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Abstract

No convergent ordered subsets (OS) type image reconstruction algorithms for transmission tomog-
raphy have been proposed to date. In contrast, in emission tomography, there are two known families of
convergent OS algorithms: methods that use relaxation parameters [1], and methods based on the incre-
mental expectation maximization (EM) approach [2]. This paper generalizes the incremental EM approach
[3] by introducing a general framework that we call “incremental optimization transfer.” Like incremental
EM methods, the proposed algorithms accelerate convergence speeds and ensure global convergence (to
a stationary point) under mild regularity conditions without requiring inconvenient relaxation parameters.
The general optimization transfer framework allows the use of a very broad family of non-EM surrogate
functions, enabling the development of new algorithms [4]. In particular, this paper provides the first
convergent OS-type algorithm for transmission tomography. The general approach is applicable to both
monoenergetic and polyenergetic transmission scans as well as to other image reconstruction problems.
We propose a particular incremental optimization transfer method for (nonconcave) penalized-likelihood
(PL) transmission image reconstruction by using separable paraboloidal surrogates (SPS) [5] which yield
closed-form maximization steps. We found it is very effective to achieve fast convergence rates by starting
with an OS algorithm with a large number of subsets and switching to the new “transmission incremental
optimization transfer (TRIOT)” algorithm. We discuss how to determine the number of subsets and the
switching point. Results show that TRIOT is faster than nonincremental ordinary SPS and even OS-SPS
yet is convergent. We also show by simulation that nonconvergent OS algorithms lead to higher variance

than convergent TRIOT particularly for a large number of subsets.
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I. INTRODUCTION

Ordered subsets (OS) algorithms, also known as block iterative or incremental gradient methods,
have been very popular in the medical imaging community for tomographic image reconstruction due
to their remarkably fast “convergence” rates [1], [5]-[13]. For example, ordered subsets expectation
maximization (OS-EM) provides an order-of-magnitude acceleration over its non-OS counterpart, EM
[6]. The incremental gradient type algorithms are also found in convex programming [14]-[17]. The
ordered subsets (or incremental) idea is to perform the update iteration incrementally by sequentially (or
sometimes randomly [15], [16]) using a subset of the data. Row-action methods [18] including algebraic
reconstruction techniques (ART) [19], [20] can also be viewed as OS type algorithms in which each
subset corresponds to a single measurement.

The OS algorithms apply successfully to problems where an objective function of interest is a sum of
a large number of component functions. Because of the assumed statistical independence of tomographic
data, such sums arise in statistical tomographic reconstruction problems including penalized-likelihood
(PL) [equivalently, maximum a posteriori (MAP)] or maximum likelihood (ML) reconstruction. Typically,
the OS methods partition the component functions into several subsets, each corresponding to a subset
of the projection views, and each subset defines a subobjective function. Then they update the image
estimate by using, in a specified cyclic order, the gradient of a subobjective function as an approximate
gradient of the objective function.

If the subset gradients are suitably balanced, then the gradient approximation can be quite reasonable
when the iterates are far from a maximizer. Thus OS methods initially accelerate convergence in the
sense that less computation is required to achieve nearly the same level of objective increase as with
non-OS methods. However, ordinary (unrelaxed) OS algorithms such as OS-EM [6], RBI-EM [8], and
OS-SPS (or OSTR in a context of transmission tomography) [5] generally do not converge to an optimal
solution but rather approach a suboptimal limit cycle that consists of as many points as there are subsets.
In fact, due to their subset-dependent scaling (or preconditioning) matrices [1], OS-EM and RBI-EM in
their original forms [6], [8] usually do not converge to the optimal point even if relaxed.

Convergence to an optimal solution is important for any algorithm for optimization problems, partic-

ularly in medical applications where reliability and stability are essential. Convergence is perhaps more



critical for PL (or MAP) reconstruction than for ML because one usually does not run ML reconstruction
algorithms until convergence. For example, the image shown in Fig. 4(c), which corresponds to one
point of a limit cycle generated by an OS algorithm, looks noticeably different from the PL solution
image shown in Fig. 4(b) (see Section IV-A for details). Nonconvergent OS algorithms can lead to
higher variance as the number of subsets increases as shown in Section IV-B. It is desirable to achieve
both fast initial convergence rates (typical of OS algorithms) and global convergence. There have been
three known families of convergent incremental (or OS type) algorithms: methods that use relaxation
parameters, methods based on the incremental EM approach, and incremental aggregated gradient (IAG)
methods.

Relaxation parameters are used widely to render OS algorithms convergent [1], [7], [9]-[12], [14]-[16],
[21]-[23]. Suitably relaxed algorithms can be shown to converge to an optimal solution under certain
regularity conditions' [1]. However, since relaxation parameters should be scheduled to converge to zero
to ensure global convergence, relaxed OS algorithms have slow asymptotic convergence rates. Also,
inappropriately chosen (e.g., too rapidly decreasing) relaxation parameters can make initial convergence
rates even worse than those of non-OS algorithms. On the other hand, overly large relaxation parameters
can lead to unstable or divergent behavior. Finding good relaxation parameters (in terms of convergence
rates) may require some experimentation and trial-and-error; as a rule of thumb, for properly scaled OS
algorithms such as modified BSREM and relaxed OS-SPS, one should initialize the relaxation parameter
close to unity and decrease it gradually as convergence to a limit cycle nears [1]. One may optimize
a few initial relaxation parameters by training when a training set is available for a particular task
[7], [20]. Or one could use the dynamic stepsize rule in [15], [16], but that method needs to compute
the objective value at every update, which is computationally expensive in tomographic reconstruction
problems. Alternatively, to achieve convergence, one could decrease the number of subsets as iterations
proceed or could use hybrid methods that combine OS and non-OS algorithms [25]. However, the
schedules for decreasing the number of subsets and the parameters for the hybrid algorithms are as
inconvenient to determine as relaxation parameters for relaxed OS algorithms.

Incremental EM algorithms do not require user-specified relaxation parameters [3]. They are conver-
gent yet faster than ordinary EM algorithms although slower initially than nonconvergent OS-EM type

algorithms [2], [26], [27]. Such incremental EM algorithms have been applied to emission tomography

'One of these conditions is the (strict) concavity of the objective function, which excludes the nonconcave transmission

tomography problem [24].



[2], [13], [27], [28].

Recently, Blatt ef al. proposed a convergent incremental gradient method, called incremental aggregated
gradient (IAG), that does not require relaxation parameters [29]. The IAG method computes a single subset
gradient for each update but aggregates it with the stored subset gradients that were computed in previous
iterations. The use of the aggregated gradient to approximate the full gradient of the objective function
leads to convergence. Similarly, as discussed below, the use of the sum of surrogate functions (rather
than a single surrogate function) to approximate a minorizing function yields convergent algorithms.

