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ABSTRACT

Regularized Estimation of High-dimensional Covariance Matrices

by
Yilun Chen

Chair: Alfred O. Hero III

Many signal processing methods are fundamentally related to the estimation of

covariance matrices. In cases where there are a large number of covariates the dimen-

sion of covariance matrices is much larger than the number of available data samples.

This is especially true in applications where data acquisition is constrained by limited

resources such as time, energy, storage and bandwidth. This dissertation attempts

to develop necessary components for covariance estimation in the high-dimensional

setting. The dissertation makes contributions in two main areas of covariance es-

timation: (1) high dimensional shrinkage regularized covariance estimation and (2)

recursive online complexity regularized estimation with applications of anomaly de-

tection, graph tracking, and compressive sensing.

New shrinkage covariance estimation methods are proposed that significantly out-

perform previous approaches in terms of mean squared error. Two multivariate data

scenarios are considered: (1) independently Gaussian distributed data; and (2) heavy

tailed elliptically contoured data. For the former scenario we improve on the Ledoit-

Wolf (LW) shrinkage estimator using the principle of Rao-Blackwell conditioning and

xiii



iterative approximation of the clairvoyant estimator. In the latter scenario, we apply

a variance normalizing transformation and propose an iterative robust LW shrinkage

estimator that is distribution-free within the elliptical family. The proposed robus-

tified estimator is implemented via fixed point iterations with provable convergence

and unique limit.

A recursive online covariance estimator is proposed for tracking changes in an

underlying time-varying graphical model. Covariance estimation is decomposed into

multiple decoupled adaptive regression problems. A recursive recursive group lasso

is derived using a homotopy approach that generalizes online lasso methods to group

sparse system identification. By reducing the memory of the objective function this

leads to a group lasso regularized LMS that provably dominates standard LMS.

Finally, we introduce a state-of-the-art sampling system, the Modulated Wideband

Converter (MWC) which is based on recently developed analog compressive sensing

theory. By inferring the block-sparse structures of the high-dimensional covariance

matrix from a set of random projections, the MWC is capable of achieving sub-

Nyquist sampling for multiband signals with arbitrary carrier frequency over a wide

bandwidth.
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CHAPTER I

Introduction

1.1 Covariance matrix estimation

Estimating the covariance matrix or its inverse of a random vector is one of the

most fundamental problems in signal processing and related fields. Covariance ma-

trices are important statistics that describe the pairwise correlation between random

variables. Indeed, when the random variables are jointly Gaussian distributed and

their mean values are pre-processed to zeros, the covariance matrix is the minimal

sufficient statistics and encodes all the necessary statistical information for estima-

tion and detection. As several typical examples, accurate covariance estimation plays

an essential role in the following scenarios.

• Regression problems. The interplay between covariance estimation and vector

regression has long been noticed. There are numerous examples how covari-

ance matrices naturally enter into filtering or prediction problems. On the

other hand, covariance estimation methods are usually connected to regularized

regression algorithms. For example, it is well known that diagonal loading tech-

niques, which is popular in covariance estimation of array signals, is equivalent

to the ridge regression where the `2 norm is used as the penalty function for the

coefficient vector to be estimated. In [3], the authors considers covariance esti-

1
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mation with an unknown sparse graphical model and uses a set of `1- penalized

regression problems to determine the graph structure.

• Statistical inference in graphical models.

Inverse covariance matrices reveal the conditional independence of Gaussian

distributed random variables, which is usually referred to as the covariance

selection problem [4]. When there is an underlying graphical model associating

variables of interest, the inverse covariance matrix determines the structure of

the graph.

• Subspace methods.

Covariance estimation is the initial stage of principal components analysis (PCA),

linear discriminant analysis (LDA) and other factor analysis algorithms. In [5],

efficient covariance estimators have been demonstrated to achieve less classifi-

cation error in LDA based classification methods. Similar examples also widely

exist in array signal processing applications [6].

1.2 High-dimensional challenges

As we have entered the era of data, the fast-developing sensing technologies have

enabled the generation of vast amounts of information, often in the form of high-

dimensional signals. This can be easily viewed within sensor/agent networks [7, 8],

imaging [9], spectrum sensing [2], gene microarrays [10] and many others applications.

While the dimension of signals has been significantly expanded, data acquisition

processes are generally constrained in various kinds of resources and result in limited

sample size, including but not limited to:

• Budget. Despite of the expanded data dimension, data acquisition can be expen-

sive and limited in size. For example, the obtaining Affymetrix Human Genome
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U133Plus2.0 DNA micro-arrays, which has 54,675 variables, costs as much as

500$ per sample, and limited budgets then yield limited sample size.

• Energy. Most sensors are powered by batteries and each sample is acquired at

the cost of shortening the battery life. Take the Mica2 wireless sensor as an

example, a standard nine-volt battery can support about 4000 times of sam-

pling and communication cycles, while the data dimension of a sensor networks

increases quadratically with the number of sensors.

• Time. In many signal processing and machine learning applications, the system

of interest is time-varying that yields non-stationary samples. One example

is the beamforming problem of moving targets, where only a small amount of

samples are locally stationary.

Other resource constraints may also include limited storage and bandwidth. Those

factors may occur simultaneously and cause the high-dimensional challenge in tradi-

tional covariance estimation methods.

Take the most used sample covariance as an example. While it is a consistent

estimator for low-dimensional matrices with sufficient amount of samples, its poor

performance in the high-dimensional setting has been well addressed. In fact, it has

been demonstrated that the sample covariance suffers from a systematical distortion

of its eigen-structures [11]. The eigenvalues of the sample covariance tends to over-

spread which makes the sample covariance ill-conditioned unless the sample size n is

significantly larger than the dimension p. In [11, 12], it has also been demonstrated

that estimation of principal eigenvectors of the sample covariance breaks down if

n/p is less than a threshold. Another drawback of the sample covariance based es-

timators is the sensitivity to the heavy-tails or outliers. This becomes even more

severe for high-dimensional matrices as the sample size is usually not sufficient to
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perform an outlier rejection. Such sensitivity may also deteriorate performance of

other covariance estimators that are based on the sample covariance.

1.3 Previous works

General covariance estimation. Early work to improve upon the sample covariance

can be traced back to 1960s when Stein demonstrated that superior performance can

be obtained by shrinking the sample covariance [13, 14]. Since then, many shrinkage

estimators have been proposed under different performance measures. For example,

Haff [15] introduced an estimator inspired by the empirical Bayes approach. Dey

and Srinivasan [16] derived a minimax estimator under Stein’s entropy loss function.

These works addressed the case of invertible sample covariance when n ≥ p. Recently,

Ledoit and Wolf (LW) proposed a shrinkage estimator for the case n < p which

asymptotically minimizes the MSE [17]. The LW estimator is well conditioned for

small sample sizes and can thus be applied to high dimensional problems. In contrast

to previous approaches, they show that performance advantages are distribution-free

and not restricted to Gaussian assumptions. Those Steinian shrinkage methods are

fundamentally related to ridge regression and diagonal loading, where the `2 norm

regularization is used.

Model based covariance estimation. The Steinian shrinkage based estimators deal

with the general covariance estimation problems and can be applied to any covari-

ance matrices. Those methods are usually simple and computationally efficient; yet

they do not fully exploit prior covariance structures for specific applications. Prior

structures, if they exist, usually imply that the true model complexity is much lower

than the number of unknown parameters. By using a proper regularization, consis-

tency of covariance estimators can be obtained under “large p small n” settings. For
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example, in [18, 19, 20, 21], the `1 norm is adopted as the regularization function

to promote sparsity on the inverse covariance matrix. This is closely related to the

problem of covariance selection [4] when there is an underlying undirected graphical

model associating jointly Gaussian distributed variables. For variables that have a

natural ordering and those far apart in the ordering have small partial correlations,

[22, 23] have been proposed to exploit the banded structure on the modified Cholesky

decomposition of the inverse covariance matrix. In [24, 25, 26, 27, 28], covariance ta-

pering, banding or thresholding methods have been proposed to explore the sparse or

banded structures on the covariance rather than its inverse. [29] considers a multi-

factor model and uses it to reduce dimensionality and to estimate the covariance

matrix.

Robust covariance estimation for non-Gaussian samples. As the sample covari-

ance is sensitive to heavy tails or outliers, covariance estimation methods that operate

on the sample covariance (explicitly or implicitly) may suffer from such sensitivity as

well. In fact, robust covariance estimation has been investigated for years. Typical

approaches include the M-estimators [30, 31], the minimum volume ellipsoid esti-

mator (MVE) and the minimum covariance determinant (MCD) [32, 33] estimator,

and the S-estimators [34]. These methods are robust to non-Gaussian samples but

generally require n� p, which are not suitable for high-dimensional problems. Ro-

bust covariance estimation is even more challenging in the “large p small n” setting,

as the insufficient number of samples makes it difficult to perform a Gaussianity

test. Furthermore, traditional robust estimators designed for low dimensional prob-

lems may not be scalable with the dimensionality p. For covariance estimation in

graphical models, the authors in [35] presented a robust estimator for multivari-

ate student-T distributed samples, which is based on a Markov chain Monte Carlo
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Expectation Maximization (EM) usings a Gibbs sampler. They describe a simple

variational approximation to make the resulting method computationally feasible in

high-dimensional problems.

Online covariance estimation for time-varying systems. The majority of litera-

tures for covariance estimation are based on off-line processing of stationary samples.

In the contrast, much less has been done on time-varying covariance estimation via

online estimators. Recent developments in signal processing and machine learning

has attracted growing interests in statistical inference problems of time-varying mod-

els [7, 8], as time-varying systems and non-stationary data are one of the main causes

of “large p small n” problems. In the context of radar signal processing, Abramovich

[36, 37, 38] proposes a series of work on covariance estimation for time-varying auto-

regressive (TVAR) models. While the AR coefficients are non-stationary, the banded

structure of the inverse covariance is assumed to be time invariant. In [7] and [39],

inference problems on time-varying stochastic networks are considered, where both

covariance structures (or network topologies) and model parameters are temporally

dynamic. Those methods are implemented in the offline mode and the optimization

algorithms are computationally intensive for online implementation.

1.4 Dissertation contributions

The focus of the work presented in this dissertation is to develop high-dimensional

covariance estimation methodologies in “large p small n” settings. The contents for

each chapter are specified as follows:

• Chapter II addresses the general covariance estimation problem in the sense of

minimum mean squared error (MMSE). The samples are assumed to be Gaus-

sian distributed and Steinian shrinkage methods are considered. We begin by
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improving the Ledoit-Wolf (LW) method by conditioning on a sufficient statis-

tic. By the Rao-Blackwell theorem, we obtain a new estimator, called RBLW,

which dominates LW in MSE. Then, to further reduce the estimation error,

we propose an iterative approach which approximates the clairvoyant shrinkage

estimator. Convergence of this iterative method is established and a closed-

form expression for the limit is determined, which is referred to as the oracle

approximating shrinkage (OAS) estimator. Both RBLW and OAS estimators

have simple expressions and are easily implemented. Although the two methods

are developed from different persepctives, their structure is identical up to spec-

ified constants. The RBLW estimator provably dominates the LW method for

Gaussian samples. Numerical simulations demonstrate that the OAS approach

can perform even better than RBLW, especially when n is much less than p. We

also demonstrate the performance of these techniques in the context of adaptive

beamforming.

• Chapter III presents a robustfied generalization of the work proposed in Chapter

II, where we extend the Gaussian sample distribution to the family of elliptical

distributions. We start from a classical robust covariance estimator [31], which is

firstly proposed by Tyler and is distribution-free within the family of elliptical

distribution but inapplicable when n < p. Using a shrinkage coefficient, we

regularize Tyler’s fixed point iterations. We prove that, for all n and p, the

proposed fixed point iterations converge to a unique limit regardless of the

initial condition. Next, we propose a simple, closed-form and data dependent

choice for the shrinkage coefficient, which is based on a minimum mean squared

error framework. Simulations demonstrate that the proposed method achieves

low estimation error and is robust to heavy-tailed samples. As a real world
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application we demonstrate the performance of the proposed technique in the

context of activity/intrusion detection using a wireless sensor network.

• In Chapter IV we address covariance estimation of time-varying systems us-

ing lasso type penalties. Specifically we are interested in online algorithms for

streaming data. Instead of solving the covariance matrix directly, we propose to

split the covariance estimation into a set of adaptive regularized regression prob-

lems and develop recursive algorithms for efficient online implementation. We

introduce a recursive adaptive group lasso, as a generalization to the standard

lasso, for real-time penalized least squares regression. At each time index the

proposed algorithm computes an exact update of the optimal `1,∞-penalized re-

cursive least squares (RLS) predictor. We develop an online homotopy method

to reduce the computational complexity. Numerical simulations demonstrate

that the online homotopy method has lower implementation complexity than di-

rect path following algorithms. We finally integrate the adaptive recursive lasso

into online covariance estimation and demonstrate its performance in anomaly

detection for the Abilene Network.

• Chapter V develops stochastic gradient algorithms for adaptive regularized re-

gression problems, as a low cost approximation of the work presented in Chapter

IV. We consider time-varying adaptive regression problems in the stochastic gra-

dient framework and propose a family of Least-Mean-Square (LMS) algorithms

regularized by general convex penalties. We show that with a properly selected

regularization parameter the regularized LMS provably dominates its conven-

tional counterpart in terms of MSE and establish simple and closed-form ex-

pressions for choosing this regularization parameter. The proposed regularized

LMS can be applied to online regression problems with any convex constraints.
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As special examples, we propose sparse and group sparse LMS algorithms for

adaptive sparse regression and demonstrate their performances using numerical

simulations.

• Chapter VI1 introduces an innovative sensing system developed for sub-Nyquist

sampling of sparse spectrum wide-band signals, where structure estimation

of sparse high-dimensional covariance matrices plays an important role. The

system is designed based on recently developed theories of compressive sens-

ing [40, 41] and the board-level prototype supports input signals with 2 GHz

Nyquist rate and 120 MHz spectrum occupancy with arbitrary transmission

frequencies, while the sampling rate is as low as 280 MHz. The key to achieve

sub-Nyquist sampling is the capability to recover a high-dimensional covariance

matrix, where only a small portion of columns and rows are non-zero, from its

low-dimensional random projections. Unlike previous chapters which focus on

methodologies, Chapter VI covers implementation details that are crucial to the

success of the practical system.
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CHAPTER II

Shrinkage Algorithms for Covariance Estimation: Gaussian
Samples

In this chapter we address covariance estimation in the sense of minimum mean-

squared error (MMSE) when the samples are Gaussian distributed. Specifically, we

consider shrinkage methods which are suitable for high dimensional problems with

a small number of samples (large p small n). First, we improve on the Ledoit-Wolf

(LW) method by conditioning on a sufficient statistic. By the Rao-Blackwell theo-

rem, this yields a new estimator called RBLW, whose mean-squared error dominates

that of LW for Gaussian variables. Second, to further reduce the estimation error, we

propose an iterative approach which approximates the clairvoyant shrinkage estima-

tor. Convergence of this iterative method is established and a closed form expression

for the limit is determined, which is referred to as the oracle approximating shrink-

age (OAS) estimator. Both RBLW and OAS estimators have simple expressions and

are easily implemented. Although the two methods are developed from different per-

spectives, their structure is identical up to specified constants. The RBLW estimator

provably dominates the LW method for Gaussian samples. Numerical simulations

demonstrate that the OAS approach can perform even better than RBLW, especially

when n is much less than p. We also demonstrate the performance of these techniques

in the context of adaptive beamforming.

11
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2.1 Introduction

Covariance matrix estimation is a fundamental problem in signal processing and

related fields. Many applications varying from array processing [42] to functional

genomics [10] rely on accurately estimated covariance matrices. In recent years,

estimation of high dimensional p×p covariance matrices under small sample size n has

attracted considerable interest. Examples include classification on gene expression

from microarray data [10], financial forecasting [43, 44], spectroscopic imaging [45],

brain activation mapping from fMRI [9] and many others. Standard estimation

methods perform poorly in these large p small n settings. This is the main motivation

for this work.

The sample covariance is a common estimate for the unknown covariance matrix.

When it is invertible, the sample covariance coincides with the classical maximum

likelihood estimate. However, while it is an unbiased estimator, it does not minimize

the mean-squared error (MSE). Indeed, Stein demonstrated that superior perfor-

mance may be obtained by shrinking the sample covariance [13, 14]. Since then,

many shrinkage estimators have been proposed under different performance mea-

sures. For example, Haff [15] introduced an estimator inspired by the empirical

Bayes approach. Dey and Srinivasan [16] derived a minimax estimator under Stein’s

entropy loss function. These works addressed the case of invertible sample covariance

when n ≥ p. Recently, Ledoit and Wolf (LW) proposed a shrinkage estimator for the

case n < p which asymptotically minimizes the MSE [17]. The LW estimator is well

conditioned for small sample sizes and can thus be applied to high dimensional prob-

lems. In contrast to previous approaches, they show that performance advantages

are distribution-free and not restricted to Gaussian assumptions.
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In this chapter, we show that the LW estimator can be significantly improved

when the samples are in fact Gaussian. Specifically, we develop two new estimation

techniques that result from different considerations. The first follows from the Rao-

Blackwell theorem, while the second is an application of the ideas of [46] to covariance

estimation.

We begin by providing a closed form expression for the optimal clairvoyant shrink-

age estimator under an MSE loss criteria. This estimator is an explicit function of

the unknown covariance matrix that can be used as an oracle performance bound.

Our first estimator is obtained by applying the well-known Rao-Blackwell theorem

[47] to the LW method, and is therefore denoted by RBLW. Using several nontrivial

Haar integral computations, we obtain a simple closed form solution which prov-

ably dominates the LW method in terms of MSE. We then introduce an iterative

shrinkage estimator which tries to approximate the oracle. This approach follows the

methodology developed in [46] for the case of linear regression. Beginning with an

initial naive choice, each iteration is defined as the oracle solution when the unknown

covariance is replaced by its estimate obtained in the previous iteration. Remarkably,

a closed form expression can be determined for the limit of these iterations. We refer

to the limit as the oracle approximating shrinkage (OAS) estimator.

The OAS and RBLW solutions have similar structure that is related to a sphericity

test as discussed in [48, 49, 50]. Both OAS and RBLW estimators are intuitive, easy

to compute and perform well with finite sample size. The RBLW technique provably

dominates LW. Numerical results demonstrate that for small sample sizes, the OAS

estimator is superior to both the RBLW and the LW methods.

To illustrate the proposed covariance estimators we apply them to problems of

time series analysis and array signal processing. Specifically, in the context of time
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series analysis we establish performance advantages of OAS and RBLW to LW for

covariance estimation in autoregressive models and in fractional Brownian motion

models, respectively. In the context of beamforming, we show that RBLW and OAS

can be used to significantly improve the Capon beamformer. In [42] a multitude

of covariance matrix estimators were implemented in Capon beamformers, and the

authors reported that the LW approach substantially improves performance as com-

pared to other methods. We show here that even better performance can be achieved

by using the techniques introduced in this work.

Finally, we would like to point out that the performance gain achieved in the pro-

posed estimators is only guaranteed when the samples are approximately Gaussian

distributed. Although this is a common assumption in signal processing, when the

sample distribution is far from Gaussian the proposed estimators may not perform

as well as the LW estimator. The discussion of non-Gaussian shrinkage estimator

will be continued in the following chapter.

The chapter is organized as follows. Section 2.2 formulates the problem. Section

2.3 introduces the oracle estimator together with the RBLW and OAS methods. Sec-

tion 2.4 represents numerical simulation results and applications in adaptive beam-

forming. Section 2.5 summarizes our principal conclusions. The proofs of theorems

and lemmas are provided in the Appendix.

Notation: In the following, we depict vectors in lowercase boldface letters and

matrices in uppercase boldface letters. (·)T and (·)H denote the transpose and the

conjugate transpose, respectively. Tr (·), ‖·‖F , and det (·) are the trace, the Frobenius

norm, and the determinant of a matrix, respectively. Finally, A ≺ B means that

the matrix B −A is positive definite, and A � B means that the matrix A −B is

positive definite.
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2.2 Problem formulation

Let {xi}ni=1 be a sample of independent identical distributed (i.i.d.) p-dimensional

Gaussian vectors with zero mean and covariance Σ. We do not assume n ≥ p. Our

goal is to find an estimator Σ̂ ({xi}ni=1) which minimizes the MSE:

(2.1) E

{∥∥∥Σ̂ ({xi}ni=1)−Σ
∥∥∥2

F

}
.

It is difficult to compute the MSE of Σ̂ ({xi}ni=1) without additional constraints

and therefore we restrict ourselves to a specific class of estimators that employ shrink-

age [13, 17]. The unstructured classical estimator of Σ is the sample covariance Ŝ

defined as

(2.2) Ŝ =
1

n

n∑
i=1

xix
T
i .

This estimator is unbiased E{Ŝ} = Σ, and is also the maximum likelihood solution if

n ≥ p. However, it does not necessarily achieve low MSE due to its high variance and

is usually ill-conditioned for large p problems. On the other hand, we may consider

a naive but most well-conditioned estimate for Σ:

(2.3) F̂ =
Tr
(
Ŝ
)

p
I.

