → DF (p1, p2) as p1 →
p2. If p1 and p2 do not lie closely together on the manifold,
the Kullback-Leibler divergence becomes a weak approxima-
tion of the Fisher information distance. However, a good ap-
proximation can still be had if the manifold is densely sam-
pled between the two end points by defining the path between
p1 and p2 as a series of connected segments, and summing the
length of those segments. Specifically, given the set of n prob-
ability density functions parameterized by P = {θ1, . . . , θn},
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Fig. 1. Convergence of the graph approximation of the Fisher
information distance using the Kullback-Leibler divergence.
As the manifold is more densely sampled, the approximation
approaches the true value.

the Fisher information distance between p1 and p2 can be ap-
proximated as:

DF (p1, p2) ≈ min
m,{θ(1),...,θ(m)}

m∑

i=1

DF (p(θ(i)), p(θ(i+1)))

where p(θ(1)) = p1, p(θ(m)) = p2, and
{
θ(1), . . . , θ(m)

} ∈
P . We can now form an approximation of the Fisher informa-
tion distance using the Kullback-Leibler divergence for dis-
tant points on the manifold:

DF (p1, p2) ≈ min
m,{p(1),...,p(m)}

m∑

i=1

√
DKL(p(i), p(i+1))

where p(1) = p1 and p(m) = p2. Intuitively, this estimate cal-
culates the length of the shortest path between points in a con-
nected graph on the well sampled manifold. This is similar to
the manner in which Isomap [10] approximates distances on
Euclidean manifolds, which is further elaborated in Section
3.3.2.

Figure 1 illustrates this approximation by comparing the
KL graph approximation to the actual Fisher information dis-
tance for the univariate gaussian case. The KL-divergence be-
tween univariate normal distributions is available in a closed-
form expression:

KL(p1‖p2) =
1
2

(
log

(
σ2

2

σ2
1

)
+

σ2
1

σ2
2

+ (µ2 − µ1)
2
/σ2

2 − 1
)

,

while the closed-form expression for the Fisher information
distance is presented in [14]. As the manifold is more densely
sampled (uniformly in mean and variance parameters for this
simulation), the approximation converges to a very close ap-
proximation of the true Fisher information distance for the
univariate normal case, as calculated in [14].

3.3. Dimensionality Reduction

Given a matrix of dissimilarities between entities, many al-
gorithms have been developed to find a low dimensional em-
bedding of the original data ψ : M → Rn. These tech-
niques have been classified as a group of methods referred to
as Multi-Dimensional Scaling (MDS). There are supervised
methods, which are generally used for classification purposes,
and unsupervised methods, which are often used for cluster-
ing and manifold learning. For our purposes, we will use un-
supervised methods, which will reveal any natural separation
or clustering of the data sets. Using these MDS methods al-
lows us to find a single low-dimensional coordinate represen-
tation of each high-dimensional, large sample, data set.

3.3.1. Classical Multi-Dimensional Scaling

Classical MDS takes a matrix of dissimilarities and converts
them into Cartesian coordinates. This is performed by first
centering the dissimilarities about the origin, then calculat-
ing the singular value decomposition (SVD) of the centered
matrix. This permits the calculation of the low-dimensional
embedding coordinates.

Define D as a dissimilarity matrix of Euclidean distances
(may also approximate Euclidean distances). Let B be the
“double centered” matrix which is calculated by taking the
matrix D, subtracting its row and column means, then adding
back the grand mean and multiplying by − 1

2 . As a result, B
is a version of D centered about the origin. Mathematically,
this process is solved by

B = −1
2
HD2H,

where H = I − (1/N)11T , D2 is the matrix of squared dis-
tances, I is the N -dimensional identity matrix, and 1 is an
N -element vector of ones.

The embedding coordinates, Y ∈ Rd×n, can then be de-
termined by taking the eigenvalue decomposition of B,

B = [V1V2]diag (λ1, ..., λN ) [V1V2]T ,

and calculating

Y = diag
(
λ

1/2
1 , ..., λ

1/2
d

)
V T

1 .

The matrix V1 consists of the eigenvectors corresponding to
the d largest eigenvalues λ1, . . . , λd while the remaining N −
d eigenvectors are represented as V2. diag(λ1, . . . , λN ) refers
to an N × N diagonal matrix with λi as its ith diagonal ele-
ment.

