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Abstract

No convergent ordered subsets (OS) type image reconstruction algorithms for transmission tomog-

raphy have been proposed to date. In contrast, in emission tomography, there are two known families of

convergent OS algorithms: methods that use relaxation parameters (Ahn and Fessler, 2004), and methods

based on the incremental expectation maximization (EM) approach (Hsiaoet al., 2002). This paper

generalizes the incremental EM approach by introducing a general framework that we call “incremental

optimization transfer.” Like incremental EM methods, the proposed algorithms accelerate convergence

speeds and ensure global convergence (to a stationary point) under mild regularity conditions without

requiring inconvenient relaxation parameters. The general optimization transfer framework enables the

use of a very broad family of non-EM surrogate functions. In particular, this paper provides the first

convergent OS-type algorithm for transmission tomography. The general approach is applicable to both

monoenergetic and polyenergetic transmission scans as well as to other image reconstruction problems.

We propose a particular incremental optimization transfer method for (nonconcave) penalized-likelihood

(PL) transmission image reconstruction by using separable paraboloidal surrogates (SPS). Results show

that the new “transmission incremental optimization transfer (TRIOT)” algorithm is faster than nonin-

cremental ordinary SPS and even OS-SPS yet is convergent.
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I. I NTRODUCTION

Ordered subsets (OS) algorithms, also known as block iterative or incremental gradient methods, have

been very popular in the medical imaging community for tomographic image reconstruction due to

their fast convergence rates [1]–[10]. The incremental gradient type algorithms are also found in convex

programming [11]–[14]. The ordered subsets (or incremental) idea is to perform the update iteration

incrementally by sequentially (or sometimes randomly [12], [13]) using a subset of the data. Row-action

methods [15] including algebraic reconstruction techniques (ART) [16], [17] can also be viewed as OS

type algorithms in which each subset corresponds to a single measurement.

The OS algorithms apply successfully to problems where an objective function of interest is a sum of

a large number of component functions. Because of the assumed statistical independence of tomographic

data, such sums arise in statistical tomographic reconstruction problems including penalized-likelihood

(PL) [equivalently, maximuma posteriori (MAP)] or maximum likelihood (ML) reconstruction. Typically,

the OS methods decompose the sum of component functions into several subobjective functions, each

corresponding to a subset of the projection views, and then update the image estimate by using, in a

specified cyclic order, the gradient of a subobjective function as an approximate gradient of the objective

function.

If the subset gradients are suitably balanced, then the gradient approximation can be quite reasonable

when the iterates are far from a maximizer. Thus OS methods initially accelerate convergence in the

sense that less computation is required to achieve nearly the same level of objective increase as with

non-OS methods. However, ordinary (unrelaxed) OS algorithms such as OS-EM [1], RBI-EM [3], and

OS-SPS (or OSTR in a context of transmission tomography) [6] generally do not converge to an optimal

solution but rather approach a suboptimal limit cycle that consists of as many points as there are subsets.

In fact, due to their subset-dependent scaling (or preconditioning) matrices [8], OS-EM and RBI-EM in

their original forms [1], [3] usually do not converge to the optimal point even if relaxed.

Convergence to an optimal solution is important for any algorithm for optimization problems, particu-

larly in medical applications where reliability and stability are essential. For PL (or MAP) reconstruction,

the convergence issue is perhaps more critical than for ML for which one often does not run algorithms to

convergence. For example, the image shown in Fig. 5(c), which corresponds to one point of a limit cycle

generated by an OS algorithm, looks noticeably different from the PL solution image shown in Fig. 5(b)

(see Section IV for details). It is desirable to achieve both fast initial convergence rates (typical of OS

algorithms) and global convergence. There have been three known families of convergent incremental
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(or OS type) algorithms: methods that use relaxation parameters, methods based on the incremental EM

approach, and incremental aggregated gradient (IAG) methods.

Relaxation parameters are used widely to render OS algorithms convergent [2], [4], [5], [7]–[9], [11]–

[13], [18]–[20]. Suitably relaxed algorithms can be shown to converge to an optimal solution under

certain regularity conditions1 [8]. However, since relaxation parameters should be scheduled to converge

to zero for global convergence, relaxed OS algorithms have slow asymptotic convergence rates. Also,

inappropriately chosen (e.g., too rapidly decreasing) relaxation parameters could make initial convergence

rates even worse than those of non-OS algorithms. On the other hand, overly large relaxation parameters

can lead to unstable or divergent behavior. Finding good relaxation parameters (in terms of convergence

rates) may require some experimentation and trial-and-error; as a rule of thumb, for properly scaled OS

algorithms such as modified BSREM and relaxed OS-SPS, one should initialize the relaxation parameter

near unity and decrease it gradually as convergence to a limit cycle nears [8]. One may optimize a

few initial relaxation parameters by training when a training set is available for a particular task [2],

[17]. Or one could use the dynamic stepsize rule in [12], [13], but that method needs to compute

the objective value at every update, which is computationally expensive in tomographic reconstruction

problems. Alternatively, to achieve convergence, one could decrease the number of subsets as iterations

proceed or could use hybrid methods that combine OS and non-OS algorithms [22]. However, the schedule

for decreasing the number of subsets or the parameters for the hybrid algorithms are as inconvenient to

determine as relaxation parameters for relaxed OS algorithms.

Incremental EM algorithms do not require user-specified relaxation parameters [23]. They are conver-

gent yet faster than ordinary EM algorithms although slower initially than nonconvergent OS-EM type

algorithms [24]–[26]. Such incremental EM algorithms have been applied to emission tomography [10],

[24], [26], [27].

Recently, Blattet al. proposed a convergent incremental gradient method, called incremental aggregated

gradient (IAG), that does not require relaxation parameters [28]. The IAG method computes a single subset

gradient for each update but aggregates it with the stored subset gradients that were computed in previous

iterations. The use of the aggregated gradient to approximate the full gradient of the objective function

leads to convergence. Similarly, as discussed below, the use of the sum of surrogate functions (rather

than a single surrogate function) to approximate a minorizing function yields convergent algorithms.

1One of these conditions being the (strict) concavity of the objective function excludes the nonconcave transmission problem

[21].
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In this paper we generalize the incremental EM algorithms by introducing an approach called “in-

cremental optimization transfer”; this is akin to the generalization of the EM algorithms [29] by the

optimization transfer principles [30]. In fact, the broad family of “incremental optimization transfer

algorithms” includes the ordinary optimization transfer algorithms (e.g., EM), also referred to as MM

(minorize-maximize or majorize-minimize) algorithms in [31], as a special case where the objective

function consists of only one subobjective function.

In the incremental optimization transfer approach, foreach subobjective function, we define an aug-

mented vector that has the same size as the parameter vector to be estimated. The augmented vector plays

a role as an expansion point at which a minorizing surrogate function is defined for the subobjective

function (see Section II for details). The sum of the surrogate functions defines an augmented objective

that is a function of the parameter vector and the augmented vectors. With surrogate functions satisfying

usual minorization conditions [21], [30], a solution to the problem of maximizing the original objective can

be found by maximizing the augmented objective instead. Applying a block coordinate ascent approach to

the augmented problem leads to a new class of “incremental optimization transfer algorithms.” By using

the block coordinate ascent approach, incremental optimization transfer algorithms are monotonic in the

augmented objective though not necessarily in the original objective; nevertheless, global convergence

is ensured under mild regularity conditions. Incremental optimization transfer algorithms show faster

convergence rates than their nonincremental counterparts like EM [23], [24], [26].

