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Abstract—This paper studies adaptive sensing for estimating the
nonzero amplitudes of a sparse signal. We consider a previously proposed
optimal two-stage policy for allocating sensing resources. We derive an
upper bound on the mean squared error resulting from the optimal
two-stage policy and a corresponding lower bound on the improvement
over non-adaptive sensing. It is shown that the adaptation gain is related
to the detectability of nonzero signal components as characterized by a
Bhattacharyya coefficient, thus quantifying analytically the dependence
on the sparsity level of the signal, the signal-to-noise ratio, and the sensing
resource budget. The bound is shown to be a good approximation to the
optimal two-stage gain through numerical simulations.

I. INTRODUCTION

Adaptive or controlled sensing refers to the control of the signal
acquisition process in response to information that has already been
learned about the signal. Recently, attention has been focused on
adaptive sensing for sparse signals [1]–[7], i.e., signals that occupy
a small number of dimensions in a much larger ambient space. The
common theme in these works is to gradually learn the support of
the signal and allocate sensing resources accordingly to improve the
signal-to-noise ratio (SNR) for inference tasks.

In [1], adaptive sensing is considered for the estimation of the
nonzero amplitudes of a sparse signal. For the case of two sensing
stages, policies for allocating sensing resources are derived that are
optimal for a variety of estimation loss functions, generalizing an
optimal two-stage policy proposed by [2] under slightly different
motivations. For more than two stages, [1] also provides allocation
policies based on the approximate dynamic programming method
of open-loop feedback control (OLFC) [8] with performance that
improves monotonically as the number of stages increases.

Empirical results in [1], [2] show that multistage adaptive sens-
ing can lead to dramatically better estimates of nonzero signal
components compared to non-adaptive sensing. However, analytical
quantification of the gain due to adaptation in this setting has so
far been lacking. In this paper, we make a contribution in this
direction by obtaining an upper bound on the mean squared error
(MSE) resulting from two-stage adaptive sensing, and by extension a
lower bound on the adaptation gain. While our focus is on two-stage
policies because of their relative tractability, the result extends to
the multistage policies of [1] because of the monotonicity property
noted above. Intuitively, the gain depends on the extent to which
sensing resources can be concentrated on the signal support, which
depends in turn on the ability to detect nonzero signal components.
It is of interest therefore to determine the impact on performance of
several key quantities: the sparsity level of the signal, which limits
the degree of concentration; the SNR, which affects detectability;
and the total sensing resource budget. Our analysis shows that many
of these dependences can be summarized by a single measure of
detectability, specifically the Bhattacharyya coefficient between the
distribution of the observations when a signal component is present
and the unconditional distribution of the observations. We note that

Bhattacharyya coefficients have been used before in adaptive sensor
management [9], specifically to bound the probability of classification
error and thus assess the utility of further observations.

In related work on adaptive sensing of sparse signals, performance
guarantees have been derived for other inference tasks, notably signal
support recovery. Under a Gaussian observation model similar to
the one in this work, bounds are obtained on the SNR required by
a procedure known as distilled sensing [3] to recover the support
with vanishing false discovery and non-discovery rates as the signal
dimension increases. The method of sequential thresholding [4]
generalizes distilled sensing and is shown to recover the support
exactly in the high-dimensional limit provided that the number of
observations grows as a function of the sparsity level and the SNR
as measured by a Kullback-Leibler divergence. Distilled sensing has
also been generalized to a gamma observation model appropriate for
spectrum sensing and the detection error probability is characterized
in terms of the channel occupancy, primary user power, and sensing
budget [5]. Additionally, similar support recovery guarantees have
been given for sensing that is both adaptive and compressive [6],
[7], in contrast to the non-compressive component-wise observations
considered in [3]–[5] and herein. For amplitude estimation however,
the performance of adaptive methods has been less well studied. The
present work also differs from the above references in its focus on an
optimal policy (albeit for two stages) with more complicated structure
than the policies analyzed previously.

This paper is concerned with the problem of estimating nonzero
signal amplitudes as posed in [1]. Sections II and III review relevant
material from [1], including the signal and observation models, the
MSE cost function, and a two-stage policy for sensing resource
allocation that minimizes the MSE. In Section IV, we develop the
main results of this paper, namely a bound on the MSE of the two-
stage policy in Section III and its improvement compared to non-
adaptive sensing. The bound is validated numerically in Section V
and the paper concludes in Section VI.