For visualization, let us define a set of probability densi-
ties P = {pi(x)} on a grid, such that pi = pk,l is parameter-
ized by (µi, σi) = (αk, 1 + βl), k, l = 1 . . . n and α, β ∈ R.
Additionally, let D be the matrix of Fisher information dis-
tances defined in [14] for the set of univariate normal densi-
ties P , where D(i, j) = DF (pi, pj). Figure 2(a) displays the
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Fig. 2. a) Classical MDS and b) Isomap applied to the matrix of Fisher information distances on a grid of univariate normal
densities, parameterized by (µ, σ)

results of applying cMDS to D. It is clear that while the den-
sities defining the set P are parameterized on a rectangular
grid, the manifold on which P lives is not rectangular itself.

3.3.2. ISOMAP

Isometric feature mapping (Isomap) is a technique developed
by Tenenbaum et. al. and first presented in [10]. Isomap per-
forms non-linear dimensionality reduction by utilizing clas-
sical MDS on an adjacency matrix which approximates the
geodesic distance between data points. As such, this algo-
rithm is able to discern low-dimensional structure in high di-
mensional spaces that were previously indiscernible with meth-
ods such as principal components analysis (PCA) and classi-
cal MDS. The algorithm contains three steps and works as
follows:

1. Construct Neighborhood Graph
Given dissimilarity matrix DX between data points in
in the set X , define the graph G over all data points by
adding an edge between points i and j if Xi is one of
the k-nearest neighbors of Xj .

2. Compute Shortest Paths
Initialize dG(i, j) = dX(i, j) if there is an edge be-
tween Xi and Xj , dG(i, j) = inf otherwise. Complete
DG = {dG(i, j)} by computing dG(i, j) to be equal to
the shortest path distance between Xi and Xj .

3. Construct low-dimensional embedding
Apply classical MDS to the dissimilarity matrix DG to
obtain Y , a low-dimensional embedding of the set X .

Figure 2(b) shows the results of Isomap (neighborhood
size k = 6) on the dissimilarity matrix formed by the Fisher
information distance of the univariate normal family of distri-
butions. Notice how the paths become nearly linear between

all points. This is a result of Isomap obtaining a low dimen-
sional embedding based on the approximated geodesic dis-
tance between distant points, rather than the strict distance de-
fined by the metric, which is only accurate as pi(x) → pj(x).

3.3.3. Additional MDS Methods

While we choose to only detail the cMDS and Isomap al-
gorithms, there are many other methods for performing di-
mensionality reduction in a linear fashion (PCA) and non-
linearly (Laplacian Eigenmaps [11] and Local Linear Embed-
ding [15]) for unsupervised learning, all of which can be ap-
plied to our framework.

4. OUR TECHNIQUES

We have presented a series of methods for manifold learn-
ing developed in the field of information geometry. By per-
forming dimensionality reduction on a family of data sets, we
are able to both better visualize and cluster the data. In or-
der to obtain a lower dimensional embedding, we calculate
a dissimilarity metric between data sets within the family by
approximating the Fisher information distance between their
corresponding probability densities. This has been illustrated
with the family of univariate normal PDFs.

In problems of practical interest, however, the parame-
terization of the PDFs are usually unknown. We instead are
given a family of data sets X = {X1,X2, . . . , XN}, in
which we may assume that each data set Xi is a realization of
some underlying probability distribution to which we do not
have knowledge of the parameters. As such, we rely on non-
parametric techniques to estimate both the probability density
and the approximation of the Fisher information distance. We
utilize kernel density estimation (KDE) methods for deriving
our probability density function estimates, although mixture
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Fig. 3. Given a collection of data sets with a Gaussian distribution having means equal to points a sampled ‘swiss roll’ manifold,
our methods are able to reconstruct the original statistical manifold from which each data set is derived.

Algorithm 1 Calculate d-dimensional manifold embedding
Input: Collection of data setsX = {X1,X2, . . . , XN} and

the desired embedding dimension d
1: for i = 1 to N do
2: Calculate p̂i(x), the density estimate of Xi

3: end for
4: Calculate DKL, where DKL(i, j) = KL(p̂i||p̂j) +

KL(p̂j ||p̂i)
5: Y = embed(

√
DKL, d)

Output: d-dimensional embedding of X , into Cartesian co-
ordinates Y ∈ Rd×N

models as well as other density estimation techniques will
suffice as well. Following these approximations, we are able
to perform the same multi-dimensional scaling operations as
previously described.

