
This is Al Hero’s and Jeff Fessler’s section to the DARPA MOSAIC proposal.

1 Algorithms for Control and Image Reconstruction

The algorithm development and analysis team, led by Profs. Fessler and Hero, will be involved in many aspects of
instrument control, image processing, and image analysis. In particular we will use suitable mathematical models to
predict imaging performance, develop subsurface reconstruction algorithms, register multiple position scans, correct
for probe-array cross-talk, and develop feedback algorithms for adaptive control of the probe-tip array.

In the description below we focus on algorithms applicable to an array of thermal probe tips whosez-positions are
individually controllable. If time permits, we will also explore control and image reconstruction issues for: 1) piezo-
electric probe tips; and 2) tandem-tip probes having tips mounted on a single rigidz-controllable platform. Such a
system would be a cheaper and mechanically simpler design which would allow for more densely packed tips having
the potential of higher spatial resolution. The height of the platform would be controlled to maintain a constant average
force over all tips, resulting in a measurement from which the individually controlled array measurements would be
demultiplexed from the measurements using signal processing.

1.1 Active Probe Control

Adaptive feedback control will be crucial for maximizing accuracy of the proposed constant-force multiple-probe
AFM system. The adaptive model-reference control framework described below will lead to great improvements in
image resolution by feeding back partially extracted information about the sample surface and subsurface structures
in real time as the scan progresses.

For a multiple probe system the control ofz motion of individual microtubes in the array properly falls in the
domain of adaptive control of multiple-input-multiple output (MIMO) systems [7, 6], also called multivariable systems
[5]. While one could certainly apply existing single-probe feedback control to each individual probe in the array this
would be suboptimal since error signals from different probe tips are necessarily coupled due to their close proximity
and the partial overalap of array at successive scan positions. Indeed, significant gains can in tracking accuracy can
be obtained by treating the full MIMO control problem, see for example Zhou and Doyle [9, Ch. 8] for practical
illustration. We will use the full power of adaptive MIMO control and signal processing methodologies for extracting
the highest possible resolution from the probe array. In the context of the cantilever array the controllers will be based
on a general recursion defining the time sequence of applied vertical displacement vectorszk = [z1k; : : : ; zpk]

T (p is
the number of individually controllable probe tips) of the form:

zk = Azk�1 +Kkek

wherezk is the applied vertical displacement,A is a square matrix which accounts for temporal dynamics and cross-
talk between probes,ek = fk� c1 is the error signal consisting of the measured force vectorfk = [f1k; : : : ; fpk]

T and
the constant force vectorc1 = [c; : : : ; c]T , andKk is a gain matrix.

Adaptive model-reference controllers can further improve tracking accuracy when the measured force signal vector
fk can be represented by a state space dynamical model which accounts surface smoothness or gross structure available
from previous scans:

fk = Cxk + vk

xk+1 = �xk + �wk:

Wherevk;wk are additive noises andxk is a state vector, e.g. related to subsurface structures, andC is a matrix
which translates the state vector to atomic forces on the cantilevers. The simplest case to be considered is the case
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of a static non-time varying sample for which� = � = 0. The more general case will allow us to factor in cell
motion and interactions between probe and sample. This framework allows us to effectively couple image formation
and reconstruction into the controller for resolution enhancement.

1.2 Subsurface Imaging

Thermal imaging using scanning micromachined thermal probes has recently shown increasing potential [10, 11, 12,
13]. The addition of an array of thermal probes offers additional 3D information on the biological sample which can
be used to detect phase changes and other aspects of cell metabolism going on in the sample. As discussed above,
such information could also be incorporated into the control loop to improve force tracking accuracy of the AFM.
Particularly intriguing is the use of active thermal sources for subsurface measurements [14, 15, 16], sometimes called
thermal wave imaging [17].

To perform accurate detection we will use mathematical models for thermal transport within the sample and to
the probe tips by Gianchandani and Najafi [14]. Such models have been applied to non-biological samples, e.g. for
non-destructive testing via scanning thermal microscopy where they have been used to implement inverse scattering
solutions of the spatial thermal conductivity distribution (e.g. Gomez [4] and Seideletal [8]). However previous
models have several limitations for thermal imaging of biological samples that we will overcome. First, the models
will be extended to accomodate internal heat sources. Second, the models will be extended to arrays of thermal
probes. Third, the surface information provided by the AFM will be used to improve the inverse scattering solution.
Fourth, the noise statistics of the probe and electronics which degrade the measurements will be explicitly taken into
account. Accounting for characteristics of the noise distribution, has led to significantly improved imaging algorithms
developed by co-PI’s Fessler and Hero [3, 1] for 2D and 3D tomographic imaging and image restoration problems for
PET, MRI, CT and other imaging modalities. Similar improvements can be expected for the scanning microscopes
proposed here. These will not be not trivial extensions but they are feasible.