II. PROBLEM FORMULATION

The two-stage sensing problem considered in this paper is a special
case of the one in [1] and is also related to [2]. Let x be a sparse
N -dimensional signal whose support is represented by a vector I of
Bernoulli indicator variables Ii, i = 1, . . . , N , with P(Ii = 1) = p
a priori. If Ii = 0, xi = 0 whereas if Ii = 1, xi is distributed
a priori as a Gaussian random variable with mean µ and variance
σ2, independent of other components of x. While the policies in [1]
apply to signal priors that are non-uniform over i, the results in the
present work depend on the assumption of uniformity.

The signal x is observed in two stages in the same basis in which
it is sparse. Given sensing effort parameters λi(t − 1), which may
represent observation time, number of samples, or other resources
depending on the application, the observation yi(t) of component i



in stage t is given by

yi(t) = xi +
ni(t)√
λi(t− 1)

, i = 1, . . . , N, t = 1, 2, (1)

where ni(t) denotes i.i.d. zero-mean Gaussian noise with variance
ν2 and we adopt the convention that the observation is not taken if
λi(t−1) = 0. In adaptive sensing, the second-stage effort allocation
λ(1) = (λ1(1), . . . , λN (1)) can be chosen as a function of the first-
stage observations y(1) = (y1(1), . . . , yN (1)) to selectively increase
measurement precision (inverse variance). The overall sensing budget
is normalized as

N∑
i=1

(λi(0) + λi(1)) = N. (2)

For a sensing budget different from N , the effect of the normalization
is to scale ν2 since it is always the ratio ν2/λi(t−1) that determines
the effective noise variance in (1).

The observations y(1),y(2) are used to produce an estimate x̂ of
x. As in [1], we assume that the nonzero components of x are of
primary interest and seek to minimize the mean squared error (MSE)
over the signal support:

E

{
N∑
i=1

Ii |x̂i − xi|2
}
, (3)

where the expectation is taken over I, x, y(1) and y(2). In addition
to accounting for estimation error directly, the cost function (3) also
promotes better performance in detecting nonzero signal components,
as demonstrated in [2], [10], since achieving low MSE requires
identifying the true signal support.

III. OPTIMAL TWO-STAGE EFFORT ALLOCATION POLICY

In [1], an effort allocation policy is derived that minimizes the
MSE (3) over all two-stage policies subject to the budget constraint
(2). This optimal two-stage policy is the subject of study in the
present work and is summarized here along with related facts for
later reference.

The policy in [1] is obtained using dynamic programming [8] and
depends on the observation history Y(t) ≡ {y(1), . . . ,y(t)} through
a collection of state variables s(t) = (p(t),µ(t),σ2(t),Λ(t)), where
pi(t) = P(Ii = 1 | Y(t)), µi(t) = E[xi | Ii = 1,Y(t)], and
σ2
i (t) = var(xi | Ii = 1,Y(t)) for i = 1, . . . , N , and Λ(t) is

the remaining sensing budget after t stages. The state variables are
initialized uniformly over i to the prior values p, µ, σ2, and Λ(0) at
t = 0, and evolve according to the following relations:

pi(t+ 1) =
pi(t)f1(yi(t+ 1))

pi(t)f1(yi(t+ 1)) + (1− pi(t))f0(yi(t+ 1))
, (4a)

µi(t+ 1) =
ν2µi(t) + λi(t)σ

2
i (t)yi(t+ 1)

ν2 + λi(t)σ2
i (t)

, (4b)

σ2
i (t+ 1) =

ν2σ2
i (t)

ν2 + λi(t)σ2
i (t)

, (4c)

Λ(t+ 1) = Λ(t)−
N∑
i=1

λi(t), (4d)

where

f0(yi(t+ 1)) = φ(yi(t+ 1); 0, ν2/λi(t)), (5a)

f1(yi(t+ 1)) = φ(yi(t+ 1);µi(t), σ
2
i (t) + ν2/λi(t)), (5b)

and φ(·;µ, σ2) denotes a Gaussian probability density function (PDF)
with mean µ and variance σ2. With these definitions, it is shown in

[1] that the conditional mean estimator x̂ = µ(2) minimizes (3)
and the effort allocation problem can be expressed as a two-stage
optimization problem,

J∗1 (s(1)) = ν2 min
λ(1)

N∑
i=1

pi(1)

ν2/σ2
i (1) + λi(1)

s.t.
N∑
i=1

λi(1) = Λ(1), λi(1) ≥ 0 ∀ i,

(6)