Incremental optimization transfer is a general framework in which one can develop many different

algorithms by using a very broad family of application-dependent surrogate functions. These methods are

particularly useful for large-scale problems where the objective function is expressed as a sum of several

subobjective functions. In this paper, we focus on PL image reconstruction for transmission tomography,

which is a challenging nonconcave maximization problem. We propose a particular incremental optimiza-

tion transfer algorithm that uses separable paraboloidal surrogates (SPS) [6]. Such quadratic surrogates

simplify the maximization. In contrast, the standard EM surrogates for transmission tomography do not

have a closed-form maximizer in the “M-step” [32].

The proposed “transmission incremental optimization transfer (TRIOT)” algorithm is convergent yet

converges faster than ordinary SPS [6]; it can be further accelerated by the enhancement method in [33]

or by initializing through a few iterations of OS-SPS (see Section III for details). It is parallelizable, and

the nonnegativity constraint is naturally enforced. In addition, it is easily implemented for system models

that use factored system matrices [34], [35] whereas pixel-grouped coordinate ascent based methods

require column access of the system matrix [36]–[39].
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Section II describes the incremental optimization transfer algorithms in a general framework and

discusses their convergence properties. Section III develops incremental optimization transfer algorithms

for transmission tomography, and addresses acceleration methods. Section IV provides simulation and

real PET data results, and Section V gives conclusions.

II. I NCREMENTAL OPTIMIZATION TRANSFER

A. Incremental Optimization Transfer Algorithms

Most objective functions of interest in image reconstruction can be expressed as a sum of subobjective

functions:2

Φ(x) =
M∑

m=1

Φm(x), (1)

whereΦm : X ⊂ R
p → R is a continuously differentiable function whose domainX is a nonempty,

convex and closed set. We consider the following optimization problem:

maximizeΦ(x) subject tox ∈ X . (2)

Since usually there exists no closed-form solution to the above problem, one must apply iterative

algorithms. Assume that for each subobjective functionΦm, we find a surrogate functionφm : X 2 ⊂
R

p × R
p → R that is easier to maximize thanΦm and that satisfies the following usual minorization

conditions [21], [41]:

φm(x;x) = Φm(x), ∀x ∈ X
φm(x; x̄) ≤ Φm(x), ∀x, x̄ ∈ X ,

(3)

whereX n denotes then-ary Cartesian product over the setX . It follows from the above conditions that

Φm(x)− Φm(x̄) ≥ φm(x; x̄)− φm(x̄; x̄), ∀x, x̄ ∈ X .

In other words, choosingx such thatφm(x; x̄) ≥ φm(x̄; x̄) ensures thatΦm(x) ≥ Φm(x̄). Define the

following “divergence” function:

Dm(x ‖ x̄)
�
= Φm(x)− φm(x; x̄).

2Such functions are said to beadditive-separable in [11]; and to bepartially separable [40] when eachΦm(x) is a function

of fewer components ofx ∈ R
p thanp.
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Then by (3), we have the following properties:3

Dm(x ‖ x̄) ≥ 0 andDm(x ‖x) = 0. (4)

Now we define the following “augmented” objective function:

F (x; x̄1, . . . , x̄M ) = Φ(x)−
M∑

m=1

Dm(x ‖ x̄m) (5)

=
M∑

m=1

φm(x; x̄m). (6)

Since

min
(x̄1,...,x̄M )∈XM

M∑
m=1

Dm(x ‖ x̄m) = 0, ∀x ∈ X ,

that is,

max
(x̄1,...,x̄M )∈XM

F (x; x̄1, . . . , x̄M ) = Φ(x), ∀x ∈ X ,

one can rewrite the optimization problem (2) equivalently as follows:

maximizeF (x; x̄1, . . . , x̄M )

subject to(x; x̄1, . . . , x̄M ) ∈ XM+1,
(7)

in a sense thatx∗ ∈ X is an optimal solution of (2) if and only if(x∗; x̄∗
1, . . . , x̄

∗
M ) ∈ XM+1 is an

optimal solution of (7) for some(x̄∗
1, . . . , x̄

∗
M ) ∈ XM . Therefore we can find a solution to problem (2)

by maximizingF with respect to(x; x̄1, . . . , x̄M ).

By alternating between updatingx and one of thēxm’s, we obtain an “incremental optimization transfer

algorithm” outlined in Table I, where we assume that there exists one or possibly more maximizers in

(T-1), and “argmax” denotes one of those maximizers.

The incremental optimization transfer algorithm shown in Table I can be viewed as a block coordinate

ascent algorithm for maximizingF with respect to(x; x̄1, . . . , x̄M ) [42, p. 270]. It monotonically

increases the augmented objective functionF , but not necessarily the original objective functionΦ [43].

If one has only one subobjective function in (1), that is,M = 1, then the incremental optimization transfer

algorithm reduces to an ordinary optimization transfer algorithm [30]. The incremental approach (M > 1)

usually leads to faster convergence rates than nonincremental methods (M = 1) [23]. The incremental

3When there exists̆x �= x̄ such thatDm(x̆ ‖ x̄) = 0, using a modified surrogateφnew
m (x; x̄) = φm(x; x̄) − ε ‖x − x̄‖2 for

any fixedε > 0 would lead to the following property:Dnew
m (x ‖ x̄) ≥ 0 where equality holdsif and only if x = x̄. Although

this modification might provide a more natural definition of divergence, it is not needed for our convergence proofs. So we

allow the less restrictive conditions in (4).
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EM algorithms [23], [27] including COSEM [24], [26] are a special case where the surrogatesφm are

constructed by EM principles as described in the next subsection.

If one were to maximize just one of theφm’s instead of the sum shown in (6), then one would have

ordinary OS type algorithms. Although this greedy approach usually yields faster initial convergence

rates than incremental optimization transfer algorithms, the OS type algorithms are not monotonic inF

nor in Φ.

For incremental optimization transfer algorithms one must storeM vectors{x̄m}M
m=1, so one needs

more memory compared to ordinary OS algorithms; however, this is not a practical limitation unlessM

is overly large.

B. Special Case: Incremental EM Algorithms

This section shows that the incremental EM algorithms are a special case of the incremental optimiza-

tion transfer framework given in the preceding subsection.