In this paper we generalize the incremental EM algorithms by introducing an approach called “in-
cremental optimization transfer”; this is akin to the generalization of the EM algorithms [30] by the
optimization transfer principles [4]. In fact, the broad family of “incremental optimization transfer
algorithms” includes the ordinary optimization transfer algorithms (e.g., EM), also referred to as MM
(minorize-maximize or majorize-minimize) algorithms in [31], as a special case where the objective
function consists of only one subobjective function.

In the incremental optimization transfer approach, for each subobjective function, we define an aug-
mented vector that has the same size as the parameter vector to be estimated. The augmented vector plays
a role as an expansion point at which a minorizing surrogate function is defined for the subobjective
function (see Section II for details). The sum of the surrogate functions defines an augmented objective
that is a function of the parameter vector and the augmented vectors. With surrogate functions satisfying
usual minorization conditions [4], [24], a solution to the problem of maximizing the original objective can
be found by maximizing the augmented objective instead. Applying a block coordinate ascent approach
to the augmented problem leads to a new class of “incremental optimization transfer algorithms.” By
construction, incremental optimization transfer algorithms are monotonic in the augmented objective
though not necessarily in the original objective; nevertheless, global convergence is ensured under mild
regularity conditions. Incremental optimization transfer algorithms show faster convergence rates than
their nonincremental counterparts like EM [2], [3], [27].

Incremental optimization transfer is a general framework in which one can develop many different
algorithms by using a very broad family of application-dependent surrogate functions. These methods are
particularly useful for large-scale problems where the objective function is expressed as a sum of several
subobjective functions. In this paper, we focus on PL image reconstruction for transmission tomography,
which is a challenging nonconcave maximization problem. We propose a particular incremental optimiza-
tion transfer algorithm that uses separable paraboloidal surrogates (SPS) [5]. Such quadratic surrogates

simplify the maximization. In contrast, the standard EM surrogates for transmission tomography do not



have a closed-form maximizer in the “M-step” [32].

The proposed “transmission incremental optimization transfer (TRIOT)” algorithm is convergent yet
converges faster than ordinary SPS [5]; it can be further accelerated by the enhancement method in [33]
or by initializing through a few iterations of OS-SPS (see Section III for details). It is parallelizable, and
the nonnegativity constraint is naturally enforced. In addition, it is easily implemented for system models
that use factored system matrices [34], [35] whereas pixel-grouped coordinate ascent based methods
require column access of the system matrix [36]—[39].

Section II describes the incremental optimization transfer algorithms in a general framework and
discusses their convergence properties. Section III develops incremental optimization transfer algorithms
for transmission tomography, and addresses acceleration methods. Section IV provides simulation and

real PET data results, and Section V gives conclusions.

II. INCREMENTAL OPTIMIZATION TRANSFER
A. Incremental Optimization Transfer Algorithms

Most objective functions of interest in image reconstruction can be expressed as a sum of subobjective

functions:?

M
O(x) =Y (), )
m=1

where ®,, : X C RP — R is a continuously differentiable function whose domain X is a nonempty,
convex and closed set. The px1 vector x represents an image, e.g., attenuation coefficients or radioactivity,

depending on applications. Consider the following optimization problem:
maximize ®(x) subject to x € X (2)

Usually there exists no closed-form solution to the above problem, so one must apply iterative algorithms.
Assume that for each subobjective function ®,,, we find a surrogate function ¢,,(+;-) : X2 C R? x RP —
R, where X" denotes the n-ary Cartesian product over the set /X', such that (i) it is easier to maximize with
respect to the first argument than ®,, and (ii) it satisfies the following “minorization” conditions [24],
[41]:

(T 2) =

O (x), VeelX
3)
D, (), Ve, xelX,

2Such functions are said to be additive-separable in [14]; and to be partially separable [40] when each ®,,(x) is a function

of fewer components of € R? than p.



where & is an augmented variable that is called an expansion point in [39]. It follows from the above
conditions that

(@) = O (Z) > Oim(®; &) — (@ @), Vo, z € X )

In other words, choosing x such that ¢,,(x; &) > ¢, (@; x) ensures that &, (x) > P, (), which is
called a “monotonicity” property. When there is only one subobjective function (M =1, & = &, and

¢ = ¢1), one can construct the following “optimization transfer” algorithm:

n+1

"7 = argmax ¢(x; ™).
xreX

Then we have ®(z""!) > ®(x") due to the monotonicity property of the surrogate. The reader who
would like more details on optimization transfer principles is referred to [4].
Now we construct an incremental version of the optimization transfer algorithm. First, define the

following “augmented” objective function:

M=

F($;§:17"'ajM):

Gm (5 Xryy). (5)
m=1

Noting that arg maxgex ¢m(x; &) = @, () due to (3), one can rewrite the optimization problem in (2)

as follows:
maximize F(x;&1,...,Ty) 6
subject to (x; &1,..., &) € XMFL (
By construction, * € X is an optimal solution of (2) if and only if (z*;Z},...,&%,) € XM+ is an
optimal solution of (6) for some (Z7,...,x},) € X M Therefore, we can find a solution to problem (2) by
maximizing F' with respect to (x; &1, ..., &y ). By alternating between updating  and one of the &,,’s,
we obtain an “incremental optimization transfer algorithm” outlined in Table I, where we assume that
there exists one or possibly more maximizers in (T-1), and “arg max” denotes one of those maximizers.
In many applications where (T-1) has a closed-form solution, the computational cost for computing

new

T is smaller, usually by a factor of M, when only one of &,,’s has been incrementally updated than

when all &,,’s have been simultaneously updated. For example, in tomographic reconstruction problems

we focus on, computing "V

usually involves forward projections of &,,’s, and we have only to project
one of &,,’s and use previously computed projections for other &,,’s.

The incremental optimization transfer algorithm shown in Table I can be viewed as a block coordinate
ascent algorithm for maximizing F' with respect to (x;Z1,...,Zy) [42, p. 270]. It monotonically

increases the augmented objective function F', but not necessarily the original objective function &

[43]. The incremental approach (M > 1) usually leads to faster convergence rates than nonincremental



methods (M = 1) [3]. The incremental EM algorithms [3], [28] including COSEM [2], [27] are a special
case where the surrogates ¢,, are constructed by EM principles as described in Appendix A.

If one were to maximize just one of the ¢,,’s instead of the sum shown in (5), then one would
have ordinary OS type algorithms. Although this greedy approach usually yields fast initial convergence
rates, the OS type algorithms are not monotonic in F' nor in ®. Since OS algorithms consider only a
part of the objective function for each update and an optimal point is characterized only by the whole
objective function, OS algorithms usually cannot converge to the optimal point. In contrast, the incremental
optimization transfer methods involve the augmented objective function that reflects the whole objective
function yet is updated incrementally.