J∗0 (s(0)) = min
0≤λ≤1

E {J∗1 (s(1)) | s(0), λ1} . (7)

The optimal two-stage MSE is given by J∗0 (s(0)). The second-
stage optimization (6) is conditioned on the values of the first-stage
observations y(1) through the state s(1). The first-stage optimization
(7) is then defined recursively in terms of J∗1 (s(1)). Under a uniform
prior, the first-stage allocation λ(0) is also uniform by symmetry,
i.e., λ(0) = λ1 where 1 is a vector of ones, thus making (7) a one-
dimensional optimization. The expectation in (7) is taken over y(1),
which has i.i.d. components with distribution

fp(yi(1)) = pf1(yi(1)) + (1− p)f0(yi(1)) (8)

parameterized by s(0) = {p, µ, σ2,Λ(0)} and λ. This expectation
can be evaluated offline through Monte Carlo sampling.

The optimal solution to (6) can be given explicitly as detailed in
[1], [2]. Here it suffices to note that the solution takes the form

λ∗i (1) = max

{
C
√
pi(1)− ν2

σ2
i (1)

, 0

}
, (9)

where C is a normalization constant that ensures
∑N
i=1 λ

∗
i (1) =

Λ(1). It can be seen from (9) that the optimal allocations are thresh-
olded to zero after a certain point in the rank order of the quantities√
pi(1)σ2

i (1). Furthermore, the nonzero allocations increase as the
square root of the probabilities pi(1) and decrease with the precisions
1/σ2

i (1).

IV. PERFORMANCE GUARANTEES

Previous work [1], [2] has shown empirically that the optimal
two-stage policy in Section III can achieve substantially lower MSE
than the non-adaptive strategy of uniform effort allocation. The
contribution of this paper is to provide an analytical guarantee on
the gain due to adaptation. Of particular interest is the dependence
of the gain on several key parameters: the sparsity of the signal as
represented by the fraction p, the SNR, and the sensing budget. To
summarize the latter two quantities, we define the ratios r ≡ σ2/ν2

and s ≡ µ2/σ2. The ratio r characterizes the strength of the nonzero
signal amplitudes relative to the effective noise variance ν2, which
depends on both the intrinsic noise level as well as the sensing budget
through normalization. The ratio s represents the prior degree of
certainty regarding the nonzero signal amplitudes.

It can be seen from the cost function (3) that the improvement
due to adaptation is determined by the ability to concentrate sensing
effort on the signal support and thus increase the effective SNR. This
in turn depends on the detectability of nonzero signal components,
which is characterized by the contrast between the signal-absent
measurement distribution f0 (5a) and the signal-present distribution
f1 (5b). Theorem 1 shows that the relevant measure of contrast is
the Bhattacharyya coefficient

BCp =

∫ ∞
−∞

√
f1(yi(1))fp(yi(1))dyi(1) (10)



between f1(yi(1)) and the unconditional distribution fp(yi(1)) (8),
which is a mixture of f0(yi(1)) and f1(yi(1)). The Bhattacharyya
coefficient measures the overlap between two distributions and takes
values between 0 and 1, with 0 corresponding to no overlap and 1
to perfect overlap. It is related to the Hellinger distance H between
two distributions via H =

√
1− BC.

Our main result is an upper bound on the optimal two-stage MSE
J∗0 (s(0)). Similar to [3]–[7], we consider the limit as the signal
dimension N →∞, which simplifies the form of the bound.

Theorem 1: Assume that the signal x and observations y(1),y(2)
follow the model in Section II. Then in the limit of high signal
dimension N , the optimal two-stage MSE J∗0 (s(0)) is bounded from
above as

lim
N→∞

1

Nσ2
J∗0 (s(0)) ≤ p

1 + r + r max
λ∈[0,1]

(BC−2
p − 1)(1− λ)

.

(11)
Proof: First we bound the cost-to-go J∗1 (s(1)) in (6). Although

the optimal solution to (6) can be given explicitly [1], [2], it depends
on the rank order of the random variables

√
pi(1). Since use of a

suboptimal allocation can only increase the cost-to-go, we can bound
J∗1 (s(1)) by evaluating (6) with the following suboptimal allocation
first proposed in [2]:

λi(1) = Λ(1)

√
pi(1)∑N

j=1

√
pj(1)

. (12)

The allocation (12) preserves the square root dependence on the
probabilities pi(1) as in the optimal allocation (9) but does not
threshold any of the λi(1) to zero. Empirical results in [2] show that
the performance gap between the optimal and suboptimal allocations
is small.