For maximum likelihood (ML) estimation, one must maximize a log-likelihood function

Φ(x) = log f(y;x)

with respect to parameterx ∈ R
p over a feasible setX ⊂ R

p wherey ∈ R
N denotes a realization of an

observable random vectorY with probability distributionf(y;xtrue), andxtrue ∈ R
p is the true value

of the unknown parameter. Assume that we identify an admissible complete-data4 random vectorZ for

f(y;x). Then the following EM surrogate function satisfies the minorization conditions in (3) [29]:

φ(x; x̄)
�
= E[log f(Z;x)|Y = y; x̄] (8)

for all x̄ ∈ X . But in many applications including imaging problems, the observed data is independent

so the log-likelihood objective is additive-separable, that is,

Φ(x) =
M∑

m=1

Φm(x), Φm(x) = log f(ym;x),

and the complete data is conditionally independent, so for eachΦm(x), one can obtain the following

EM surrogate:

φm(x; x̄) = E[log f(Zm;x)|Ym = ym; x̄] , (9)

4A random vectorZ with probability distributionf(z; x) is called an admissible complete-data vector forf(y; x) if

f(y, z; x) = f(y|z)f(z; x) [37], [38]. A special case is thatY is a deterministic function ofZ .
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which also satisfies the minorization conditions in (3) whereY = (Y1, . . . ,YM ) andZ = (Z1, . . . ,ZM )

are some decompositions of the incomplete data and the complete data, respectively. Defining the

augmented objective function as in (6) and then alternating between updatingx and one of thēxm’s as

in Table I leads to the incremental EM algorithms [23], [27]. The COSEM algorithm [24], [26], a special

case of the incremental EM for emission tomography, can be readily derived.

In some applications, using surrogates other than (8) or (9) can lead to more convenient implementation

(e.g., see Section III-B).

C. Convergence Properties

Since incremental optimization transfer algorithms monotonically increase the augmented objectiveF ,

the sequence of augmented objective values converges to some value in the usual case whereF has an

upper bound. However, the question of whether the algorithms really converge to a maximizer of (2) is

addressed next.

Define asolution set as the collection of stationary points of (2):

Γ
�
= {x∗ ∈ X : ∇Φ(x∗)′(x − x∗) ≤ 0, ∀x ∈ X}, (10)

where ′ denotes matrix or vector transpose, and we assumeΓ �= ∅. Each element of the solution setΓ

satisfies the first-order necessary condition for a local maximizer ofΦ over X [42, p. 194]. We want

algorithms to converge to some point inΓ. If the objective functionΦ is concave, thenΓ is the set

of (possibly multiple) global maximizers ofΦ over X [42, p. 194]. IfΦ is strictly concave, thenΓ is

the singleton of a unique global maximizer [42, p. 685]. On the other hand, for a nonconcave objective

functionΦ (as in Section III), the solution setΓ could contain local maximizers and even local minimizers.

It is difficult to guarantee finding a global maximizer of a nonconcave objective function that may have

multiple local maxima. However, the hope is that, with an initial point reasonably close to a global

maximizer, the iterates generated by a monotonic algorithm will approach the global maximizer (see [39]

for discussion about convergence to a globally optimal point).

In Appendix A, we show that every limit point5 of the sequence generated by an incremental opti-

mization transfer algorithm is an element of the solution setΓ of stationary points regardless of initial

5Recall the distinction between a limit and a limit point. A pointx̆ is calleda limit of a sequence{xn} if ∀ε > 0, ∃N such

that∀n > N , ‖x̆ −xn‖ < ε. On the other hand, a point̄x is calleda limit point of a sequence{xn} if ∀ε > 0, ∀N , ∃n > N

such that‖x̄ − xn‖ < ε, in other words, if there exists a subsequence{xnk} whose limit isx̄.
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points6 when the following general sufficient conditions hold: (i) eachΦm andφm(·; ·) is continuously

differentiable, (ii) the iterates are bounded (e.g., X is a bounded set), (iii) the surrogatesφm satisfy the

minorization conditions in (3), (iv) the gradients ofΦm and φm(·; x̄) match atx̄ (see Condition 2 in

Appendix A), and (v) the maximizer in (T-1) is defined uniquely (e.g., φm(·; x̄m) is strictly concave).

Consequently, if the objective functionΦ is strictly concave, then the algorithm converges to the global

maximizer. For a nonconcave objective functionΦ, if the points inΓ are isolated, the algorithm will still

converge to some stationary point inΓ that we hope is a global maximizer or at least a local maximizer

(see Appendix A). It is an open question whether optimization transfer algorithms converge to nonisolated

stationary points (see [39] for a discussion of this issue).

Appendix B analyzes the asymptotic local convergence rate of the incremental optimization transfer

algorithms, and provides an illustrative one-parameter example for a comparison of the convergence rates

of incremental and nonincremental algorithms.

III. A PPLICATION TO TRANSMISSIONTOMOGRAPHY

In this section we develop a particular incremental optimization transfer algorithm for transmission

tomographic reconstruction. We use quadratic surrogates [6], [21] rather than EM surrogates in (9) because

the standard complete-data proposed in [32] for transmission tomography does not yield a closed-form

M-step [46]. Using quadratic surrogates is not limited to the transmission case [47]–[49]; the incremental

optimization transfer algorithms using quadratic surrogates developed in this section are easily extended

to other applications including emission tomography.

A. Problem

We assume the following Poisson statistical model for (monoenergetic) transmission measurements:

yi ∼ Poisson
{
bie

−[Ax]i + ri

}
, i = 1, . . . , N (11)

whereyi denotes the transmission measurement of theith detector,bi denotes the blank scan counts of

the ith detector,ri denotes the mean number of background counts, and[Ax]i =
∑p

j=1 aijxj represents

the ith line integral of the attenuation map in whichxj is the unknown attenuation coefficient in thejth

pixel, A = {aij} is the system matrix, andN andp are the number of detectors and pixels, respectively.

6Some authors defineglobal convergence as the property that limit points of the sequence generated by an algorithm are

stationary points of the problem [44, p. 228] or that limits are stationary points [45, p. 312], irrespective of starting points. We

adopt the former convention here.
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We assume that{bi}, {aij}, and{ri} are known nonnegative constants. We focus on penalized-likelihood

(PL), also known as maximuma posteriori (MAP), estimation for the attenuation map reconstruction.

Our goal is to compute a PL estimatêxPL which is defined by

x̂PL = argmax
x∈X

Φ(x), Φ(x) = L(x)− βR(x) (12)

where the objective functionΦ, which can be nonconcave whenri �= 0 [21], includes the log-likelihood

L(x) =
N∑

i=1

hi([Ax]i)

hi(l) = yi log(bie−l + ri)− (bie−l + ri)

and a roughness penalty

R(x) =
1
2

p∑
j=1

∑
k∈Nj

wjkψ(xj − xk). (13)

The box constraint set is defined by

X = {x ∈ R
p : 0 ≤ xj ≤ U, ∀j}. (14)

In the box constraint set in (14), the nonnegativity restriction is imposed on physical grounds, and the

upper boundU > 0 is set by the user to be a value that is larger than the maximum attenuation coefficient

conceivable for the object being scanned. The reason for using the box constraint rather than the usual

nonnegativity constraint is that the convergence proofs in Appendix A need the iterates to be bounded.

However, imposing upper bounds is not overly restrictive in a sense that one can choose a physically

meaningful upper bound for attenuation coefficients, and the image estimatex̂ is unlikely to be affected

by U if one chooses an arbitrarily largeU . In practice, if the upper bound happens to be hit by some

iterate, then the user could re-run the algorithm with a larger bound.

