Definition of Query Procedure
Given any \(n \in \mathbb{N}, \) and \(\varepsilon > 0, \) we search for a moving target \((n, d, \varepsilon) \)-non-adaptive query procedure consisting of

- \(n \) queries \(A^n \), where for each \(i \in [n] \), \(A_i \) is a yes/no question with \(\Pr_{(x, y) \sim (S, V) \sim \mathcal{D}}[A_i] = \frac{1}{2} \).
- A decoder \(D \) that outputs \(\hat{x} \).

such that the excess-resolution probability satisfies

\[
\Pr[(n, d, \varepsilon)] = \sup_{A^n, D} \max_{V \in \mathcal{D}} \left[\Pr[[D(x), (S, V), (x, y)] > \varepsilon] \right] \leq \varepsilon.
\]

Accurate estimation of the trajectory implies accurate estimate of the initial location and velocity, and vice versa.

- \(|S_i - S_j| < \frac{\varepsilon}{n} \) and \(|V_i - V_j| < \frac{\varepsilon}{n} \) implies accurate estimation of the trajectory, i.e., \(\text{NLL}_{(S, V)} = \mathbb{O}(\varepsilon) \) implies \(|S_i - S_j| < \frac{\varepsilon}{n} \) or \(|V_i - V_j| < \frac{\varepsilon}{n} \).

- \(|S_i - S_j| > \frac{\varepsilon}{n} \) or \(|V_i - V_j| < \frac{\varepsilon}{n} \) implies poor estimate

Fundamental Limit

- Given any number of queries \(n \in \mathbb{N} \) and \(\varepsilon \in [0, 3], \)

\[
\delta(n, d, \varepsilon) = \inf \{k \in \mathbb{N} : \exists \text{ an \((n, d, \varepsilon) \)-non-adaptive query procedure}\}.
\]

- Best non-asymptotic resolution achievable by any non-adaptive query procedure with \(n \) queries and excess-resolution probability \(\varepsilon \).

Dual quantity (sample complexity):

\[
n^*\delta(d, \varepsilon) = \inf \{n \in \mathbb{N} : \delta(n, d, \varepsilon) \leq \delta\}
\]

Preliminaries

- \(\mathcal{P}_X = \mathbb{B}(p_X) \) denotes the Bernoulli distribution

\[
p_X^\mathbb{B}(y) = \mathbb{B}(p_X(y)) \quad \text{when } t(\{A(y)\} = q)
\]

- \(\mathbb{F}_{Y|X}^p \) denotes the distribution on \(Y \) induced by \(\mathcal{P}_X \) and \(\mathbb{F}_{Y|X}^p \)

- For any \((x, y) \in X \times Y \), define the mutual information density

\[
I(x, y) = \log \mathbb{F}_{Y|X}^p(y | x) - \log \mathbb{F}_Y^p(y)
\]

- "Capacity" of measurement dependent channels \((\mathcal{P}_{Y|X}^p)_{x \sim [p]}

\[
\mathcal{C} = \max_{x \sim [p]} I(x, y) \quad \text{where } \mathcal{P}_Y = \mathbb{B}(p_Y(y))
\]

- "Dispersion" of measurement dependent channels

\[
\mathcal{V}_d = \inf_{x \sim [p]} \mathbb{E}_{Y|X}[\mathcal{V}_d(X, Y)] \quad \text{if } \varepsilon < 0.5
\]

- "Dispersion" of measurement dependent channels

\[
\mathcal{V}_d = \mathbb{E}_{Y|X}[\mathcal{V}_d(X, Y)] \quad \text{if } \varepsilon > 0.5
\]

Main Result

Theorem 1 For any \(\varepsilon \in (0, 1) \) and finite \(d \in \mathbb{N} \), the minimal achievable resolution \(\delta(n, d, \varepsilon) \) satisfies the following properties

- If \(\omega_{\varepsilon} = O(d^4) \) for \(t \in [0.5, 1], \)

\[
-2d \log \delta(n, d, \varepsilon) = -nC + O(\omega_{\varepsilon})
\]

- If \(\omega_{\varepsilon} = O(d^2) \) for \(t \in [0.5, 1], \)

\[
-2d \log \delta(n, d, \varepsilon) = -nC + O(\omega_{\varepsilon})
\]

Discussions

- Theorem 1 is tight under maximal speed constraint \(\omega_{\varepsilon} \)

- Refines the result by Kaspi et al., ITT 2018 (Theorem 3):

- Non-asymptotic, non-vanishing vs asymptotic, vanishing

- Any measurement dependent channel vs a measurement dependent BSC

- Multidimensional vs one-dimensional

- Strong converse holds

\[
\lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^{n} I(X_i, Y_i) = \mathcal{C}
\]

- Proof ideas: finite blocklength channel coding + analysis of the number of quantized trajectories