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Abstract

No convergent ordered subsets (OS) type image reconstruction algorithms for transmission tomog-
raphy have been proposed to date. In contrast, in emission tomography, there are two known families of
convergent OS algorithms: methods that use relaxation parameters (Ahn and Fessler, 2004), and methods
based on the incremental expectation maximization (EM) approach (Htiab, 2002). This paper
generalizes the incremental EM approach by introducing a general framework that we call “incremental
optimization transfer.” Like incremental EM methods, the proposed algorithms accelerate convergence
speeds and ensure global convergence (to a stationary point) under mild regularity conditions without
requiring inconvenient relaxation parameters. The general optimization transfer framework enables the
use of a very broad family of non-EM surrogate functions. In particular, this paper provides the first
convergent OS-type algorithm for transmission tomography. The general approach is applicable to both
monoenergetic and polyenergetic transmission scans as well as to other image reconstruction problems.
We propose a particular incremental optimization transfer method for (nonconcave) penalized-likelihood
(PL) transmission image reconstruction by using separable paraboloidal surrogates (SPS). Results show
that the new “transmission incremental optimization transfer (TRIOT)” algorithm is faster than nonin-

cremental ordinary SPS and even OS-SPS yet is convergent.
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. INTRODUCTION

Ordered subsets (OS) algorithms, also known as block iterative or incremental gradient methods, have
been very popular in the medical imaging community for tomographic image reconstruction due to
their fast convergence rates [1]-[10]. The incremental gradient type algorithms are also found in convex
programming [11]-[14]. The ordered subsets (or incremental) idea is to perform the update iteration
incrementally by sequentially (or sometimes randomly [12], [13]) using a subset of the data. Row-action
methods [15] including algebraic reconstruction techniques (ART) [16], [17] can also be viewed as OS
type algorithms in which each subset corresponds to a single measurement.

The OS algorithms apply successfully to problems where an objective function of interest is a sum of
a large number of component functions. Because of the assumed statistical independence of tomographic
data, such sums arise in statistical tomographic reconstruction problems including penalized-likelihood
(PL) [equivalently, maximuna posteriori (MAP)] or maximum likelihood (ML) reconstruction. Typically,
the OS methods decompose the sum of component functions into several subobjective functions, each
corresponding to a subset of the projection views, and then update the image estimate by using, in a
specified cyclic order, the gradient of a subobjective function as an approximate gradient of the objective
function.

If the subset gradients are suitably balanced, then the gradient approximation can be quite reasonable
when the iterates are far from a maximizer. Thus OS methods initially accelerate convergence in the
sense that less computation is required to achieve nearly the same level of objective increase as with
non-OS methods. However, ordinary (unrelaxed) OS algorithms such as OS-EM [1], RBI-EM [3], and
OS-SPS (or OSTR in a context of transmission tomography) [6] generally do not converge to an optimal
solution but rather approach a suboptimal limit cycle that consists of as many points as there are subsets.
In fact, due to their subset-dependent scaling (or preconditioning) matrices [8], OS-EM and RBI-EM in
their original forms [1], [3] usually do not converge to the optimal point even if relaxed.

Convergence to an optimal solution is important for any algorithm for optimization problems, particu-
larly in medical applications where reliability and stability are essential. For PL (or MAP) reconstruction,
the convergence issue is perhaps more critical than for ML for which one often does not run algorithms to
convergence. For example, the image shown in Fig. 5(c), which corresponds to one point of a limit cycle
generated by an OS algorithm, looks noticeably different from the PL solution image shown in Fig. 5(b)
(see Section IV for details). It is desirable to achieve both fast initial convergence rates (typical of OS

algorithms) and global convergence. There have been three known families of convergent incremental



(or OS type) algorithms: methods that use relaxation parameters, methods based on the incremental EM
approach, and incremental aggregated gradient (IAG) methods.

Relaxation parameters are used widely to render OS algorithms convergent [2], [4], [5], [7]-[9], [11]-
[13], [18]-[20]. Suitably relaxed algorithms can be shown to converge to an optimal solution under
certain regularity conditiods[8]. However, since relaxation parameters should be scheduled to converge
to zero for global convergence, relaxed OS algorithms have slow asymptotic convergence rates. Also,
inappropriately chosereg., too rapidly decreasing) relaxation parameters could make initial convergence
rates even worse than those of non-OS algorithms. On the other hand, overly large relaxation parameters
can lead to unstable or divergent behavior. Finding good relaxation parameters (in terms of convergence
rates) may require some experimentation and trial-and-error; as a rule of thumb, for properly scaled OS
algorithms such as modified BSREM and relaxed OS-SPS, one should initialize the relaxation parameter
near unity and decrease it gradually as convergence to a limit cycle nears [8]. One may optimize a
few initial relaxation parameters by training when a training set is available for a particular task [2],
[17]. Or one could use the dynamic stepsize rule in [12], [13], but that method needs to compute
the objective value at every update, which is computationally expensive in tomographic reconstruction
problems. Alternatively, to achieve convergence, one could decrease the number of subsets as iterations
proceed or could use hybrid methods that combine OS and non-OS algorithms [22]. However, the schedule
for decreasing the number of subsets or the parameters for the hybrid algorithms are as inconvenient to
determine as relaxation parameters for relaxed OS algorithms.

Incremental EM algorithms do not require user-specified relaxation parameters [23]. They are conver-
gent yet faster than ordinary EM algorithms although slower initially than nonconvergent OS-EM type
algorithms [24]-[26]. Such incremental EM algorithms have been applied to emission tomography [10],
[24], [26], [27].

Recently, Blatkt al. proposed a convergent incremental gradient method, called incremental aggregated
gradient (IAG), that does not require relaxation parameters [28]. The IAG method computes a single subset
gradient for each update but aggregates it with the stored subset gradients that were computed in previous
iterations. The use of the aggregated gradient to approximate the full gradient of the objective function
leads to convergence. Similarly, as discussed below, the use of the sum of surrogate functions (rather

than a single surrogate function) to approximate a minorizing function yields convergent algorithms.

10One of these conditions being the (strict) concavity of the objective function excludes the nonconcave transmission problem
[21].



In this paper we generalize the incremental EM algorithms by introducing an approach called “in-
cremental optimization transfer”; this is akin to the generalization of the EM algorithms [29] by the
optimization transfer principles [30]. In fact, the broad family of “incremental optimization transfer
algorithms” includes the ordinary optimization transfer algorithmg.( EM), also referred to as MM
(minorize-maximize or majorize-minimize) algorithms in [31], as a special case where the objective
function consists of only one subobjective function.