This “structured” estimate will result in reduced variance with the expense of in-

creasing the bias. A reasonable tradeoff between low bias and low variance is achieved

by shrinkage of Ŝ towards F̂, resulting in the following class of estimators:

(2.4) Σ̂ = (1− ρ̂)Ŝ + ρ̂F̂.

The estimator Σ̂ is characterized by the shrinkage coefficient ρ̂, which is a parameter

between 0 and 1 and can be a function of the observations {xi}ni=1. The matrix F̂ is

referred to as the shrinkage target.1

1The convex combination in (2.4) can be generalized to the linear combination of Ŝ and F̂. The reader is referred
to [51] for further discussion.
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Throughout this chapter, we restrict our attention to shrinkage estimates of the

form (2.4). Our goal is to find a shrinkage coefficient ρ̂ that minimizes the MSE

(2.1). As we show in the next section, the optimal ρ̂ minimizing the MSE depends in

general on the unknown Σ and therefore in general cannot be implemented. Instead,

we propose two different approaches to approximate the optimal shrinkage coefficient.

2.3 Shrinkage algorithms

2.3.1 The Oracle estimator

We begin by deriving a clairvoyant oracle estimator that uses an optimal nonran-

dom coefficient to minimize the mean-squared error. In the following subsections we

will show how to approximate the oracle using implementable data-driven methods.

The oracle estimate Σ̂O is the solution to

(2.5)
min
ρ

E

{∥∥∥Σ̂O −Σ
∥∥∥2

F

}
s.t. Σ̂O = (1− ρ) Ŝ + ρF̂

.

The optimal parameter ρO is provided in the following theorem.

Theorem II.1. Let Ŝ be the sample covariance of a set of p-dimensional vectors

{xi}ni=1. If {xi}ni=1 are i.i.d. Gaussian vectors with covariance Σ, then the solution

to (2.5) is

ρO =
E
{

Tr
((

Σ− Ŝ
)(

F̂− Ŝ
))}

E

{∥∥∥Ŝ− F̂
∥∥∥2

F

}(2.6)

=
(1− 2/p) Tr (Σ2) + Tr2 (Σ)

(n+ 1− 2/p)Tr(Σ2) + (1− n/p) Tr2(Σ)
.(2.7)

Proof. Equation (2.6) was established in [17] for any distribution of {xi}ni=1. Under

the additional Gaussian assumption, (2.7) can be obtained from straightforward
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evaluation of the expectations:

(2.8)

E
{

Tr
((

Σ− Ŝ
)(

F̂− Ŝ
))}

=
Tr (Σ)

p
E
{

Tr
(
Ŝ
)}

−
E
{

Tr2
(
Ŝ
)}

p
− E

{
Tr
(
ΣŜ
)}

+ E
{

Tr
(
Ŝ2
)}

,

and

(2.9)

E

{∥∥∥Ŝ− F̂
∥∥∥2

F

}
= E

{
Tr
(
Ŝ2
)}
− 2E

{
Tr
(
ŜF̂
)}

+ E
{

Tr
(
F̂2
)}

= E
{

Tr
(
Ŝ2
)}
−
E
{

Tr2
(
Ŝ
)}

p
.

Equation (2.7) is a result of using the following identities [52]:

(2.10) E
{

Tr
(
Ŝ
)}

= Tr (Σ) ,

(2.11) E
{

Tr
(
Ŝ2
)}

=
n+ 1

n
Tr
(
Σ2
)

+
1

n
Tr2 (Σ) ,

and

(2.12) E
{

Tr2
(
Ŝ
)}

= Tr2 (Σ) +
2

n
Tr
(
Σ2
)
.

Note that (2.6) specifies the optimal shrinkage coefficient for any sample distri-

bution while (2.7) only holds for the Gaussian distribution. It can be shown that

expression (2.7) will be a close approximation to (6) when the the sample distribution

is close to the Gaussian distribution in variational norm.

2.3.2 The Rao-Blackwell Ledoit-Wolf (RBLW) estimator

The oracle estimator defined by (2.5) is optimal but cannot be implemented,

since the solution specified by both (2.6) and (2.7) depends on the unknown Σ.
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Without any knowledge of the sample distribution, Ledoit and Wolf [17] proposed

to approximate the oracle using the following consistent estimate of (2.6):

(2.13) ρ̂LW =

n∑
i=1

∥∥∥xixTi − Ŝ
∥∥∥2

F

n2
[
Tr
(
Ŝ2
)
− Tr2

(
Ŝ
)
/p
] .

They then proved that when both n, p → ∞ and p/n → c, 0 < c < ∞, (2.13)

converges to (2.6) in probability regardless of the sample distribution. The LW

estimator Σ̂LW is then defined by plugging ρ̂LW into (2.4). In [17] Ledoit and Wolf

also showed that the optimal ρO (2.6) is always between 0 and 1. To further improve

the performance, they suggested using a modified shrinkage parameter

(2.14) ρ̂∗LW = min (ρ̂LW , 1)

instead of ρ̂LW .

The Rao-Blackwell LW (RBLW) estimator described below provably improves on

the LW method under the Gaussian model. The motivation for the RBLW originates

from the fact that under the Gaussian assumption on {xi}ni=1, a sufficient statistic for

estimating Σ is the sample covariance Ŝ. Intuitively, the LW estimator is a function

of not only Ŝ but other statistics and therefore, by the Rao-Blackwell theorem, can

be improved. Specifically, the Rao-Blackwell theorem [47] states that if g(X) is an

estimator of a parameter θ, then the conditional expectation of g(X) given T (X),

where T is a sufficient statistic, is never worse than the original estimator g(X) under

any convex loss criterion. Applying the Rao-Blackwell theorem to the LW estimator

yields the following result.

Theorem II.2. Let {xi}ni=1 be independent p-dimensional Gaussian vectors with

covariance Σ, and let Ŝ be the sample covariance of {xi}ni=1. The conditioned expec-
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tation of the LW covariance estimator is

Σ̂RBLW = E
[
Σ̂LW

∣∣∣Ŝ](2.15)

= (1− ρ̂RBLW )Ŝ + ρ̂RBLW F̂(2.16)

where

(2.17) ρ̂RBLW =
(n− 2)/n · Tr

(
Ŝ2
)

+ Tr2
(
Ŝ
)

(n+ 2)
[
Tr
(
Ŝ2
)
− Tr2

(
Ŝ
)
/p
] .

This estimator satisfies

(2.18) E

{∥∥∥Σ̂RBLW −Σ
∥∥∥2

F

}
≤ E

{∥∥∥Σ̂LW −Σ
∥∥∥2

F

}
,

for every Σ.

The proof of Theorem II.2 is given in the Appendix.

Similarly to the LW estimator, we propose the modification

(2.19) ρ̂∗RBLW = min (ρ̂RBLW , 1)

instead of ρ̂RBLW .

2.3.3 The Oracle-Approximating Shrinkage (OAS) estimator

The basic idea of the LW estimator is to asymptotically approximate the oracle,

which is designed for large sample size. For a large number of samples the LW

asymptotically achieves the minimum MSE with respect to shrinkage estimators.

Clearly, the RBLW also inherits this property. However, for very small n, which is

often the case of interest, there is no guarantee that such optimality still holds. To

illustrate this point, consider the extreme example when only one sample is available.

For n = 1 we have both ρ̂∗LW = 1 and ρ̂∗RBLW = 1, which indicates that Σ̂LW =

Σ̂RBLW = Ŝ. This however contradicts our expectations since if a single sample is
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available, it is more reasonable to expect more confidence to be put on the more

parsimonious F̂ rather than Ŝ.

In this section, we aim at developing a new estimation method which can ap-

proximate the oracle for finite n. Rather than employing asymptotic solutions we

consider an alternative approach based on [46]. In (2.7), we obtained a closed-form

formula of the oracle estimator under Gaussian assumptions. The idea behind the

OAS is to approximate this oracle via an iterative procedure. We initialize the iter-

ations with an initial guess of Σ and iteratively refine it. The initial guess Σ̂0 might

be the sample covariance, the RBLW estimate or any other symmetric non-negative

definite estimator. We replace Σ in the oracle solution by Σ̂0 yielding Σ̂1, which in

turn generates Σ̂2 through our proposed iteration. The iteration process is continued

until convergence. The limit, denoted as Σ̂OAS, is the OAS solution. Specifically,

the proposed iteration is,

ρ̂j+1 =
(1− 2/p)Tr

(
Σ̂jŜ

)
+ Tr2

(
Σ̂j

)
(n+ 1− 2/p)Tr

(
Σ̂jŜ

)
+ (1− n/p) Tr2

(
Σ̂j

) ,(2.20)

Σ̂j+1 = (1− ρ̂j+1)Ŝ + ρ̂j+1F̂.(2.21)

Comparing with (2.7), notice that in (2.20) Tr(Σ) and Tr(Σ2) are replaced by Tr(Σ̂j)

and Tr(Σ̂jŜ), respectively. Here Tr(Σ̂jŜ) is used instead of Tr(Σ̂2
j) since the latter

would always force ρ̂j to converge to 1 while the former leads to a more meaningful

limiting value.

Theorem II.3. For any initial guess ρ̂0 that is between 0 and 1, the iterations

specified by (2.20), (2.21) converge as j →∞ to the following estimate:

Σ̂OAS = (1− ρ̂∗OAS)Ŝ + ρ̂∗OASF̂,(2.22)
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where

(2.23) ρ̂∗OAS = min

 (1− 2/p)Tr
(
Ŝ2
)

+ Tr2
(
Ŝ
)

(n+ 1− 2/p)
[
Tr
(
Ŝ2
)
− Tr2

(
Ŝ
)
/p
] , 1
 .

In addition, 0 < ρ̂∗OAS ≤ 1.

Proof. Plugging in Σ̂j from (2.21) into (2.20) and simplifying yields

(2.24) ρ̂j+1 =
1− (1− 2/p)φ̂ρ̂j

1 + nφ̂− (n+ 1− 2/p)φ̂ρ̂j
,

where

(2.25) φ̂ =
Tr
(
Ŝ2
)
− Tr2

(
Ŝ
)
/p

Tr
(
Ŝ2
)

+ (1− 2/p) Tr2
(
Ŝ
) .

Since Tr(Ŝ2) ≥ Tr2(Ŝ)/p, 0 ≤ φ̂ < 1.

Next we introduce a new variable

(2.26) b̂j =
1

1− (n+ 1− 2/p)φ̂ρ̂j
.

Then,

(2.27) ρ̂j =
1− b̂−1

j

(n+ 1− 2/p)φ̂
.

Substituting (2.27) to (2.24), after simplification we obtain that

(2.28) 1− b̂−1
j+1 =

nφ̂+ (1− 2/p)φ̂b̂−1
j

nφ̂+ b̂−1
j

,

which leads to the following geometric series

(2.29) b̂j+1 =
nφ̂

1− (1− 2/p)φ̂
b̂j +

1

1− (1− 2/p)φ̂
.

It is easy to see that

(2.30) lim
j→∞

b̂j =


∞, if

nφ̂

1− (1− 2/p)φ̂
≥ 1

1

1− (n+ 1− 2/p)φ̂
, if

nφ̂

1− (1− 2/p)φ̂
< 1

.
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Therefore ρ̂j also converges as j →∞ and ρ̂∗OAS is given by

(2.31) ρ̂∗OAS = lim
j→∞

ρ̂j =


1

(n+ 1− 2/p)φ̂
, if (n+ 1− 2/p)φ̂ > 1

1, if (n+ 1− 2/p)φ̂ ≤ 1

.

We can write (2.31) equivalently as

(2.32) ρ̂∗OAS = min

(
1

(n+ 1− 2/p)φ̂
, 1

)
.

Equation (2.23) is obtained by substituting (2.25) into (2.31).

Note that (2.31) ρ̂∗OAS is naturally bounded within [0, 1]. This is different from

ρ̂∗LW and ρ̂∗RBLW , where the [0, 1] constraint is imposed in an ad hoc fashion. We

also note that the iterative procedure described in (2.20) and (2.21) is only used to

establish the limiting closed form OAS solution. In practice, the OAS estimate is

calculated using (2.22) and (2.23), so that iterations are unnecessary.

2.3.4 Shrinkage and sphericity statistics

We now turn to theoretical comparisons between RBLW and OAS. The only dif-

ference is in their shrinkage coefficients. Although derived from distinct approaches,

it is easy to see that ρ̂∗OAS shares the same structure as ρ̂∗RBLW . In fact, they can

both be expressed as the parameterized function

(2.33) ρ̂∗E = min

(
α +

β

Û
, 1

)
with Û defined as

(2.34) Û =
1

p− 1

p · Tr
(
Ŝ2
)

Tr2
(
Ŝ
) − 1

 .

For ρ̂∗E = ρ̂∗OAS, α and β of (2.33) are given by

(2.35)

α = αOAS =
1

n+ 1− 2/p

β = βOAS =
p+ 1

(n+ 1− 2/p)(p− 1)

,
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while for ρ̂∗E = ρ̂∗RBLW :

(2.36)

α = αRBLW =
n− 2

n(n+ 2)

β = βRBLW =
(p+ 1)n− 2

n(n+ 2)(p− 1)

.

Thus the only difference between ρ̂∗OAS and ρ̂∗RBLW is the choice of α and β. The

statistic Û arises in tests of sphericity of Σ [49, 50], i.e., testing whether or not Σ is

a scaled identity matrix. In particular, Û is the locally most powerful invariant test

statistic for sphericity under orthogonal transformations [48]. The smaller the value

of Û , the more likely that Σ is proportional to an identity matrix I. Similarly, in

our shrinkage algorithms, the smaller the value of Û , the more shrinkage occurs in

Σ̂OAS and Σ̂RBLW .

Under the following asymptotic conditions [17]:

(2.37) n→∞, p→∞, and
p

n
→ constant,

OAS and RBLW are equivalent, since ρ̂∗OAS and ρ̂∗RBLW converge to each other. In

[17] the authors have proved that the LW estimator is asymptotically optimal under

condition (2.37). Note that RBLW dominates LW for Gaussian samples. Therefore,

RBLW, OAS and LW are asymptotically equivalent to each other when the samples

are Gaussian.

It is also important to note that while RBLW and OAS share the same structure

and are asymptotically equivalent, their finite sample performance may be entirely

different, especially when n is small. For example, in the extreme case that only one

sample is available, ρ̂∗OAS = 1 while ρ̂∗RBLW = 0, regardless of the value of the sample.

This observation will be further explored in the numerical simulations below.



24

2.4 Numerical Simulations

In this section we implement and test the proposed covariance estimators. We

first compare the estimated MSE of the RBLW and OAS techniques with the LW

method. We then consider their application to the problem of adaptive beamforming,

and show that they lead to improved performance of Capon beamformers.

2.4.1 MSE Comparison

To test the MSE of the covariance estimators we designed two sets of experiments

with different shapes of Σ. Such covariance matrices have been used to study covari-

ance estimators in [25]. We use (2.14), (2.19) and (2.23) to calculate the shrinkage

coefficients for the LW, the RBLW and the OAS estimators. For comparison, the

oracle estimator (2.5) uses the true Σ and is included as a benchmark lower bound

on MSE for comparison. For all simulations, we set p = 100 and let n range from

6 to 30. Each simulation is repeated 5000 times and the MSE and shrinkage coeffi-

cients are plotted as a function of n. The 95% confidence intervals of the MSE and

shrinkage coefficients were found to be smaller than the marker size and are omitted

in the figures.

In the first experiment, an autoregressive covariance structured Σ is used. We let

Σ be the covariance matrix of a Gaussian AR(1) process,

(2.38) Σij = r|i−j|,

where Σij denotes the entry of Σ in row i and column j. We take r = 0.1, 0.5 and 0.9

for the different simulations reported below. Figs. 2.1(a)-2.3(a) show the MSE of

the estimators for different values of r. Figs. 2.1(b)-2.3(b) show the corresponding

shrinkage coefficients.
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In Fig. 2.4 we plot the MSE of the first three iterations obtained by the iterative

procedure in (2.21) and (2.20). For comparison we also plot the results of the OAS

and the oracle estimator. We set r = 0.5 in this example and start the iterations

with the initial guess Σ̂0 = Ŝ. From Fig. 2.4 it can be seen that as the iterations

proceed, the MSE gradually decreases towards that of the OAS estimator, which is

very close to that of the oracle.

(a) MSE

(b) Shrinkage coefficients

Figure 2.1: AR(1) process: Comparison of covariance estimators when p = 100, r = 0.1.

In the second experiment, we set Σ as the covariance matrix associated with

the increment process of fractional Brownian motion (FBM) exhibiting long-range

dependence. Such processes are often used to model internet traffic [53] and other
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(a) MSE

(b) Shrinkage coefficients

Figure 2.2: AR(1) process: Comparison of covariance estimators when p = 100, r = 0.5.
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(a) MSE

(b) Shrinkage coefficients

Figure 2.3: AR(1) process: Comparison of covariance estimators when p = 100, r = 0.9.

Figure 2.4: AR(1) process: Comparison of MSE in different iterations, when p = 100, r = 0.5
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(a) MSE

(b) Shrinkage coefficients

Figure 2.5: Incremental FBM process: Comparison of covariance estimators when p = 100, h = 0.6.
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(a) MSE

(b) Shrinkage coefficients

Figure 2.6: Incremental FBM process: Comparison of covariance estimators when p = 100, h = 0.7.
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(a) MSE

(b) Shrinkage coefficients

Figure 2.7: Incremental FBM process: Comparison of covariance estimators when p = 100, h = 0.8.
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complex phenomena. The form of the covariance matrix is given by

(2.39) Σij =
1

2

[
(|i− j|+ 1)2h − 2|i− j|2h + (|i− j| − 1)2h

]
,

where h ∈ [0.5, 1] is the so-called Hurst parameter. The typical value of h is below

0.9 in practical applications. We choose h equal to 0.6, 0.7 and 0.8. The MSE

and shrinkage coefficients are plotted in Figs. 2.5(a)-2.7(a) and Figs. 2.5(b)-2.7(b),

respectively.

From the simulation results in the above two experiments, it is evident that the

OAS estimator performs very closely to the ideal oracle estimator. When n is small,

the OAS significantly outperforms the LW and the RBLW. The RBLW improves

slightly upon the LW, but this is not obvious at the scale of the plots shown in

the figures. As expected, all the estimators converge to a common value when n

increases.

As indicated in (2.5) and shown from simulation results, the oracle shrinkage

coefficient ρO decreases in the sample number n. This makes sense since (1 − ρO)

can be regarded as a measure of “confidence” assigned to Ŝ. Intuitively, as more

observations are available, one acquires higher confidence in the sample covariance

Ŝ and therefore ρO decreases. This characteristic is exhibited by ρ̂∗OAS but not by

ρ̂∗RBLW and ρ̂∗LW . This may partially explain why OAS outperforms RBLW and LW

for small samples.

It can be shown that all the estimators perform better when the sphericity of Σ

increases, corresponding to small values of r and h. Indeed, the eigenvalues of Σ are

more dispersed as r and h increases. As the dispersion of the eigenvalues is inversely

related to the sphericity, larger sphericity in Σ indicates that better performance can

be obtained by shrinking the sample covariance towards identity.

Our experience through numerous simulations with arbitrary parameters suggests
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Table 2.1: Incremental FRM process: comparison of MSE and shrinkage coefficients when h =
0.9, n = 20, p = 100.

MSE Shrinkage coefficient
Oracle 428.9972 0.2675
OAS 475.2691 0.3043

RBLW 472.8206 0.2856
LW 475.5840 0.2867

that in practice the OAS is preferable to the RBLW. However, as the RBLW is

provably better than the LW there exists counter examples. For the incremental

FBM covariance Σ in (2.39), we set h = 0.9, n = 20, p = 100. The simulation is

repeated for 5000 times and the result is shown in Table 1, where MSE(Σ̂RBLW ) <

MSE(Σ̂OAS) < MSE(Σ̂LW ). The differences are very small but establish that the

OAS estimator does not always dominate the RBLW. However, we suspect that this

will only occur when Σ has a very small sphericity, a case of less interest in practice

as small sphericity of Σ would suggest a different shrinkage target than F̂.

Finally, we would like to point out that there is no free lunch. The superiority

of the RBLW and OAS methods over the LW is only guaranteed when the samples

are truly Gaussian. When the Gaussian assumption does not hold, RBLW and OAS

may perform worse than LW. We performed an experiment (data not shown) with

a heavy tailed (multivariate Student-T) sample distribution that tends to produce

outliers. We observed that the RBLW no longer dominates the LW, due to outliers

in the data, and the OAS outperforms the LW only when n < 10. Thus outlier

resistant modifications of OAS and RBLW are a worthy topic of investigation.