4.1. Algorithm

Algorithm 1 combines all of the methods we have presented
in order to find a low-dimensional embedding of a collection
of data sets. If we assume each data set is a realization of
an underlying probability density, and each of those densities
lie on a manifold with some natural parameterization, then
this embedding can be viewed as an embedding of the ac-
tual manifold into Cartesian coordinates. Note that in line
5, ‘embed(

√
DKL, d)’ refers to using any multi-dimensional

scaling method (such as Isomap, cMDS, Laplacian Eigen-
maps, etc) to embed the dissimilarity matrix

√
DKL into Carte-

sian coordinates with dimension d.

5. APPLICATIONS

We now present simulations to illustrate our methods on sam-
ple problems. Our examples are not intended to be considered

the desired usages of our methods. Rather, we use simple ex-
amples with known manifolds to demonstrate how are meth-
ods may be immediately applicable to problems of practical
interest. We would like to stress that in the following exam-
ples, with even a minimum amount of a priori knowledge of
the data, there are simple Euclidean methods for analysis. Our
methods, however, are entirely non-parametric, make no as-
sumptions of the data, and require no a priori knowledge.

5.1. Manifold Visualization

To demonstrate the ability of our methods to reconstruct the
statistical manifold, we create a known manifold of densi-
ties. Let Y = {y1, . . . , yn}, where each yi is uniformly
sampled on the ‘swiss roll’ manifold (see Fig. 3(a)). Let
X = {X1, X2, . . . , Xn} where each Xi is generated from
a normal distribution N (yi,Σ), where Σ is held constant for
each density. As such, we have developed a statistical mani-
fold of known parameterization, which is sampled by known
PDFs. Utilizing our methods in an unsupervised manner,
we are able to recreate the original manifold Y strictly from
the collection of data sets X . This is shown in Fig. 3(b)
where each set is embedded into 3 Isomap dimensions, and
the ‘swiss roll’ is reconstructed. While this embedding could
easily be constructed using the mean of each set Xi as a Eu-
clidean location, it illustrates that the Kullback-Leilber diver-
gence along with an Isomap embedding can be used for visu-
alizing the statistical manifold as well.

5.2. Clustering

We now illustrate the ability to cluster using our methods. We
create data sets comprised of either the swiss roll or S-curve
manifolds in Euclidean space. Specifically, let X = {Y1,Y2}
where Y1 is a family of data sets uniformly sampled on the
swiss roll, while the family Y2 contains data sets uniformly
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Fig. 4. When used for clustering, we can see the natural seper-
ation arising from a set containing families of distributions
drawn from uniform sampling on the swiss roll and S-curve
manifolds.

sampled on the S-curve. Both the swiss roll and s-curve con-
tain the same support and are centered about the same point.
Utilizing the KL-divergence and cMDS, we are able to find
a low-dimensional embedding of X (Fig. 4). It is clear that
the two families Y1 and Y2 form distinct clusters, which is
brought upon by the natural dissimilarity between the proba-
bility distributions each family is drawn from. While the pro-
cedure was performed entirely unsupervised, we assign each
family a different marker when plotting to illustrate the dis-
tinct clusters.

6. CONCLUSIONS

Many problems of practical interest involve data sets which
are not naturally represented in Euclidean space. Due to the
curse of dimensionality it is difficult to both visualize and
find a natural separation within the data for clustering pur-
poses. We have presented a framework which may be used
to solve both of these problems. By using methods from in-
formation geometry, we are able to learn the manifold from
which the probability distributions governing the data lie. We
have shown the ability to find a low-dimensional embedding
of the manifold, which allows us to not only find the natural
separation and clustering of the data, but to also reconstruct
the original manifold and visualize it in a low-dimensional
space.

While the methods we have presented here express the
use of the Kullback-Leibler divergence as our dissimilarity
measure, we want to stress that the framework is not tied
to it. Many other methods of determining a ‘distance’ be-
tween probability distributions will easily fit into our frame-
work. For example, when dealing with high-dimensional,
sparse data sets (such as term-frequencies in document clas-
sification), the KL-divergence is not an appropriate measure,
due to divide-by-zero issues. In this case, the Hellinger dis-
tance may be more representative.

In future work we plan to apply our framework to real
data sets coming from unknown underlying probability dis-
tributions. This will include document classification, internet
anomaly detection, as well as biological problems. We intend
to show that our methods can be used for a variety of different
problems as long as they can be formatted into the following
setting: large sample size data sets derived from an underly-
ing probability distribution in which the parameterization is
unknown.
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