Although we focus on monoenergetic transmission tomography in Section III, the incremental op-
timization transfer is a very general method which can be applied to a variety of problems where an
objective function is a sum of functions as in (1) and the OS approach applies: for example, polyenergetic

transmission tomography [44], confocal microscopy [45], and emission tomography [46].

M

h—1s SO one needs

For incremental optimization transfer algorithms one must store M vectors {Z,}
more memory compared to ordinary OS algorithms. This can be a practical limitation when M is very

large for large-sized problems.

B. Convergence Properties

Since incremental optimization transfer algorithms monotonically increase the augmented objective F/,
the sequence of augmented objective values converges to some value in the usual case where F' has an
upper bound. The question of whether the algorithms really converge to a maximizer of (2) is addressed
next.

Define a solution set as the collection of stationary points of (2):
2 (2" cX:Vb(z")(x—a*) <0, V&eXl, )

where / denotes matrix or vector transpose, and we assume I' # (). Each element of the solution set "
satisfies the first-order necessary condition for a local maximizer of ® over X [42, p. 194]. We want
algorithms to converge to some point in I'. If the objective function ¢ is concave, then the condition
defining I' is sufficient for optimality, and I' is the set of (possibly multiple) global maximizers of ®
over X [42, p. 194]. If ® is strictly concave, then I' is the singleton set whose element is a unique global
maximizer [42, p. 685]. On the other hand, for a nonconcave objective function ¢ (as in Section III), the

solution set I' could contain local maximizers and even local minimizers. It is difficult to guarantee finding



a global maximizer of a nonconcave objective function that may have multiple local maxima. However,
the hope is that, with an initial point reasonably close to a global maximizer, the iterates generated by a
monotonic algorithm will approach the global maximizer (see [39] for discussion about convergence to
a globally optimal point).

In Appendix B, we show that every limit point® of the sequence generated by an incremental opti-
mization transfer algorithm is an element of the solution set I' of stationary points regardless of initial
points* when the following general sufficient conditions hold: (i) each ®,, is differentiable, and each
dm(+;+) is differentiable with respect to the first argument and is continuous with respect to the second
argument, (ii) the iterates are bounded (e.g., X is a bounded set), (iii) the surrogates ¢,, satisfy the
minorization conditions in (3), (iv) the gradients of ®,, and ¢,,(-; &) with respect to the first argument
match (see Condition 2 in Appendix B), (v) the maximizer in (T-1) is defined uniquely (e.g., ¢ (+; Tm)
is strictly concave for any &,,), and (vi) the maximizer of the augmented objective function is bounded
(see Condition 4 in Appendix B). Consequently, if the objective function @ is strictly concave, then the
algorithm converges to the global maximizer. For a nonconcave objective function @, if the points in
I" are isolated, the algorithm will still converge to some stationary point in I' that we hope is a global
maximizer or at least a local maximizer (see Appendix B). It is an open question whether optimization
transfer algorithms converge to nonisolated stationary points (see [39] for a discussion of this issue).

Although we focus on transmission tomography in the next section, we briefly discuss the applicability
of our convergence proofs to the emission case. The convergence proofs in Appendix B do not apply
to classical ML-EM and COSEM for the emission case in their original forms in [32], [49] and [2],
[27] respectively since the EM surrogates used in those algorithms blow up to (negative) infinity on
the boundary of the nonnegativity constraint set and therefore they violate the aforementioned sufficient
conditions. The readers are referred to [50] and [51] for convergence proofs for ML-EM and COSEM
respectively for the emission case. However, to avoid the boundary problem one can use a slightly
modified EM surrogate in [38, Eq. (20)] for the usual case where there are nonzero contributions from

background events such as scatter and randoms. Our convergence proofs apply to those modified ML-EM

3Recall the distinction between a limit and a limit point. A point & is called a limir of a sequence {x"} if Ve > 0, IN such

that Vn > N,

& —x"|| < e. On the other hand, a point Z is called a limit point of a sequence {x"} if Ve > 0, VN, In > N
such that ||Z — || < ¢, in other words, if there exists a subsequence {z™*} whose limit is &.

*Some authors define global convergence as the property that limit points of the sequence generated by an algorithm are
stationary points of the problem [47, p. 228] or that limits are stationary points [48, p. 312], irrespective of starting points. We

adopt the former convention here.



(called “ML-EM-3” in [38]) and COSEM algorithms. Moreover, the modified EM surrogate is known to
accelerate convergence rates [38].
See [52, Appendix F] for an asymptotic local convergence rate analysis and an illustrative one-parameter

example for a comparison of the convergence rates of incremental and nonincremental algorithms.

ITI. APPLICATION TO TRANSMISSION TOMOGRAPHY

In this section we develop a particular incremental optimization transfer algorithm for transmission
tomographic reconstruction. We use quadratic surrogates [5], [24] rather than EM surrogates in (23)
because the standard complete-data proposed in [32] for transmission tomography does not yield a closed-

form solution for M-step [53]. Using quadratic surrogates is not limited to the transmission case [54]-[56].

A. Problem

We assume the following Poisson statistical model for (monoenergetic) transmission measurements:
yi ~ Poisson{b,-e*["‘“’]i —l—ri}, i=1,....N (8)

where y; denotes the transmission measurement of the ith detector, b; denotes the blank scan counts of
the ith detector, ; denotes the mean number of background counts, and [Ax|; = Z§:1 aj;Tj represents
the ¢th line integral of the attenuation map in which z; is the unknown attenuation coefficient in the jth
pixel, A = {a;;} is the system matrix, and N and p are the number of detectors and pixels, respectively.
We assume that {b;}, {a;;}, and {r;} are known nonnegative constants. We focus on penalized-likelihood
(PL), also known as maximum a posteriori (MAP), estimation for the attenuation map reconstruction.

Our goal is to compute a PL estimate #°" which is defined by
&'l = arg max d(x), ®(x)=L(x) — fR(x) )
xe

where the objective function ®, which can be nonconcave when r; # 0 [24], includes the log-likelihood

and a roughness penalty

1
R(x) = 5 Z 'wjkw(xj — ). (10)
The box constraint set is defined by

X={zeRP:0<z; <U, Vj}. (11)
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The nonnegativity restriction is imposed on physical grounds, and the upper bound U > 0 is set by the
user to be a value that is larger than the maximum attenuation coefficient conceivable for the object being
scanned. The reason for using the box constraint rather than the usual nonnegativity constraint is that the
convergence proofs in Appendix B need the iterates to be bounded. However, imposing upper bounds is
not overly restrictive in a sense that one can choose a physically meaningful upper bound for attenuation
coefficients, and the image estimate & is unlikely to be affected by U if one chooses an arbitrarily large
U. In practice, if the upper bound happens to be active by some iterate, then the user could re-run the
algorithm with a larger bound.