In the incremental optimization transfer approach, dach subobjective function, we define an aug-
mented vector that has the same size as the parameter vector to be estimated. The augmented vector plays
a role as an expansion point at which a minorizing surrogate function is defined for the subobjective
function (see Section Il for details). The sum of the surrogate functions defines an augmented objective
that is a function of the parameter vector and the augmented vectors. With surrogate functions satisfying
usual minorization conditions [21], [30], a solution to the problem of maximizing the original objective can
be found by maximizing the augmented objective instead. Applying a block coordinate ascent approach to
the augmented problem leads to a new class of “incremental optimization transfer algorithms.” By using
the block coordinate ascent approach, incremental optimization transfer algorithms are monotonic in the
augmented objective though not necessarily in the original objective; nevertheless, global convergence
is ensured under mild regularity conditions. Incremental optimization transfer algorithms show faster
convergence rates than their nonincremental counterparts like EM [23], [24], [26].

Incremental optimization transfer is a general framework in which one can develop many different
algorithms by using a very broad family of application-dependent surrogate functions. These methods are
particularly useful for large-scale problems where the objective function is expressed as a sum of several
subobijective functions. In this paper, we focus on PL image reconstruction for transmission tomography,
which is a challenging nonconcave maximization problem. We propose a particular incremental optimiza-
tion transfer algorithm that uses separable paraboloidal surrogates (SPS) [6]. Such quadratic surrogates
simplify the maximization. In contrast, the standard EM surrogates for transmission tomography do not
have a closed-form maximizer in the “M-step” [32].

The proposed “transmission incremental optimization transfer (TRIOT)” algorithm is convergent yet
converges faster than ordinary SPS [6]; it can be further accelerated by the enhancement method in [33]
or by initializing through a few iterations of OS-SPS (see Section Il for details). It is parallelizable, and
the nonnegativity constraint is naturally enforced. In addition, it is easily implemented for system models
that use factored system matrices [34], [35] whereas pixel-grouped coordinate ascent based methods

require column access of the system matrix [36]-[39].



Section |l describes the incremental optimization transfer algorithms in a general framework and
discusses their convergence properties. Section Il develops incremental optimization transfer algorithms
for transmission tomography, and addresses acceleration methods. Section IV provides simulation and

real PET data results, and Section V gives conclusions.

[I. INCREMENTAL OPTIMIZATION TRANSFER
A. Incremental Optimization Transfer Algorithms

Most objective functions of interest in image reconstruction can be expressed as a sum of subobjective

functions?

M
m=1

where®,, : X C R? — R is a continuously differentiable function whose domaihis a nonempty,

convex and closed set. We consider the following optimization problem:
maximize ®(x) subject tox € X. (2)

Since usually there exists no closed-form solution to the above problem, one must apply iterative
algorithms. Assume that for each subobjective functigp, we find a surrogate function,, : X2 C
RP x RP — R that is easier to maximize thah,, and that satisfies the following usual minorization

conditions [21], [41]:
dm(x;) = Pp(x), VeelX

Odm(x; &) < Pp(x), Vae,zelX,
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where X™ denotes ther-ary Cartesian product over the s&t It follows from the above conditions that
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In other words, choosing such thatp,,(x; ) > ¢..(x;x) ensures thab,,(x) > ®,,(x). Define the

following “divergence” function:

D (|| 2) £ By () — bom (5 ).

2Such functions are said to lzelditive-separable in [11]; and to bepartially separable [40] when each®,, () is a function

of fewer components of € R? thanp.



Then by (3), we have the following propertigs:
Din(z| ) >0 andD,,(x||x) = 0. 4

Now we define the following “augmented” objective function:

Flz;zy,...,2m) = @(z) - ZDm(ijm) (5)
M
= Z G (X5 Ty (6)
m=1
Since
D, m) =0, Ve € X,
@ T Z (@1 Zm) g
that is,

max F(x;xy,...,2p) = P(x), VaelX,

(®1,..., B0 ) EXM

one can rewrite the optimization problem (2) equivalently as follows:

maximize F'(x; Z1,...,Zn) @)
subject to(x; &1, ..., &) € XMFL
in a sense that* € X is an optimal solution of (2) if and only ifx*; z3,...,2%,) € XM+l is an
optimal solution of (7) for soméz?,...,z3,) € X™. Therefore we can find a solution to problem (2)
by maximizing F' with respect to(x; Z1,...,Zn).

By alternating between updatingand one of thez,,,’s, we obtain an “incremental optimization transfer
algorithm” outlined in Table I, where we assume that there exists one or possibly more maximizers in
(T-1), and ‘arg max” denotes one of those maximizers.

The incremental optimization transfer algorithm shown in Table | can be viewed as a block coordinate
ascent algorithm for maximizing” with respect to(x; z1,...,Zy) [42, p. 270]. It monotonically
increases the augmented objective functiarbut not necessarily the original objective functidr43].

If one has only one subobijective function in (1), thatli§,= 1, then the incremental optimization transfer
algorithm reduces to an ordinary optimization transfer algorithm [30]. The incremental appidashi]

usually leads to faster convergence rates than nonincremental mefhods 1) [23]. The incremental

3When there exists # & such thatD,,, (& || £) = 0, using a modified surrogai€’s™ (z; Z) = ¢ (x; &) — € ||l — Z||* for
any fixede > 0 would lead to the following propertyD;;" (z || £) > 0 where equallty holdéf and only if @ = &. Although
this modification might provide a more natural definition of divergence, it is not needed for our convergence proofs. So we

allow the less restrictive conditions in (4).



EM algorithms [23], [27] including COSEM [24], [26] are a special case where the surrogatese
constructed by EM principles as described in the next subsection.

If one were to maximize just one of thg,,’s instead of the sum shown in (6), then one would have
ordinary OS type algorithms. Although this greedy approach usually yields faster initial convergence
rates than incremental optimization transfer algorithms, the OS type algorithms are not monotbnic in
nor in ®.

For incremental optimization transfer algorithms one must sidreectors{z,,})_,, so one needs
more memory compared to ordinary OS algorithms; however, this is not a practical limitation dless

is overly large.

B. Secial Case: Incremental EM Algorithms

This section shows that the incremental EM algorithms are a special case of the incremental optimiza-
tion transfer framework given in the preceding subsection.