Substituting (12) into (6), we obtain

1

Nσ2
J∗1 (s(1)) ≤ ν2

Nσ2

N∑
i=1

pi(1)

ν2/σ2
i (1) + Λ(1)

√
pi(1)/

∑N
j=1

√
pj(1)

=
ν2

Nσ2

N∑
i=1

pi(1)

ν2/σ2 + λ+N(1− λ)
√
pi(1)/

∑N
j=1

√
pj(1)

=
1

N

N∑
i=1

pi(1)

1 + rλ+ r(1− λ)
√
pi(1)

(
1
N

∑N
j=1

√
pj(1)

)−1 .

(13)

In the first equality above, we have used (4c) and (4d), λi(0) = λ,
and the normalization Λ(0) = N , while in the second equality (13),
we have used the definition of r. From (4a) and (8),

pi(1) =
pf1(yi(1))

pf1(yi(1)) + (1− p)f0(yi(1))
= p

f1(yi(1))

fp(yi(1))
, (14)

and since {yi(1)}Ni=1 are i.i.d., so too are
{√

pi(1)
}N
i=1

. Thus as
N →∞, the law of large numbers ensures that the sample averages
on the right-hand side of (13) converge almost surely to expectations
over yi(1). Using (14) and (10) we have

E
[√

pi(1)
]

=

∫ ∞
−∞

√
p

√
f1(yi(1))

fp(yi(1))
fp(yi(1))dyi(1) = BCp

√
p,

and hence

lim
N→∞

1

Nσ2
J∗1 (s(1)) ≤ E

{
pi(1)

1 + rλ+ r(1− λ)
√
pi(1)

(
BCp
√
p
)−1

}
.

(15)

Next we further simplify the right-hand side of (15). Using (14), the
expectation in (15), which is taken with respect to the unconditional
density fp(yi(1)), can be converted into an expectation with respect
to f1(yi(1)), i.e., conditioned on Ii = 1. Thus the right-hand side of
(15) becomes

E

{
p

1 + rλ+ r(1− λ)
√
pi(1)

(
BCp
√
p
)−1 | Ii = 1

}
,

which is of the form p/(a + b/pi(1)−1/2), a concave function of
pi(1)−1/2 with a, b ≥ 0. Jensen’s inequality then yields

lim
N→∞

1

Nσ2
J∗1 (s(1))

≤ p

1 + rλ+ r(1− λ)
[(

BCp
√
p
)
E {pi(1)−1/2 | Ii = 1}

]−1

=
p

1 + rλ+ r(1− λ)BC−2
p

, (16)

where we have used (14) to obtain

E
{
pi(1)−1/2 | Ii = 1

}
=

∫ ∞
−∞

√
fp(yi(1))

pf1(yi(1))
f1(yi(1))dyi(1)

=
BCp√
p
.

We now use (7) to relate the bound on J∗1 (s(1)) in (16) to
J∗0 (s(0)). Since the right-hand side of (16) is deterministic, the only
addition to (16) is a minimization over λ ∈ [0, 1], or equivalently
a maximization over λ in the denominator. A rearrangement of the
denominator completes the proof.

To determine the gain relative to non-adaptive sensing, we compute
the non-adaptive MSE as a special case of two-stage sensing by
setting λ = 0 in (7), i.e., by skipping the first observation stage. Then
the state remains unchanged from its initial value, s(1) = s(0), and
the non-adaptive MSE Jna

0 (s(0)) is equal to J∗1 (s(0)). By symmetry,
the optimal solution to (6) is to allocate one unit of effort to each
component. Hence we obtain

1

Nσ2
Jna
0 (s(0)) =

ν2

σ2

p

ν2/σ2 + 1
=

p

1 + r
(17)

using the definition of r. Comparing (11) and (17) results
in the following bound on the optimal two-stage gain G =
Jna
0 (s(0))/J∗0 (s(0)):

lim
N→∞

G ≥ 1 +
r

r + 1
max
λ∈[0,1]

(BC−2
p − 1)(1− λ). (18)

Further analysis of the two-stage MSE J∗0 (s(0)) and gain G re-
quires computing the Bhattacharyya coefficient BCp. Unfortunately,
a closed-form expression for BCp is not available when p ∈ (0, 1).
We consider first the limiting behavior at low and high SNR. At
low SNR (ν2 → ∞) or as λ → 0, it can be seen from (5) that
the distributions f1(yi(1)) and f0(yi(1)) become more diffuse and
similar to each other. Therefore the Bhattacharyya coefficient BCp
and the gain G both approach 1 at low SNR as expected. At high SNR
(ν2 → 0, r → ∞), f1(yi(1)) and f0(yi(1)) become increasingly
concentrated and their overlap tends to zero. Hence from (10) and
(8), BCp approaches