2.4.2 Application to the Capon beamformer

Next we applied the proposed shrinkage estimators to the signal processing prob-

lem of adaptive beamforming. Assume that a narrow-band signal of interest s(t)

impinges on an unperturbed uniform linear array (ULA) [54] comprised of p sensors.
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The complex valued vector of n snapshots of the array output is

(2.40) x(t) = a(θs)s(t) + n(t), for t = 1, . . . , n,

where θs is parameter vector determining the location of the signal source and a(θ)

is the array response for a generic source location θ. Specifically,

(2.41) a(θ) = [1, e−jω, e−j2ω, . . . , e−j(p−1)ω]T ,

where ω is the spatial frequency. The noise/interference vector n(t) is assumed to be

zero mean i.i.d. Gaussian distributed. We model the unknown s(t) as a zero mean

i.i.d. Gaussian process.

In order to recover the unknown s(t) the Capon beamformer [54] linearly combines

the array output x(t) using a vector of weights w, calculated by

(2.42) w =
Σ−1a(θs)

a(θs)HΣ−1a(θs)
,

where Σ is the covariance of x(t). The covariance Σ is unknown while the array re-

sponse a(θ) and the source direction-of-arrival (DOA) θs are known. After obtaining

the weight vector w, the signal of interest s(t) is estimated by wHx(t).

To implement (2.42) the matrix Σ needs to be estimated. In [42] it was shown that

using the LW estimator could substantially improve Capon beamformer performance

over conventional methods. As we will see below, the OAS and the RBLW shrinkage

estimators can yield even better results.

Note that the signal and the noise processes are complex valued and Σ is thus a

complex (Hermitian symmetric) covariance matrix. To apply the OAS and RBLW

estimators we use the same approach as used in [42] to extend the real LW covariance

estimator to the complex case. Given a p×1 complex random vector x, we represent
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it as a 2p× 1 vector of its real and imaginary parts

(2.43) xs =

Re (x)

Im (x)

 .

Then the estimate of the complex covariance can be represented as

(2.44) Σ̂s =

 Σ̂rr Σ̂ri

Σ̂ir Σ̂ii


where Σ̂rr, Σ̂ri, Σ̂ir and Σ̂ii are p × p sub-matrices. The real representation (2.44)

can be mapped to the full complex covariance matrix Σ as

(2.45) Σ̂ =
(
Σ̂rr + Σ̂ii

)
+ j

(
Σ̂ir − Σ̂ri

)
.

Using this representation we can easily extend the real valued LW, RBLW and OAS

estimators to complex scenarios. As pointed in [42], this approach does not preserve

the circular property of Σ̂s, i.e., ,

(2.46) Σ̂rr = Σ̂ii, Σ̂ri = −Σ̂ir.

We note that exploiting the circular property in Σ̂s would yield better estimators for

complex covariance matrices. For purposes of this simple illustration we implement

the simple methodology described above for a beamforming problem.

We conduct the beamforming simulation as follows. A ULA of p = 10 sensor

elements with half wavelength spacing is assumed and three signals were simulated

as impinging on the array. The signal of interest has a DOA θs = 20◦ and a power

σ2
s = 10 dB above the complex Gaussian sensor noise. The other two signals are

mutually independent interferences. One is at DOA angle of θi1 = −30◦ and the

other one is close to the source of interest with its angular location corresponding to

a spatial frequency of

ωi2 = π sin(θs) + 2π
γ

p
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Figure 2.8: Comparison between different covariance shrinkage estimators in the Capon beam-
former. SINR is plotted versus number of snapshots n. OAS achieves as much as
1 dB improvement over the LW.

where γ is set to 0.9. Each signal has power 15 dB above the sensor noise.

We implemented the complex versions of the LW, the RBLW and the OAS co-

variance estimators, described above, and used them in place of Σ in the Capon

beamformer expression (2.42). The beamforming performance gain is measured by

the SINR defined as [42]

(2.47) mean SINR =
1

K

K∑
k=1

σ2
s

∣∣ŵH
k a (θs)

∣∣2
ŵH
k [Σ− σ2

sa(θs)a(θs)H ]ŵk

,

where K is the number of Monte-Carlo simulations and ŵk is the weight vector

obtained by (2.42) in the kth simulation. Here K = 5000 and n varies from 10 to 60

in step of 5 snap shots. The gain is shown in Fig. 2.8. In [42] it was reported that

the LW estimator achieves the best SINR performances among several contemporary

Capon-type beamformers. It can be seen in Fig. 2.8 that the RBLW and the OAS

do even better, improving upon the LW estimator. Note also that the greatest

improvement for OAS in the small n regime is observed.
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2.5 Conclusion

In this work we introduced two new shrinkage algorithms to estimate covari-

ance matrices when the samples are Gaussian distributed. The RBLW estimator

was shown to improve upon the state-of-the-art LW method by virtue of the Rao-

Blackwell theorem. The OAS estimator was developed by iterating on the optimal

oracle estimate, where the limiting form was determined analytically. The RBLW

provably dominates the LW, and the OAS empirically outperforms both the RBLW

and the LW in most experiments we have conducted. The proposed OAS and RBLW

estimators have simple explicit expressions and are easy to implement. Furthermore,

they share similar structure differing only in the form of the shrinkage coefficients.

We applied these estimators to the Capon beamformer and obtained significant gains

in performance as compared to the LW Capon beamformer implementation.

Another important direction is to explore the outlier resistant modifications to

the OAS and RBLW estimators presented here. We will investigate more robust

shrinkage estimators in the next chapter.

2.6 Appendix

In this appendix we prove Theorem II.2. Theorem II.2 is non-trivial and requires

careful treatment using results from the theory of Haar measure and singular Wishart

distributions. The proof will require several intermediate results stated as lemmas.

We begin with a definition.

Definition II.4. Let {xi}ni=1 be a sample of p-dimensional i.i.d. Gaussian vectors

with mean zero and covariance Σ. Define a p× n matrix X as

(2.48) X = (x1,x2, . . . ,xn) .
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Denote r = min(p, n) and define the singular value decomposition on X as

(2.49) X = HΛQ,

where H is a p × r matrix such that HTH = I, Λ is a r × r diagonal matrix in

probability 1, comprised of the singular values of X, and Q is a r × n matrix such

that QQT = I.

Next we state and prove three lemmas.

Lemma II.5. Let (H,Λ,Q) be matrices defined in Definition II.4. Then Q is inde-

pendent of H and Λ.

Proof. For the case n ≤ p, H is a p× n matrix, Λ is a n× n square diagonal matrix

and Q is a n× n orthogonal matrix. The pdf of X is

(2.50) p (X) =
1

(2π)pn/2det(Σ)n/2
e−

1
2

Tr(XXT Σ−1).

Since XXT = HΛΛTHT , the joint pdf of (H,Λ,Q) is

(2.51)
p (H,Λ,Q) =

1

(2π)pn/2det(Σ)n/2
e−

1
2

Tr(HΛΛT HT Σ−1)J (X→ H,Λ,Q) ,

where J (X→ H,Λ,Q) is the Jacobian converting from X to (H,Λ,Q). According

to Lemma 2.4 of [55],

(2.52)

J (X→ H,Λ,Q) =

2−ndet(Λ)p−n
n∏
j<k

(
λ2
j − λ2

k

)
gn,p (H) gn,n (Q) ,

where λj denotes the j-th diagonal element of Λ and gn,p(H) and gn,n(Q) are func-

tions of H and Q defined in [55].

Substituting (2.52) into (2.51), p (H,Λ,Q) can be factorized into functions of

(H,Λ) and Q. Therefore, Q is independent of H and Λ.

Similarly, one can show that Q is independent of H and Λ when n > p.
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Lemma II.6. Let Q be a matrix defined in Definition II.4. Denote q as an arbitrary

column vector of Q and qj as the j-th element of q. Then

(2.53) E
{
q4
j

}
=

3

n(n+ 2)

and

(2.54) E
{
q2
kq

2
j

}
=

1

n(n+ 2)
, k 6= j.

Proof. The proof is different for the cases that n ≤ p and n > p, which are treated

separately.

(1) Case n ≤ p:

In this case, Q is a real Haar matrix and is isotropically distributed [56, 57, 58], i.e.,

for any orthogonal matrices Φ and Ψ which are independent with Q, ΦQ and QΨ

have the same pdf of Q:

(2.55) p(ΦQ) = p(QΨ) = p(Q).

Following [59] in the complex case, we now use (2.55) to calculate the fourth order

moments of elements of Q. Since Q and

cos θ sin θ

− sin θ cos θ

1

. . .

1


Q
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are also identically distributed, we have

(2.56)

E
{
Q4

11

}
= E

{
(Q11 cos θ + Q21 sin θ)4}

= cos4 θE
{
Q4

11

}
+ sin4 θE

{
Q21

4
}

+ 6 cos2 θ sin2 θE
{
Q2

11Q
2
21

}
+ 2 cos3 θ sin θE

{
Q3

11Q21

}
+ 2 cos θ sin3 θE

{
Q11Q

3
21

}
By taking θ = −θ in (2.56), it is easy to see that

2 cos3 θ sin θE
{
Q3

11Q21

}
+ 2 cos θ sin3 θE

{
Q11Q

3
21

}
= 0.

The elements of [Qii] are identically distributed. We thus have E {Q4
11} =

E
{
Q21

4
}

, and hence

(2.57)
E
{
Q4

11

}
=
(
cos4 θ + sin4 θ

)
E
{
Q4

11

}
+ 6 cos2 θ sin2 θE

{
Q2

11Q
2
21

}
.

By taking θ = π/3,

(2.58) E
{
Q4

11

}
= 3E

{
Q2

11Q
2
21

}
.

Now we consider E

{(∑n
j=1 Q2

j1

)2
}

. Since QTQ = QQT = I,
n∑
j=1

Q2
j1 = 1. This

implies

(2.59)

1 =
n∑
j=1

E
{
Q4
j1

}
+
∑
j 6=k

E
{
Q2
j1Q

2
k1

}
= nE

{
Q4

11

}
+ n(n− 1)E

{
Q2

11Q
2
21

}
.

Substituting (2.58) into (2.59), we obtain that

(2.60) E
{
Q4

11

}
=

3

n(n+ 2)
,
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and

(2.61) E
{
Q2

11Q
2
21

}
=

1

n(n+ 2)
.

It is easy to see that E
{
q4
j

}
= E {Q4

11} and E
{
q2
j q

2
k

}
= E {Q2

11Q
2
21}. Therefore

(2.53) and (2.54) are proved for the case of n ≤ p.

(2) Case n > p:

The pdf of q can be obtained by Lemma 2.2 of [55]

(2.62) p(q) = C1det
(
I− qqT

)(n−p−2)/2
I(qqT ≺ I),

where

(2.63) C1 =
π−p/2Γ{n/2}
Γ{(n− p)/2} ,

and I (·) is the indicator function specifying the support of q. Eq. (2.62) indicates

that the elements of q are identically distributed. Therefore, E
{
q4
j

}
= E [q4

1} and

E
{
q2
j q

2
k

}
= E {q2

1q
2
2}. By the definition of expectation,

(2.64) E
{
q4

1

}
= C1

∫
qqT≺I

q4
1det

(
I− qqT

)(n−p−2)/2
dq,

and

(2.65) E
{
q2

1q
2
2

}
= C1

∫
qqT≺I

q2
1q

2
2det

(
I− qqT

)(n−p−2)/2
dq.

Noting that

(2.66) qqT ≺ I⇔ qTq < 1

and

(2.67) det
(
I− qqT

)
= 1− qTq,
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we have

E
{
q4

1

}
= C1

∫
qT q<1

q4
1(1− qTq)

1
2

(n−p−2)dq

= C1

∫
p∑

j=1
q2j<1

q4
1

(
1−

p∑
j=1

q2
j

) 1
2

(n−p−2)

dq1 . . . dqp.

(2.68)

By changing variable of integration (q1, q2, · · · , qp) to (r, θ1, θ2, · · · , θp−1) such that

(2.69)



q1 = r cos θ1

q2 = r sin θ1 cos θ2

q3 = r sin θ1 sin θ2 cos θ3

...
...

qp−1 = r sin θ1 sin θ2 · · · sin θp−2 cos θp−1

qp = r sin θ1 sin θ2 · · · sin θp−2 sin θp−1

,

we obtain

(2.70)

E
{
q4

1

}
= C1

∫ π

0

dθ1

∫ π

0

dθ2 · · ·
∫ π

0

dθp−2

∫ 2π

0

dθp−1

·
∫ 1

0

r4 cos4 θ1

(
1− r2

) 1
2

(n−p−2)

∣∣∣∣ ∂ (q1, · · · , qp)
∂ (r, θ1, · · · , θp−1)

∣∣∣∣ dr,
where ∣∣∣∣ ∂ (q1, · · · , qp)

∂ (r, θ1, · · · , θp−1)

∣∣∣∣ = rp−1 sinp−2 θ1 sinp−3 θ2 · · · sin θp−2

is the Jacobian associated with the change of variable.
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Therefore,

(2.71)

E
{
q4

1

}
= C1 ·

∫ π

0

cos4 θ1 sinp−2 θ1dθ1 ·
∫ π

0

sinp−3 θ2dθ2

·
∫ π

0

sinp−4 θ3dθ3 · · ·
∫ π

0

sin θp−2dθp−2

∫ 2π

0

dθp−1

·
∫ 1

0

rp+3
(
1− r2

) 1
2

(n−p−2)
dr

=
π−p/2Γ{n/2}
Γ{(n− p)/2} ·

3π
1
2

4

Γ{(p− 1)/2}
Γ{(p+ 4)/2} · π

1
2

Γ{(p− 2)/2}
Γ{(p− 1)/2}

· π 1
2

Γ{(p− 3)/2}
Γ{(p− 2)/2} · · · π

1
2

Γ{3/2}
Γ{5/2} · π

1
2

Γ{1}
Γ{3/2} · 2π

·
∫ 1

0

rp+3
(
1− r2

) 1
2

(n−p−2)
dr

=
3

2

Γ{n/2}
Γ{(n− p)/2}Γ{p/2 + 2}

∫ 1

0

rp+3
(
1− r2

) 1
2

(n−p−2)
dr

=
3

2

Γ{n/2}
Γ{(n− p)/2}Γ{p/2 + 2} ·

1

2

Γ{(n− p)/2}Γ{p/2 + 2}
Γ{n/2 + 2}

=
3Γ{n/2}

4Γ{n/2 + 2}

=
3

n(n+ 2)
.
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Similarly,

(2.72)

E
{
q2

1q
2
2

}
= C1

∫
p∑

k=1
q2k<1

q2
1q

2
2

(
1−

p∑
k=1

q2
k

) 1
2

(n−p−2)

dq1 . . . dqp

= C1

∫ π

0

dθ1

∫ π

0

dθ2 · · ·
∫ π

0

dθp−2

∫ 2π

0

dθp−1

·
∫ 1

0

r2cos2 θ1r
2 sin2 θ1cos2 θ2

(
1− r2

) 1
2

(n−p−2)

·
∣∣∣∣ ∂ (q1, · · · , qp)
∂ (r, θ1, · · · , θp−1)

∣∣∣∣ dr
= C1 ·

∫ π

0

cos2 θ1 sinp θ1dθ1 ·
∫ π

0

cos2 θ2 sinp−3 θ2dθ2

·
∫ π

0

sinp−4 θ3dθ3 ·
∫ π

0

sinp−5 θ4dθ4 · · ·
∫ π

0

sin θp−2dθp−2

·
∫ 2π

0

dθp−1 ·
∫ 1

0

rp+3
(
1− r2

) 1
2

(n−p−2)
dr

=
π−p/2Γ{n/2}
Γ{(n− p)/2} ·

π
1
2

2

Γ{(p+ 1)/2}
Γ{p/2 + 2} ·

π
1
2

2

Γ{(p− 2)/2}
Γ{(p+ 1)/2}

· π 1
2

Γ{(p− 3)/2}
Γ{(p− 2)/2} · π

1
2

Γ{(p− 4)/2}
Γ{(p− 3)/2} · · · π

1
2

Γ{1}
Γ{3/2}

· 2π · 1

2

Γ{(n− p)/2}Γ{p/2 + 2}
Γ{n/2 + 2}

=
1

n(n+ 2)
.

Therefore, (2.53) and (2.54) are proved for the case when n > p. This completes

the proof of Lemma II.6.

Lemma II.7. Let Ŝ be the sample covariance of a set of p-dimensional vectors

{xi}ni=1. If {xi}ni=1 are i.i.d. Gaussian vectors with covariance Σ,

(2.73) E
{
‖xi‖4

2

∣∣ Ŝ} =
n

n+ 2

[
2Tr(Ŝ2) + Tr2(Ŝ)

]
.

Proof. For simplicity, we work with the scaled covariance matrix M defined as

(2.74) M =
n∑
i=1

xix
T
i = nŜ,
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and calculate E
{
‖xi‖4

2

∣∣M} instead of E
{
‖xi‖4

2

∣∣ Ŝ}. We are then going to prove

that

(2.75) E
{
‖xi‖4

2

∣∣M} =
1

n (n+ 2)

(
2Tr

(
M2
)

+ Tr2 (M)
)
.

We use Lemma II.5 and Lemma II.6 to establish (2.75).

Let X and (H,Λ,Q) be matrices defined in Definition II.4. Let q be the i-th

column of Q defined in Definition II.4. Then

(2.76) xi = HΛq.

Let

(2.77) D = Λ2.

Then

(2.78) M = XXT = HΛ2HT = HDHT ,

and

(2.79) xTi xi = qTΛTHTHΛq = qTDq.

Therefore we have

(2.80) E
{
‖xi‖4

2

∣∣M} = E
{(

qTDq
)2
∣∣∣M} .

According to Lemma II.5, Q is independent of H and Λ. Since q is a function of Q,

M and D are functions of H and Λ, q is independent of M and D.

From the law of total expectation,

(2.81) E
{(

qTDq
)2
∣∣∣M} = E

{
E
{(

qTDq
)2
∣∣∣M,D

}∣∣∣M} .
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Expand qTDq as

(2.82) qTDq =
n∑
j=1

djq
2
j ,

where dj is the j-th diagonal element of D. Since q is independent of M and D,

according to Lemma II.6,

(2.83)

E
{(

qTDq
)2
∣∣∣M,D

}
= E

{
n∑
j=1

d2
jq

4
j +

∑
j 6=k

djdkq
2
j q

2
k

∣∣∣∣∣M,D

}

=
n∑
j=1

d2
jE
{
q4
j

}
+
∑
j 6=k

djdkE
{
q2
j q

2
k

}
=

1

n (n+ 2)

(
3

n∑
j=1

d2
j +

∑
j 6=k

djdk

)

=
1

n (n+ 2)

(
2Tr

(
D2
)

+ Tr2 (D)
)
.

Since Tr (D) = Tr (M) and Tr (D2) = Tr (M2), substituting (2.83) into (2.81), we

have

(2.84)

E
{(

qTDq
)2
∣∣∣M}

= E

{
1

n (n+ 2)

(
2Tr

(
D2
)

+ Tr2 (D)
)∣∣∣∣M}

= E

{
1

n (n+ 2)

(
2Tr

(
M2
)

+ Tr2 (M)
)∣∣∣∣M}

=
1

n (n+ 2)

(
2Tr

(
M2
)

+ Tr2 (M)
)
.

Lemma 3 now allows us to prove Theorem II.2.
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2.6.1 Proof of Theorem II.2

Proof.

(2.85)

Σ̂RBLW =E
{

Σ̂LW

∣∣∣ Ŝ}
=E

{
(1− ρ̂LW ) Ŝ + ρ̂LW F̂

∣∣∣ Ŝ}
=
(

1− E
{
ρ̂LW | Ŝ

})
Ŝ + E

{
ρ̂LW F̂

∣∣∣ Ŝ} .
Therefore we obtain the shrinkage coefficient of Σ̂RBLW :

(2.86)

ρ̂RBLW =E
{
ρ̂LW | Ŝ

}

=

n∑
i=1

E

{∥∥∥xixTi − Ŝ
∥∥∥2

F

∣∣∣∣ Ŝ}
n2
[
Tr
(
Ŝ2
)
− Tr2

(
Ŝ
)
/p
] .

Note that

(2.87)

n∑
i=1

E

{∥∥∥xixTi − Ŝ
∥∥∥2

F

∣∣∣∣ Ŝ}
=

n∑
i=1

E
{
‖xi‖4

2

∣∣ Ŝ}− nTr(Ŝ2).

From Lemma II.7, we have

(2.88)

n∑
i=1

E

{∥∥∥xixTi − Ŝ
∥∥∥2

F

∣∣∣∣ Ŝ}
=
n(n− 2)

n+ 2
Tr
(
Ŝ2
)

+
n2

n+ 2
Tr2
(
Ŝ
)
.

Equation (2.17) is then obtained by substituting (2.88) into (2.86).