For maximum likelihood (ML) estimation, one must maximize a log-likelihood function

®(z) = log f(y; @)

with respect to parametar ¢ R over a feasible set’ ¢ R? wherey € RY denotes a realization of an
observable random vectdf with probability distributionf(y; "), andz""® € R? is the true value
of the unknown parameter. Assume that we identify an admissible completerdatiom vectorZ for

f(y;x). Then the following EM surrogate function satisfies the minorization conditions in (3) [29]:
A _
¢(w;x) = Ellog f(Z;x)|Y = y; Z] (8)

for all £ € X. But in many applications including imaging problems, the observed data is independent

so the log-likelihood objective is additive-separable, that is,

M
O(z) =Y Pp(x), Dp(x)=log f(ym;z),
m=1

and the complete data is conditionally independent, so for €aghr), one can obtain the following
EM surrogate:
gbm(m; 3_7) = E[log f(Zma m)‘Y = Ym; 3_7] ) 9)

4A random vectorZ with probability distribution f(z;z) is called an admissible complete-data vector fduy; ) if

fly,z;x) = f(ylz)f(z;2) [37], [38]. A special case is th& is a deterministic function o .



which also satisfies the minorization conditions in (3) wh¥re= (Y1,...,Yy) andZ = (Z1,...,Zy)
are some decompositions of the incomplete data and the complete data, respectively. Defining the
augmented objective function as in (6) and then alternating between updatind one of thez,,’'s as
in Table | leads to the incremental EM algorithms [23], [27]. The COSEM algorithm [24], [26], a special
case of the incremental EM for emission tomography, can be readily derived.

In some applications, using surrogates other than (8) or (9) can lead to more convenient implementation

(e.g., see Section IlI-B).

C. Convergence Properties

Since incremental optimization transfer algorithms monotonically increase the augmented olijective
the sequence of augmented objective values converges to some value in the usual cade hdsemn
upper bound. However, the question of whether the algorithms really converge to a maximizer of (2) is
addressed next.

Define asolution set as the collection of stationary points of (2):
re {z* e X :Vo(z*) (x —x*) <0, VxelX}, (10)

where’ denotes matrix or vector transpose, and we asslinge(). Each element of the solution sEt
satisfies the first-order necessary condition for a local maximizep ofver X' [42, p. 194]. We want
algorithms to converge to some point in If the objective function® is concave, thed" is the set
of (possibly multiple) global maximizers @b over X' [42, p. 194]. If ® is strictly concave, thell’ is
the singleton of a unique global maximizer [42, p. 685]. On the other hand, for a nonconcave objective
function® (as in Section Ill), the solution s€tcould contain local maximizers and even local minimizers.
It is difficult to guarantee finding a global maximizer of a nonconcave objective function that may have
multiple local maxima. However, the hope is that, with an initial point reasonably close to a global
maximizer, the iterates generated by a monotonic algorithm will approach the global maximizer (see [39]
for discussion about convergence to a globally optimal point).

In Appendix A, we show that every limit poihtof the sequence generated by an incremental opti-

mization transfer algorithm is an element of the solutionIseif stationary points regardless of initial

®Recall the distinction between a limit and a limit point. A poihts calleda limit of a sequencéx™} if Ve > 0, 3N such
thatVn > N, ||€ — x"|| < e. On the other hand, a poiat is calleda limit point of a sequencéz™} if Ve > 0, VN, 3n > N

such that||z — z"|| < ¢, in other words, if there exists a subsequetfig€*} whose limit isz.



point$ when the following general sufficient conditions hold: (i) eagh and ¢,,(-;-) is continuously
differentiable, (ii) the iterates are boundesig(, X is a bounded set), (iii) the surrogates, satisfy the
minorization conditions in (3), (iv) the gradients &, and ¢,,(-;z) match atz (see Condition 2 in
Appendix A), and (v) the maximizer in (T-1) is defined unique®g(, ¢,.(-; Z.,,) is strictly concave).
Consequently, if the objective functioh is strictly concave, then the algorithm converges to the global
maximizer. For a nonconcave objective functidnif the points inI" are isolated, the algorithm will still
converge to some stationary pointlinthat we hope is a global maximizer or at least a local maximizer
(see Appendix A). It is an open question whether optimization transfer algorithms converge to nonisolated
stationary points (see [39] for a discussion of this issue).

Appendix B analyzes the asymptotic local convergence rate of the incremental optimization transfer
algorithms, and provides an illustrative one-parameter example for a comparison of the convergence rates

of incremental and nonincremental algorithms.

1. APPLICATION TO TRANSMISSIONTOMOGRAPHY

In this section we develop a particular incremental optimization transfer algorithm for transmission
tomographic reconstruction. We use quadratic surrogates [6], [21] rather than EM surrogates in (9) because
the standard complete-data proposed in [32] for transmission tomography does not yield a closed-form
M-step [46]. Using quadratic surrogates is not limited to the transmission case [47]-[49]; the incremental
optimization transfer algorithms using quadratic surrogates developed in this section are easily extended

to other applications including emission tomography.

A. Problem

We assume the following Poisson statistical model for (monoenergetic) transmission measurements:
Yi ~ Poisson{bie_[Amh + ri} , i=1,...,N (11)

wherey; denotes the transmission measurement ofithaeletectorp; denotes the blank scan counts of
the ith detectory; denotes the mean number of background counts,(dnad; = 3°7_, a;;z; represents
theith line integral of the attenuation map in whieh is the unknown attenuation coefficient in tlia

pixel, A = {a;;} is the system matrix, anty’ andp are the number of detectors and pixels, respectively.

®Some authors definglobal convergence as the property that limit points of the sequence generated by an algorithm are
stationary points of the problem [44, p. 228] or that limits are stationary points [45, p. 312], irrespective of starting points. We

adopt the former convention here.
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We assume thdth; }, {a;;}, and{r;} are known nonnegative constants. We focus on penalized-likelihood
(PL), also known as maximura posteriori (MAP), estimation for the attenuation map reconstruction.