1.3 Image Reconstruction Methods

We propose to enhance the utility of thermal and atomic force measurements by developing, implementing, evaluating,
and analyzing physics-based image reconstruction methods suitable for the measurement devices developed in this
project. Our team has extensive experience in developing image formation methods based on accurate physical and
statistical models, with experience in PET, SPECT, X-ray CT, MRI, and confocal microscopy. The general framework
for addressing such inverse problems is well established, e.g., [18]. First one identifies an appropriate physical model
for the forward problem, including as many relevent effects as possible. Then one identifies appropriate statistical
model based on the measurement device properties, e.g., [14] in the case of scanning thermal profilers. The statistical
log-likelihood associated with the physical model and statistical model is augmented with a regularization term to
control the inevitable tradeoff between spatial resolution and noise. Finally, iterative algorithms are developed that
rapidly converge to the minimizer of the overall cost function to produce the final reconstructed image, e.g., [19, 20].
Often multiple imaging modalities are available that provide complementary but partially correlated information, such
as the topographic and thermal measurements in this project. We propose to extend our previous work on multi-
modality image reconstruction, e.g., [21, 22, 23] to maximize the quality of image formation in this project.

1.3.1 Mathematical Methodology

Our subsurface reconstruction methods will be based on fast algorithms for solving statistical inverse problems that we
have developed in the context of optical microscopy, and CT/PET medical imaging [2, 3, 1]. Subsurface reconstruction
can be formulated as a statistical inverse problem by discretizing the sample into small 3D voxels and assuming a linear
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model for the sequencefYkg of observation vectors (e.g. cantilever position or measured temperature over time and
space extent of the scanning array)

Yk = FXk +Nk; (1)

as a function of the unknown vectorXk of coefficients, e.g. thermal conductivity over the voxels of the 3D sample,
which are of interest. The matrixF is the system transfer function which depends on the underlying thermal transport
of the medium and on physical properties of the probe. The residual modeling noiseNk accounts for mismodeling
error and the variance of the vector of noisesNk may be dependent on the variance ofFXk, e.g. for non-Gaussian
(Poisson or Johnson) noiseNk.

The matrixF is derived by approximating Fourier’s heat equation (thermal conductivity reconstruction problem)
using various approximation methods, e.g. multi-pole or Born approximations. As in almost all image reconstruction
problems we have dealt with, these approximations generally yield ill-conditionedF and require regularization to
stabilize the inverse. The regularization will be selected to constrain the 3D solution to a spatially smooth class of
functions in accordance with a priori biometric information and also from surface information derived by observed
cantilever displacements. We will also explore real time implementable algorithms which will involve methods such
as: preconditioning, approximating theA matrix by circulant, block circulant, and other matrix structures, and other
approximations ofF for which fast algorithms can be used to solve forXk (1).

1.4 Scan Optimization

Most imaging systems have a set of acquisition parameters that are under the experimenter’s control and that can
affect the final image quality. For example, in the thermal wave imaging the pattern of applied thermal stimulus is
programmable. Rather than choosing these parameters arbitrarily, we propose to use statistical methods for optimiz-
ing estimation performance (based on extensions of the Cramer-Rao lower bound) [24] to optimize the acquisition
parameters, extending our previous work on analyzing and optimizing imaging systems [25, 26].

1.5 Scan Registration

For multiple cantilevers, we may face a problem of registry. It may be difficult to ensure that the last line of one
cantilever lies exactly one pixel spacing from the first line of the next cantilever. If the mechanics cannot ensure this,
then we will investigate an image post-processing solution in which the system is designed to deliberately include a
couple rows of overlap, and then we will apply well-known image registration algorithms (such as correlation based on
an affine model) to combine the different sweeps. If processing speeds permit, we will also investigate the possibility
of integrating this registration with the dynamical control model described above.
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