In the penalty function (10), the function ¢ is a symmetric and convex potential function, \; repre-
sents a neighborhood of the jth pixel, 3 is a regularization parameter that controls the smoothness in
reconstructed images, and wjy, are weights (ordinarily, w;; = 1 for horizontal and vertical neighboring
pixels, and w;, = 1/ /2 for diagonal neighboring pixels). We assume the potential function v satisfies
some conditions given in [24], [57, p. 184]. We used the following edge-preserving nonquadratic potential

function® in our PL reconstruction results [58]:
W(t) = 8[[t/6] — log(1 +[t/d])] (12)

for some 6 > 0. We assume that appropriate 5 and J are prespecified. To design optimal regularization
functions is application-dependent and is beyond the scope of this paper. See [59]-[64] for quadratic

penalty design.

B. Transmission Incremental Optimization Transfer (TRIOT)

We decompose the objective function ¢ into the following subobjective functions:

B
(I)m(m) = Z hz([AiB]Z) — MR<$)7 m=1,---, M,
i€Sm
where {S,,}M_, is a partition of {1,..., N}. We use the usual subsets corresponding to downsampled

projection angles [6]. Consider the following separable quadratic surrogate ¢,, for the subobjective

function P,,:

)(x—x) - S (x - 2)Cn(z)(x - 2) (13)

8

¢m(x; j) = (I)m(j) + vq)m(

with
Con() = ding; {éns()} (14)

SNote that 1 is twice differentiable: ¥ (t) = & - /(8 + |t|) and ¢ (t) = 62/(5 + |t])>.



11

where ¢p,;(-) > 0 and diag{-} denotes a diagonal matrix appropriately formed. The surrogates ¢, in
(13) satisfy Conditions 2 and 3 in Appendix B.

To make ¢,,, additionally satisfy the minorization conditions in (3), one has at least two choices for ¢,,;:
“optimum curvature” (OC) and “maximum curvature” (MC). Those curvatures ¢,,; have the following

form:

o 2
¢mj(x) = max Z aijaici([Ax);) + Mﬁ Z Wikwy (T — x1), € (15)
1€Sm keN;

A A
for some small value e > 0 where a; = >"_, a;; and wy(t) = 9(t)/t. The use of ¢ keeps the curvatures
Cm;j positive and so the augmented objective function defined in (5) has a unique maximizer with respect
to the first argument due to strict concavity. The functions c;(-) are defined as follows. For OC, we

define®

[_2m<0> =l + il 1 =0
+ (16)

and for MC,

AW 2 [-h0)] . (17)

where [z]4 = max{x,0}. On the right side in (15), the first term corresponds to the curvature of a

quadratic surrogate for the log-likelihood part, and the second term for the penalty part. The optimum
0

curvature c; C in (16) is computed as the lowest curvature of 1D quadratic surrogates, satisfying the
minorization conditions, for the marginal log-likelihood h;(l). A low curvature of a surrogate implies
a wide paraboloid which in turn implies a large stepsize, that is, fast convergence rate [24]. Therefore,
the optimal curvature is “optimal” in a sense that it leads to the fastest convergence rate (per iteration).
However, one needs an “extra” backprojection’ for computing the first summation in (15). On the other

hand, the ¢ is the maximum curvature of the marginal log-likelihood h;(l) over I > 0. Therefore,

Qe

;18 a constant and the first summation in (15) can be precomputed and stored. Detailed derivations

of (15)—(17) can be found in [24]. We leave the second summation in (15) as a function of x even for
MC since its computation is usually cheap compared to projection and backprojection operations unless

M is too large.

Using L’Hopital’s rule [65, p. 234], it can be shown that ¢ (1) is continuous for [ > 0.

"For some “on-the-fly” projector/backprojector pairs, most of the overhead is computing the a.; values for each i, so it may

be possible to evaluate the “extra” backprojection with modest additional computation.
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The augmented objective function F' defined in (5) with (13) is readily maximized with respect to x

over the box constraint X as follows:

Mo M .
"V — Py Z Cm(wm)] Z [Cm(:im):i‘m + V(I)m("f?m) (18)
m=1 m=1

where Py (x) is the orthogonal projection of x € RP onto X’ and is easily computed componentwise as
follows: [Py (x)]; = median{0, z;, U} for all j. Using (18) in the step (T-1) leads to a new “transmission
incremental optimization transfer (TRIOT)” algorithm, which is outlined in Table II. When M = 1, TRIOT
reduces to ordinary SPS [5]. The TRIOT update begins after ngesr (> 1) iteration(s) of OS-SPS [5] (see
the next subsection for OS-SPS in detail). The strategy to switch from OS-SPS to TRIOT is discussed in
Section III-D. Running initially (at least) one iteration of OS-SPS is more effective than initializing all
I,’s to be the same image (e.g., a FBP or uniform image) because both cases require nearly the same
computation yet one can take advantage of fast initial convergence rates of OS-SPS.

In Table II, a TRIOT using MC in (17), called TRIOT-MC8, is outlined; however, the OC case in
(16) can be easily included. The two steps (T-1) and (T-2) in Table I are combined in Table II. In (T-5),
one can avoid the summation le\i | at every subiteration by maintaining that sum as a state vector that
is updated incrementally as in [2], [27], [33]. One iteration, indexed by n, of TRIOT-MC requires one
projection and one backprojection operation while TRIOT-OC needs an extra backprojection [see (15)
and (16)].

The discussion and proofs for global convergence given in Section II-B and Appendix B apply to
TRIOT. When r; = 0 for all i, the algorithm converges to the optimal solution under mild conditions’
since the PL objective for transmission tomography is strictly concave [66]. In the case where r; # 0,
the objective function is not necessarily concave [24], and we have a weaker conclusion that every limit
point of a sequence generated by TRIOT is a stationary point. However, in our practical experience, we
obtained the same limit in all experiments with different initializations, suggesting that suboptimal local

maxima are rare, or are far from reasonable starting images.

C. OS-SPS

Since we use OS-SPS in initializing and accelerating TRIOT, we briefly review OS-SPS [5] for

completeness. For each subiteration, indexed by m, maximizing the mth subobjective ¢y, (+; Z,,) in (13)

8The second part denotes a specific curvature used (e.g., SPS-OC).

The potential function ) is strictly convex, and A’y # 0.
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instead of the augmented objective F'(-;&1,..., &) in (5) leads to the following OS-SPS update:

o -1
T mod a1 = P (wm + [Cn(@m)] V%(%)) (19)
for m = 1,..., M. This greedy approach does not ensure monotonicity in the augmented objective F'

nor the PL objective @, so we need not insist that the curvatures satisfy the minorization conditions. A

natural choice for ¢;(-) is the Newton’s curvature —h;(-); this can be approximated as follows:

—hi(l) = £° 2 —ﬂi<argmaxhi(l~)>
>0

)2
(yz 7"1)’ yi > T

= Yi (20)
0, otherwise.