Our goal is to compute a PL estimat&€™ which is defined by

&t = arg max o(x), P(x)= L(x)— fR(x) (12)

where the objective functio®, which can be nonconcave when+ 0 [21], includes the log-likelihood

and a roughness penalty

1 p
R(z) = 3 Z wik(zj — ). (13)
The box constraint set is defined by
X={xecRP:0<z; <U, Vj} (14)

In the box constraint set in (14), the nonnegativity restriction is imposed on physical grounds, and the
upper bound’ > 0 is set by the user to be a value that is larger than the maximum attenuation coefficient
conceivable for the object being scanned. The reason for using the box constraint rather than the usual
nonnegativity constraint is that the convergence proofs in Appendix A need the iterates to be bounded.
However, imposing upper bounds is not overly restrictive in a sense that one can choose a physically
meaningful upper bound for attenuation coefficients, and the image estimatanlikely to be affected
by U if one chooses an arbitrarily largé. In practice, if the upper bound happens to be hit by some
iterate, then the user could re-run the algorithm with a larger bound.

In the penalty function (13), the function is a symmetric and convex potential functioki; repre-
sents a neighborhood of thgh pixel, 5 is a regularization parameter that controls the smoothness in
reconstructed images, and;;, are weights (ordinarilyw;; = 1 for horizontal and vertical neighboring
pixels, andw;;, = 1/4/2 for diagonal neighboring pixels). We assume the potential funatisatisfies
some conditions given in [21], [50, p. 184]. We used the following edge-preserving nongquadratic potential

function in our PL reconstruction results [51]:
W(t) = 8°[]t/6] — log(1 + [t/d])] (15)

for somed > 0. We assume that appropriateand § are prespecified.
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B. Transmission Incremental Optimization Transfer (TRIOT)

We decompose the objective functidninto the following subobjective functions:

Py () = Z hi([Ax];) — %R(m), m=1,---, M,
1€S,,
where {S,,}}_, is a partition of{1,..., N}. We use the usual subsets corresponding to downsampled

projection angles [1]. Consider the followirggparable quadratic surrogate,, for the subobjective

function @,,,:

(3 ) = o (Z) + VO (3) (T — 2) — %(az &) Con(@) (- ) (16)

8

with
Con () = diag;{¢n;(x)} (17)

where ¢,,;(-) > 0 and diad-} denotes a diagonal matrix appropriately formed. The surrogatesn
(16) satisfy Conditions 2 and 3 in Appendix A.

To makeg,,, additionally satisfy the minorization conditions in (3), one has at least two choicésg, for
“optimum curvature” (OC) and “maximum curvature” (MC). Those curvatuigs have the following
form:

Cmj(x) = max{ Z aijaici([Az];) + % Z Wikwy (T — xk), e} (18)

€S keN;

for some small value > 0 whereaq; 2 > F g aiz andwy(t) 2 Y (t)/t. The functionals;(-) are defined

as follows. For OC, we define

[_gmm—wx9+m«»1 C1s0
: v (19)

—hi(0)] =0,
_l’_
and for MC,

W 2 [-ho)] . (20)

where [z]; = max{z,0}. Detailed derivations of (18)—(20) can be found in [21]. On the right side in
(18), the first term corresponds to the curvature of the surrogate for the log-likelihood part, and the second
term for the penalty part. The optimum curvatef¥’ in (19) is the lowest curvature that a 1D quadratic
surrogate function for a marginal log-likelihodd(l/) can have in projection domain) (while satisfying

the minorization conditions. A low curvature of a surrogate implies a wide paraboloid and, consequently, a

large stepsize, that is, fast convergence [21]. However, one needs an “extra” backprojection for computing
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the first term in (18). On the other hand, the maximum curvatjffé s a constant independent #f and
thus the first term in (18) can be precomputed and storedBtitis larger thanc°C and consequently
leads to smaller stepsizes. We leave the second term in (18) as a functioevain for MC since its
computation is usually cheap compared to projection and backprojection operationsidrikesso large.
The augmented objective functidn defined in (6) with (16) is readily maximized with respectato

over the box constraint’ as follows:

M -1
] (IR S CHERERAER) )
m=1 m=1

wherePy(x) is the orthogonal projection af € R? onto X' and is easily computed componentwise as
follows: [Py (x)]; = median{0,z;, U} for all j. Using (21) in the step (T-1) leads to a new “transmission
incremental optimization transfer (TRIOT)” algorithm, which is outlined in Table II. Whér= 1, then
TRIOT reduces to ordinary SPS [6]. The TRIOT update begins aﬁ@élr (> 1) iteration(s) of OS-SPS
[6] (see the next subsection for OS-SPS in detail). The strategy to switch from OS-SPS to TRIOT is
discussed in Section IlI-D. Running initially (at least) one iteration of OS-SPS is more effective than
initializing all &.,,,'s to be the same image.¢., a FBP or uniform image) because both cases require
nearly the same computation (note one needs to compute partial gra®iéntsz,,) and curvatures
for all m to perform the TRIOT update) yet one can take advantage of fast initial convergence rates of
OS-SPS.

In Table I, a TRIOT using MC in (20), we call TRIOT-MG is shown; however, OC in (19) can
be easily included. The two steps (T-1) and (T-2) in Table | are combined in Table II. In (T-5), one
can avoid the suan”:[1 at every subiteration by maintaining that sum as a state vector that is updated
incrementally as in [24], [26], [33]. And one could slightly modify the algorithm to perform (T-5) more
than one time at every subiteration so that one additionally updates the surrogate for the penalty part
with fixing the surrogate for the likelihood part as in [21]. One iteration, indexea,bgf TRIOT-MC
requires one projection and one backprojection operation while TRIOT-OC needs an extra backprojection
[see (18) and (19)].

The discussion and proofs for global convergence given in Section [I-C and Appendix A apply to
TRIOT. Whenr; = 0 for all i, under mild condition§,since the PL objective for transmission tomography

is strictly concave, the algorithm converges to the optimal solution [52]. In thergaéd, the objective

"The second part denotes a specific curvature usgd 8PS-OC).

8The potential function) is strictly convex, andd’y # 0.



13

function is not necessarily concave [21], and we have a weaker conclusion that every limit point of a
sequence generated by TRIOT is a stationary point. However, in our practical experience, we obtained
the same limit in all experiments with different initializations, suggesting that suboptimal local maxima

are rare, or are far from reasonable starting images.