In the penalty function (13), the functionψ is a symmetric and convex potential function,Nj repre-

sents a neighborhood of thejth pixel, β is a regularization parameter that controls the smoothness in

reconstructed images, andwjk are weights (ordinarily,wjk = 1 for horizontal and vertical neighboring

pixels, andwjk = 1/
√
2 for diagonal neighboring pixels). We assume the potential functionψ satisfies

some conditions given in [21], [50, p. 184]. We used the following edge-preserving nonquadratic potential

function in our PL reconstruction results [51]:

ψ(t) = δ2[|t/δ| − log(1 + |t/δ|)] (15)

for someδ > 0. We assume that appropriateβ andδ are prespecified.
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B. Transmission Incremental Optimization Transfer (TRIOT)

We decompose the objective functionΦ into the following subobjective functions:

Φm(x) =
∑
i∈Sm

hi([Ax]i)− β

M
R(x), m = 1, · · · ,M,

where{Sm}M
m=1 is a partition of{1, . . . , N}. We use the usual subsets corresponding to downsampled

projection angles [1]. Consider the followingseparable quadratic surrogateφm for the subobjective

functionΦm:

φm(x; x̄) = Φm(x̄) +∇Φm(x̄)′(x − x̄)− 1
2
(x − x̄)′C̆m(x̄)(x − x̄) (16)

with

C̆m(x) = diagj{c̆mj(x)} (17)

where c̆mj(·) > 0 and diag{·} denotes a diagonal matrix appropriately formed. The surrogatesφm in

(16) satisfy Conditions 2 and 3 in Appendix A.

To makeφm additionally satisfy the minorization conditions in (3), one has at least two choices forc̆mj :

“optimum curvature” (OC) and “maximum curvature” (MC). Those curvaturesc̆mj have the following

form:

c̆mj(x) = max



∑
i∈Sm

aijaici([Ax]i) +
2β
M

∑
k∈Nj

wjkωψ(xj − xk), ε


 (18)

for some small valueε > 0 whereai
�
=
∑p

j=1 aij andωψ(t)
�
= ψ̇(t)/t. The functionalsci(·) are defined

as follows. For OC, we define

cOC
i (l)

�
=




[
−2

hi(0)− hi(l) + ḣi(l) · l
l2

]
+

, l > 0

[
−ḧi(0)

]
+
, l = 0,

(19)

and for MC,

cMC
i (l)

�
=
[
−ḧi(0)

]
+
, (20)

where [x]+ = max{x, 0}. Detailed derivations of (18)–(20) can be found in [21]. On the right side in

(18), the first term corresponds to the curvature of the surrogate for the log-likelihood part, and the second

term for the penalty part. The optimum curvaturecOC
i in (19) is the lowest curvature that a 1D quadratic

surrogate function for a marginal log-likelihoodhi(l) can have in projection domain (l) while satisfying

the minorization conditions. A low curvature of a surrogate implies a wide paraboloid and, consequently, a

large stepsize, that is, fast convergence [21]. However, one needs an “extra” backprojection for computing
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the first term in (18). On the other hand, the maximum curvaturecMC
i is a constant independent ofx, and

thus the first term in (18) can be precomputed and stored. ButcMC is larger thancOC and consequently

leads to smaller stepsizes. We leave the second term in (18) as a function ofx even for MC since its

computation is usually cheap compared to projection and backprojection operations unlessM is too large.

The augmented objective functionF defined in (6) with (16) is readily maximized with respect tox

over the box constraintX as follows:

x̂ = PX


[ M∑

m=1

C̆m(x̄m)

]−1 M∑
m=1

[
C̆m(x̄m)x̄m +∇Φm(x̄m)

] (21)

wherePX (x) is the orthogonal projection ofx ∈ R
p ontoX and is easily computed componentwise as

follows: [PX (x)]j = median{0, xj , U} for all j. Using (21) in the step (T-1) leads to a new “transmission

incremental optimization transfer (TRIOT)” algorithm, which is outlined in Table II. WhenM = 1, then

TRIOT reduces to ordinary SPS [6]. The TRIOT update begins afternOS
iter (≥ 1) iteration(s) of OS-SPS

[6] (see the next subsection for OS-SPS in detail). The strategy to switch from OS-SPS to TRIOT is

discussed in Section III-D. Running initially (at least) one iteration of OS-SPS is more effective than

initializing all x̄m’s to be the same image (e.g., a FBP or uniform image) because both cases require

nearly the same computation (note one needs to compute partial gradients∇Φm(x̄m) and curvatures

for all m to perform the TRIOT update) yet one can take advantage of fast initial convergence rates of

OS-SPS.

In Table II, a TRIOT using MC in (20), we call TRIOT-MC7, is shown; however, OC in (19) can

be easily included. The two steps (T-1) and (T-2) in Table I are combined in Table II. In (T-5), one

can avoid the sum
∑M

l=1 at every subiteration by maintaining that sum as a state vector that is updated

incrementally as in [24], [26], [33]. And one could slightly modify the algorithm to perform (T-5) more

than one time at every subiteration so that one additionally updates the surrogate for the penalty part

with fixing the surrogate for the likelihood part as in [21]. One iteration, indexed byn, of TRIOT-MC

requires one projection and one backprojection operation while TRIOT-OC needs an extra backprojection

[see (18) and (19)].

The discussion and proofs for global convergence given in Section II-C and Appendix A apply to

TRIOT. Whenri = 0 for all i, under mild conditions,8 since the PL objective for transmission tomography

is strictly concave, the algorithm converges to the optimal solution [52]. In the caseri �= 0, the objective

7The second part denotes a specific curvature used (e.g., SPS-OC).

8The potential functionψ is strictly convex, andA′y �= 0.
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function is not necessarily concave [21], and we have a weaker conclusion that every limit point of a

sequence generated by TRIOT is a stationary point. However, in our practical experience, we obtained

the same limit in all experiments with different initializations, suggesting that suboptimal local maxima

are rare, or are far from reasonable starting images.

C. OS-SPS

Since we use OS-SPS in initializing and accelerating TRIOT, we briefly review OS-SPS [6] for

completeness. For each subiteration, indexed bym, maximizing themth subobjectiveφm(·; x̄m) in (16)

instead of the augmented objectiveF (·; x̄1, . . . , x̄M ) in (6) leads to the following OS-SPS update:

x̄new
(m mod M)+1 = PX

(
x̄m +

[
C̆m(x̄m)

]−1 ∇Φm(x̄m)
)

(22)

for m = 1, . . . ,M whereC̆m(·) is based on (18). This greedy approach does not ensure monotonicity,

in neither the augmented objective nor the PL objective, so we need not insist that the curvatures satisfy

the minorization conditions. A natural choice forci(·) is the Newton’s curvature−ḧi(·); this can be

approximated as follows:

−ḧi(l) ≈ cPC
i

�
= −ḧi

(
argmax

l̃≥0
hi(l̃)

)

=




(yi − ri)2

yi
, yi > ri

0, otherwise.
(23)

This choice is called “precomputed curvature (PC)” [6], [21]. For OS-SPS, the following subset-independent

preconditioning matrix using PC is usually used in place ofC̆m(x̄m) in (22):

C̆PC(x) = diagj

{
c̆PC
j (x)

}
c̆PC
j (x) = max


 1
M

N∑
i=1

aijaic
PC
i +

2β
M

∑
k∈Nj

wjkωψ(xj − xk), ε


 (24)

wherecPC
i is given in (23). The first term on the right side in (24) can be precomputed and stored like

the maximum curvatures (MC). The benefit of using PC is that it leads to faster convergence rates than

MC sincecMC
i ≥ cPC

i . The update for OS-SPS is shown in (T-4) in Table II.