CHAPTER III

Shrinkage Algorithms for Covariance Estimation: Elliptical
Samples

This chapter addresses high dimensional covariance estimation for elliptical dis-

tributed samples, which are also known as spherically invariant random vectors

(SIRV) or compound-Gaussian processes. Specifically we consider shrinkage meth-

ods that are suitable for high dimensional problems with a small number of samples

(large p small n). We start from a classical robust covariance estimator (Tyler 1987,

[31]), which is distribution-free within the family of elliptical distribution but in-

applicable when n < p. Using a shrinkage coefficient, we regularize Tyler’s fixed

point iterations. We prove that, for all n and p, the proposed fixed point iterations

converge to a unique limit regardless of the initial condition. Next, we propose a

simple, closed-form and data dependent choice for the shrinkage coefficient, which is

based on a minimum mean squared error framework. Simulations demonstrate that

the proposed method achieves low estimation error and is robust to heavy-tailed

samples. Finally, as a real world application we demonstrate the performance of the

proposed technique in the context of activity/intrusion detection using a wireless

sensor network.

47
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3.1 Introduction

Estimating a covariance matrix (or a dispersion matrix) is a fundamental problem

in statistical signal processing and much effort has been devoted to high-dimensional

covariance estimation, which uses Steinian shrinkage [13, 17, 60] or other types of

regularized methods such as [25, 18]. However, most of the high-dimensional estima-

tors assume Gaussian distributed samples. This limits their usage in many important

applications involving non-Gaussian and heavy-tailed samples. One exception is the

Ledoit-Wolf estimator [17], where the authors shrink the sample covariance towards

a scaled identity matrix and proposed a shrinkage coefficient which is asymptotically

optimal for any distribution. On the other hand, traditional robust covariance esti-

mators [30, 31, 32] designed for non-Gaussian samples generally require n � p and

are not suitable for “large p small n” problems. Therefore, the goal of our work is

to develop a covariance estimator for problems that are both high dimensional and

non-Gaussian. In this chapter, we model the samples using the elliptical distribu-

tion [61], which is also referred to as the spherically invariant random vector model

(SIRV) [62, 63] or the compound-Gaussian process model [64]. As a flexible and

popular alternative, the elliptical family encompasses a large number of important

distributions such as Gaussian distribution, the multivariate Cauchy distribution,

the multivariate exponential distribution, the multivariate Student-T distribution,

the K-distribution and the Weibull distribution. The capability of modelling heavy-

tails makes the elliptical distribution appealing in signal processing and related fields.

Typical applications include radar detection [65, 64, 66, 67], speech signal processing

[68], remote sensing [69], wireless fading channels modelling [63], financial engineering

[70] and so forth.
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A well-studied covariance estimator for elliptical distributions is the ML estimator

based on normalized samples [31, 71, 72]. The estimator is derived as the solution to

a fixed point equation by using fixed point iterations. It is distribution-free within

the class of elliptical distributions and its performance advantages are well known

in the n � p regime. However, it is not suitable for the “large p small n” setting.

Indeed, when n < p, the ML estimator as defined does not even exist. To avoid

this problem the authors of [73] propose an iterative regularized ML estimator that

employs diagonal loading and uses a heuristic procedure for selecting the regular-

ization parameter. While they did not establish convergence and uniqueness [73]

they empirically demonstrated that their algorithm has superior performance in the

context of a radar application. Our approach is similar to [73] but is conceived in a

Steinian shrinkage framework, where we establish convergence and uniqueness of the

resultant iterative estimator. We also propose a general procedure of selecting the

shrinkage coefficient for heavy-tailed homogeneous samples. For a fixed shrinkage

coefficient, we prove that the regularized fixed iterations converge to a unique solu-

tion for all n and p, regardless of the initial condition. Next, following Ledoit-Wolf

[17], we provide a simple closed-form expression for the shrinkage coefficient, based

on minimizing mean-squared-error. The resultant coefficient is a function of the un-

known true covariance and cannot be implemented in practice. Instead, we develop a

data-dependent “plug-in” estimator approximation. Simulation results demonstrate

that our estimator achieves superior performance for samples distributed within the

elliptical family. Furthermore, for the case that the samples are truly Gaussian, we

report very little performance degradation with respect to the shrinkage estimators

designed specifically for Gaussian samples [60].

As a real world application we demonstrate the proposed estimator for activ-
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ity/intrusion detection using an active wireless sensor network. We show that the

measured data exhibit strong non-Gaussian behavior and demonstrate significant

performance advantages of the proposed robust covariance estimator when used in a

covariance-based anomaly detection algorithm.

The rest of the chapter is organized as follows. Section 3.2 provides a brief review

of elliptical distributions and of Tyler’s covariance estimation method. The regu-

larized covariance estimator is introduced and derived in Section 3.3. We provide

simulations and experimental results in Section 3.4 and Section 3.5, respectively. Sec-

tion 3.6 summarizes our principal conclusions. The proof of theorems and lemmas

are provided in the Appendix.

Notations : In the following, we depict vectors in lowercase boldface letters and

matrices in uppercase boldface letters. (·)T and (·)H denote the transpose and

conjugate transpose operator, respectively. Tr(·) and det(·) are the trace and the

determinant of a matrix, respectively.

3.2 ML covariance estimation for elliptical distributions

3.2.1 Elliptical distribution

Let x be a p× 1 real random vector generated by the following model

(3.1) x = νu,

where ν is a real, positive random variable and u is a p× 1 zero-mean, real Gaussian

random vector with positive definite covariance Σ. We assume that ν and u are

statistically independent. The resulting random vector x is elliptically distributed

and its probability density function (pdf) can be expressed by

(3.2) p(x) = φ
(
xTΣ−1x

)
,
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where φ(·) is the characteristic function (Definition 2, pp. 5, [74]) related to the pdf

of ν. The elliptical family encompasses many useful distributions in signal processing

and related fields and includes: the Gaussian distribution itself, the K distribution,

the Weibull distribution and many others. As stated above, elliptically distributed

samples are also referred to as Spherically Invariant Random Vectors (SIRV) or

compound Gaussian processes in signal processing.

3.2.2 ML estimation

Let {xi}ni=1 be a set of n independent and identically distributed (i.i.d.) samples

drawn according to (3.1). As the covariance of x may not exist, our problem is

formulated to estimate the covariance (dispersion) matrix Σ of u from {xi}ni=1. The

model (3.1) is invariant to scaling of the covariance matrix Σ. Therefore, without

loss of generality, we assume that the covariance matrix is trace-normalized in the

sense that Tr(Σ) = p.

The commonly used sample covariance, defined as

(3.3) Ŝ =
1

n

n∑
i=1

xix
T
i ,

is known to be a poor estimator of Σ, especially when the samples are high-dimensional

(large p) and/or heavy-tailed. Tyler’s method [31] addresses this problem by working

with the normalized samples:

(3.4) si =
xi
‖xi‖2

=
ui
‖ui‖2

,

for which the term ν in (3.1) drops out. The pdf of si is given by [74]

(3.5) p(si; Σ) =
Γ(p/2)

2πp/2
·
√

det(Σ−1) ·
(
sTi Σ−1si

)−p/2
.

Taking the derivative and equating to zero, the maximum likelihood estimator based
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on {si}ni=1 is the solution to

(3.6) Σ =
p

n
·

n∑
i=1

sis
T
i

sTi Σ−1si
.

When n > p, the ML estimator can be found using the following fixed point

iterations:

(3.7) Σ̂j+1 =
p

n
·

n∑
i=1

sis
T
i

sTi Σ̂−1
j si

,

where the initial Σ̂0 is usually set to the identity matrix. Assuming that n > p and

that any p samples out of {si}ni=1 are linearly independent with probability one, it

can be shown that the iteration process in (3.7) converges and that the limiting value

is unique up to constant scale, which does not depend on the initial value of Σ̂0. In

practice, a final normalization step is needed, which ensures that the iteration limit

Σ̂∞ satisfies Tr(Σ̂∞) = p.

The ML estimate corresponds to the Huber-type M-estimator and has many good

properties when n � p, such as asymptotic normality and strong consistency. Fur-

thermore, it has been pointed out [31] that the ML estimate (3.7) is the “most robust”

covariance estimator in the class of elliptical distributions in the sense of minimizing

the maximum asymptotic variance. We note that (3.7) can be also motivated from

other approaches as proposed in [71, 72].

3.3 Robust shrinkage covariance estimation

Here we extend Tyler’s method to the high dimensional setting using shrinkage

regularization. It is easy to see that there is no solution to (3.6) when n < p (its

left-hand-side is full rank whereas its right-hand-side of is rank deficient). This

motivates us to develop a regularized covariance estimator for elliptical samples.
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Following [17, 60], we propose to regularize the fixed point iterations as

Σ̃j+1 = (1− ρ)
p

n

n∑
i=1

sis
T
i

sTi Σ̂−1
j si

+ ρI,(3.8)

Σ̂j+1 =
Σ̃j+1

Tr(Σ̃j+1)/p
,(3.9)

where ρ is the so-called shrinkage coefficient, which is a constant between 0 and 1.

When ρ = 0 and n > p the proposed shrinkage estimator reduces to Tyler’s unbiased

method in (3.6) and when ρ = 1 the estimator reduces to the trivial uncorrelated

case yielding a scaled identity matrix. The term ρI ensures that Σ̂j+1 is always well-

conditioned and thus allows continuation of the iterative process without the need

for restarts. Therefore, the proposed iteration can be applied to high dimensional

estimation problems. We emphasize that the normalization (3.9) is important and

necessary for convergence. We establish provable convergence and uniqueness of the

limit in the following theorem.

Theorem III.1. Let 0 < ρ < 1 be a shrinkage coefficient. Then, the fixed point

iterations in (3.8) and (3.9) converge to a unique limit for any positive definite

initial matrix Σ̂0.

The proof of Theorem III.1 follows directly from the concave Perron-Frobenius

theory [75] and is provided in the Appendix. We note that the regularization pre-

sented in (3.8) and (3.9) is similar to diagonal loading [73]. However, unlike the

diagonal loading approach of [73], the proposed shrinkage approach provides a sys-

tematic way to choose the regularization parameter ρ, discussed in the next section.

3.3.1 Choosing the shrinkage coefficient

We now turn to the problem of choosing a good, data-dependent, shrinkage co-

efficient ρ, as as an alternative to cross-validation schemes which incur intensive
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computational costs. As in Ledoit-Wolf [17], we begin by assuming we “know” the

true covariance Σ. Then we define the following clairvoyant “estimator”:

(3.10) Σ̃(ρ) = (1− ρ)
p

n

n∑
i=1

sis
T
i

sTi Σ−1si
+ ρI,

where the coefficient ρ is chosen to minimize the minimum mean-squared error:

(3.11) ρO = arg min
ρ
E

{∥∥∥Σ̃(ρ)−Σ
∥∥∥2

F

}
.

The following theorem shows that there is a closed-form solution to the problem

(3.11), which we refer to as the “oracle” coefficient.

Theorem III.2. For i.i.d. elliptical distributed samples the solution to (3.11) is

(3.12) ρO =
p2 + (1− 2/p)Tr(Σ2)

(p2 − np− 2n) + (n+ 1 + 2(n− 1)/p)Tr(Σ2)
,

under the condition Tr(Σ) = p.

The proof of Theorem III.2 requires the calculation of the fourth moments of an

isotropically distributed random vector [56, 57, 58] and is provided in the Appendix.

The oracle coefficient cannot be implemented since ρO is a function of the unknown

true covariance Σ. Therefore, we propose a plug-in estimate for ρO:

(3.13) ρ̂ =
p2 + (1− 2/p)Tr(M̂2)

(p2 − np− 2n) + (n+ 1 + 2(n− 1)/p)Tr(M̂2)
,

where M̂ can be any consistent estimator of Σ, e.g., the trace-normalized Ledoit-

Wolf estimator. Another appealing candidate for plug-in is the (trace-normalized)

normalized sample covariance R̂ [76] defined by:

(3.14) R̂ =
p

n

n∑
i=1

sis
T
i .

We note that the only requirement on the covariance estimator M̂ is that it provide

a good approximation to Tr(Σ2). It does not have to be well-conditioned nor does

it have to be an accurate estimator of the true covariance matrix Σ.
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By using the plug-in estimate ρ̂ in place of ρ, the robust shrinkage estimator is

computed via the fixed point iteration in (3.8) and (3.9).

We note that our proposed minimum MSE based approach to estimate the shrink-

age coefficient is completely general and makes a minimum of assumptions on the

provenance of the data. In specific applications such as adaptive beamforming, a

specifically tailored coefficient estimator may be advantageous [73].

3.3.2 Extension to the complex case

Here we consider the scenario where the random vector x in (3.1) is complex

elliptical distributed. In this case, ν is still a real, positive random variable but u

is a complex Gaussian random vector with covariance matrix Σ. Note that Σ is

Hermitian and is assumed to be trace-normalized, i.e., Tr(Σ) = p. The complex

version of our fixed point iterations is

(3.15)

Σ̃j+1 = (1− ρ)
p

n

n∑
i=1

sis
H
i

sHi Σ̂−1
j si

+ ρI,

Σ̂j+1 =
Σ̃j+1

Tr(Σ̃j+1)/p
,

where si is defined by (3.4). As in the real case, the shrinkage coefficient ρ is chosen

to minimize (3.11), where the complex clairvoyant estimator Σ̃(ρ) is re-defined as

(3.16) Σ̃(ρ) = (1− ρ)
p

n

n∑
i=1

sis
H
i

sHi Σ−1si
+ ρI.

The following theorem extends Theorems 1 and 2 to the complex case.

Theorem III.3. For any 0 < ρ < 1 the complex valued iterations in (3.15) converge

to a unique limit for any positive definitive Hermitian matrix Σ̂0. For Σ̃(ρ) defined

in (3.16), the solution to (3.11) is

(3.17) ρO =
p2 − 1/pTr(ΣΣH)

(p2 − pn− n) + (n+ (n− 1)/p)Tr(ΣΣH)

under the condition Tr(Σ) = p.



56

The proof of Theorem III.3 is similar to that of Theorem III.1 and Theorem III.2

and is provided in the Appendix. In practice, ρO can be approximated by plugging

any consistent estimator of Tr(ΣΣH) in (3.17).

3.4 Numerical simulation

In this section we use simulations to demonstrate the superior performance of the

proposed shrinkage approach. First we show that our estimator outperforms other

estimators for the case of heavy-tailed samples generated by a multivariate Student-T

distribution, where ν in (3.1) is a function of a Chi-square random variable:

(3.18) ν =

√
d

χ2
d

;

The degree-of-freedom d of this multivariate Student-T statistic is set to 3. The

dimensionality p is chosen to be 100 and we let Σ be the covariance matrix of an

AR(1) process,

(3.19) Σ(i, j) = r|i−j|,

where Σ(i, j) denotes the entry of Σ in row i and column j. The parameter r is set

to 0.7 in this simulation. The sample size n varies from 5 to 225 with step size 10.

All the simulations are repeated for 100 trials and the average empirical performance

is reported.

We use (3.13) with M̂ = R̂ and employ iterations defined by (3.8) and (3.9) with

ρ = ρ̂. For comparison, we also plot the results of the trace-normalized oracle in

(3.12), the trace-normalized Ledoit-Wolf estimator [17], and the non-regularized so-

lution in (3.7) (when n > p). As the Ledoit-Wolf estimator operates on the sample

covariance which is sensitive to outliers, we also compare to a trace-normalized ver-

sion of a clairvoyant Ledoit-Wolf estimator implemented according to the procedure
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in [17] with known ν. More specifically, the samples xi are firstly normalized by the

known realizations νi, yielding truly Gaussian samples; then the sample covariance of

the normalized xi’s is computed, which is used to estimate the Ledoit-Wolf shrinkage

parameters and estimate the covariance via equation (14) in [17]. The MSE is plotted

in Fig. 3.1 for the case that r = 0.7. It can be observed that the proposed method

performs significantly better than the Ledoit-Wolf estimator in Fig. 3.1, and that

the performance is very close to the ideal oracle estimator using the optimal shrink-

age parameter (3.12). Even the clairvoyant Ledoit-Wolf implemented with known νi

does not outperform the proposed estimator in the small sample size regime. These

results demonstrate the robustness of the proposed approach. Although the Ledoit-

Wolf estimator performs better when r = 0, the case where Σ = I, the proposed

approach still significantly outperforms it, especially for small sample size n (results

not shown).

As a graphical illustration, in Fig. 3.2 we provide covariance visualizations for a

realization of the estimated covariances using the Ledoit-Wolf method and the pro-

posed approach. The covariance matrix estimates are rendered as a heatmap in Fig.

3.2(a). The sample size in this example is set to 50, which is smaller than the dimen-

sion 100. Compared to the true covariance, it is clear that the proposed covariance

estimator preserves the structure of the true covariance, while in the Ledoit-Wolf

covariance procudure produces “block pattern” artifacts caused by heavy-tails of the

multivariate Student-T.

When n > p, we also observe a substantial improvement of the proposed method

over the ML covariance estimate, which provides further evidence of the power of

Steinian shrinkage for reducing MSE.

In order to assess the tradeoff between accuracy and robustness we investigate the
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Figure 3.1: Multivariate Student-T samples: Comparison of different trace-normalized covariance
estimators when p = 100, where r is set to 0.7.

(a) True covariance (b) Ledoit-Wolf (c) Proposed

Figure 3.2: Multivariate Student-T samples: Heatmap visualizations of the covariance matrix esti-
mates using the Ledoit-Wolf and the proposed approaches. p = 100, n = 50. Note that
n < p in this case.

case when the samples are truly Gaussian distributed. We use the same simulation

parameters as in the previous example, the only difference being that the samples

are now generated from a Gaussian distribution. The performance comparison is

shown in Fig. 3.3, where four different (trace-normalized) methods are included:

the oracle estimator derived from Gaussian assumptions (Gaussian oracle) [60], the

iterative approximation of the Gaussian oracle (Gaussian OAS) proposed in [60],

the Ledoit-Wolf estimator and the proposed method. It can be seen that for truly

Gaussian samples the proposed method performs very closely to the Gaussian OAS,

which is specifically designed for Gaussian distributions. Indeed, for small sample

size (n < 20), the proposed method performs even better than the Ledoit-Wolf

estimator. This indicates that, although the proposed robust method is developed

for the entire elliptical family, it actually sacrifices very little performance for the
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case that the distribution is Gaussian.

Figure 3.3: Gaussian samples: Comparison of trace-normalized different covariance estimators when
p = 100.

3.5 Application to anomaly detection in wireless sensor networks

In this section we demonstrate the proposed robust covariance estimator in a real

application: activity detection using a wireless sensor network.

The experiment was set up on an Mica2 sensor network platform, as shown in

Fig. 3.4, which consists of 14 sensor nodes randomly deployed inside and outside a

laboratory at the University of Michigan. Wireless sensors communicated with each

other asynchronously by broadcasting an RF signal every 0.5 seconds. The received

signal strength (RSS), defined as the voltage measured by a receiver’s received signal

strength indicator circuit (RSSI), was recorded for each pair of transmitting and

receiving nodes. There were 14 × 13 = 182 pairs of RSSI measurements over a 30

minute period, and samples were acquired every 0.5 sec. During the experiment

period, persons walked into and out of the lab at random times, causing anomaly

patterns in the RSSI measurements. Finally, for ground truth, a web camera was

employed to record the actual activity.

Fig. 3.5 shows all the received signals and the ground truth indicator extracted
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Figure 3.4: Experimental platform: wireless Mica2 sensor nodes.

from the video. The objective of this experiment was intrusion (anomaly) detection.

We emphasize that, with the exception of the results shown in Fig. 3.10, the ground

truth indicator is only used for performance evaluation and the detection algorithms

presented here were completely unsupervised.

Figure 3.5: At bottom 182 RSS sequences sampled from each pair of transmitting and receiving
nodes in intrusion detection experiment. Ground truth indicators at top are extracted
from video captured from a web camera that recorded the scene.

To remove temperature drifts [77] of receivers we detrended the data as follows.

Let xi[k] be the k-th sample of the i-th RSS signal and denote

(3.20) x[k] = (x1[k], x2[k], . . . , x182[k])T .

The local mean value of x[k] is defined by

(3.21) x̄[k] =
1

2m+ 1

k+m∑
i=k−m

x[k],

where the integer m determines local window size and is set to 50 in this study. We
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detrend the data by subtracting this local mean

(3.22) y[k] = x[k]− x̄[k],

yielding a detrended sample y[k] used in our anomaly detection.

We established that the detrended measurements were heavy-tailed non-Gaussian

by performing several statistical tests. First the Lilliefors test [78] of Gaussianity

was performed on the detrended RSS measurements. This resulted in rejection of

the Gaussian hypothesis at a level of significance of 10−6. As visual evidence, we

show the quantile-quantile plot (QQ plot) for one of the detrended RSS sequences

in Fig. 3.6 which illustrates that the samples are non-Gaussian. In Fig. 3.7, we plot

the histograms and scatter plots of two of the detrended RSS sequences, which shows

the heavy-tail nature of the sample distribution. This strongly suggests that the RSS

samples can be better described by a heavy-tailed elliptical distribution than by a

Gaussian distribution. As additional evidence, we fitted a Student-T distribution

to the first detrended RSS sequence, and used maximum likelihood to estimate the

degree-of-freedom as d = 2 with a 95% confidence interval (CI) [1.8460, 2.2879].