This choice is called “precomputed curvature (PC)” [5], [24]. For OS-SPS, the following subset-independent

preconditioning matrix using PC is usually used in place of ém(i:m) in (19):

CPC(a:) = diagj{éfc(w)}
1 Y 283
5}3C(:c) = max MZaijaicfc + i Z Wikwy(Tj — Tk), € p . 20
i=1 keN;

The first term on the right side in (21) can be precomputed and stored like the maximum curvatures
MC PC
> .

(MC). The benefit of using PC is that it leads to faster convergence rates than MC since c;
The update for OS-SPS is shown in (T-4) in Table II.

The OS-SPS shows very fast initial convergence rates but becomes eventually stuck at a limit cycle.
Using more subsets leads to a faster initial convergence rate but causes the points in the limit cycle to
be farther from the optimal solution.

It is worth noting that, for each update, OS-SPS uses the gradient and curvature for only one subob-
jective function at the previous subiterate in (19) whereas TRIOT uses the gradients and curvatures for

all subobjective functions at previous M subiterates in (18). When the number of subobjective functions

is M = 1, then both OS-SPS and TRIOT reduce to SPS.

D. Acceleration

TRIOT-OC/MC is usually slower than the nonconvergent OS-SPS. Here we discuss methods to accel-
erate TRIOT.
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1) Switch from OS-SPS to TRIOT: 1t is a popular idea to switch from a nonconvergent yet initially
fast OS type algorithm to a convergent non-OS algorithm at some point to take advantage of both fast
initial convergence rates of OS methods and global convergence of non-OS methods.

We observed that it is very effective to switch to TRIOT from OS-SPS at the point where the OS-SPS
algorithm nearly gets to a limit cycle; even one single subiteration of TRIOT moves the iterate from the
limit cycle to some point very close to the optimal solution. The reason is as follows: a group of the
points in the limit cycle would be roughly centered around the optimal point and the update for TRIOT
includes a weighted average of the points [see the first term on the right side in (18) or (T-5)].

To obtain further insight into this property, consider a simple unconstrained quadratic problem where

the objective function and the subobjective functions are

1 1
P(x) = *QQB/QSC +bx, Pp(x)= fiaz’Qmar: +b,x
for m = 1,---, M where Z%zl Q.. = Q and Z%zl b, = b. Assume that each surrogate function

¢m(x; ) is equal to its corresponding subobjective ®,,(x) so it has a closed-form maximizer &,, =
Q;.'b,, where we assume each @Q,, is invertible. Then the OS approach will generate a limit cycle that
consists of those &1,...,Z . Now applying just one iteration of the incremental optimization transfer

method as in (18) leads to

M M
i = (Z Qm> S Quim = QY Qu(Qy'ba)
m=1 m=1 m=1
= Q_1b7

which is the maximizer of the original objective ® [the second term on the right side in (18) equals
zero]. This example suggests that the built-in averaging operation in TRIOT helps iterates escape from
a limit cycle, generated by nonconvergent OS algorithms, toward the optimal solution.

However, in the early iterations, when OS-SPS is still far from the limit cycle and is making progress
toward the optimal point, TRIOT is usually slower than OS-SPS due to the averaging of the past subiterates
because the incremental optimization transfer approach updates the surrogates incrementally, that is,
conservatively to ensure monotonicity. So it is desirable to get to a limit cycle quickly using OS-SPS
with many subsets and then switch to TRIOT. In a 2D reconstruction case in Section IV, the use of 64
subsets is sufficient to reach a limit cycle within a couple of iterations.

2) Precomputed Curvatures: Forgoing monotonicity (in the augmented objective) and accordingly
provable convergence, one can use for TRIOT the “precomputed curvatures (PC)” in (20). TRIOT-PC
is faster than provably convergent TRIOT-OC/MC. It is an open question whether TRIOT-PC converges
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to an optimal solution. However, in our experiments, TRIOT-PC yielded the same limit as convergent

algorithms like SPS-OC within numerical precision!

IV. RESULTS
A. Algorithms Performance Evaluation: Real Data Study

To assess the performance of the proposed algorithms, we performed 2D attenuation map reconstruc-
tions from real PET data.

We acquired PET data using a Siemens/CTI ECAT EXACT 921 PET scanner with rotating rod
transmission sources [67]. We used an anthropomorphic thorax phantom (Data Spectrum, Chapel Hill,
NC). The sinogram had 160 radial bins and 192 angles, and the reconstructed images were 128 x 128
with 4.2 mm pixels. The system geometry was approximated with 3.375 mm wide strip integrals and
3.375 mm ray spacing; the system matrix was generated using ASPIRE [68]. The total counts amounted

~1 and

to 9.2 x 10°. We used the edge-preserving nonquadratic penalty (12) with § = 4 x 10~* mm
B = 285 chosen by visual inspection. A uniform image was used as a starting image. The results
obtained by using a FBP reconstruction as a starting image were similar and are not shown here. We set
U in (11) to be 7 mm~!, which was much higher than reconstructed values (< 0.02 mm~!), and the
upper bound was never active.

Images were reconstructed using SPS-MC/PC, OS-SPS, and TRIOT-MC/PC. For OS-SPS and TRIOT
algorithms, we used 16 subsets (a moderate number) and 64 subsets (a little larger number than usual).
For SPS and TRIOT, the performance (objective value or distance from the optimal image) with the
optimum curvature (OC) in (16), which requires an extra backprojection per iteration, was between those
with MC and PC (see [52, pp. 85-86] for the results with OC).

Fig. 1 shows normalized ® difference versus iteration number for different algorithms using 16 subsets.
The normalized ® difference is defined as (®(zFY) — ®(z"))/(®(zFF) — ®(2°)) where &PV is a
maximizer of the PL objective and £ is the initial uniform image; a small value of the normalized
difference means the image is closer to the optimal image #"“. The optimal image &' [shown in
Fig. 4(b)] was estimated by 30 iterations of OS-SPS-16 (where “16” means the number of subsets)
followed by 800 iterations of the SPS-OC algorithm that is monotonic and convergent (to a stationary
point). For TRIOT, as described in Section III-B, we ran one iteration of OS-SPS, and then performed
TRIOT iterations. Only for the last iteration of OS-SPS (in this case, iteration 1), we performed an
additional TRIOT update in (T-6) in Table II that takes negligible computation. To see the effects of

“this” TRIOT update, we plotted normalized ® difference values both before and after (T-6) at iteration
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1, leading to the vertical lines at iteration 1 for TRIOT algorithms in Fig. 1. For TRIOT, the jump in the
unfavorable direction is due to the fact that built-in averaging slows down the algorithm when a limit cycle
has not yet been reached as discussed in Section III-D. For a fair comparison, the SPS algorithms were
performed after one iteration of OS-SPS was run. That is, for all methods shown in Fig. 1, 2! denotes
the reconstructed image obtained using one iteration of OS-SPS. Although OS-SPS showed a fast initial
convergence rate, it became stuck at a suboptimal point whereas other methods continued to improve
in terms of objective values. The TRIOT algorithms were outperformed by other algorithms in early
iterations. However, TRIOT-MC and TRIOT-PC eventually outrun SPS-MC and SPS-PC, respectively.
Although global convergence is not provably ensured for TRIOT-PC, the limit of TRIOT-PC (say, obtained
by 1000 iterations) was the same as that of SPS-OC (obtained similarly) within numerical precision, which
suggests TRIOT-PC has desirable convergence properties.