The OS-SPS shows very fast initial convergence rates but becomes eventually stuck at a limit cycle.

Using more subsets leads to a faster initial convergence rate but causes the points in the limit cycle to

be farther from the optimal solution.

It is worth noting that, for each update, OS-SPS uses the gradient and curvature for only one subobjec-

tive function at the previous subiterate in (22) whereas TRIOT uses the gradients and curvatures for all
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subobjective functions at previousM subiterates respectively in (21). When the number of subobjective

functions isM = 1, then both OS-SPS and TRIOT reduce to SPS.

D. Acceleration

TRIOT-OC/MC is convergent yet faster than nonincremental ordinary SPS [6], but it is still slower

initially than OS-SPS which is not convergent unless relaxed. Here we discuss methods to accelerate

TRIOT.

1) Switch from OS-SPS to TRIOT: It is a popular idea to switch from a nonconvergent yet initially

fast OS type algorithm to a convergent non-OS algorithm at some point to take advantage of both fast

initial convergence rates of OS methods and global convergence of non-OS methods.

We observed that it is very effective to switch to TRIOT from OS-SPS at the point where the OS-SPS

algorithm nearly gets to a limit cycle; even one single subiteration of TRIOT moves the iterate from the

limit cycle very close to the optimal solution. The reason is as follows: a group of the points in the limit

cycle would be roughly centered around the optimal point and the update for TRIOT includes a weighted

average of the points [see the first term on the right side in (21) or (T-5)].

To obtain further insight into this property, consider a simple unconstrained quadratic problem where

the objective function and the subobjective functions are

Φ(x) = −1
2
x′Qx + b′x, Φm(x) = −1

2
x′Qmx + b′mx

for m = 1, · · · ,M where
∑M

m=1 Qm = Q and
∑M

m=1 bm = b. Assume that each surrogate function

φm(x; x̄) is equal to its corresponding subobjectiveΦm(x) so it has a closed-form maximizer̂xm =

Q−1
m bm where we assume eachQm is invertible. Then the OS approach will generate a limit cycle that

consists of thosêx1, . . . , x̂M . Now applying just one iteration of the incremental optimization transfer

method as in (21) leads to

x̂ =

(
M∑

m=1

Qm

)−1 M∑
m=1

Qmx̂m = Q−1
M∑

m=1

Qm(Q−1
m bm)

= Q−1b,

which is the maximizer of the original objectiveΦ [the second term on the right side in (21) equals

zero]. This example suggests that the built-in averaging operation in TRIOT helps iterates escape from

a limit cycle, generated by nonconvergent OS algorithms, towards the optimal solution.

However, in the early iterations, when OS-SPS is still far from the limit cycle and is making progress

towards the optimal point, TRIOT is usually slower than OS-SPS due to the averaging of the past
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subiterates because the incremental optimization transfer approach updates the surrogates incrementally,

that is, conservatively to ensure monotonicity. So it is desirable to get to a limit cycle quickly using

OS-SPS withmany subsets and then switch to TRIOT. In a 2D reconstruction case in Section IV, the

use of64 subsets is sufficient to reach a limit cycle within a couple of iterations.

2) Precomputed Curvatures: Forgoing monotonicity (in the augmented objective) and accordingly

provable convergence, one can use for TRIOT the “precomputed curvatures (PC)” in (23). TRIOT-PC

is faster than provably convergent TRIOT-OC/MC. It is an open question whether TRIOT-PC converges

to an optimal solution. However, in our experiments, TRIOT-PC yielded the same limit as convergent

algorithms like SPS-OC within numerical precision!

3) Enhanced Incremental Optimization Transfer Algorithms: Hsiao et al. proposed E-COSEM, an

accelerated version of COSEM [33]. The idea is to choose for each update a convex combination of an

initially fast yet nonconvergent OS algorithm and a convergent incremental optimization transfer algorithm

such that the combination both ensures monotonicity in the augmented objective and is as close to the

OS algorithm as possible. This approach often accelerates incremental optimization transfer algorithms

without destroying the monotonicity in the augmented objective.

IV. RESULTS

To assess the performance of the proposed algorithms, we performed 2D attenuation map reconstruc-

tions from real PET data.

We acquired PET data using a Siemens/CTI ECAT EXACT 921 PET scanner with rotating rod

transmission sources [53]. We used an anthropomorphic thorax phantom (Data Spectrum, Chapel Hill,

NC). The sinogram had 160 radial bins and 192 angles, and the reconstructed images were128 × 128

with 4.2 mm pixels. The system geometry was approximated with 3.375 mm wide strip integrals and

3.375 mm ray spacing; the system matrix was generated using ASPIRE [54]. The total counts amounted

to 9.2 × 105. We used the edge-preserving nonquadratic penalty (15) withδ = 4 × 10−4 mm−1 and

β = 218.5, chosen by visual inspection. A uniform image was used as a starting image. The results

obtained by using a FBP reconstruction as a starting image were similar and are not shown here.

Images were reconstructed using SPS-MC/PC, OS-SPS, and TRIOT-MC/PC. For OS-SPS and TRIOT

algorithms, we used 16 subsets (a moderate number) and 64 subsets (a little larger number than usual). For

SPS and TRIOT, the performance (objective value or distance from the optimal image) with the optimum

curvature (OC) in (19), that requires an extra backprojection per iteration, was between those with MC
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and PC; and the results with OC are not shown here. And, for TRIOT algorithms, the enhancement

method described in Section III-D yielded only minor improvements in this study (not shown here).

Fig. 1 shows normalizedΦ difference versus iteration number for different algorithms using 16 subsets.

The normalizedΦ difference is defined as(Φ(x̂PL) − Φ(x̂n))/(Φ(x̂PL) − Φ(x̂0)) where x̂PL is a

maximizer of the PL objective; a small value means the image is closer to the optimal imagex̂PL.

The optimal imagêxPL [shown in Fig. 5(b)] was estimated by 30 iterations of OS-SPS with 16 subsets

followed by 800 iterations of the SPS-OC algorithm that is monotonic and convergent (to a stationary

point). As described in Section III-B, TRIOT algorithms were initialized by running one iteration of

OS-SPS. So were the SPS algorithms for a fair comparison. Although OS-SPS showed a fast initial

convergence rate, it became stuck at a suboptimal point whereas other methods continued to improve in

terms of objective values. The TRIOT algorithms were outperformed by other algorithms in early iterations

since the built-in averaging in TRIOT slows down convergence, as discussed in Section III-D, when a

limit cycle has not reached yet. However, TRIOT-MC and TRIOT-PC eventually outrun SPS-MC and

SPS-PC, respectively. Although global convergence is not provably ensured for TRIOT-PC, the limit of

TRIOT-PC (say, obtained by 1000 iterations) was the same as that of SPS-OC (obtained similarly) within

numerical precision (not shown here), which suggests TRIOT-PC has desirable convergence properties.