Figure 3.6: QQ plot of data versus the standard Gaussian distribution.

Consider the following discriminant based on the detrended data:

(3.23) tk = sT [k]Σ−1s[k],
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Figure 3.7: Histograms and scatter plots of the first two de-trended RSS sequences, which are fit
by a multivariate Student-T distribution with degree-of-freedom d = 2.

where, similarly to (3.4), s[k] = y[k]/‖y[k]‖2 and Σ is given by the solution to (3.6).

A time sample is declared to be anomalous if the test statistic tk exceeds a specified

threshold. The statistic (3.23) is equivalent to a robustified version of the Maha-

lanobis distance anomaly detector [79]. Note that direct application of shrinkage to

the sample covariance of y[k] would be problematic since a multivariate Student-T

vector with 2 degrees of freedom has no second order moments. The test statistic

(3.23) can be interpreted as a shrinkage robustified Mahalanobis distance test applied

to the better behaved variable s[k] that has finite moments of all orders. Specifically,

we constructed the 182× 182 sample covariance by randomly subsampling 200 time

slices from the RSS data shown in Fig. 3.5. Note, that these 200 samples corre-

spond to a training set that is contaminated by anomalies at the same anomaly

rate (approximately 10%) as the entire sample set. The detection performance was

evaluated using the receiver operating characteristic (ROC) curve, where the aver-

aged curves from 200 independent Monte-Carlo trials are shown in Fig. 3.8. For

comparison, we also implemented the activity detector (3.23) with other covariance

estimates including: the sample covariance, the Ledoit-Wolf estimator and Tyler’s

ML estimator.
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Figure 3.8: Performance comparison for different covariance estimators, p = 182, n = 200.

From the mean ROCs we can see that the detection performances are rank ordered

as follows: Proposed > Ledoit-Wolf > Tyler’s ML > Sample covariance. The sample

covariance performs poorly in this setting due to the small sample size (n = 200, p =

182) and its sensitivity to the heavy-tailed distribution shown in Fig. 3.6 and 3.7. The

Tyler ML method and the Ledoit-Wolf estimator improve upon the sample covariance

since they compensate for heavy tails and for small sample size, respectively. Our

proposed method compensates for both effects simultaneously and achieves the best

detection performance.

We also plot the 90% confidence envelopes, determined by cross-validation, on

the ROCs in Fig. 3.9. The width of the confidence interval reflects the sensitivity of

the anomaly detector to variations in the training set. Indeed, the upper and lower

endpoints of the confidence interval are the optimistic and the pessimistic predictions

of detection performance. The proposed method achieves the smallest width among

the four computed 90% confidence envelopes.

Finally, for completeness we provide performance comparison of covariance-based

supervised activity detection algorithms in Fig. 3.10. The training period is selected

to be [251, 450] based on ground truth where no anomalies appear. It can be observed
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Figure 3.9: Performance comparison for different covariance estimators, including the mean value
and 90% confidence intervals. (a): Sample covariance. (b): Proposed. (c): Ledoit-Wolf.
(d): Tyler’s ML. The 200 training samples are randomly selected from the entire data
set.

that, by excluding the outliers caused by anomalies, the performance of the Ledoit-

Wolf based intrusion detection algorithm is close to that of the proposed method.

We conclude that the activity detection performance of the proposed covariance

estimator is more robust than the other three estimators with respect to outlier

contamination in the training samples.

Figure 3.10: Performance comparison for different covariance estimators, p = 182, n = 200. The
covariance matrix is estimated in a supervised manner.

3.6 Conclusion

In this work, we proposed a shrinkage covariance estimator which is robust over

the class of elliptically distributed samples. The proposed estimator is obtained
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by fixed point iterations, and we established theoretical guarantees for existence,

convergence and uniqueness. The optimal shrinkage coefficient was derived using a

minimum mean-squared-error framework and has a closed-form expression in terms of

the unknown true covariance. This expression can be well approximated by a simple

plug-in estimator. Simulations suggest that the iterative approach converges to a

limit which is robust to heavy-tailed multivariate Student-T samples. Furthermore,

we show that for the Gaussian case, the proposed estimator performs very closely to

previous estimators designed expressly for Gaussian samples.

As a real world application we demonstrated the performance of the proposed

estimator in intrusion detection using a wireless sensor network. Implementation of a

standard covariance-based detection algorithm using our robust covariance estimator

achieved superior performances as compared to conventional covariance estimators.

The basis of the proposed method is the ML estimator originally proposed by

Tyler in [31]. However, the approach presented in this chapter can be extended to

other M-estimators.

One of the main contributions of our work is the proof of uniqueness and conver-

gence of the estimator. This proof extends the results of [31, 80] to the regularized

case. Recently, an alternative proof to the non-regularized case using convexity on

manifolds was presented in [81]. This latter proof highlights the geometrical structure

of the problem and gives additional insight.

3.7 Appendix

3.7.1 Proof of Theorem III.1

In this appendix we prove Theorem III.1. The original convergence proof for

the non-regularized case in [31, 80] is based on careful exploitation of the specific

form of (3.6). In the contrast, our proof for the regularized case is based on a direct
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connection from concave Perron-Frobenius theory [75, 82]. We begin by summarizing

the required concave Perron-Frobenius result in the following lemma.

Lemma III.4 ( [75]). Let (E, ‖ · ‖) be a Banach space with K ⊂ E being a closed,

convex cone on which ‖ · ‖ is increasing, i.e., for which x ≤ y implies ‖x‖ ≤ ‖y‖,

where the operator ≤ on the convex cone K means that if x ≤ y then y − x ∈ K.

Define U = {x|x ∈ K, ||x|| = 1}. Let T : K → K be a concave operator such that

(3.24)
T (µx+ (1− µ)y) ≥ µT (x) + (1− µ)T (y),

for all µ ∈ [0, 1], all x, y ∈ K.

If for some e ∈ K − {0} and constants a > 0, b > 0 there is

(3.25) ae ≤ T (x) ≤ be, for all x ∈ U,

then there exists a unique x∗ ∈ U to which the iteration of the normalized operator

T̃ (x) = T (x)/‖T (x)‖, x ∈ K − {0} converges:

(3.26) lim
k→∞

T̃ k(x) = x∗, for all x ∈ K − {0}.

Lemma III.4 can be obtained by combining results from Lemma 2 and Theorem

in Section 4 of [75]. Here we show that the proof of Theorem III.1 is a direct result

of applying Lemma III.4 with proper definitions of E, K, U and T :

• E: the set of all symmetric matrices;

• K: the set of all positive semi-definite matrices on E;

• ‖Σ‖: the normalized nuclear norm of Σ, i.e.,

(3.27) ‖Σ‖ =
1

p

p∑
j=1

|λj|,

where λj is the j-th eigenvalue of Σ and | · | is the absolute value operator.

Note that for any Σ ∈ K, the nuclear norm ‖ · ‖ is identical to Tr(·)/p and is

increasing;
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• U : the set U = {Σ|Σ ∈ K, ‖Σ‖ = 1};

• T : the mapping from K to K defined by

(3.28) T (Σ) = (1− ρ)
p

n

n∑
i=1

w(si,Σ)sis
T
i + ρI,

where the weight function w(si,Σ) is defined as

(3.29) w(si,Σ) = inf
zT si 6=0

zTΣz

(sTi z)2
,

for any Σ ∈ K.

Proof. With the above definitions we show that Theorem III.1 is a direct result of

Lemma III.4. We begin by showing that the mapping operator T is concave. Indeed,

it is sufficient to show that w(si,Σ) in concave in Σ, which is true because it is the

infinimum of affine functions of Σ.

Next, we show that T satisfies condition (3.25) with e = I. It is easy to see that

(3.30) ρI ≤ T (Σ),

for any Σ ∈ U . Then we show that

(3.31) w(si,Σ) ≤ p,

for any Σ ∈ U . Indeed,

(3.32) w(si,Σ) = inf
zT si 6=0

zTΣz

(sTi z)2
≤ sTi Σsi

(sTi si)2
≤ λmax

sTi si
= λmax,

where λmax is the maximum eigenvalue of Σ. The last equality in the right-hand-side

of (3.32) comes from the fact that si is of unit norm by definition (3.4). (3.31) is

thus obtained by noticing that Σ ∈ U and λmax ≤ p. Substituting (3.31) into (3.28)

we have

(3.33) T (Σ) ≤ (1− ρ)p2R̂ + ρI ≤
(
(1− ρ)p2αmax + ρ

)
I,
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where

R̂ =
1

n

n∑
i=1

sis
T
i ,

and αmax is the maximum eigenvalue of R̂. Again, as si is of unit norm, αmax ≤

Tr(R̂) = 1 and

(3.34) T (Σ) ≤
(
(1− ρ)p2 + ρ

)
I.

Therefore, we have shown that T satisfies condition (3.25), where e = I, a = ρ and

b = (1− ρ)p2 + ρ. In addition, (3.25) establishes that the mapping T from U always

yields a positive definite matrix. Therefore, the convergent limit of the fixed-point

iteration is positive definite.

Finally, we note that, for any Σ � 0, we have

(3.35) ‖Σ‖ =
Tr(Σ)

p
,

and

(3.36) w(si,Σ) = inf
zT si 6=0

zTΣz

(sTi z)2
=

1

sTi Σ−1si
.

The limit (3.26) is then identical to the limit of proposed iterations (3.8) and (3.9)

for any Σ � 0. Therefore, Theorem III.1 has been proved.

3.7.2 Proof of Theorem III.2

Proof. To ease the notation we define C̃ as

(3.37) C̃ =
p

n

n∑
i=1

sis
T
i

sTi Σ−1si
.

The shrinkage estimator in (3.10) is then

(3.38) Σ̃(ρ) = (1− ρ)C̃ + ρI.
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By substituting (3.38) into (3.10) and taking derivatives of ρ, we obtain that

(3.39)

ρO =
E
{

Tr
(

(I− C̃)(Σ− C̃)
)}

E

{∥∥∥I− C̃
∥∥∥2

F

}
=
m2 −m11 −m12 + Tr(Σ)

m2 − 2m11 + p
,

where

(3.40) m2 = E
{

Tr(C̃2)
}
,

(3.41) m11 = E
{

Tr(C̃)
}
,

and

(3.42) m12 = E
{

Tr(C̃Σ)
}
.

Next, we calculate the moments. We begin by eigen-decomposing Σ as

(3.43) Σ = UDUT ,

and denote

(3.44) Λ = UD1/2.

Then, we define

(3.45) zi =
Λ−1si
‖Λ−1si‖2

=
Λ−1ui
‖Λ−1ui‖2

.

Noting that ui is a Gaussian distributed random vector with covariance Σ, it is easy

to see that ‖zi‖2 = 1 and zi and zj are independent with each other for i 6= j.

Furthermore, zi is isotropically distributed [56, 57, 58] and satisfies [60]

(3.46) E
{
ziz

T
i

}
=

1

p
I,
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(3.47)

E
{(

zTi Dzi
)2
}

=
1

p(p+ 2)

(
2Tr(D2) + Tr2(D)

)
=

1

p(p+ 2)

(
2Tr(Σ2) + Tr2(Σ)

)
,

and

(3.48) E
{(

zTi Dzj
)2
}

=
1

p2
Tr(D2) =

1

p2
Tr(Σ2), i 6= j.

Expressing C̃ in terms of zi, there is

(3.49) C̃ =
p

n
Λ

n∑
i=1

ziz
T
i ΛT .

Then,

(3.50) E
{

C̃
}

=
p

n
Λ

n∑
i=1

E
{
ziz

T
i

}
ΛT = Σ,

and accordingly we have

(3.51) m11 = E
{

Tr(C̃)
}

= Tr(Σ),

and

(3.52) m12 = E
{

Tr(C̃Σ)
}

= Tr(Σ2).

For m2 there is

(3.53)

m2 =
p2

n2
E

{
Tr

(
Λ

n∑
i=1

ziz
T
i ΛTΛ

n∑
j=1

zjz
T
j ΛT

)}

=
p2

n2
E

{
Tr

(
n∑
i=1

n∑
j=1

ziz
T
i ΛTΛzjz

T
j ΛTΛ

)}

=
p2

n2
E

{
Tr

(
n∑
i=1

n∑
j=1

ziz
T
i Dzjz

T
j D

)}

=
p2

n2

n∑
i=1

n∑
j=1

E
{(

zTi Dzj
)2
}
.
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Now substitute (3.47) and (3.48) to (3.53):

(3.54)

m2 =
p2

n2

(
n

p(p+ 2)

(
2Tr(Σ2) + Tr2(Σ)

)
+

n(n− 1)

p2
Tr(Σ2)

)
=

1

n(1 + 2/p)

(
2Tr(Σ2) + Tr2(Σ)

)
+ (1− 1

n
)Tr(Σ2)

=

(
1− 1

n
+

2

n(1 + 2/p)

)
Tr(Σ2) +

Tr2(Σ)

n(1 + 2/p)
.

Recalling Tr(Σ) = p, (3.12) is finally obtained by substituting (3.51), (3.52) and (3.54) into
(3.39).

3.7.3 Proof of Theorem III.3

The proof of convergence and uniqueness is a simple extension of the proof in

Appendix A by re-defining E as the set of all Hermitian matrices and the mapping

function T (Σ) as

(3.55) T (Σ) = (1− ρ)
p

n

n∑
i=1

w(si,Σ)sis
H
i + ρI,

where

(3.56) w(si,Σ) = inf
zHsi 6=0

zHΣz

|sHi z|2 .

For the oracle coefficient, define

(3.57) C̃ =
n

p

n∑
i=1

sis
H
i

sHi Σ−1si
.

Then Σ̃(ρ) = (1− ρ)C̃ + ρI. It can be shown that

(3.58)

ρO =
E
{

Re
(

Tr
(

(I− C̃)(Σ− C̃)H
))}

E
{
‖I− C̃‖2

F

}
=
m2 −m11 −m12 + Tr(ΣH)

m2 − 2m11 + p
,

where m2, m11 and m12 are re-defined as

(3.59) m2 = E
{

Tr
(
C̃C̃H

)}
,
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(3.60) m11 = E
{

Re
(

Tr
(
C̃H
))}

and

(3.61) m12 = E
{

Re
(

Tr
(
C̃ΣH

))}
,

respectively.

Next, we eigen-decompose the Hermitian positive definite matrix Σ as

(3.62) Σ = UDUH ,

where D is a real diagonal matrix and U is a complex unitary matrix. Define

(3.63) Λ = UD1/2

and

(3.64) zi =
Λ−1si
‖Λ−1si‖2

.

{zi}ni=1 are then complex valued isotropically distributed random vectors and are

independent to each other [56, 57, 58]. Using results from [83], it can be shown that

(3.65) E
{
ziz

H
i

}
=

1

p
I,

(3.66)

E
{∣∣zHi Dzi

∣∣2} =
1

p(p+ 1)

(
Tr(D2) + Tr2(D)

)
=

1

p(p+ 1)

(
Tr(ΣΣH) + Tr2(Σ)

)
and

(3.67) E
{∣∣zHi Dzj

∣∣2} =
1

p2
Tr(D2) =

1

p2
Tr(ΣΣH), i 6= j.
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Eq. (3.65) ∼ (3.67) are complex versions of (3.46) ∼ (3.48). Expressing C̃ in

terms of zi, there is

(3.68) C̃ =
p

n
Λ

n∑
i=1

ziz
H
i ΛH ,

and accordingly

(3.69) E
{

C̃
}

= Σ.

As Re(·), Tr(·) and E {·} are exchangeable to each other, we have

(3.70) m11 = Re
(
Tr(ΣH)

)
= Tr(Σ)

and

(3.71) m12 = Tr(ΣΣH).

For m2, using a similar derivation as in Appendix B, it can be shown that

(3.72)

m2 =
p2

n2

n∑
i=1

n∑
j=1

E
{∣∣zHi Dzj

∣∣2}
=

(
1− 1

n(p+ 1)

)
Tr(ΣΣH) +

p

n(p+ 1)
Tr2(Σ).

As Tr(ΣH) = Tr(Σ) = p, (3.17) can be finally obtained by substituting (3.70), (3.71)

and (3.72) to (3.58).



CHAPTER IV

Recursive `1,∞ Group lasso

In many applications of signal processing and machine learning, the unknown sys-

tem may be time-varying and the data are acquired in a streaming fashion. In those

scenarios, online estimation and efficient update can be very important. In this chap-

ter we address the time-varying covariance estimation problem where the samples are

non-stationary. Specifically we consider covariance matrices of variables associated

by underlying graphical models. This model has attracted growing interests in prob-

lems of sensor/agent networks [7, 8], bioinformatics [39] and many others. Instead

of estimating the entire matrix directly, we split the matrix estimation into multi-

ple Lasso-type problems, each of which performs a column-wise estimation of the

inverse covariance. We then propose a recursive adaptive `1,∞ group lasso algorithm,

a generalization to standard `1 lasso method, for real-time penalized least squares

prediction that produces a time sequence of optimal sparse predictor coefficient vec-

tors. At each time index the proposed algorithm computes an exact update of the

optimal `1,∞-penalized recursive least squares (RLS) predictor. Each update mini-

mizes a convex but non-differentiable function optimization problem. We develop an

online homotopy method to reduce the computational complexity. Numerical simu-

lations demonstrate that the proposed algorithm outperforms the `1 regularized RLS

74
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algorithm for a group sparse system identification problem and has lower implemen-

tation complexity than direct group lasso solvers. Finally, we demonstrate online

covariance estimation using multiple recursive lasso estimators in anomaly detection

for the Abilene Networks.

4.1 Introduction

Many applications in signal processing and related fields deal with streaming

samples where the data are acquired online and the system of interest may be time-

varying. In those scenarios online processing plays a major role and covers the

main theme of adaptive system identification [84] and has attracted growing interest

in various data mining problems [85, 86, 87]. In those settings, most of available

covariance estimators cannot be directly applied either because of the non-stationary

samples or the intensive computational complexity for online calculation.

As the system is time-varying, the size of locally stationary samples can be far

less than the number of parameters to be estimated. As we have demonstrated in

Chapter I, this is one major cause of “large p small n” problems. Therefore, regular-

ization is generally required for online covariance estimation so that a prior model

can be imposed to mitigate the high dimension curse. In this work we are interested

in estimating covariance of variables associating with an underlying graphical model,

which has received considerable interests [3, 20, 18]. Among them, the `1-type reg-

ularization is popular and can achieve consistent estimation of sparse graphs even

when n� p in certain conditions. For some kinds of data, it is reasonable to assume

that the variables can be grouped into clusters, which share similar connectivity or

correlation patterns. Examples can be found in analysis of gene expression data

[86] as well as sensor/agent networks [7, 8] and recent works have extended the `1
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penalized framework to the case of group sparsity by regularizing the `1,2 norm [88]

or the `1,∞ norm [89]. The analogous result in linear regression is usually referred

to as the group lasso that promotes block sparsity in the underlying graphs. Indeed,

the standard `1 lasso can be treated as the special case of the group lasso when each

group only contains a single variable.

In this chapter we address the online covariance estimation problem where an un-

derlying graphical model is assumed to associate the variables. Instead of estimating

the entire matrix directly, we split the matrix estimation into a set of recursive lasso

problems which perform column-wise estimation of the inverse covariance. For each

recursive lasso problem we employ the `1,∞ norm rather than the `1 norm for the

flexibility to promote sparsity as well as group sparsity. Our recursive group lasso

algorithm is suitable for online applications where data are acquired sequentially.

The proposed algorithm is based on the homotopy approach which updates from

previous solutions and has lower implementation complexity than direct group lasso

solvers.

The chapter is organized as follows. In Section 4.2 we illustrate the connection

between covariance estimation and linear regression and formulates the online covari-

ance estimation into multiple recursive regression problems in Section 4.3. Section

4.4 develops the homotopy based algorithm to solve the recursive `1,∞ group lasso

in an online recursive manner. Section 4.5 provides numerical simulation results. In

Section 4.6 we perform an online covariance-based anomaly detection using the Abi-

lene Networks data. Section 4.7 summarizes our principal conclusions. The proofs

of theorems and some details of the proposed algorithm are provided in Appendix.

Notations : In the following, matrices and vectors are denoted by boldface upper

case letters and boldface lower case letters, respectively; (·)T denotes the transpose
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operator, and ‖ · ‖1 and ‖ · ‖∞ denote the `1 and `∞ norm of a vector, respectively;

for a set A, |A| denotes its cardinality and φ denotes the empty set; xA denotes the

sub-vector of x from the index set A and RAB denotes the sub-matrix of R formed

from the row index set A and column index set B.

4.2 Connecting covariance estimation to regression

Consider a (p + 1)-dimensional random vector x = (x1, x2, ..., xp+1)T that has a

jointly distribution with mean zero and covariance Σ, where Σ is a (p+ 1)× (p+ 1)

positive definite matrix. Let C be the inverse covariance such that C = Σ−1. Then,

for 1 ≤ i ≤ p+ 1, xi can be expressed by

(4.1) xi =
∑
j 6=i

βijxj + εi

where εi is un-correlated with any xj, j 6= i and

(4.2) βij = −cij
cii
.