To investigate the performance of TRIOT algorithms after OS-SPS reaches a limit cycle, we performed
6 iterations of OS-SPS, which is sufficient to get close to a limit cycle, and then applied TRIOT (and
SPS as well). Fig. 2 shows that TRIOT yielded considerable improvement at iteration 6 where TRIOT
was first applied. TRIOT-MC and TRIOT-PC converge faster than SPS-MC and SPS-PC, respectively,
(SPS-PC outperforms TRIOT-MC from iteration 16 on.) This shows that it is effective to switch from
OS-SPS to TRIOT, as described in Section III-D, when OS-SPS almost reaches a limit cycle. However,
it is still inconvenient to predict how many iterations are required for OS-SPS to arrive at a limit cycle.

Fig. 3 shows normalized & difference versus iteration number when 64 subsets are used. As the number
of subsets increased to 64, the initial convergence rate of OS-SPS became faster (even a couple of iterations
led to a limit cycle) but OS-SPS stagnated at a worse image. Meanwhile, for the TRIOT algorithms, a
significant improvement was obtained at iteration 2 when OS-SPS was switched to TRIOT, and the
TRIOT algorithms outperformed the SPS algorithms. The switching point (iteration 2) was determined
by some experimentation. In light of the effectiveness of the built-in averaging in TRIOT, to make SPS
a stronger competitor, prior to switching to SPS (at iteration 2), we averaged the 64 previous subiterates
that approximately comprise the limit cycle. As shown in Fig. 3, this averaging yielded improvements
for SPS algorithms. However, convergence rates of TRIOT were still faster than those of SPS with such
averaging. A plot of the normalized distance from the optimal image, ||&" —&""||/||Z"" |, versus iteration
number showed a similar trend (not shown here).

Fig. 4(c) shows the image to which OS-SPS with 64 subsets converged. It represents one point of the
limit cycle generated by the OS-SPS, and looks visually different from the true PL optimal image &"°
in Fig. 4(b). In contrast, 18 iterations of TRIOT-PC initialized by 2 iterations of OS-SPS yielded the
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image in Fig. 4(d) which is indistinguishable from the optimal image in Fig. 4(b). TRIOT-MC and -OC
(18 iterations with initial 2 iterations of OS-SPS) in Figs. 4(e) and (f) also yielded images very similar

to the optimal image. The normalized distance ||#"* — -||/||2F"| from the optimal image amounted to

1.1% for TRIOT-PC, 1.5% for TRIOT-OC, 2.0% for TRIOT-MC, 6.9% for OS-SPS, and 17.9% for FBP.

B. Convergence Really Matters?: Simulation Study

Generally, ordered subsets or incremental algorithms converge to a limit cycle that consists of sub-
optimal solutions. In this paper we focus on developing incremental algorithms that converge to a true
optimal solution. To examine how “suboptimal” the limit cycle solutions are, we compare nonconvergent
OS algorithms (OS-SPS) and convergent TRIOT through a simulation study for 2D attenuation map
reconstruction.

We used the same scanner geometry as in the previous subsection. The synthetic digital phantom
shown in Fig. 5 was used; its warm background, left cold disc, and right hot disc had 0.004mm 1,
0.009mm~!, and 0.001mm~". The total counts amounted to 1M, and the known background contribution

1 and

r; corresponded to a uniform field of 10%. We used the penalty in (12) with § = 5 x 10~* mm~
3= 2175,

The aim of the simulation is to compare the bias and variance of the suboptimal images obtained by
nonconvergent OS-SPS algorithms and the (nearly) optimal image obtained by TRIOT. We generated
400 realizations of pseudorandom transmission measurements according to (8). For each realization, we
obtained a limit cycle image for OS-SPS-8 and OS-SPS-16 by running 50 iterations, and for OS-SPS-32
and OS-SPS-64 by running 20 iterations (note that it takes more iterations for OS algorithms with fewer
subsets to reach a limit cycle); we also obtained a (nearly) optimal image by 18 iterations of TRIOT-PC
with 64 subsets after 2 iterations of OS-SPS-64 as in the previous subsection.

A limit cycle consists of as many images as the number of subsets. We took only one image, say the
first one, from the limit cycle for each OS method and computed the sample mean and variance over
400 realizations. Taking another image (e.g., the second one) from the limit cycle led to similar results.
Fig. 6 shows the profiles through the sample mean images for different methods; all images were nearly
free of systematic biases. For each pixel, we computed the ratios of the sample standard deviation of
OS methods to the sample standard deviation of TRIOT, and Fig. 7 shows the histogram of the ratios.
Overall, OS-SPS-8 showed almost the same level of standard deviation as TRIOT; and OS-SPS-16, -32,
and -64 yielded larger standard deviation than TRIOT by about 5%, 20%, and 58%, respectively. As the

number of subsets decreases, the variance decreases, but the (initial) convergence rate also decreases and
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it takes longer to converge to a limit cycle. We also tried averaging the limit cycle images; the resulting
sample variance decreased but they were still larger than or equal to that of TRIOT depending on the
number of subsets.

This example illustrates the importance of convergence for regularized methods. To summarize, as the
number of subsets increases, a nonconvergent OS algorithm leads to higher variance although it does
not increase bias significantly; therefore, it gives lower contrast-to-noise ratios. The limit cycle behavior

introduces additional noise in reconstructed images.

V. CONCLUSION

We presented a broad family of incremental optimization transfer algorithms by generalizing the
incremental EM family. The incremental optimization transfer algorithms usually show faster convergence
rates than ordinary optimization transfer methods like EM, and they are globally convergent.