To investigate the performance of TRIOT algorithms after OS-SPS reaches a limit cycle, we performed

6 iterations of OS-SPS, which is sufficient to get close to a limit cycle, and then applied TRIOT (and

SPS as well). Fig. 2 shows that TRIOT yielded considerable improvement at iteration 6 where TRIOT

was first applied. TRIOT-MC and TRIOT-PC converge faster than SPS-MC and SPS-PC, respectively,

which are similarly initialized by 6 iterations of OS-SPS. This shows that it is effective to switch from

OS-SPS to TRIOT, as described in Section III-D, when OS-SPS almost reaches a limit cycle. However,

it is inconvenient to predict how many iterations are required for OS-SPS to arrive at a limit cycle.

Fig. 3 shows normalizedΦ difference versus iteration number when 64 subsets are used. As the number

of subsets increased to 64, the initial convergence rate of OS-SPS became faster (even a couple of iterations

led to a limit cycle) but OS-SPS stagnated at a worse image. Meanwhile, the TRIOT algorithms were

quite effective even though they used only a couple of iterations of OS-SPS as initialization, and they

outperformed the SPS algorithms initialized similarly. In light of the effectiveness of the built-in averaging

in TRIOT, to make SPS a stronger competitor, prior to switching to SPS (at iteration 2), we averaged the

64 previous subiterates that approximately comprise the limit cycle. As shown in Fig. 3, this averaging

yielded significant improvements for SPS algorithms. However, convergence rates of TRIOT were still

faster than those of SPS with such averaging. Fig. 4 shows a similar trend when the results are viewed in
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terms of the normalized distance from the optimal image,‖x̂n − x̂PL‖/‖x̂PL‖, versus iteration number.

Fig. 5(c) shows the image to which OS-SPS with 64 subsets converged. It represents one point of the

limit cycle generated by the OS-SPS, and looks visually different from the true PL optimal image in

Fig. 5(b). In contrast, the TRIOT-PC initialized by 2 iterations of OS-SPS yielded, with 18 iterations,

the image in Fig. 5(d) which is nearly indistinguishable from the optimal image in Fig. 5(b).

V. CONCLUSION

We presented a broad family of incremental optimization transfer algorithms by generalizing the

incremental EM family. The incremental optimization transfer algorithms usually show faster convergence

rates than ordinary optimization transfer methods like EM, but they are globally convergent.

We also developed a particular incremental optimization transfer algorithm for transmission tomography

by using separable quadratic surrogates: TRIOT algorithms. We found that it is very effective to switch

from OS-SPS to TRIOT when OS-SPS nearly reaches a limit cycle. When reasonably many subsets are

used, as few as one or two iteration(s) of OS-SPS can be sufficient to get close to a limit cycle (although

it would depend on the degree of regularization and the size of the problem). This switching strategy

is more convenient than relaxed OS algorithms that require determining relaxation parameters. Also,

TRIOT is preferable to reducing the number of subsets with iteration since the consistent data flow in

OS-SPS and TRIOT could be beneficial and it would be inconvenient to determine an optimal schedule

for reducing the number of subsets. The switching idea is also found in [55].

One iteration of TRIOT-MC/PC or OS-SPS requires computing one projection and one backprojection

plus the penalty related gradients and curvatures (the use of OC needs an extra backprojection); so the

computational cost is almost the same as classic ML-EM except for the contribution of the penalty part.

As the number of subsets increases, computation per iteration also increases due to the penalty part

being updated for each subiteration. Although the computational contribution of the penalty function

is usually small compared to projection/backprojection particularly for a large-scale problem like 3D,

further investigation could help reduce this computation,e.g., by subsetizing the penalty part.

In our 2D reconstruction from real PET data, with 64 subsets, it was very effective to switch from OS-

SPS to TRIOT-PC after 2 iterations of OS-SPS. This switching strategy seems robust since we obtained

similar results (not shown here) from a 2D simulation study using a different digital phantom. Although

the TRIOT-PC was numerically found to be convergent, if one really wants provable convergence, one

could switch to TRIOT-MC or OC at some point.
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APPENDIX A

GLOBAL CONVERGENCEPROOF

In this appendix we prove the convergence of the incremental optimization transfer algorithm given

in Table I. Definez
�
= (x; x̄1, . . . , x̄M ) ∈ XM+1, and define a mappingM : XM+1 → XM+1 such

that M(zn) = zn+1 where zn+1 = (xn+1; x̄n+1
1 , . . . , x̄n+1

M ) is computed by (T-1)–(T-3) forzn =

(xn; x̄n
1 , . . . , x̄

n
M ). Suppose that the algorithm generates a sequence{zn} (or a sequence{xn} by taking

the first component ofzn), given some initial pointz0 ∈ XM+1. Define an augmented solution set as

follows:

Λ
�
= {z = (x;x, . . . ,x) ∈ XM+1 : x ∈ Γ} (25)

whereΓ is defined in (10). We impose the following assumptions.

Assumption 1: EachΦm andφm(·; ·) is continuously differentiable on a nonempty, closed, and convex

setX ⊂ R
p andX 2 ⊂ R

p × R
p, respectively.

Assumption 2: The iterates{zn} are bounded wherezn = (xn; x̄n
1 , . . . , x̄

n
M ).

Assumption 2 is ensured by either of the following sufficient conditions.

Assumption 2′: The feasible setX is bounded.

Assumption 2′′: A level set defined by{z ∈ XM+1 : F (z) ≥ F (z0)} is bounded.

We assume that the surrogatesφm satisfy the following conditions.

Condition 1: The functionalsφm satisfy the minorization conditions in (3).

Condition 2: The following derivatives match for allm andx ∈ X :

∇Φm(x) = ∇10φm(x;x) (26)

where∇10 is the column gradient operator with respect to the first argument9 (see [39] for less restrictive

conditions).

Condition 3: There exists aunique maximizer in (T-1).

The following is sufficient for Condition 3.

Condition 3′: Eachφm(·; x̄m) is strictly concave for allx̄m ∈ X , and there exists a maximizer of

F (·; x̄1, . . . , x̄M ) overX for all x̄1, . . . , x̄M ∈ X .

Using the above assumptions and conditions, we prove a series of lemmas necessary for proving

convergence.

9For x being an interior point ofX , Condition 2 is implied by Condition 1 [56].
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Lemma 1: The iterates{zn} generated by (T-1)–(T-3) yield monotonic increases inF , that is,F (zn+1) ≥
F (zn) for all n.

Proof: It follows from the cyclic block coordinate ascent updates in (T-1) and (T-2).

Lemma 2: Suppose thatz∗ ∈ XM+1 is a fixed point ofM, that is,M(z∗) = z∗. Thenz∗ ∈ Λ where

Λ is defined in (25).

Proof: For the fixed pointz∗ = (x∗; x̄∗
1, . . . , x̄

∗
M ), in view of Condition 3, one can show thatx∗ =

x̄∗
1 = . . . = x̄∗

M . Sincex∗ is a maximizer of
∑M

m=1 φm(·;x∗) overX , it follows that
∑M

m=1 ∇10φm(x∗;x∗)′(x−
x∗) ≤ 0 for all x ∈ X [42, p. 194]. Therefore, by Condition 2,∇Φ(x∗)′(x − x∗) ≤ 0 for all x ∈ X ,

and it follows thatx∗ ∈ Γ.