In addition, there is

(4.3) var(εi) =
1

cii
.

Eq. (4.1) - (4.3) are the keys to connect covariance estimation to regression problems.

Let β̂ij be the estimated coefficients from the regression problem (4.1) and define

v̂ar(εi) be the sample variance of the residuals. We then use the following relationship

for (inverse) covariance estimation:

(4.4) ĉii =
1

v̂ar(εi)
, ĉij = −1

2

(
ĉiiβ̂ij + ĉjjβ̂ji

)
,

where the second equation in (4.4) guarantees the estimate Ĉ is symmetric. Indeed,

if β̂ij is calculated from the least squares method, the resultant estimate Ĉ coincides

with the inverse of the sample covariance if it is well-conditioned.
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For high-dimensional problems with limited sample size, the regression problem

may be ill-posed which requires regularization. The regularization of C can be per-

formed by regularization of the matrix of βij. It is well known that when β̂ij is

obtained from the least squares method, the corresponding covariance estimate then

coincides with the sample covariance. A similar example is to use the ridge regres-

sion with `2 penalties to estimate β̂ij and the resultant covariance estimate becomes

the diagonally loaded sample covariance, which is related to the Steinian shrinkage

discussed in previous chapters. Recently, Meinshausen [3] proposed to employ the `1

lasso to estimate βij in (4.1) and to detect zeros of C, based on the assumption that

a sparse graph model associates all the variables of interest. We note that there are

alternative approaches to covariance estimation with sparse Gaussian graphs, where

the lasso-type penalties are imposed directly on C rather than on the βij [18, 20]. As

[18] has pointed out, the two problem are not equivalent to each other. For exam-

ple, decoupled regression methods to estimate the covariance may not guarantee the

positive definiteness of the covariance estimate. On the other hand, direct covari-

ance estimation generally requires more computational cost and memory storage. In

this work, we are driven by computational considerations and adopt Meinshausen’s

approach to split the matrix estimation into a set of decoupled regression problems.

Positive definiteness can be imposed in a variety of ways, e.g., by adding a diagonal

matrix scaled by the maximum eigenvalue or the trace of the estimated matrix [90],

but this is not investigated here.

4.3 Problem formulation

Transferring covariance estimation to multiple vector regression problems is a way

to achieve recursive estimation of a time-varying covariance matrix. Indeed, estimat-
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ing a time-varying vector using non-stationary samples has been long investigated in

theories of adaptive system identification, where Recursive Least Squares (RLS) is a

widely used method because of its fast convergence and low steady-state error. RLS

recursively fitted a measurement stream to a linear model in such a way to minimize

a weighted average of squared residual prediction errors. In this work we propose a

`1,∞ regularized RLS which can be solved efficiently using an online homotopy ap-

proach. For ease of notations and the main focus of our contribution, we formulate

our problems in the framework of regularized RLS algorithms.

4.3.1 Recursive Least Squares

Let w be a p-dimensional coefficient vector.1 Let y be an n-dimensional vector

comprised of observations {yj}nj=1. Let {xj}nj=1 be a sequence of p-dimensional pre-

dictor variables. In standard adaptive filtering terminology, yj, xj and w are the

primary signal, the reference signal, and the adaptive filter weights. The RLS al-

gorithm solves the following quadratic minimization problem recursively over time

n = p, p+ 1, . . .:

(4.5) ŵn = arg min
w

n∑
j=1

γn−j(yj −wTxj)
2,

where γ ∈ (0, 1] is the forgetting factor controlling the trade-off between transient

and steady-state behaviors.

To serve as a template for the sparse RLS extensions described below we briefly

review the RLS update algorithm. Define Rn and rn as

(4.6) Rn =
n∑
j=1

γn−jxjx
T
j

1In the rest of the chapters we focus on regression problems and no longer use the notations of βij unless explicit
declaration. The vector w here can represent any regression coefficients {βij}j 6=i for a responsive variable.
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and

(4.7) rn =
n∑
j=1

γn−jxjyj.

The solution ŵn to (4.5) can be then expressed as

(4.8) ŵn = R−1
n rn.

The matrix Rn and the vector rn are updated as

Rn = γRn−1 + xnx
T
n ,

and

rn = γrn−1 + xny
T
n .

Applying the Sherman-Morrison-Woodbury formula [91],

(4.9) R−1
n = γ−1R−1

n−1 − γ−1αngng
T
n ,

where

(4.10) gn = R−1
n−1xn

and

(4.11) αn =
1

γ + xTngn
.

Substituting (4.9) into (4.8), we obtain the weight update [92]

(4.12) ŵn = ŵn−1 + αngnen,

where

(4.13) en = yn − ŵT
n−1xn.

Equations (4.9)-(4.13) define the RLS algorithm which has computational complexity

of order O(p2).
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Figure 4.1: Examples of (a) a general sparse system and (b) a group-sparse system.

4.3.2 Non-recursive `1,∞ group lasso

The `1,∞ group lasso is a regularized least squares approach which uses the `1,∞

mixed norm to promote group-wise sparse pattern on the predictor coefficient vector.

The `1,∞ norm of a vector w is defined as

‖w‖1,∞ =
M∑
m=1

‖wGm‖∞,

where {Gm}Mm=1 is a group partition of the index set G = {1, . . . , p}, i.e.,

M⋃
m=1

Gm = G, Gm ∩ Gm′ = φ if m 6= m′,

and wGm is a sub-vector of w indexed by Gm. The `1,∞ norm is a mixed norm: it

encourages correlation among coefficients inside each group via the `∞ norm within

each group and promotes sparsity across each group using the `1 norm. The mixed

norm ‖w‖1,∞ is convex in w and reduces to ‖w‖1 when each group contains only

one coefficient, i.e., |G1| = |G2| = · · · = |GM | = 1.

The `1,∞ group lasso solves the following penalized least squares problem:

(4.14) ŵn = arg min
w

1

2

n∑
j=1

γn−j(yj −wTxj)
2 + λ‖w‖1,∞,

where λ is a regularization parameter. Eq. (4.14) is a convex problem and can be
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solved by standard convex optimizers or path tracing algorithms [1]. Direct solution

of (4.14) has computational complexity of O(p3).

4.3.3 Recursive `1,∞ group lasso

In this subsection we obtain a recursive solution for (4.14) that gives an update

ŵn from ŵn−1. The approach taken is a group-wise generalization of recent works

[93, 94] that uses the homotopy approach to sequentially solve the lasso problem.

Using the definitions (4.6) and (4.7), the problem (4.14) is equivalent to

(4.15)

ŵn = arg min
w

1

2
wTRnw −wT rn + λ‖w‖1,∞

= arg min
w

1

2
wT
(
γRn−1 + xTnxn

)
w

−wT (γrn−1 + xnyn) + λ‖w‖1,∞.

Let f(θ, λ) be the solution to the following parameterized problem

(4.16)
f(θ, λ) = arg min

w

1

2
wT
(
γRn−1 + θxnx

T
n

)
w

−wT (γrn−1 + θxnyn) + λ‖w‖1,∞

where θ is a constant between 0 and 1. ŵn and ŵn−1 of problem (4.15) can be

expressed as

ŵn−1 = f(0, γλ),

and

ŵn = f(1, λ).

Our proposed method computes ŵn from ŵn−1 in the following two steps:

Step 1. Fix θ = 0 and calculate f(0, λ) from f(0, γλ). This is accomplished by

computing the regularization path between γλ and λ using homotopy methods in-

troduced for the non-recursive `1,∞ group lasso. The solution path is piecewise linear

and the algorithm is described in [1].
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Step 2. Fix λ and calculate the solution path between f(0, λ) and f(1, λ). This is

the key problem addressed in this work.

To ease the notations we denote xn and yn by x and y, respectively, and define

the following variables:

(4.17) R(θ) = γRn−1 + θxxT

(4.18) r(θ) = γrn−1 + θxy.

Problem (4.16) is then

(4.19) f(θ, λ) = arg min
w

1

2
wTR(θ)w −wT r(θ) + λ‖w‖1,∞.

In Section 4.4 we will show how to propagate f(0, λ) to f(1, λ) using the homotopy

approach applied to (4.19).

4.4 Online homotopy update

4.4.1 Set notation

We begin by introducing a series of set definitions. Figure 4.2 provides an example.

We divide the entire group index set into P and Q, respectively, where P contains

active groups and Q is its complement. For each active group m ∈ P , we partition

the group into two parts: the maximal values, with indices Am, and the rest of the

values, with indices Bm:

Am = arg max
i∈Gm
|wi|,m ∈ P ,

and

Bm = Gm −Am.

The set A and B are defined as the union of the Am and Bm sets, respectively:

A =
⋃
m∈P

Am, B =
⋃
m∈P

Bm.
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P Q

Figure 4.2: Illustration of the partitioning of a 20 element coefficient vector w into 5 groups of 4
indices. The sets P and Q contain the active groups and the inactive groups, respec-
tively. Within each of the two active groups the maximal coefficients are denoted by
the dark red color.

Finally, we define

C =
⋃
m∈Q

Gm.

and

Cm = Gm ∩ C.

4.4.2 Optimality condition

The objective function in (4.19) is convex but non-smooth as the `1,∞ norm is

non-differentiable. Therefore, problem (4.19) reaches its global minimum at w if and

only if the sub-differential of the objective function contains the zero vector. Let

∂‖w‖1,∞ denote the sub-differential of the `1,∞ norm at w. A vector z ∈ ∂‖w‖1,∞

only if z satisfies the following conditions [89, 1]:

‖zAm‖1 = 1,m ∈ P ,(4.20)

sgn (zAm) = sgn (wAm) ,m ∈ P ,(4.21)

zB = 0,(4.22)

‖zCm‖1 ≤ 1,m ∈ Q,(4.23)
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where A,B, C,P and Q are θ-dependent sets defined on w as defined in Section 4.4.1.

For notational convenience we drop θ in R(θ) and r(θ) leaving the θ-dependency

implicit. The optimality condition is then written as

(4.24) Rw − r + λz = 0, z ∈ ∂‖w‖1,∞.

As wC = 0 and zB = 0, (4.24) implies the three conditions

RAAwA + RABwB − rA + λzA = 0,(4.25)

RBAwA + RBBwB − rB = 0,(4.26)

RCAwA + RCBwB − rC + λzC = 0.(4.27)

The vector wA lies in a low dimensional subspace. Indeed, by definition of Am, if

|Am| > 1

|wi| = |wi′ |, i, i′ ∈ Am.

Therefore, for any active group m ∈ P ,

(4.28) wAm = sAmαm

where

αm = ‖wGm‖∞,

and

sA = sgn (wA) .

Using matrix notation, we represent (4.28) as

(4.29) wA = Sa.

where

(4.30) S =


sA1

. . .

sA|P |


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is a |A| × |P| sign matrix and the vector a is comprised of αm,m ∈ P .

The solution to (4.19) can be determined in closed form if the sign matrix S and

sets (A,B, C,P ,Q) are available. Indeed, from (4.20) and (4.21)

(4.31) STzA = 1,

where 1 is a |P| × 1 vector comprised of 1’s. With (4.29) and (4.31), (4.25) and

(4.26) are equivalent to

(4.32)
STRAASa + STRABwB − ST rA + λ1 = 0,

RBASa + RBBwB − rB = 0.

Therefore, by defining the (a.s. invertible) matrix

(4.33) H =

STRAAS STRAB

RBAS RBB

,
and

(4.34) b =

ST rA

rB

 ,v =

 a

wB

 ,

(4.32) is equivalent to Hv = b− λe, where e = (1T ,0T )T , so that

(4.35) v = H−1(b− λe).

As wA = Sa, the solution vector w can be directly obtained from v via (4.34). For

the sub-gradient vector, it can be shown that

(4.36) λzA = rA − (RAAS RAB) v,

(4.37) zB = 0

and

(4.38) λzC = rC − (RCAS RCB) v.
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4.4.3 Online update

Now we consider (4.19) using the results in 4.4.2. Let θ0 and θ1 be two constants

such that θ1 > θ0. For a given value of θ ∈ [θ0, θ1] define the class of sets S =

(A,B, C,P ,Q) and make θ explicit by writing S(θ). Recall that S(θ) is specified by

the solution f(θ, λ) defined in (19). Assume that S(θ) does not change for θ ∈ [θ0, θ1].

The following theorem propagates f(θ0, λ) to f(θ1, λ) via a simple algebraic relation.

Theorem IV.1. Let θ0 and θ1 be two constants such that θ1 > θ0 and for any

θ ∈ [θ0, θ1] the solutions to (4.19) share the same sets S = (A,B, C,P ,Q). Let v′

and v be vectors defined as f(θ1, λ) and f(θ0, λ), respectively. Then

(4.39) v′ = v +
θ1 − θ0

1 + σ2
Hθ1

(y − ŷ)g,

and the corresponding sub-gradient vector has the explicit update

(4.40) λz′A = λzA +
θ1 − θ0

1 + σ2
Hθ1

(y − ŷ) {xA − (RAAS RAB)g}

and

(4.41) λz′C = λzC +
θ1 − θ0

1 + σ2
Hθ1

(y − ŷ) {xC − (RCAS RCB)g} ,

where R = R(0) as defined in (4.17), (x, y) is the new sample as defined in (4.17)

and (4.18), the sign matrix S is obtained from the solution at θ = θ0, H0 is calculated

from (4.33) using S and R(0), and d, u, ŷ and σ2
H are defined by

(4.42) d =

 STxA

xB

 ,

(4.43) g = H−1
0 d,

(4.44) ŷ = dTv,

(4.45) σ2
H = dTg.
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The proof of Theorem IV.1 is provided in Appendix A. Theorem IV.1 provides the

closed form update for the solution path f(θ0, λ) → f(θ1, λ), under the assumption

that the associated sets S(θ) remain unaltered over the path.

Next, we partition the range θ ∈ [0, 1] into contiguous segments over which S(θ)

is piecewise constant. Within each segment we can use Theorem 1 to propagate the

solution from left endpoint to right endpoint. Below we specify an algorithm for

finding the endpoints of each of these segments.

Fix an endpoint θ0 of one of these segments. We seek a critical point θ1 that

is defined as the maximum θ1 ensuring S(θ) remains unchanged within [θ0, θ1]. By

increasing θ1 from θ0, the sets S(θ) will not change until at least one of the following

conditions are met:

Condition 1. There exists i ∈ A such that z′i = 0;

Condition 2. There exists i ∈ Bm such that |w′i| = α′m;

Condition 3. There exists m ∈ P such that α′m = 0;

Condition 4. There exists m ∈ Q such that ‖z′Cm‖1 = 1.

Condition 1 is from (4.21) and (4.22), Condition 2 and 3 are based on definitions

of A and P , respectively, and Condition 4 comes from (4.20) and (4.23). Following

[95, 1], the four conditions can be assumed to be mutually exclusive. The actions

with respect to Conditions 1-4 are given by

Action 1. Move the entry i from A to B:

A ← A− {i},B ← B ∪ {i};

Action 2. Move the entry i from B to A:

A ← A∪ {i},B ← B − {i};
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Action 3. Remove group m from the active group list

P ← P − {m},Q ← Q∪ {m},

and update the related sets

A ← A−Am, C ← C ∪ Am;

Action 4. Select group m

P ← P ∪ {m},Q ← Q− {m},

and update the related sets

A ← A∪ Cm, C ← C − Cm.

By Theorem IV.1, the solution update from θ0 to θ1 is in closed form. The critical

point of θ1 can be determined in a straightforward manner (details are provided in

Appendix B). Let θ
(k)
1 , k = 1, ..., 4 be the minimum value that is greater than θ0 and

meets Condition 1-4, respectively. The critical point θ1 is then

θ1 = min
k=1,...,4

θ
(k)
1 .

4.4.4 Homotopy algorithm implementation

We now have all the ingredients for the homotopy update algorithm and the

pseudo code is given in Algorithm 1.

Next we analyze the computational cost of Algorithm 1. The complexity to com-

pute each critical point is summarized in Table 4.1, where N is the dimension of

H0. As N = |P| + |B| ≤ |A| + |B|, N is upper bounded by the number of non-

zeros in the solution vector. The vector g can be computed in O(N2) time using



90

Algorithm 1: Homotopy update from f(0, λ) to f(1, λ).

Input : f(0, λ),R(0),x,y
output: f(1, λ)

Initialize θ0 = 0, θ1 = 0, R = R(0);
Calculate (A,B, C,P,Q) and (v, λzA, λzC) from f(0, λ);
while θ0 < 1 do

Calculate the environmental variables (S,H0,d,g, ŷ, σ
2
H) from f(θ0, λ) and R;

Calculate {θ(k)1 }4k=1 that meets Condition 1-4, respectively;

Calculate the critical point θ1 that meets Condition k∗: k∗ = arg mink θ
(k)
1 and θ1 = θ

(k∗)
1 ;

if θ1 ≤ 1 then
Update (v, λzA, λzC) using (4.39), (4.40) and (4.41);
Update (A,B, C,P,Q) by Action k∗;
θ0 = θ1;

else
break;

end

end
θ1 = 1;
Update (v, λzA, λzC) using (4.39);
Calculate f(1, λ) from v.

the matrix-inverse lemma [91] and the fact that, for each action, H0 is at most per-

turbed by a rank-two matrix. This implies that the computation complexity per

critical point is O(pmax{N, log p}) and the total complexity of the online update is

O(k2 · pmax{N, log p}), where k2 is the number of critical points of θ in the solution

path f(0, λ)→ f(1, λ). This is the computational cost required for Step 2 in Section

4.3.3.

A similar analysis can be performed for the complexity of Step 1, which requires

O(k1 · pmax{N, log p}) where k1 is the number of critical points in the solution path

f(0, γλ) → f(0, λ). Therefore, the overall computation complexity of the recursive

`1,∞ group lasso is O(k · pmax{N, log p}), where k = k1 + k2, i.e., the total number

of critical points in the solution path f(0, γλ)→ f(0, λ)→ f(1, λ).

An instructive benchmark is to directly solve the n-samples problem (4.16) from

the solution path f(1,∞) (i.e., a zero vector)→ f(1, λ) [1], without using the previ-

ous solution ŵn−1. This algorithm, called iCap in [1], requires O(k′ ·pmax{N, log p}),
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g = H−10 d O(N2)
xA − (RAAS RAB)g O(|A|N)
xC − (RCAS RCB)g O(|C|N)

θ
(1)
1 O(|A|)
θ
(2)
1 O(|B|)
θ
(3)
1 O(|P|)
θ
(4)
1 O(|C| log |C|)

Table 4.1: Computation costs of online homotopy update for each critical point.
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Figure 4.3: Responses of the time varying system. (a): Initial response. (b): Response after the
200th iteration. The groups for Algorithm 1 were chosen as 20 equal size contiguous
groups of coefficients partitioning the range 1, . . . , 100.

where k′ is the number of critical points in f(1,∞) → f(1, λ). Empirical compar-

isons between k and k′, provided in the following section, indicate that iCap requires

significantly more computation than our proposed Algorithm 1.

4.5 Numerical simulations

In this section we demonstrate our proposed recursive `1,∞ group lasso algorithm

by numerical simulation. We simulated the model yj = wT
∗ xj + vj, j = 1, . . . , 400,

where vj is a zero mean Gaussian noise and w∗ is a sparse p = 100 element vector

containing only 14 non-zero coefficients clustered between indices 29 and 42. See

Fig. 4.3 (a). After 200 time units, the locations of the non-zero coefficients of w∗ is

shifted to the right, as indicated in Fig. 4.3 (b).

The input vectors were generated as independent identically distributed Gaussian
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Figure 4.4: Averaged MSE of the proposed algorithm, RLS and recursive lasso.

random vectors with zero mean and identity covariance matrix, and the variance

of observation noise vj is 0.01. We created the groups in the recursive `1,∞ group

lasso as follows. We divide the 100 RLS filter coefficients w into 20 groups with

group boundaries 1, 5, 10, . . ., where each group contains 5 coefficients. The forgetting

factor γ and the regularization parameter λ were set to 0.9 and 0.1, respectively. We

repeated the simulation 100 times and the averaged mean squared errors of the RLS,

sparse RLS and proposed RLS shown in Fig. 4.4. We implemented the standard RLS

and sparse RLS using the `1 regularization, where the forgetting factors are also set

to 0.9. We implemented sparse RLS [93] by choosing the regularization parameter λ

which achieves the lowest steady-state error, resulting in λ = 0.05.

It can be seen from Fig. 4.4 that our proposed sparse RLS method outperforms

standard RLS and sparse RLS in both convergence rate and steady-state MSE. This

demonstrates the power of our group sparsity penalty. At the change point of 200

iterations, both the proposed method and sparse RLS of [93] show superior tracking

performances as compared to the standard RLS. We also observe that the proposed

method achieves even smaller MSE after the change point occurs. This is due to the

fact that the active cluster spans across group boundaries in the initial system (Fig.
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Figure 4.5: Averaged number of critical points for the proposed recursive method of implementing
`1,∞ lasso and the iCap[1] non-recursive method of implementation.