C. OSSPS

Since we use OS-SPS in initializing and accelerating TRIOT, we briefly review OS-SPS [6] for
completeness. For each subiteration, indexeadrbynaximizing themth subobjectivep,,, (-; ) in (16)

instead of the augmented objecti¥&-; z1,..., &) in (6) leads to the following OS-SPS update:

o —1
j?ﬁzwmod M)+1 — Px (im + [Cm(a_jm)} V(I)m(jm)> (22)
form=1,...,. M Whereém(.) is based on (18). This greedy approach does not ensure monotonicity,

in neither the augmented objective nor the PL objective, so we need not insist that the curvatures satisfy
the minorization conditions. A natural choice foy(-) is the Newton’s curvature-;(-); this can be

approximated as follows:

—hi(l) = ¢ = —hy <argmax hl(l~)>
>0
)2
M, Yi > Ty
= Yi (23)
0, otherwise

This choice is called “precomputed curvature (PC)” [6], [21]. For OS-SPS, the following subset-independent

preconditioning matrix using PC is usually used in pIaceCt;,t(:sz) in (22):

C"C(x) = diag{¢°(x)}
N
é?c(m) = max % Zaijaicfc + % Z Wikwy (T; — Tk), € (24)
i=1 keN;
wherecf’C is given in (23). The first term on the right side in (24) can be precomputed and stored like
the maximum curvatures (MC). The benefit of using PC is that it leads to faster convergence rates than
MC sincecM® > ¢F'C. The update for OS-SPS is shown in (T-4) in Table IL.

The OS-SPS shows very fast initial convergence rates but becomes eventually stuck at a limit cycle.
Using more subsets leads to a faster initial convergence rate but causes the points in the limit cycle to
be farther from the optimal solution.

It is worth noting that, for each update, OS-SPS uses the gradient and curvature for only one subobjec-

tive function at the previous subiterate in (22) whereas TRIOT uses the gradients and curvatures for all
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subobjective functions at previodd subiterates respectively in (21). When the number of subobjective
functions isM = 1, then both OS-SPS and TRIOT reduce to SPS.

D. Acceleration

TRIOT-OC/MC is convergent yet faster than nonincremental ordinary SPS [6], but it is still slower
initially than OS-SPS which is not convergent unless relaxed. Here we discuss methods to accelerate
TRIOT.

1) Switch from OS-SPS to TRIOT: It is a popular idea to switch from a nonconvergent yet initially
fast OS type algorithm to a convergent non-OS algorithm at some point to take advantage of both fast
initial convergence rates of OS methods and global convergence of hon-OS methods.

We observed that it is very effective to switch to TRIOT from OS-SPS at the point where the OS-SPS
algorithm nearly gets to a limit cycle; even one single subiteration of TRIOT moves the iterate from the
limit cycle very close to the optimal solution. The reason is as follows: a group of the points in the limit
cycle would be roughly centered around the optimal point and the update for TRIOT includes a weighted
average of the points [see the first term on the right side in (21) or (T-5)].

To obtain further insight into this property, consider a simple unconstrained quadratic problem where

the objective function and the subobjective functions are
L / 1, /
o(x) = —5:13 Qx+bx, O,(x)= _5:1; Qnz+b x

for m = 1,---,M where>"”_ Q,, = Q and "Y_ b,, = b. Assume that each surrogate function
om(x; ) is equal to its corresponding subobjecti®g,(x) so it has a closed-form maximizetr,, =
Q;.'b,, where we assume eadd,, is invertible. Then the OS approach will generate a limit cycle that
consists of thosey, ..., x),. Now applying just one iteration of the incremental optimization transfer

method as in (21) leads to

M -1 M
& = (Z Qm> Y Quem = Q') Qu(Qy'bn)
m=1 m=1 m=1
= Q'b,

which is the maximizer of the original objectiv@ [the second term on the right side in (21) equals
zero]. This example suggests that the built-in averaging operation in TRIOT helps iterates escape from
a limit cycle, generated by nonconvergent OS algorithms, towards the optimal solution.

However, in the early iterations, when OS-SPS is still far from the limit cycle and is making progress

towards the optimal point, TRIOT is usually slower than OS-SPS due to the averaging of the past
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subiterates because the incremental optimization transfer approach updates the surrogates incrementally,
that is, conservatively to ensure monotonicity. So it is desirable to get to a limit cycle quickly using
0OS-SPS withmany subsets and then switch to TRIOT. In a 2D reconstruction case in Section IV, the
use of64 subsets is sufficient to reach a limit cycle within a couple of iterations.

2) Precomputed Curvatures. Forgoing monotonicity (in the augmented objective) and accordingly
provable convergence, one can use for TRIOT the “precomputed curvatures (PC)” in (23). TRIOT-PC
is faster than provably convergent TRIOT-OC/MC. It is an open question whether TRIOT-PC converges
to an optimal solution. However, in our experiments, TRIOT-PC vyielded the same limit as convergent
algorithms like SPS-OC within numerical precision!

3) Enhanced Incremental Optimization Transfer Algorithms:. Hsiao et al. proposed E-COSEM, an
accelerated version of COSEM [33]. The idea is to choose for each update a convex combination of an
initially fast yet nonconvergent OS algorithm and a convergent incremental optimization transfer algorithm
such that the combination both ensures monotonicity in the augmented objective and is as close to the
OS algorithm as possible. This approach often accelerates incremental optimization transfer algorithms

without destroying the monotonicity in the augmented objective.

IV. RESULTS

To assess the performance of the proposed algorithms, we performed 2D attenuation map reconstruc-
tions from real PET data.

We acquired PET data using a Siemens/CTI ECAT EXACT 921 PET scanner with rotating rod
transmission sources [53]. We used an anthropomorphic thorax phantom (Data Spectrum, Chapel Hill,
NC). The sinogram had 160 radial bins and 192 angles, and the reconstructed imagég8nere28
with 4.2 mm pixels. The system geometry was approximated with 3.375 mm wide strip integrals and
3.375 mm ray spacing; the system matrix was generated using ASPIRE [54]. The total counts amounted
to 9.2 x 10°. We used the edge-preserving nonquadratic penalty (15) vith4 x 10~* mm~! and
B = 2185 chosen by visual inspection. A uniform image was used as a starting image. The results
obtained by using a FBP reconstruction as a starting image were similar and are not shown here.

Images were reconstructed using SPS-MC/PC, OS-SPS, and TRIOT-MC/PC. For OS-SPS and TRIOT
algorithms, we used 16 subsets (a moderate number) and 64 subsets (a little larger number than usual). For
SPS and TRIOT, the performance (objective value or distance from the optimal image) with the optimum

curvature (OC) in (19), that requires an extra backprojection per iteration, was between those with MC
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and PC; and the results with OC are not shown here. And, for TRIOT algorithms, the enhancement
method described in Section IlI-D yielded only minor improvements in this study (not shown here).