Lemma 3: If z /∈ Λ, thenF (M(z)) > F (z).

Proof: If z /∈ Λ, then z is not a fixed point ofM by Lemma 2. Combining Condition 3 and

Lemma 1 leads to the conclusion.

Now we prove the following theorem on the convergence of the incremental optimization transfer

algorithm.

Theorem 1: Suppose that{zn} is a sequence generated by (T-1)–(T-3) withz0 ∈ XM+1 and that

Assumptions 1 and 2 and Conditions 1–3 hold. Then any limit point of{zn} is an element ofΛ.

Proof: Following [44, p. 209 and p. 228], one can show that the mappingM is closed, in other

words,M is continuous. The conclusion then follows from the Zangwill’s Convergence Theorem [57,

p. 91] with Assumption 2, Lemmas 1 and 3, and the closedness ofM.

The following corollaries and lemmas also hold when “{xn}” is replaced with “{x̄n
m}” for all m.

Corollary 1: Suppose{xn} is a sequence obtained by taking the first component fromzn in Theo-

rem 1. Then any limit point of{xn} is an element ofΓ.

Proof: Use Theorem 1, Assumption 2, and the definition ofΛ in (25).

Corollary 2: If Φ is concave, then any limit point of{xn} is a global maximizer ofΦ over X .

Moreover, ifΦ is strictly concave, then{xn} converges tothe global maximizer ofΦ overX .

Proof: Use Corollary 1 and [42, Proposition 2.1.2].

WhenΦ is not strictly concave, there is no guarantee that the algorithm converges to a limit. However,

convergence can be established by additionally assuming that the solution setΓ is discrete.

Lemma 4: Suppose{xn} is a sequence from Corollary 1. Then
∥∥xn+1 − xn

∥∥→ 0.

Proof: It follows from [58, Theorem 3.1] that‖zn+1 − zn‖ → 0. Since‖zn+1 − zn‖2 = ‖xn+1 −
xn‖2 +

∑M
m=1 ‖x̄n+1

m − x̄n
m‖2, it must be a case that

∥∥xn+1 − xn
∥∥→ 0.



20

Lemma 5: Suppose{xn} is a sequence from Corollary 1. Additionally, suppose that the setΓ is

discrete. Then{xn} converges to an element inΓ.

Proof: Let S be a set of limit points of{xn}. ThenS ⊂ Γ by Theorem 1. But, by Lemma 4,S is

connected [59, p. 173]. SinceS is both discrete and connected, it is a singleton.

The above lemma implies that if stationary points of (2) are isolated, then the algorithm converges to

one of them.

APPENDIX B

LOCAL CONVERGENCERATE ANALYSIS

A. Asymptotic Convergence Rate

We analyze the asymptotic convergence rate of the incremental optimization transfer algorithm given

in Table I. As in usual local convergence analysis, we assume that a sequence{x̄n
m}∞n=1 generated by

the algorithm converges to an optimal pointx̂ of (2) for all m, and that every iteratēxn
m and the limit

x̂ lie in the interior ofX .

Consider the following first-order Taylor’s expansion of∇10φm(·; x̄n
m) with respect to the first argument

aboutx̄n
m:

∇10φm(x; x̄n
m) ≈ ∇10φm(x̄n

m; x̄n
m) +∇20φm(x̄n

m; x̄n
m)(x − x̄n

m) (27)

where∇20 is the Hessian operator with respect to the first argument. The first term on the right hand

side can be further approximated as

∇10φm(x̄n
m; x̄n

m) = ∇Φm(x̄n
m)

≈ ∇Φm(x̂) +∇2Φm(x̂)(x̄n
m − x̂) (28)

where the equality is due to (26). Because of the assumption ofx̂ and x̄n+1
1 being in the interior ofX ,

and the construction of̄xn+1
1 = argmaxx∈X F (x; x̄n

1 , · · · , x̄n
M ) [see (T-1) and (T-2)], it follows that

M∑
m=1

∇Φm(x̂) = ∇Φ(x̂) = 0

M∑
m=1

∇10φm(x̄n+1
1 ; x̄n

m) = 0.

Now combining (27) and (28) yields the following approximation:

en+1
1 ≈

[
M∑

m=1

∇20φm(x̄n
m; x̄n

m)

]−1 M∑
m=1

[∇20φm(x̄n
m; x̄n

m)−∇2Φm(x̂)
]
en

m
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whereen
m

�
= x̄n

m − x̂ for all m andn. Similarly, one can obtain the following approximation for allm:

en+1
m ≈

[
m−1∑
k=1

∇20φk(x̄n+1
k ; x̄n+1

k ) +
M∑

k=m

∇20φk(x̄n
k ; x̄

n
k)

]−1

·
(

m−1∑
k=1

[∇20φk(x̄n+1
k ; x̄n+1

k )−∇2Φk(x̂)
]
en+1

k +
M∑

k=m

[∇20φk(x̄n
k ; x̄

n
k)−∇2Φk(x̂)

]
en

k

)
. (29)

Assuming that∇20φm(·; ·) is continuous, it will converge to∇20φm(x̂; x̂) as limn→∞ x̄n
m = x̂. For

notational convenience, defineDm
�
= ∇20φm(x̂; x̂), Hm

�
= ∇2Φm(x̂), andTm

�
= (

∑M
k=1 Dk)−1(Dm −

Hm) for all m. Then one can write theasymptotic approximation of (29) in matrix form as follows:

En+1 ≈ (IpM − Γl)−1ΓuEn

whereEn �
= [(en

1 )
′, · · · (en

M )′]′ is a pM × 1 column vector,Ik is a k × k identity matrix, and

Γl =




0 0 · · · 0 0

T1 0 · · · 0 0

T1 T2 · · · 0 0
...

...
...

...

T1 T2 · · · TM−1 0




(30)

Γu =




T1 T2 · · · TM−1 TM

0 T2 · · · TM−1 TM

...
...

...
...