Figure 4.6: Averaged CPU time for the proposed recursive method of implementing `1,∞ lasso and
the iCap non-recursive method of implementation. Algorithms are implemented using
Intel (R) Core (TM) i5 CPU at 2.53GHz.

4.3 (a)), while the active clusters in the shifted system overlap with fewer groups.

Fig. 4.5 shows the average number of critical points (accounting for both trajec-

tories in θ and λ) of the proposed algorithm, i.e., the number k as defined in Section

4.4.4. As a comparison, we implement the iCap method of [1], a homotopy based

algorithm that traces the solution path only over λ. The average number of critical

points for iCap is plotted in Fig. 4.5, which is the number k′ in Section 4.4.4. Both

the proposed algorithm and iCap yield the same solution but have different compu-

tational complexities proportional to k and k′, respectively. It can be seen that the

proposed algorithm saves as much as 75% of the computation costs for equivalent
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Figure 4.7: The absolute value of the difference vector between solutions from the proposed algo-
rithm and iCap. The differences are within the range of quantization errors.

performance. We also compute the averaged CPU time of the proposed algorithm

and iCap that shows similar advantages in Fig. 4.6. Finally, to validate the accu-

racy of the proposed algorithm we randomly choose an iteration index and plot the

absolute value of the difference between solution vectors obtained by the proposed

method and iCap for one trial of simulation as shown in Fig. 4.7. Considering the

quantization error, it is observed that our algorithm and iCap yield the same result

with machine precision.

4.6 Application to covariance-based anomaly detection in the Abilene
Networks

In this section we perform an online covariance-based anomaly detection to demon-

strate the proposed method. We consider a real world data set of Abilene, the Inter-

net 2 backbone network. This networks carries traffic from universities in the United

States. Fig. 4.8 shows its connectivity map consisting of 11 routers and 41 links.

Each line corresponds to two links and there are additional links from each of the

nodes to itself. In our experiments we use the 1008 samples of the traffic on each of

the 41 Abilene links during April 7 - 13, 2003.

To remove the drifts and seasonal effects we detrended the data as follows. Let

xi,k be the k-th sample of the i-th traffic link and denote

(4.46) xk = (x1,k, x2,k, ..., x182,k)
T .
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Figure 4.8: Map of Abilene router network.

The local mean value of xi,k is defined by

(4.47) x̄i,k =
1

m+ 1

m∑
j=0

xi,k−j,

where m determines the local window size which is set to 40 in this study. Using the

same local window we also calculated the empirical variance of each xi,k, denoting

as ŝ2
i,k. We then detrend and normalize the raw samples xk by

(4.48) yi,k =
xi,k − x̄i,k

ŝi,k

yielding a detrended sample yk that is used for online anomaly detection.

We use a similar detect statistic tk defined in Chapter III, i.e.,

(4.49) tk = yTk Cyk,

where C is the inverse covariance such that C−1 = E
{
yky

T
k

}
. Note that C may

be time-varying and dependent on k. Now the anomaly detection problem turns

to online estimation of the inverse covariance C and we use (4.1) to transfer the

matrix estimation of C to p regression problems to estimate βij, i, j = 1, ..., p. As

demonstrated in [96], the Abilene Network data can be well fit by an undirected

Gaussian graph model where C is sparse, which produces sparse patterns in βij as
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well. We thus apply the proposed recursive lasso algorithm for online estimation of

βij, which yielding β̂ij. The inverse covariance estimate Ĉ is estimated via β̂ij using

(4.4) and then plugged into (4.49) for anomaly detection.

As the sample dimension in this study is only 41, we treat each variable as a

single group and the recursive `1,∞ lasso naturally reduces to recursive lasso. The

forgetting factor γ is set to 0.95, where the effective sample size for each update is

roughly estimated as 1/(1− γ) = 20, and the regularization parameter λ is set to 1.

The test statistic tk for detection is plotted in Fig. 4.9 (a). As we do not have ground

truth for Σ, we use the sample covariance of the entire 1008 samples to approximate

the true Σ, and the corresponding test statistic is plotted in Fig. 4.9 (b). For

comparison we also implement the OAS covariance estimator using local samples

within a sliding windows of size 1/(1 − γ) = 20, and its test statistics is plotted in

Fig. 4.9 (c). It can be observed that Fig. 4.9 (a) and (b) share similar global patterns

but differ in local details. Considering that the sample covariance is obtained using

1008 samples, Fig. 4.9 (b) has significantly more smoothing than Fig. 4.9 (a), which

is smoothed over only 21 samples. Thus Fig. 4.9 (a) has extracted local covariance

patterns, indicated by arrows, that are not visible in Fig. 4.9 (b) and only weakly

visible in Fig. 4.9 (c). On the other hand, the global patterns of Fig. 4.9 (b) and

(c) are quite different to each other, which implies the shrinkage method (equivalent

to ridge regressions on βij) is not appropriate in estimating the covariance of the

Abilene Network data. To further illustrate this point, we also visualize heatmaps of

the inverse sample covariance (using the entire 1008 samples), the estimates of C at

the 900th sample using the proposed approach and OAS, respectively. It is clear that

the global inverse sample covariance contains a sparse pattern which justifies that

`1 type penalized regression (as used in the proposed approach) is more appropriate
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Figure 4.9: Covariance-based anomaly detection using the real world dataset of Abilene, where
the traffic data on the 41 Abilene links were recorded during April 7-13, 2007: (a)
online covariance estimation using the proposed algorithm; (b) sample covariance using
the entire data; (c) online covariance estimation using the OAS estimator proposed
in Chapter 2. (a) and (b) share similar global patterns while local details (possible
anomalies) are more evident in (a), which are marked by arrows. (c) also captures
similar details of (a) but loses the global pattern of (b).

than `2 norm based ridge regressions (equivalent to Steinian shrinkage in OAS) in

this study.

(a) Inverse of the global sample
covariance

(b) Proposed (c) Inverse of the local OAS es-
timator

Figure 4.10: Heatmaps of inverse covariance estimates (shown in absolute values): (a) the inverse
sample covariance using the entire data; (b) the estimated local inverse covariance
at the 900th sample using the proposed approach; (c) the estimated local inverse
covariance at the 900th sample using the OAS estimator.

4.7 Conclusion

In this chapter we considered the online (inverse) covariance estimation for time-

varying systems, where the variables are associated with a sparse Gaussian graphical

model. We proposed to use results of multiple decoupled regression problems to ap-
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proximate the inverse covariance estimate. Each regression problem was solved by a

regularized recursive least squares problem and the solution vector was updated on-

line efficiently. Specifically we proposed a `1,∞ regularized RLS algorithm for online

sparse linear prediction. We developed a homotopy based method to sequentially up-

date the solution vector as new measurements are acquired. Our proposed algorithm

uses the previous estimate as a “warm-start”, from which we compute the homotopy

update to the current solution. The proposed algorithm can process streaming mea-

surements with time varying predictors and is computationally efficient compared

to non-recursive group lasso solvers. Numerical simulations demonstrated that the

proposed method outperformed the standard and `1 regularized RLS for identifying

an unknown group sparse system, in terms of both tracking and steady-state mean

squared error. Finally, we incorporated the proposed recursive lasso into online co-

variance estimation and demonstrated its performance using the Abilene Networks

data.

4.8 Appendix

4.8.1 Proof of Theorem IV.1

We begin by deriving (4.39). According to (4.35),

(4.50) v′ = H′−1(b′ − λe′).

As S and (A,B, C,P ,Q) remain constant within [θ0, θ1],

(4.51) e′ = e,

(4.52) b′ = b + δdy,

and

H′ = H + δddT ,
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where

δ = θ1 − θ0,

H and b are calculated using S within [θ0, θ1] and R(θ0) and r(θ0), respectively. We

emphasize that H is based on R(θ) and is different from H0 defined in Theorem

IV.1. According to the Sherman-Morrison-Woodbury formula,

(4.53) H′−1 = H−1 − δ

1 + σ2δ
(H−1d)(H−1d)T ,

where σ2 = dTH−1d. Substituting (4.51), (4.52) and (4.53) into (4.50), after simpli-

fication we obtain

(4.54)

v′ =

(
H−1 − δ

1 + σ2δ
(H−1d)(H−1d)T

)
(b + δdy − λe)

= H−1(b− λe) + H−1δdy

− δ

1 + σ2δ
H−1ddTH−1(b− λe)− σ2δ2

1 + σ2δ
H−1dy

= v +
δ

1 + σ2δ
(y − dTv)H−1d

= v +
δ

1 + σ2δ
(y − ŷ)H−1d,

where ŷ = dTv as defined in (4.44).

Note that H is defined in terms of R(θ0) rather than R(0) and

H = H0 + θ0ddT ,

so that

(4.55) H−1 = H−1
0 −

θ0

1 + σ2
Hθ0

ggT ,

where g and σ2
H are defined by (4.43) and (4.45), respectively. As σ2

H = dTg,

(4.56) H−1d = H−1
0 d− σ2

Hθ0

1 + σ2
Hθ0

g.
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Accordingly,

(4.57) σ2 = dTH−1d = σ2
H −

σ2
Hθ0

1 + σ2
Hθ0

σ2
H =

σ2
H

1 + σ2
Hθ0

.

Substituting (4.56) and (4.57) to (4.54), we finally obtain

v′ = v +
δ

1 + σ2
Hθ1

(y − ŷ)g = v +
θ1 − θ0

1 + σ2
Hθ1

(y − ŷ)g.

Equations (4.40) and (4.41) can be established by direct substitutions of (4.39)

into their definitions (4.36) and (4.38) and thus the proof of Theorem IV.1 is com-

plete.

4.8.2 Computation of critical points

For ease of notation we work with ρ, defined by

(4.58) ρ =
θ1 − θ0

1 + σ2
Hθ1

.

It is easy to see that over the range θ1 > θ0, ρ is monotonically increasing in (0, 1/σ2
H).

Therefore, (4.58) can be inverted by

(4.59) θ1 =
ρ+ θ0

1− σ2
Hρ

,

where ρ ∈ (0, 1/σ2
H) to ensure θ1 > θ0.

Suppose we have obtained ρ(k), k = 1, ..., 4, θ
(k)
1 can be calculated using (4.59) and

the critical point θ1 is then

θ1 = min
k=1,...,4

θ
(k)
1 .

We now calculate the critical value of ρ for each condition one by one.

Critical point for Condition 1

Define the temporary vector

tA = (y − ŷ) {xA − (RAAS RAB) g} .
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According to (4.40),

λz′A = λzA + ρtA.

Condition 1 is met for any ρ = ρ
(1)
i such that

ρ
(1)
i = −λzi

ti
, i ∈ A.

Therefore, the critical value of ρ that satisfies Condition 1 is

ρ(1) = min
{
ρ

(1)
i

∣∣∣i ∈ A, ρ(1)
i ∈ (0, 1/σ2

H)
}
.

Critical point for Condition 2

By the definition (4.34), v is a concatenation of αm and wBm ,m ∈ P :

(4.60) vT =
(

(αm)m∈P ,w
T
B1 , ...,w

T
B|P|

)
,

where (αm)m∈P denotes the vector comprised of αm,m ∈ P . Now we partition the

vector g in the same manner as (4.60) and denote τm and um as the counter part of

αm and wBm in g, i.e.,

gT =
(
(τm)m∈P ,u

T
1 , ...,u

T
|P|
)
.

Eq. (4.39) is then equivalent to

(4.61) α′m = αm + ρτm,

and

w′Bm,i = wBm,i + ρum,i,

where um.i is the i-th element of the vector um. Condition 2 indicates that

α′m = ±w′Bm,i,

and is satisfied if ρ = ρ
(2+)
m,i or ρ = ρ

(2−)
m,i , where

ρ
(2+)
m,i =

αm − wBm,i
um,i − τm

, ρ
(2−)
m,i = −αm + wBm,i

um,i + τm
.
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Therefore, the critical value of ρ for Condition 2 is

ρ(2) = min
{
ρ

(2±)
m,i

∣∣∣m ∈ P , i = 1, ..., |Bm|, ρ(2±)
m,i ∈ (0, 1/σ2

H)
}
.

Critical point for Condition 3

According to (4.61), α′m = 0 yields ρ = ρ
(3)
i determined by

ρ(3)
m = −αm

τm
,m ∈ P ,

and the critical value for ρ(3) is

ρ(3) = min
{
ρ(3)
m

∣∣,m ∈ P , ρ(3)
m ∈ (0, 1/σ2

H)
}
.

Critical point for Condition 4

Define

tC = (y − ŷ) {xC − (RCAS RCB) g} .

Eq. (4.41) is then

λz′Cm = λzCm + ρtCm ,

and Condition 4 is equivalent to

(4.62)
∑
i∈Cm

|ρti + λzi| = λ.

To solve (4.62) we develop a fast method that requires complexity of O(N logN),

where N = |Cm|. The algorithm is given in Appendix C. For each m ∈ Q, let ρ
(4)
m be

the minimum positive solution to (4.62). The critical value of ρ for Condition 4 is

then

ρ(4) = min
{
ρ(4)
m

∣∣m ∈ Q, ρ(4)
m ∈ (0, 1/σ2

H)
}
.
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Figure 4.11: An illustration of the fast algorithm for critical condition 4.

4.8.3 Fast algorithm for critical condition 4

Here we develop an algorithm to solve problem (4.62). Consider solving the more

general problem:

(4.63)
N∑
i=1

ai|x− xi| = y,

where ai and xi are constants and ai > 0. Please note that the notations here have

no connections to those in previous sections. Define the following function

h(x) =
N∑
i=1

ai|x− xi|.

The problem is then equivalent to finding h−1(y), if it exists.

An illustration of the function h(x) is shown in Fig. 4.11, where ki denotes the

slope of the ith segment. It can be shown that h(x) is piecewise linear and convex in

x. Therefore, the equation (4.63) generally has two solutions if they exist, denoted as

xmin and xmax. Based on piecewise linearity we propose a search algorithm to solve

(4.63). The pseudo code is shown in Algorithm 2 and its computation complexity is

dominated by the sorting operation which requires O(N logN).
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Algorithm 2: Solve x from
∑N

i=1 ai|x− xi| = y.

Input : {ai, xi}Ni=1, y
output: xmin, xmax

Sort {xi}Ni=1 in the ascending order: x1 ≤ x2 ≤ ... ≤ xN ;
Re-order {ai}Ni=1 such that ai corresponds to xi;

Set k0 = −∑N
i=1 ai;

for i = 1, ..., N do
ki = ki−1 + 2ai;

end

Calculate h1 =
∑N

i=2 ai|x1 − xi|;
for i = 2, ..., N do

hi = hi−1 + ki−1(xi − xi−1)
end
if mini ki > y then

No solution;
Exit;

else
if y > h1 then

xmin = x1 + (y − h1)/k0;
else

Seek j such that y ∈ [hj , hj−1];
xmin = xj + (y − hj)/kj−1;

end
if y > hN then

xmax = xN + (y − hN )/kN ;
else

Seek j such that y ∈ [hj−1, hj ];
xmax = xj−1 + (y − hj−1)/kj−1;

end

end



CHAPTER V

Regularized Least-Mean-Square Algorithms

In this chapter we continue to study time-varying regression problems where we

consider adaptive system identification with convex constraints and propose a family

of regularized Least-Mean-Square (LMS) algorithms. We show that with a properly

selected regularization parameter the regularized LMS provably dominates its con-

ventional counterpart in terms of mean square deviations. We establish simple and

closed-form expressions for choosing this regularization parameter. For identifying an

unknown sparse system we propose sparse and group-sparse LMS algorithms, which

are special examples of the regularized LMS family. Simulation results demonstrate

the advantages of the proposed filters in both convergence rate and steady-state error

under sparsity assumptions on the true coefficient vector.

5.1 Introduction

The Least Mean Square (LMS) algorithm, introduced by Widrow and Hoff [92],

is a popular method for adaptive system identification. Its applications include echo

cancelation, channel equalization, interference cancelation and so forth. Although

there exist algorithms with faster convergence rates such as the Recursive Least

Square (RLS) methods, LMS-type methods are popular because of its ease of imple-

mentation, low computational costs and robustness.

105
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In many scenarios often prior information about the unknown system is avail-

able. One important example is when the impulse response of the unknown system

is known to be sparse, containing only a few large coefficients interspersed among

many small ones. Exploiting such prior information can improve the filtering per-

formance and has been investigated for several years. Early work includes heuristic

online selection of active taps [97, 98, 99] and sequential partial updating [100, 101];

other algorithms assign proportional step sizes of different taps according to their

magnitudes, such as the Proportionate Normalized LMS (PNLMS) and its variations

[102, 103].

Motivated by LASSO [104] and recent progress in compressive sensing [40, 105],

the authors in [106] introduced an `1-type regularization to the LMS framework

resulting in two sparse LMS methods called ZA-LMS and RZA-LMS. This method-

ology was also applied to other adaptive filtering frameworks such as RLS [107, 108]

and projection-based adaptive algorithms [109]. Inheriting the advantages of con-

ventional LMS methods such as robustness and low computational costs, the sparse

LMS filters were empirically demonstrated to achieve superior performances in both

convergence rate and steady-state behavior, compared to the standard LMS when

the system is sparse. However, while the regularization parameter needs to be tuned

there is no systematical way to choose the parameter. Furthermore, the analysis

of [106] is only based on the `1 penalty and not applicable to other regularization

schemes.

In this work, we extend the methods presented in [106] to a broad family of regu-

larization penalties and consider LMS and Normalized LMS algorithms (NLMS) [92]

under general convex constraints. In addition, we allow the convex constraints to
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be time-varying. This results in a regularized LMS/NLMS1 update equation with

an additional sub-gradient term. We show that the regularized LMS provably dom-

inates its conventional counterpart if a proper regularization parameter is selected.

We also establish a simple and closed-form formula to choose this parameter. For

white input signals, the proposed parameter selection guarantees dominance of the

regularized LMS over the conventional LMS. Next, we show that the sparse LMS

filters in [106], i.e., ZA-LMS and RZA-LMS, can be obtained as special cases of the

regularized LMS family introduced here. Furthermore, we consider a group-sparse

adaptive FIR filter response that is useful for practical applications [103, 110]. To

enforce group sparsity we use `1,2 type regularization functions [88] in the regularized

LMS framework. For sparse and group-sparse LMS methods, we propose alternative

closed-form expressions for selecting the regularization parameters. This guarantees

provable dominance for both white and correlated input signals. Finally, we demon-

strate performance advantages of our proposed sparse and group-sparse LMS filters

using numerical simulation. In particular, we show that the regularized LMS method

is robust to model mis-specification and outperforms the contemporary projection

based methods [109] for equivalent computational cost.

This chapter is organized as follows. Section 5.2 formulates the problem and

introduces the regularized LMS algorithm. In Section 5.3 we develop LMS filters

for sparse and group-sparse system identification. Section 5.4 provides numerical

simulation results and Section 5.5 summarizes our principal conclusion. The proofs

of theorems are provided in the Appendix.

Notations : In the following parts of the chapter, matrices and vectors are denoted

by boldface upper case letters and boldface lower case letters, respectively; (·)T
1We treat NLMS as a special case of the general LMS algorithm and will not distinguish the two unless required

for clarity.
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denotes the transpose operator, and ‖ · ‖1 and ‖ · ‖2 denote the `1 and `2 norm of a

vector, respectively.

5.2 Regularized LMS

5.2.1 LMS framework

We begin by briefly reviewing the framework of the LMS filter, which forms the

basis of our derivations to follow. Denote the coefficient vector and the input signal

vector of the adaptive filter as

(5.1) ŵn = [ŵn,0, ŵn,1, · · · , ŵn,N−1]T

and

(5.2) xn = [xn, xn−1, · · · , xn−N+1]T ,

respectively, where n is the time index, xn is the input signal, ŵn,i is the i-th coef-

ficient at time n and N is the length of the filter. The goal of the LMS algorithm

is to identify the true system impulse response w from the input signal xn and the

desired output signal yn, where

(5.3) yn = wTxn + vn.

vn is the observation noise which is assumed to be independent with xn.

Let en denote the instantaneous error between the filter output ŵT
nxn and the

desired output yn:

(5.4) en = yn − ŵT
nxn.

In the standard LMS framework, the cost function Ln is defined as the instantaneous

square error

Ln(ŵn) =
1

2
e2
n
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and the filter coefficient vector is updated in a stochastic gradient descent manner:

(5.5) ŵn+1 = ŵn − µn∇Ln(wn) = ŵn + µnenxn,

where µn is the step size controlling the convergence and the steady-state behavior

of the LMS algorithm. We refer to (5.5) as the conventional LMS algorithm and

emphasize that µn can be both time-varying and functions of xn. For example,

(5.6) µn =
αn
‖xn‖2

2

yields the normalized LMS (NLMS) algorithm with variable step size αn.

5.2.2 Regularized LMS

Conventional LMS algorithms do not impose any model on the true system re-

sponse w. However, in practical scenarios often prior knowledge of w is available.