Fig. 1 shows normalize@® difference versus iteration number for different algorithms using 16 subsets.
The normalized® difference is defined ag® (&%) — ®(z"))/(®(2") — ®(2°)) where P is a
maximizer of the PL objective; a small value means the image is closer to the optimal ith&ge
The optimal imagez"" [shown in Fig. 5(b)] was estimated by 30 iterations of OS-SPS with 16 subsets
followed by 800 iterations of the SPS-OC algorithm that is monotonic and convergent (to a stationary
point). As described in Section IlI-B, TRIOT algorithms were initialized by running one iteration of
OS-SPS. So were the SPS algorithms for a fair comparison. Although OS-SPS showed a fast initial
convergence rate, it became stuck at a suboptimal point whereas other methods continued to improve in
terms of objective values. The TRIOT algorithms were outperformed by other algorithms in early iterations
since the built-in averaging in TRIOT slows down convergence, as discussed in Section IlI-D, when a
limit cycle has not reached yet. However, TRIOT-MC and TRIOT-PC eventually outrun SPS-MC and
SPS-PC, respectively. Although global convergence is not provably ensured for TRIOT-PC, the limit of
TRIOT-PC (say, obtained by 1000 iterations) was the same as that of SPS-OC (obtained similarly) within
numerical precision (not shown here), which suggests TRIOT-PC has desirable convergence properties.

To investigate the performance of TRIOT algorithms after OS-SPS reaches a limit cycle, we performed
6 iterations of OS-SPS, which is sufficient to get close to a limit cycle, and then applied TRIOT (and
SPS as well). Fig. 2 shows that TRIOT yielded considerable improvement at iteration 6 where TRIOT
was first applied. TRIOT-MC and TRIOT-PC converge faster than SPS-MC and SPS-PC, respectively,
which are similarly initialized by 6 iterations of OS-SPS. This shows that it is effective to switch from
OS-SPS to TRIOT, as described in Section IlI-D, when OS-SPS almost reaches a limit cycle. However,
it is inconvenient to predict how many iterations are required for OS-SPS to arrive at a limit cycle.

Fig. 3 shows normalized difference versus iteration number when 64 subsets are used. As the number
of subsets increased to 64, the initial convergence rate of OS-SPS became faster (even a couple of iterations
led to a limit cycle) but OS-SPS stagnated at a worse image. Meanwhile, the TRIOT algorithms were
quite effective even though they used only a couple of iterations of OS-SPS as initialization, and they
outperformed the SPS algorithms initialized similarly. In light of the effectiveness of the built-in averaging
in TRIOT, to make SPS a stronger competitor, prior to switching to SPS (at iteration 2), we averaged the
64 previous subiterates that approximately comprise the limit cycle. As shown in Fig. 3, this averaging
yielded significant improvements for SPS algorithms. However, convergence rates of TRIOT were still

faster than those of SPS with such averaging. Fig. 4 shows a similar trend when the results are viewed in
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terms of the normalized distance from the optimal imdge? — || /||£""||, versus iteration number.

Fig. 5(c) shows the image to which OS-SPS with 64 subsets converged. It represents one point of the
limit cycle generated by the OS-SPS, and looks visually different from the true PL optimal image in
Fig. 5(b). In contrast, the TRIOT-PC initialized by 2 iterations of OS-SPS vyielded, with 18 iterations,

the image in Fig. 5(d) which is nearly indistinguishable from the optimal image in Fig. 5(b).

V. CONCLUSION

We presented a broad family of incremental optimization transfer algorithms by generalizing the
incremental EM family. The incremental optimization transfer algorithms usually show faster convergence
rates than ordinary optimization transfer methods like EM, but they are globally convergent.

We also developed a particular incremental optimization transfer algorithm for transmission tomography
by using separable quadratic surrogates: TRIOT algorithms. We found that it is very effective to switch
from OS-SPS to TRIOT when OS-SPS nearly reaches a limit cycle. When reasonably many subsets are
used, as few as one or two iteration(s) of OS-SPS can be sufficient to get close to a limit cycle (although
it would depend on the degree of regularization and the size of the problem). This switching strategy
is more convenient than relaxed OS algorithms that require determining relaxation parameters. Also,
TRIOT is preferable to reducing the number of subsets with iteration since the consistent data flow in
OS-SPS and TRIOT could be beneficial and it would be inconvenient to determine an optimal schedule
for reducing the number of subsets. The switching idea is also found in [55].

One iteration of TRIOT-MC/PC or OS-SPS requires computing one projection and one backprojection
plus the penalty related gradients and curvatures (the use of OC needs an extra backprojection); so the
computational cost is almost the same as classic ML-EM except for the contribution of the penalty part.
As the number of subsets increases, computation per iteration also increases due to the penalty part
being updated for each subiteration. Although the computational contribution of the penalty function
is usually small compared to projection/backprojection particularly for a large-scale problem like 3D,
further investigation could help reduce this computati@g,, by subsetizing the penalty part.

In our 2D reconstruction from real PET data, with 64 subsets, it was very effective to switch from OS-
SPS to TRIOT-PC after 2 iterations of OS-SPS. This switching strategy seems robust since we obtained
similar results (not shown here) from a 2D simulation study using a different digital phantom. Although
the TRIOT-PC was numerically found to be convergent, if one really wants provable convergence, one

could switch to TRIOT-MC or OC at some point.
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APPENDIXA

GLoBAL CONVERGENCEPROOF

In this appendix we prove the convergence of the incremental optimization transfer algorithm given
in Table |. Definez = (x;21,...,2) € XMFL and define a mapping/ : XM+ . xM+1 gych
that M(z") = 2z"*! where z"*! = (z"+; 2! 2 is computed by (T-1)—(T-3) for" =
(x™ T, ..., 2},). Suppose that the algorithm generates a sequgtitk (or a sequencéx™} by taking
the first component o£™), given some initial poinz® ¢ XM+!, Define an augmented solution set as
follows:

Aé{z:(w;x,...,a:)GXMH:a:GF} (25)

wherel is defined in (10). We impose the following assumptions.

Assumption 1: Each®,,, and¢,,(+;-) is continuously differentiable on a nonempty, closed, and convex
setX Cc RP and X? C RP x RP, respectively.

Assumption 2: The iterates{z"} are bounded where™ = (z"; z7,...,Z%,).

Assumption 2 is ensured by either of the following sufficient conditions.

Assumption 2': The feasible sef is bounded.

Assumption 2”: A level set defined byz € XM+ . F(2) > F(2°)} is bounded.