0 0 · · · TM−1 TM

0 0 · · · 0 TM




(31)

with 0 being a p × p zero matrix. Thus, the root-convergence factor [60, p. 288] of the sequence

{[(x̄n
1 )

′, · · · , (x̄n
M )′]′}∞n=1 for the incremental optimization transfer algorithm is given by the spectral

radius

ρM = ρ
(
(IpM − Γl)−1Γu

)
(32)

where ρ(·) denotes spectral radius. One can show that the root-convergence factor of the sequence

{x̄n
m}∞n=1 is also governed by the above spectral radius for allm. For ordinary optimization transfer

algorithms, that is, whenM = 1, the spectral radius (32) reduces to

ρ1 = ρ
(
Ip − [∇20φ(x̂; x̂)]−1∇2Φ(x̂)

)
, (33)

as is well known [30]. To compareρ1 and ρM for M > 1, we provide an illustrative example in the

following subsection.
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B. One-Parameter Example

We consider a simple one-parameter transmission problem. Suppose the measurement model is:

yi ∼ Poisson
{
bie

−ax
}
, i = 1, · · · , N

wherea > 0 andbi > 0, ∀i. Assuming
∑N

i=1 yi > 0, the ML estimate is given by

x̂ =

[
1
a
log

∑N
i=1 bi∑N
i=1 yi

]
+

where[x]+ = max{x, 0}. Assumingx̂ > 0, which is very likely for high SNR data, the root-convergence

factor ρM for an incremental optimization transfer algorithm, TRIOT-MC (see Section III-B for details),

is given by (32) with substituting

Tm =

∑
i∈Sm

bi∑N
i=1 bi

(
1−

∑N
i=1 yi∑N
i=1 bi

)
, m = 1, · · · ,M (34)

in (30) and (31), where{Sm}M
m=1 is a partition of{1, . . . , N}. Fig. 6 shows the mean root-convergence

factorE[ρM ] as a function of the numberM of subsets for an example wherextrue = 0.7, N = 128,

a = 1, and bi was simulated using pseudorandom uniform variates with mean of0.5. The mean was

approximately computed by replacingyi in (34) with its meanbie−axtrue
; this approximation is reasonably

accurate for high SNR. For example, forM = 1, that is, for a nonincremental algorithm, ordinary SPS-

MC, the mean of the root-convergence factor is given by

E[ρ1] ≈ 1− e−axtrue
.

As shown in Fig. 6, for this one-parameter example, the asymptotic convergence rates of incremental

optimization transfer algorithms (M > 1) are faster than that of the nonincremental one (M = 1), and

the convergence rate of the incremental one becomes faster as the numberM of subsets increases.
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[6] H. Erdoğan and J. A. Fessler, “Ordered subsets algorithms for transmission tomography,”Phys. Med. Biol., vol. 44, no.

11, pp. 2835–2851, Nov. 1999.

[7] A. R. De Pierro and M. E. B. Yamagishi, “Fast EM-like methods for maximum ‘a posteriori’ estimates in emission

tomography,” IEEE Trans. Med. Imag., vol. 20, no. 4, pp. 280–288, Apr. 2001.

[8] S. Ahn and J. A. Fessler, “Globally convergent image reconstruction for emission tomography using relaxed ordered

subsets algorithms,”IEEE Trans. Med. Imag., vol. 22, no. 3, pp. 613–626, May 2003.

[9] Q. Li, E. Asma, and R. M. Leahy, “A fast fully 4D incremental gradient reconstruction algorithm for list mode PET data,”

in Proc. IEEE Intl. Symp. Biomedical Imaging, 2004, pp. 555–558.

[10] P. Khurd, I. T. Hsiao, A. Rangarajan, and G. Gindi, “A globally convergent regularized ordered-subset EM algorithm for

list-mode reconstruction,”IEEE Tr. Nuc. Sci., vol. 51, no. 3, pp. 719–725, June 2004.

[11] V. M. Kibardin, “Decomposition into functions in the minimization problem,”Automat. Remote Control, vol. 40, pp.

1311–1323, 1980, Translation ofAvtomatika i Telemekhanika, vol. 9, pp. 66–79, Sept. 1979.
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TABLE I

OUTLINE FOR INCREMENTAL OPTIMIZATION TRANSFER ALGORITHMS. THE RIGHT SIDE OF(T-2) IS DUE TO (4) AND (5).

Initialize x0, x̄0
1, . . . , x̄

0
M ∈ X

for n = 0, . . . , niter − 1

for m = 1, . . . ,M

xnew = arg max
x∈X
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`
x; x̄n+1
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n
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n
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´
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x̄n+1
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`
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n
m+1, . . . x̄

n
M

´
(T-2)

end

xn+1 = x̄n+1
M (T-3)

end
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TABLE II

OUTLINE FOR TRANSMISSION INCREMENTAL OPTIMIZATION TRANSFER(TRIOT) ALGORITHM USING MAXIMUM

CURVATURE (MC).

Initialize: x̂ = x̂0 =

"
FBP


log

„
bi

yi − ri

«ffN
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#+

Precompute:dMC
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„
1 − yi

bie−l̂i + ri

«
bie

−l̂i , ∀i ∈ Sm

L̇mj =
X

i∈Sm

aij ḣi, rmj =
2β

M

X
k∈Nj

wjkωψ(x̂j − x̂k), ∀j

x̄mj = x̂j , ∀j

if n ≤ nOS
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L̇mj − β
M

P
k∈Nj

wjkψ̇(x̄mj − x̄mk)
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dPC
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#+

, ∀j (T-4)

else, perform the following TRIOT-MC update:

x̂j =

2
4

PM
l=1

h
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˘
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¯

+
“
L̇lj − β

M

P
k∈Nj

wjkψ̇(x̄lj − x̄lk)
”i

PM
l=1 max

n
dMC

lj + rlj , ε
o

3
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end

end

if n = nOS
iter (the last iteration of OS-SPS), then perform (T-5),end

x̂n = x̂

end

Here ε is some small positive value;cPC
i is defined in (23); and[x]+

�
= median{0, x, U}, which should not be

confused with[x]+
�
= max{x, 0}.
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Fig. 1. Comparison of non-OS algorithms (SPS-MC/PC), an OS algorithm (OS-SPS), and incremental optimization transfer

algorithms (TRIOT-MC/PC) for 2D attenuation map reconstruction using real PET data. This figure shows(Φ(x̂PL) −
Φ(x̂n))/(Φ(x̂PL)−Φ(x̂0)) versus iteration number wherêxPL is the PL optimal image. The OS-SPS and TRIOT algorithms

used 16 subsets, and TRIOT and SPS algorithms included one initial iteration of OS-SPS. The starting image was a uniform

image for all cases.
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Fig. 2. Same as Fig. 1, but six initial iterations of OS-SPS were included for TRIOT and SPS algorithms.
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Fig. 3. Comparison of(Φ(x̂PL) − Φ(x̂n))/(Φ(x̂PL) − Φ(x̂0)) versus iteration number. For this figure, 64 subsets are used

for OS-SPS and TRIOT algorithms, and two iterations of OS-SPS are included initially for TRIOT and SPS algorithms. This

figure also shows the performance of SPS algorithms that include averaging 64 subiterates after 2 iterations of OS-SPS.
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Fig. 4. Same as Fig. 3, but this figure shows a comparison of normalized distance from the optimal image,‖x̂n−x̂PL‖/‖x̂PL‖,

versus iteration number.
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(a) (b)

(c) (d)

Fig. 5. Reconstructed attenuation maps. (a) FBP reconstruction. (b) PL estimate imagex̂PL obtained using 30 iterations of

OS-SPS with 16 subsets followed by 800 iterations of SPS-OC. (c) PL reconstruction using 20 iterations of OS-SPS with 64

subsets (an image that is one point of a limit cycle). (d) PL reconstruction using 2 iterations of OS-SPS and 18 iterations of

TRIOT-PC with 64 subsets.
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Fig. 6. Comparison of mean root-convergence factors of incremental optimization transfer algorithms (TRIOT-MC) with different

numbersM of subobjective functions for a one-parameter transmission problem. Nonincremental ordinary SPS corresponds to

the caseM = 1.