√
p. If we take λ→ 0 at a slower rate than ν2 so

that ν2/λ still approaches zero, then it can be seen from (18) that G
tends to 1/p at high SNR. This is the same gain as that of the oracle,
which has full knowledge of the true signal support and distributes
effort only over the support. Thus we have confirmed analytically
that two-stage adaptive sensing can approach the performance of the
oracle at high SNR, as observed previously [1], [2].



A more detailed analytical result can be obtained by bounding BCp
in terms of BC0, the Bhattacharyya coefficient between f1(yi(1))
and f0(yi(1)). Using the definitions of r and s, the latter coefficient
can be computed in closed form as

BC0 =

√
2
√

1 + rλ

2 + rλ
exp

(
− srλ

4(2 + rλ)

)
, (19)

since it involves two Gaussian distributions as specified in (5). The
following proposition provides upper bounds on BCp in terms of
BC0. Substituting the upper bounds in place of BCp in Theorem
1 and (18) yields bounds on the two-stage MSE and gain that are
weaker than before but more easily computed.

Proposition 1: For any p ∈ [0, 1], the Bhattacharrya coefficient
BCp (10) is bounded in terms of BC0 (19) as follows:

BCp ≤ min

{
p

√
p+
√

1− p
+

√
p(1− p)

√
p+
√

1− p
P1(Y1)

+BC0

(
1− p

√
p+
√

1− p
+

√
p(1− p)

√
p+
√

1− p
P01(Y0)

)
, 1

}
≤ √p+ BC0

√
1− p,

where Y0 = {yi(1) : f1(yi(1)) < f0(yi(1))}, Y1 = {yi(1) :
f1(yi(1)) > f0(yi(1))}, P1 denotes probability under f1, and P01

denotes probability under

f01(y) = N
(
y;

µ

2 + rλ
,

2(1 + rλ)

2 + rλ

ν2

λ

)
.

Expressions for P1(Y1) and P01(Y0) can be given in terms of
the standard Gaussian cumulative distribution function [11] but are
omitted here for brevity. On the other hand, the outer bound in
Proposition 1 is simpler in that it does not require computing the
Gaussian CDF. A proof of Proposition 1 can be found in [11].

V. NUMERICAL VALIDATION

We validate the bound (18) on the adaptation gain through nu-
merical simulations. The signal dimension N is set to 10000, the
prior mean µ is normalized to 1, and the prior standard deviation
σ is set to 1/4 corresponding to s = 16. In Fig. 1, the blue
curves with crosses show the MSE reduction relative to non-adaptive
sensing (the adaptation gain) of the optimal two-stage policy with
second stage given by (9) and first stage by (7). The red curves
show the lower bound on the gain given in (18) using the first
inequality in Proposition 1 to further bound BCp. Two sparsity
levels are considered and the curves are plotted as functions of
SNR µ2/ν2 = sr. It is seen that the analytical bound, which is
an asymptotic result, approximates the finite-dimensional optimal
gain fairly well. At low and high SNR, both curves approach values
of 1 and 1/p respectively as predicted. At intermediate SNR, the
maximum deviation of the two curves is 1.9 dB for p = 0.1 and 3.6
dB for p = 0.01.

VI. CONCLUSION AND FUTURE WORK

This paper has provided an analytical guarantee on the performance
of two-stage adaptive sensing for estimating the nonzero amplitudes
in a sparse signal. The improvement compared to non-adaptive sens-
ing is shown to be related to the detectability of nonzero components
as measured by a Bhattacharyya coefficient, thus quantifying the
dependence on the sparsity level, the SNR, and the sensing resource
budget. Future work will consider the extension of the techniques in
this paper to estimation loss functions other than MSE, to analogous
policies for adaptive spectrum sensing [10], to other tasks such as
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Fig. 1. Optimal two-stage MSE reduction (blue curves with crosses) and
corresponding lower bounds ((18), red curves) as functions of SNR µ2/ν2 =
sr for two different sparsity levels.

signal support recovery, and to direct analysis of policies with more
than two stages. In addition, it would be desirable to determine
fundamental limits on adaptive sensing, along the lines of [12], [13],
for the problem considered in this work.
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