We assume that the surrogatgs satisfy the following conditions.

Condition 1: The functionalsp,, satisfy the minorization conditions in (3).

Condition 2: The following derivatives match for ath andx € X’:
V&, (x) = V0%, (z; x) (26)

whereV!? is the column gradient operator with respect to the first arguh{sae [39] for less restrictive
conditions).

Condition 3: There exists ainique maximizer in (T-1).

The following is sufficient for Condition 3.

Condition 3: Each ¢,,(+; Z.,) is strictly concave for allz,, € X, and there exists a maximizer of
F(;@y,...,&p) over X for all &q,...,&y € X.

Using the above assumptions and conditions, we prove a series of lemmas necessary for proving

convergence.

9For = being an interior point oft’, Condition 2 is implied by Condition 1 [56].
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Lemma 1: The iterateq 2"} generated by (T-1)—(T-3) yield monotonic increaseg'jthat is,F’ (2" 1) >
F(z™) for all n.
Proof: It follows from the cyclic block coordinate ascent updates in (T-1) and (T-2). [ |
Lemma 2. Suppose that* ¢ XM+ is a fixed point ofM, that is, M(z*) = z*. Thenz* € A where
A is defined in (25).

Proof: For the fixed pointz* = (z*; Z7,...,&},), in view of Condition 3, one can show that =
& = ... =&, Sincex* is amaximizer oS M_ ¢, (-;x*) overX, it follows that>"_ | V106, (z*; 2*)' (x—
x*) <0 for all x € X [42, p. 194]. Therefore, by Condition X/®(x*)'(x — 2*) < 0 for all x € X,
and it follows thatz* € I [ |

Lemma 3: If z ¢ A, thenF(M(z)) > F(z).

Proof: If z ¢ A, then z is not a fixed point ofM by Lemma 2. Combining Condition 3 and

Lemma 1 leads to the conclusion. [ |

Now we prove the following theorem on the convergence of the incremental optimization transfer
algorithm.

Theorem 1. Suppose thafz"} is a sequence generated by (T-1)—(T-3) with ¢ AM+! and that
Assumptions 1 and 2 and Conditions 1-3 hold. Then any limit poirftz8f} is an element of\.

Proof: Following [44, p. 209 and p. 228], one can show that the mapputds closed, in other
words, M is continuous. The conclusion then follows from the Zangwill's Convergence Theorem [57,
p. 91] with Assumption 2, Lemmas 1 and 3, and the closednegs! of [ |

The following corollaries and lemmas also hold where"}” is replaced with {z, }" for all m.
Corollary 1: Suppose{x™} is a sequence obtained by taking the first component fg&nin Theo-
rem 1. Then any limit point of =™} is an element of".

Proof: Use Theorem 1, Assumption 2, and the definitionAoin (25). ]

Corollary 2: If ® is concave, then any limit point ofx™} is a global maximizer of® over X.
Moreover, if @ is strictly concave, theqa"} converges tdhe global maximizer of® over X'.
Proof: Use Corollary 1 and [42, Proposition 2.1.2]. [ |
When® is not strictly concave, there is no guarantee that the algorithm converges to a limit. However,
convergence can be established by additionally assuming that the solutibrissdiscrete.
Lemma 4: Suppose{z"} is a sequence from Corollary 1. Thgm" ™ — z"|| — 0.
Proof: It follows from [58, Theorem 3.1] thafz"*! — 2"|| — 0. Since||z"*! — 27|? = ||z"*! —

|2 + N @t — &2]%, it must be a case thaz" ! — 2| — 0. |
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Lemma 5: Suppose{z"} is a sequence from Corollary 1. Additionally, suppose that thel'set
discrete. The{x"} converges to an element In
Proof: Let S be a set of limit points of ™}. ThenS C I" by Theorem 1. But, by Lemma 4 is
connected [59, p. 173]. Sincg is both discrete and connected, it is a singleton. |
The above lemma implies that if stationary points of (2) are isolated, then the algorithm converges to

one of them.

APPENDIX B

LocAL CONVERGENCERATE ANALYSIS
A. Asymptotic Convergence Rate

We analyze the asymptotic convergence rate of the incremental optimization transfer algorithm given
in Table I. As in usual local convergence analysis, we assume that a sequeh¢g ; generated by
the algorithm converges to an optimal poititof (2) for all m, and that every iterate;’, and the limit
x lie in the interior of X.

Consider the following first-order Taylor’s expansion\of’s,, (-; £7,) with respect to the first argument
aboutz],:

VO (x; &) = V(@ 27) + V00m (2, 20,) (@ — 27, (27)

where V?Y is the Hessian operator with respect to the first argument. The first term on the right hand

side can be further approximated as
V(@ &) = VOu(z],)
~ VO, (2) + V20, () (2, — &) (28)

where the equality is due to (26). Because of the assumptiah arfd i:’f“ being in the interior ofY,

and the construction ofi’l“rl = arg maxgecx F(x; 2, -+, Z},) [see (T-1) and (T-2)], it follows that

M
D V(&) =Vo(&) =0
m=1

M
> V(@) = 0.

m=1
Now combining (27) and (28) yields the following approximation:
M -1 M
> VQO%(%@%)] > [VO0m(@y; ) — VPO (2)] €,
m=1

m=1

n+1
el ~
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wheree]’, = z', — x for all m andn. Similarly, one can obtain the following approximation for ait

m—1 -1
e;ln—i-l ~ Z v20¢k($z+l TL-‘rl + Z v?O(Z)k wka xk)
k=1 k=m
m—1
<Z [V2O¢k( n+1, j’g-‘rl) v2¢k( TL+1 + Z v20¢k xka ) v?@k( ):| ) ) (29)
k=1 k=m

Assuming thatV?%¢,,(-;-) is continuous, it will converge t&v2¢,,(2;2) as limn_>C>O z" = &. For
notational convenience, defia,, 2 V0% (2;2), Hy = 2 V2o, (2), andT;, 2 (L, D) (D —

H,,) for all m. Then one can write thasymptotic approximation of (29) in matrix form as follows:

E x Iy —T)) T, EN

whereg” 2 [(e),---(e}y)) is apM x 1 column vector,I; is ak x k identity matrix, and
(00 -~ 0 0]
T 0 --- 0 0
r = |TW T, -~ 0 0 (30)
_Tl Ty - Tyq 0 |
(T T Ty T
0 1T, -+ Ty1 Ty
r, = D E : (31)
0 0 --- Ty Ty
i o o -- 0 Ty ]
with 0 being ap x p zero matrix. Thus, the root-convergence factor [60, p. 288] of the sequence
{[(@}),---,(2h,) ]}, for the incremental optimization transfer algorithm is given by the spectral
radius
prr = p((Ipp — 1) 7'TY) (32)

where p(-) denotes spectral radius. One can show that the root-convergence factor of the sequence
{zl' }>, is also governed by the above spectral radius fomall For ordinary optimization transfer

algorithms, that is, whed/ = 1, the spectral radius (32) reduces to

pr=p(I, — V¥ (d;2)] 7' V() , (33)

as is well known [30]. To comparg; and p,; for M > 1, we provide an illustrative example in the

following subsection.
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B. One-Parameter Example

We consider a simple one-parameter transmission problem. Suppose the measurement model is:
Yi ~ Poisson{bie*ax} , 41=1,--- N

wherea > 0 andb; > 0, Vi. AssuminngV:1 y; > 0, the ML estimate is given by
1 N bi
T = [— log 723?1 ]
a Zi:l Yi +
where[z|; = max{z,0}. Assumingz > 0, which is very likely for high SNR data, the root-convergence
factor py, for an incremental optimization transfer algorithm, TRIOT-MC (see Section III-B for details),

is given by (32) with substituting

) b; N
Tm:ZZJGVSm (1_27}\?1%)7 m=1,---,M (34)
Zi:l bi Zi:l bi
in (30) and (31), wherdS,,,}_, is a partition of{1,..., N}. Fig. 6 shows the mean root-convergence

factor E[py,] as a function of the numbel/ of subsets for an example wher&'® = 0.7, N = 128,

a = 1, andb; was simulated using pseudorandom uniform variates with mean50fThe mean was

true

approximately computed by replacipgin (34) with its mearb;e~%* " ; this approximation is reasonably

accurate for high SNR. For example, fdf = 1, that is, for a nonincremental algorithm, ordinary SPS-

MC, the mean of the root-convergence factor is given by

true

Elp])~=1—e%

As shown in Fig. 6, for this one-parameter example, the asymptotic convergence rates of incremental
optimization transfer algorithms\{ > 1) are faster than that of the nonincremental oné £ 1), and

the convergence rate of the incremental one becomes faster as the numdfesubsets increases.
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TABLE |

OUTLINE FOR INCREMENTAL OPTIMIZATION TRANSFER ALGORITHMS THE RIGHT SIDE OF(T-2) IS DUE TO (4) AND (5).

Initialize «°, z9,...,2%, € X

for n =0,...,Niter — 1

form=1,.... M

"V = arg rwneaicF (; P & B, zh) (T-1)
zn' = 2" =arg max F (™, e E B B, Thr) (T-2)
TmEX
end
AR (T-3)

end
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OUTLINE FOR TRANSMISSION INCREMENTAL OPTIMIZATION TRANSFER(TRIOT) ALGORITHM USING MAXIMUM

CURVATURE (MC).

N T+
Initialize: £ = #° = |FBP {10g ( b )}
Yi — T i=1

N
.Mciz YiTs 4 Pcilz e :
Precomputedm]- = = Q4505 |:<1 — m) b1:| . and dj = M 2 A;5Q:C; Vm, J

for each iteratiom = 1,..., njter
for each subset (subiteratiom) =1,..., M

P

~ A : Yi —i; .

li = a;j%j, hi=|1—————|bie ", VicSy
; " ( bie~ i +m)

. . 2 . N .
Lmj =) aijhi, Tmj= MB D wikwy (&5 — &), V)
1€Sm kEN;

Tmj = ‘%j’ N

if n < n2S, perform the following OS-SPS update:

&=

. . _ _ +
Ly = 5 Sen, Wikt (@mg — Tk ,
Zmj + ) Vj

max {dfc + Tmyj, e}

else, perform the following TRIOT-MC update:

. . +
ZlAil [Lflj max{dl];.fc + 75, 6} + (sz — % ZkeNj wjk¢(i’lj — Lf’lk))]

M MC .
e ma’X{dlj + T, 6}

Ty =

end
if n=n$> (the last iteration of OS-SPS), then perform (T-&)d
@n

=z

end

(T-4)

(T-5)

Here ¢ is some small positive value: is defined in (23); andz]* 2 median{0, z, U}, which should not be

confused with[z] = max{z, 0}.
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16 subsets, initialized with uniform image
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Fig. 1. Comparison of non-OS algorithms (SPS-MC/PC), an OS algorithm (OS-SPS), and incremental optimization transfer
algorithms (TRIOT-MC/PC) for 2D attenuation map reconstruction using real PET data. This figure éR¢#S") —

o (z™))/(®(2F) — &(2°)) versus iteration number whetg™ is the PL optimal image. The OS-SPS and TRIOT algorithms
used 16 subsets, and TRIOT and SPS algorithms included one initial iteration of OS-SPS. The starting image was a uniform

image for all cases.
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Fig. 2. Same as Fig. 1, but six initial iterations of OS-SPS were included for TRIOT and SPS algorithms.
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64 subsets, initialized with uniform image
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Fig. 3. Comparison of® (&) — &(2"))/(®(2F") — ®(2°)) versus iteration number. For this figure, 64 subsets are used
for OS-SPS and TRIQT algorithms, and two iterations of OS-SPS are included initially for TRIOT and SPS algorithms. This

figure also shows the performance of SPS algorithms that include averaging 64 subiterates after 2 iterations of OS-SPS.

64 subsets, initialized with uniform image
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<> SPS-MC (with averaging)
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Fig. 4. Same as Fig. 3, but this figure shows a comparison of normalized distance from the optimal|itfiage’™||/||£""||,

versus iteration number.
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(a) (b)

© (d)

Fig. 5. Reconstructed attenuation maps. (a) FBP reconstruction. (b) PL estimatedffagitained using 30 iterations of
OS-SPS with 16 subsets followed by 800 iterations of SPS-OC. (c) PL reconstruction using 20 iterations of OS-SPS with 64

subsets (an image that is one point of a limit cycle). (d) PL reconstruction using 2 iterations of OS-SPS and 18 iterations of

TRIOT-PC with 64 subsets.
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Fig. 6. Comparison of mean root-convergence factors of incremental optimization transfer algorithms (TRIOT-MC) with different
numbersM of subobjective functions for a one-parameter transmission problem. Nonincremental ordinary SPS corresponds to
the caseM = 1.