We also developed a particular incremental optimization transfer algorithm for transmission tomography
by using separable quadratic surrogates: TRIOT algorithms. We found that it is very effective to switch
from OS-SPS to TRIOT when OS-SPS nearly reaches a limit cycle. The switching idea is also found
in [69]. But we need to determine when to switch from OS-SPS to TRIOT as we must determine
the relaxation parameters for relaxed OS algorithms such as RAMLA, BSREM, and relaxed OS-SPS.
However, from our experience, it seems more convenient to determine when to switch than to choose
relaxation parameters. In fact, when reasonably many subsets were used, as few as a couple of iterations
of OS-SPS were sufficient to get close to a limit cycle for our 2D reconstruction. This switching strategy
seems robust since we obtained similar results from a 2D simulation study using a different digital
phantom [52]. Recently, Li et al. have proposed a method to determine automatically the switching point
by fitting an exponential function to (sub)objective function values computed at previous iterates and by
determining how close to a limit cycle a current iterate is [46].

TRIOT may be preferable to reducing the number of subsets with iteration since the consistent data
flow in OS-SPS and TRIOT could be beneficial and it would be inconvenient to determine an optimal
schedule for reducing the number of subsets.

One iteration of TRIOT-MC/PC or OS-SPS requires computing one projection and one backprojection
plus the penalty related gradients and curvatures (the use of OC needs an extra backprojection); so the
computational cost is almost the same as classic “emission” ML-EM except for the contribution of the
penalty part. As the number of subsets increases, computation per iteration also increases due to the

penalty part being updated for each subiteration. Although the computational contribution of the penalty
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function is usually small compared to projection/backprojection, further investigation could help reduce
this computation, e.g., by subsetizing the penalty part.

Although the TRIOT-PC was numerically found to be convergent, if one really wants provable con-
vergence, one could switch to TRIOT-MC or OC at some point.

One of the limitations of TRIOT is that for each update it uses previous M subiterates (where M is the
number of subsets), so it requires more memory than ordinary OS algorithms by a factor of M. Therefore,
the number of subsets is practically limited by memory availability particularly for large-sized problems.
It will be an interesting challenging problem to resolve the memory issues while keeping TRIOT’s global

convergence and convergence rates.

APPENDIX A

DERIVATION OF INCREMENTAL EM ALGORITHMS

In this appendix we show that the incremental EM algorithms are a special case of the incremental
optimization transfer algorithms.

For maximum likelihood (ML) estimation, one must maximize a log-likelihood function

O(x) = log f(y; )

with respect to parameter & € RP over a feasible set X C R? where y € RY denotes a realization of an
observable random vector Y with probability distribution f(y; "), and "¢ € RP? is the true value
of the unknown parameter. Assume that we identify an admissible complete-data'® random vector Z for

f(y;x). Then the following EM surrogate function satisfies the minorization conditions in (3) [30]:
NN _
¢(x;x) = Ellog f(Z;2)|Y = y; 2] (22)

for all £ € X. But in many applications including imaging problems, the observed data is independent

so the log-likelihood objective is additive-separable, that is,

M
O(x) =Y p(z), Dp(z) =log f(Ym: ),
m=1

and the complete data is conditionally independent, so for each ®,,(x), one can obtain the following

EM surrogate:
¢m(m§ j) = E[log f(Zm§ ZL')‘Y = Ym; j] ) (23)

A random vector Z with probability distribution f(z;) is called an admissible complete-data vector for f(y;x) if

fly,z;x) = f(ylz)f(z;2) [37], [38]. A special case is that Y is a deterministic function of Z.
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which also satisfies the minorization conditions in (3) where Y = (Y1,...,Yy) and Z = (Z3,...,Zy)
are some decompositions of the incomplete data and the complete data, respectively. Defining the
augmented objective function as in (5) and then alternating between updating = and one of the &,,’s as
in Table I leads to the incremental EM algorithms [3], [28]. The COSEM algorithm [2], [27], a special

case of the incremental EM for emission tomography, can be readily derived.

APPENDIX B

GLOBAL CONVERGENCE PROOF

In this appendix we prove the convergence of the incremental optimization transfer algorithm given in
Table I. Define z = (x;21,...,2x) € XMHL and define a map M : XYM+ — xM+1 guch that 2"+ =
M(z") where 2"+! = (z"+ 20 &) is computed by (T-1)«(T-3) for 2" = (z™; Z7,...,Z},).
Suppose that the algorithm generates a sequence {z"} (or a sequence {x"} by taking the first component

of z™), given some initial point 2° € XM+, Define an augmented solution set as follows:
A={z=(z;z,...,x) c XM .2 €T} (24)

where ' is defined in (7). We impose the following assumptions.

Assumption 1: Each ®,,(x) and ¢,,(x; ) is differentiable with respect to x on a nonempty, closed,
and convex set X C RP? for all & € X, and each ¢,,(x; Z) is continuous with respect to & on X for all
TeX.

Assumption 2: The solution set I' of stationary points defined in (7) is non-empty, and therefore so is
the augmented solution set A defined in (24).

Assumption 3: The iterates {z"} are bounded where z" = (z"; Z7,...,ZY},).

Assumption 3 is ensured by either of the following sufficient conditions.

Assumption 3': A level set defined by {z € XM+ . F(z) > F(2°)} is bounded where F is the
augmented objective function defined in (5).

Assumption 3": The feasible set X’ is bounded.

Note that Assumptions 1 and 3” imply Assumption 2 by the Weierstrass’ Theorem [42, p. 654]. We
assume that the surrogates ¢,,, satisfy the following conditions.

Condition 1: The functionals ¢,, satisfy the minorization conditions in (3).

Condition 2: The following derivatives match for all m and x € X:

Vo, (x) = Vloém(a};w) (25)
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where V10 is the column gradient operator with respect to the first argument!'!

(see [39] for less restrictive
conditions).
Condition 3: There exists a unique maximizer in (T-1).
The following is sufficient for Condition 3.
Condition 3': Each ¢, (+; &) is strictly concave for all &, € X, and there exists a maximizer of
F(;@y,...,&p) over X for all &1,...,&p € X.
Condition 4: Tf A is a bounded subset of X, then {arg maxzcy F(x; Z1,..., &) : (&1,...,T0) €
A} is also bounded.
Note that Assumption 3” implies Condition 4. Using the above assumptions and conditions, we prove
a series of lemmas necessary for proving convergence.
Lemma 1: The map M such that 2"+ = M(2") is continuous.
Proof: The map M is the composition of 20 maps: M = SMTSM=1T...S'T where S™(x;
1, ", TM) 2 (T; @1, &—1, T, i1, Tar), and T (x; T1, -+, Tpy) 2 (w; &y, , &) with
w = argmaxgex F(x;&1,...,&)). Since each S™ is continuous, it is only necessary to show that
T is continuous [47, p. 187]. Let {z%,} be a sequence from X with ¥, — &% for all m. Suppose
that w* = arg maxgey F(z; 25, ..., 2%,) and that w* = argmaxgex F(x; Z5,...,2%,). It suffices to
show that w* — w*. Suppose that {w"} does not converge to w*. Then there exists a subsequence
{wk} of {w*} such that w® — w** for some w** # w* by Condition 4. By the definition of
wh, F(wk’;:f:]fl, e ,a’clf\g) > F(w*;i:’fl,---,:ilf\g). By letting [ — oo, we have F(w**;&},---,Z},) >
F(w*;&7,---,@},) since F is continuous by Assumption 1. But this is a contradiction in view of the
definition of w* and Condition 3. Therefore, it must be the case that w* — w*, and the conclusion
follows. [ ]
Lemma 2: The iterates {2"} generated by (T-1)~(T-3) yield monotonic increases in F, that is, F((2"*1) >
F(z") for all n.
Proof: 1t follows from the cyclic block coordinate ascent updates in (T-1) and (T-2). [ |
Lemma 3: Suppose that z* € XM+ is a fixed point of M, that is, M(z*) = z*. Then z* € A where
A is defined in (24).
Proof: For the fixed point z* = (x*; &7, ..., &},), in view of Condition 3, one can show that * =
= ... =&),. Since x* is a maximizer of Z%zl Om(-;x*) over X, it follows that Z%zl V¢, (x*; ")

x —ax*) <0 for all © € X [42, p. 194]. Therefore, by Condition 2, V®(x*)'(x — x*) < 0 for all

8
— %

—~

"If 2 is an interior point of X, Condition 2 is implied by Condition 1 [52, Lemma 3.3].
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x € X, and it follows that * € T". [ |

Lemma 4: If z ¢ A, then F(M(z)) > F(2).

Proof: If z ¢ A, then z is not a fixed point of M by Lemma 3. Combining Condition 3 and

Lemma 2 leads to the conclusion. ]

Now we prove the following theorem on the convergence of the incremental optimization transfer
algorithm.

Theorem 1: Suppose that {z"} is a sequence generated by (T-1)~(T-3) with 20 € XM+1 and that
Assumptions 1-3 and Conditions 1-4 hold. Then any limit point of {z"} is an element of A.

Proof: The conclusion follows from the Zangwill’s Convergence Theorem [70, p. 91] with Assump-
tion 3; and Lemmas 1, 2 and 4. [ |
The following corollaries and lemmas also hold when “{x"}” is replaced with “{z" }” for all m.

Corollary 1: Suppose {x"} is a sequence obtained by taking the first component from 2" in Theo-
rem 1. Then any limit point of {#"} is an element of T".
Proof: Use Theorem 1, Assumption 3, and the definition of A in (24). |
Corollary 2: If ® is concave, then any limit point of {x"} is a global maximizer of ® over X.
Moreover, if ® is strictly concave, then {x"} converges to the global maximizer of ® over X'.
Proof: Use Corollary 1 and [42, Proposition 2.1.2]. [ ]
When @ is not strictly concave, there is no guarantee that the algorithm converges to a limit. However,
convergence can be established by additionally assuming that the solution set I" is discrete.
Lemma 5: Suppose {x"} is a sequence from Corollary 1. Then Hm"“ — m"” — 0.
Proof: Tt follows from [71, Theorem 3.1] that ||z""! — 2"|| — 0. Since ||z"! — 27||? = ||l"*! —
|2+ M @t — 27|12 it must be the case that ||zt — 2| — 0. ]
Lemma 6: Suppose {x"} is a sequence from Corollary 1. Additionally, suppose that the set I is
discrete. Then {x"} converges to an element in T'.
Proof: Let S be a set of limit points of {«"}. Then S C I" by Theorem 1. But, by Lemma 5, S is
connected [72, p. 173]. Since S is both discrete and connected, it is a singleton. [ ]
The above lemma implies that if stationary points of (2) are isolated, then the algorithm converges to

one of them.
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TABLE 1

OUTLINE FOR INCREMENTAL OPTIMIZATION TRANSFER ALGORITHMS.
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TABLE I

OUTLINE FOR TRANSMISSION INCREMENTAL OPTIMIZATION TRANSFER (TRIOT) ALGORITHM USING MAXIMUM

CURVATURE (MC).
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Here € is some small positive value; c¢f'© is defined in (20); and [z]T 2 median{0, z, U}, which should not be

confused with [x]+ = max{z, 0}.
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16 subsets, initialized with uniform image
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Fig. 1. Comparison of non-OS algorithms (SPS-MC/PC), an OS algorithm (OS-SPS), and incremental optimization transfer
algorithms (TRIOT-MC/PC) for 2D attenuation map reconstruction using real PET data. This figure shows (®(&F%) —
®(z2"))/(®(&F") — ®(£°)) versus iteration number where &F" is the PL optimal image. The OS-SPS and TRIOT algorithms
used 16 subsets, and TRIOT and SPS algorithms included one initial iteration of OS-SPS. The starting image was a uniform

image for all cases.

16 subsets, initialized with uniform image

10°¢
-%- SPS-MC
-x- SPS-PC
10k —A— TRIOT-MC
° —— TRIOT-PC
§ —-o—- OS-SPS
£ 107
©
Ll
B
N 107
©
£
2 4 Rk x
107} e R ¥
R A
6 iterations of OS—SPS included i

0 5 10 15 20
iteration

Fig. 2. Same as Fig. 1, but six initial iterations of OS-SPS were included for TRIOT and SPS algorithms.
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64 subsets, initialized with uniform image
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Fig. 3. Comparison of (®(&F%) — ®(&™))/(®(2"") — ®(&°)) versus iteration number. For this figure, 64 subsets are used

for OS-SPS and TRIOT algorithms, and two iterations of OS-SPS are included initially for TRIOT and SPS algorithms. This

figure also shows the performance of SPS algorithms that include averaging 64 subiterates after 2 iterations of OS-SPS.
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(b) PL image

(c) OS-SPS (d) TRIOT-PC

(e) TRIOT-MC (f) TRIOT-OC

Fig. 4. Reconstructed attenuation maps. (a) FBP reconstruction. (b) PL estimate image 2P obtained using 30 iterations of
OS-SPS with 16 subsets followed by 800 iterations of SPS-OC. (c) PL reconstruction using 20 iterations of OS-SPS with 64
subsets (an image that is one point of a limit cycle). (d) PL reconstruction using 2 iterations of OS-SPS and 18 iterations of
TRIOT-PC with 64 subsets. (e) PL reconstruction using 2 iterations of OS-SPS and 18 iterations of TRIOT-MC with 64 subsets.
(f) PL reconstruction using 2 iterations of OS-SPS and 18 iterations of TRIOT-OC with 64 subsets.
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Fig. 5. Digital phantom used in simulation. The background, left hot disc, and right cold disc have attenuation coefficients of

0.004mm ™%, 0.009mm™?!, and 0.001lmm—*, respectively.
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Fig. 6. Horizontal profile 64 through sample mean of different ordered subsets methods.
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Fig. 7. Histogram of the ratio of sample standard deviation of different ordered subsets methods to sample standard deviation

of TRIOT.