For example, if the system is known to be sparse, the `1 norm of w can be up-

per bounded by some constant [104]. In this work, we study the adaptive system

identification problem where the true system is constrained by

(5.7) fn(w) ≤ ηn,

where fn(·) is a convex function and ηn is a constant. We note that the subscript n

in fn(·) allows adaptive constraints that can vary in time. Based on (5.7) we propose

a regularized instantaneous cost function

(5.8) Lreg
n (ŵn) =

1

2
e2
n + γnfn(ŵn)

and update the coefficient vector by

(5.9)
ŵn+1 = ŵn − µn∇Lreg

n (ŵn)

= ŵn + µnenxn − ρn∂fn(ŵn),
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where ∂fn(·) is the sub-gradient of the convex function fn(·), γn is the regularization

parameter and ρn = γnµn.

Eq. (5.9) is the proposed regularized LMS. Compared to its conventional counter-

part, the regularization term, −ρn∂fn(ŵn), always promotes the coefficient vector to

satisfy the constraint (5.7). The parameter ρn is referred to as the regularization step

size. Instead of tuning ρn in an ad hoc manner, we establish a systematic approach

to choosing ρn.

Theorem V.1. Assume both {xn} and {vn} are Gaussian independent and identi-

cally distributed (i.i.d.) processes that are mutually independent. For any n > 1

(5.10) E ‖ŵn −w‖2
2 ≤ E ‖ŵ′n −w‖2

2

if ŵ0 = ŵ′0 and ρn ∈ [0, 2ρ∗n], where w is the true coefficient vector and ŵ′n and ŵn are

filter coefficients updated by (5.5) and (5.9) with the same step size µn, respectively.

ρ∗n is calculated by

(5.11) ρ∗n = max

{
(1− µnσ2

x)
fn(ŵn)− ηn
‖∂fn(ŵn)‖2

2

, 0

}
if µn are constant values (LMS), or

(5.12) ρ∗n = max

{
(1− αn/N)

fn(ŵn)− ηn
‖∂fn(ŵn)‖2

2

, 0

}
if µn is chosen using (5.6) (NLMS), where N is the filter length, σ2

x is the variance

of {xn} and ηn is an upper bound of fn(w) defined in (5.7).

The proof of Theorem V.1 is provided in the Appendix.

Remark 1. Theorem V.1 shows that with the same initial condition and step

size µn, the regularized LMS algorithm provably dominates conventional LMS when

the input signal is white. The parameter ρ∗n in (5.11) or (5.12) can be used as the
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value for ρn in (5.9) to guarantee that regularized LMS will have lower MSD than

conventional LMS. The value ρ∗n only requires specification of the noise variance and

ηn which upper bounds the true value fn(w). Simulations in latter sections show

that the performance of the regularized LMS is robust to misspecified values of ηn.

Remark 2. Eq. (5.11) and (5.12) indicate that to ensure superiority the regu-

larization is only “triggered” if fn(ŵn) > ηn. When fn(ŵn) ≤ ηn, ρ∗n = 0 and the

regularized LMS reduces to the conventional LMS.

Remark 3. The closed form expression for ρ∗n is derived based on the white input

assumption. Simulation results in latter sections show that the (5.11) and (5.12)

are also empirically good choices even for correlated input signals. Indeed, in the

next section we will show that provable dominance can be guaranteed for correlated

inputs when the regularization function is suitably selected.

5.3 Sparse system identification

A sparse system contains only a few large coefficients interspersed among many

negligible ones. Such sparse systems are arise in many applications such as digital

TV transmission channels [110] and acoustic echo channels [103]. Sparse systems can

be further divided into general sparse systems and group-sparse systems, as shown

in Fig. 5.1 (a) and Fig. 5.1 (b), respectively. Here we apply our regularized LMS

to both general and group sparse system identification. We show that ZA-LMS

and RZA-LMS in [106] are special examples of regularized LMS. We then propose

group-sparse LMS algorithms for identifying group-sparse systems.

5.3.1 Sparse LMS

For a general sparse system, the locations of active non-zero coefficients are un-

known but one may know an upper bound on their number. Specifically, we will
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Figure 5.1: Examples of (a) a general sparse system and (b) a group-sparse system.

assume that the impulse response w satisfies

(5.13) ‖w‖0 ≤ k,

where ‖ · ‖0 is the `0 norm denoting the number of non-zero entries of a vector, and

k is a known upper bound. As the `0 norm is non-convex it is not suited to the

proposed framework. Following [104] and [40], we instead adopt the `1 norm as a

surrogate approximation to the `0 norm:

(5.14) ‖w‖1 =
N−1∑
i=0

|wi|.

Using the regularization penalty fn(w) = ‖w‖1 in regularized LMS (5.9), we obtain

(5.15) ŵn+1 = ŵn + µnenxn − ρn sgn ŵn,

where the component-wise sgn(·) function is defined as

(5.16) sgn(x) =


x/|x| x 6= 0

0 x = 0

.

Equation (5.15) yields the ZA-LMS introduced in [106]. The regularization pa-

rameter ρn can be calculated by (5.11) for LMS and by (5.12) for NLMS, where

fn(ŵn) = ‖ŵn‖1 and ηn is an estimate of the true ‖w‖1.
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An alternative approach to approximating the `0 norm is to consider the following

function [111, 106, 109]:

(5.17) ‖w‖0 '
N−1∑
i=0

1

|wi|+ δ
· |wi|,

where δ is a sufficiently small positive real number. Interpreting (5.17) as a weighted

`1 approximation, we propose the regularization function fn(w)

(5.18) fn(w) =
N−1∑
i=0

βn,i · |wi|,

and

(5.19) βn,i =
1

|ŵn,i|+ δ
,

where ŵn,i is the i-th coefficient of ŵn defined in (5.1). Using (5.18) in (5.9) yields

(5.20) ŵn+1,i = ŵn,i + µnenxn−i − ρnβn,i sgn ŵn,i,

which is a component-wise update of the RZA-LMS proposed in [106]. Again, ρn

can be computed using (5.11) for LMS or (5.12) for NLMS, where ηn is an estimate

of the true ‖w‖0, i.e., the number of the non-zero coefficients.

5.3.2 Group-sparse LMS

In many practical applications, a sparse system often exhibits a grouping struc-

ture, i.e., coefficients in the same group are highly correlated and take on the values

zero or non-zero as a group, as shown in Fig. 5.1 (b). The motivation for developing

group-sparse LMS is to take advantage of such a structure.

We begin by employing the mixed `1,2 norm for promoting group-sparsity, which

was originally proposed in [88] and has been widely adopted for various structured

sparse regression problems [112, 113]. The `1,2 norm of a vector w is defined as

(5.21) ‖w‖1,2 =
J∑
j=1

‖wIj‖2,



114

wI1 wI2 wI3 wI4

Figure 5.2: A toy example illustrating the `1,2 norm of a 16 × 1 coefficient vector w: ‖w‖1,2 =∑4
j=1 ‖wIj‖2.

where {Ij}Jj=1 is a group partition of the whole index set I = {0, 1, . . . , N − 1}:

(5.22)
J⋃
j=1

Ij = I, Ij ∩ Ij′ = φ when j 6= j′,

and wIj is a sub-vector of w indexed by Ij. The `1,2 norm is a mixed norm: it

encourages correlation among coefficients inside each group via the `2 norm and

promotes sparsity across those groups using the `1 norm. ‖w‖1,2 is convex in w and

reduces to ‖w‖1 when each group contains only one coefficient, i.e.,

(5.23) |I1| = |I2| = · · · = |IJ | = 1,

where | · | denotes the cardinality of a set. Employing fn(w) = ‖w‖1,2, the `1,2

regularized LMS, which we refer to as GZA-LMS, is

(5.24) ŵn+1,Ij = ŵn,Ij + µnenxIj − ρn
ŵn,Ij

‖ŵn,Ij‖2 + δ
, j = 1, ..., J,

and δ is a sufficiently small number ensuring a non-zero denominator. To the best

of our knowledge this is the first time that the `1,2 norm has been proposed for the

LMS adaptive filters.

To further promote group selection we consider the following weighted `1,2 regu-

larization as a group-wise generalization of (5.18):

(5.25) fn(w) =
J∑
j=1

βn,j‖wIj‖2,
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where βn,j is a re-weighting parameter defined by

(5.26) βn,j =
1

‖ŵn,Ij‖2 + δ
,

and the corresponding regularized LMS update is then

(5.27) ŵn+1,Ij = ŵn,Ij + µnenxIj − ρnβn,j
ŵn,Ij

‖ŵn,Ij‖2 + δ
, j = 1, ..., J,

which is referred to as GRZA-LMS.

As both the `1,2 norm and the weighted `1,2 norm are convex, Theorem V.1 applies

under the assumption of white input signals and ρn can be calculated by (5.11) or

(5.12). The parameter ηn can be chosen as an estimate of the true ‖w‖1,2 for GZA-

LMS (5.24), or the number of non-zero groups of w for GRZA-LMS (5.27).

Finally, we note that GZA-LMS and GRZA-LMS reduce to ZA-LMS and RZA-

LMS, respectively, if each group contains only one element.

5.3.3 Choosing regularization parameter for correlated input

Theorem V.1 gives a closed form expression for ρn and (5.11) or (5.12) is appli-

cable for any convex fn(w). However, the dominance over conventional LMS is only

guaranteed when the input signal is white. Here we develop an alternative formula

to determine ρn that applies to correlated input signals for sparse and group-sparse

LMS, i.e., (5.15), (5.20), (5.24) and (5.27).

We begin by considering the weighted `1,2 regularization (5.25) and the corre-

sponding GRZA-LMS update (5.27). Indeed, the other three algorithms, i.e., (5.24),

(5.20) and (5.15), can be treated as special cases of (5.27). For general wide-sense

stationary (WSS) input signals, the regularization parameter ρn of (5.27) can be

selected according the following theorem.
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Theorem V.2. Assume {xn} and {vn} are WSS stochastic processes which are

mutually independent. Let ŵn and ŵ′n be filter coefficients updated by (5.27) and

(5.5) with the same µn, respectively. Then,

(5.28) E ‖ŵn+1 −w‖2
2 ≤ E

∥∥ŵ′n+1 −w
∥∥2

2

if ŵn = ŵ′n and ρn ∈ [0, 2ρ∗n], w is the true coefficient vector and ρ∗n is

(5.29) ρ∗n = max

{
fn(ŵn)− ηn − µnrn
‖∂fn(ŵn)‖2

2

, 0

}
,

where fn(ŵn) is determined by (5.25), ηn is an upper bound of fn(w) and

(5.30) rn = ŵT
nxn · xTn∂fn(ŵn) + ηn ·max

j

{‖xIj‖2

βn,j

}
· |xTn∂fn(ŵn)|.

The proof of Theorem V.2 can be found in the Appendix. We make the following

remarks.

Remark 4. Theorem V.2 is derived from the general form (5.27) and can be

directly specialized to (5.24), (5.20) and (5.15). Specifically,

• GZA-LMS (5.24) can be obtained by assigning βn,j = 1;

• RZA-LMS (5.20) can be obtained when |Ij| = 1, j = 1, ..., J ;

• ZA-LMS (5.15) can be obtained when both |Ij| = 1, j = 1, ..., J and βn,j = 1.

Remark 5. Theorem V.2 is valid for any WSS input signals. However, the dom-

inance result in (5.28) is weaker than that in Theorem V.1, as it requires ŵn = ŵ′n

at each iteration.

Remark 6. Eq. (5.29) can be applied to both LMS and NLMS, depending on if µn

are deterministic functions of xn as specified in (5.6). This is different from Theorem

V.1 where we have separate expressions for LMS and NLMS.
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Figure 5.3: The general sparse system used for simulations.

Remark 7. ρ∗n in (5.29) is non-zero only if fn(ŵn) is greater than ηn + µnrn

(rather than ηn as presented in Theorem V.1). This may yield a more conservative

performance.

5.4 Numerical simulations

In this section we demonstrate our proposed sparse LMS algorithms by numerical

simulations. Multiple experiments are designed to evaluate their performances over

a wide range of conditions.

5.4.1 Identifying a general sparse system

Here we perform evaluation of the proposed filters for general sparse system iden-

tification, as illustrated in Fig. 5.1 (a). There are 100 coefficients in the time varying

system and only five of them are non-zero. The five non-zero coefficients are assigned

to random locations and their values are also randomly drawn from a standard Gaus-

sian distribution. The resultant true coefficient vector is plotted in Fig. 5.3.

White input signals

Initially we simulate white Gaussian input signal {xn} with zero mean and unit

variance. The measurement noise {vn} is an independent Gaussian random process

of zero mean and variance σ2
v = 0.1. For ease of parameter selection, we implement

NLMS-type filters in our simulation. Three filters (NLMS, ZA-NLMS and RZA-
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Figure 5.4: White input signals: performance comparison for different filters.

NLMS) are implemented and their common step-size µn is set via (5.6) with αn = 1.

The regularization parameter ρn is computed using (5.12), where ηn is set to ηn =

‖w‖1 (i.e., the true value) for ZA-NLMS and ηn = 5 for RZA-NLMS. For comparison

we also implement a recently proposed sparse adaptive filter, referred to as APWL1

[109], which sequentially projects the coefficient vector onto weighted `1 balls. We

note that our simulation setting is identical to that used in [109] and thus we adopt

the same tuning parameters for APWL1. In addition, the weights βn,i for RZA-

NLMS is scheduled in the same manner as that in [109] for a fair comparison. The

simulations are run 100 times and the average estimates of mean square deviation

(MSD) are shown in Fig. 5.4.

It can be observed that ZA-NLMS improves upon NLMS in both convergence rate

and steady-state behavior and RZA-NLMS does even better. The parameter q of

APLW1 is the number of samples used in each iteration. One can see that RZA-

NLMS outperforms APLW1 when q = 1, i.e., the case that APLW1 operates with

the same memory storage as RZA-NLMS. With larger p APLW1 begins to perform

better and exceeds RZA-NLMS when q ≥ 10. However, there is a trade-off between

the system complexity and filtering performance, as APWL1 requires O(qN) for
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Figure 5.5: Sensitivity of ZA-NLMS and RZA-NLMS to ηn: MSD for ZA-NLMS and RZA-NLMS
at the 750th iteration for white input signals.

memory storage and O(N log2N + qN) for computation, in contrast to LMS-type

methods which require only O(N) for both memory and computation.

Next, we investigate the sensitivity to ηn for ZA-NLMS and RZA-NLMS. The

result shown in Fig. 5.5 indicates that ZA-NLMS is more sensitive to ηn than RZA-

NLMS, which is highly robust to misspecified ηn.

Further analysis reveals that the projection based methods such APWL1 may

exhibit unstable converging behaviors. Fig. 5.6 shows two independent trials of

the simulation implemented in Fig. 5.4. It can be seen that there exist several

local minima in APWL1. For example, Fig. 5.6 (b) seems to indicate that APWL1

(q = 10) converges at the 400th iteration with MSD ' −12 dB, yet its MSD actually

reaches values as low as −25 dB at the 900th iteration. This slow convergence

phenomenon is due to the fact that the weighted `1 ball is determined in an online

fashion and the projection operator is sensitive to mis-specifications of the convex

set. In the contrast, our regularized LMS uses sub-gradient rather than projection

to pursue sparsity, translating into improved convergence.
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Figure 5.6: Two different trials of RZA-NLMS and APWL1 for white input signals. APWL1 ex-
hibits unstable convergence.

Correlated input signals

Next, we evaluate the filtering performance using correlated input signals. We

generate the sequence {xn} as an AR(1) process

(5.31) xn = 0.8xn−1 + un,

which is then normalized to unit variance, where {un} is a Gaussian i.i.d. process.

The measurement system is the same as before and the variance of the noise is also

σ2
v = 0.1.

We compare our RZA-NLMS with APWL1 (q = 10) and standard NLMS is also

included as a benchmark. All the filter parameters are set to the same values as that

in the previous simulation, except we employ both (5.12) and (5.29) to calculate ρn

in RZA-NLMS. The simulations are run 100 times and the average MSD curves are

plotted in Fig. 5.7. While Theorem V.1 is derived based on white input assumptions,

using (5.12) to determine ρn achieves an empirically better performance compared

to using (5.29) – whose use guarantees dominance but yields a conservative result.

This confirms our conjecture in Remark 7. We also observe a severe performance

degradation of APWL1 for correlated input signals. Fig. 5.8 draws two independent
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Figure 5.7: Correlated input signals: performance comparison for different filters, where RZA-
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Figure 5.8: Two different trials of RZA-NLMS and APWL1 for correlated input signals.

trials in this simulation. The phenomenon described in Fig. 5.6 becomes more fre-

quent when the input signal is correlated, which drags down the average performance

of APWL1 significantly. Finally, we note that the filtering performance of a group

sparse system (e.g., Fig. 5.1 (b)) may be very different from that of a general sparse

system. This will investigated in Section 5.4.2.

Tracking performance

Finally, we study the tracking performance of the proposed filters. The time-

varying system is initialized using the same parameters as used to generate Fig.
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Figure 5.9: Comparison of tracking performances when the input signal is white.

5.3. At the 750th iteration the system encounters a sudden change, where all the

active coefficients are left-shifted for 10 taps. We use white input signals to excite

the unknown system and all the filter parameters are set in an identical manner to

Section 5.4.1. The simulation is repeated 100 times and the averaged result is shown

in Fig. 5.9. It can be observed that both RZA-NLMS and APWL1 (q = 10) achieve

better tracking performance than the conventional NLMS.

5.4.2 Identifying a group-sparse system

Here we test performance of the group-sparse LMS filters developed in Section

5.3.2. The unknown system contains 200 coefficients that are distributed into two

groups. The locations of the two groups are randomly selected, which start from the

36th tap and the 107th tap, respectively. Both of the two groups contain 15 coeffi-

cients and their values are randomly drawn from a standard Gaussian distribution.

Fig. 5.10 shows the response of the true system.

The input signal {xn} is initially set to an i.i.d. Gaussian process and the variance

of observation noise is σ2
v = 0.1. Three filters, GRZA-NLMS, RZA-NLMS and

NLMS, are implemented, where the performance of NLMS is treated as a benchmark.

In GRZA-NLMS, we divide the 200 coefficients equally into 20 groups, where each
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Figure 5.11: MSD comparison for the group-sparse system for white input signals.

of them contains 10 coefficients. The step size µn of the three filters are all set

according to (5.6) with αn = 1. We use (5.12) to calculate ρn, where ηn is set to

30 (the number of non-zero coefficients) for RZA-NLMS and 2 (the number of non-

zero blocks) for GRZA-NLMS, respectively. We repeat the simulation 200 times and

the averaged MSD is shown in Fig. 5.11. It can be seen that GRZA-NLMS and

RZA-NLMS outperform the standard NLMS for 10 dB in the steady-state MSD,

while GRZA-NLMS only improves upon RZA-NLMS, but only marginally. This is

partially due to the fact that in the white input scenario each coefficient is updated

in an independent manner.

We next consider the case of correlated input signals, where {xn} is generated by

(5.31) and then normalized to have unit variance. The parameters for all the filters

are set to the same values as in the white input example and the averaged MSD
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Figure 5.12: MSD comparison for the group-sparse system for correlated input signals.

curves are plotted in Fig. 5.12. In the contrast to the white input example, here

RZA-NLMS slightly outperforms NLMS but there is a significant improvement of

GRZA-NLMS over RZA-NLMS. This demonstrates the power of promoting group-

sparsity especially when the input signal is correlated.

Finally, we evaluate the tracking performance of the adaptive filters. We use

white signals as the system input and initialize the time-varying system using that

in Fig. 5.10. At the 2000th iteration, the system response is right-shifted for 50 taps,

while the values of coefficients inside each block are unaltered. We then keep the

block locations and reset the values of non-zero coefficients randomly at the 4000th

iteration. From Fig. 5.13 we observe that the tracking rate of RZA-NLMS and

GRZA-NLSM are comparable to each other when the system changes across blocks,

and GRZA-NLMS shows a better tracking performance than RZA-NLMS when the

system response changes only inside its active groups.

5.5 Conclusion

In this work we proposed a general class of LMS-type filters regularized by convex

sparsifying penalties. We derived closed-form expressions for choosing the regular-

ization parameter that guarantees provable dominance over conventional LMS filters.
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Figure 5.13: Tracking performance comparison for the group-sparse system for white input signals.

We applied the proposed regularized LMS filters to sparse and group-sparse system

identification and demonstrated their performances using numerical simulations.

Our regularized LMS filter is derived from the LMS framework and inherits its

simplicity, low computational cost and low memory requirements, and robustness

to parameter mismatch. It is likely that the convergence rate and steady-state per-

formance can be improved by extension to second-order methods, such as RLS and

Kalman filters. Efficient extensions of our results for sparse/group-sparse RLS filters

are a worthy topic of future study.

5.6 Appendix

5.6.1 Proof of Theorem V.1

We prove Theorem V.1 for LMS, i.e., the case that µn are constants. NLMS,

where µn is determined by (5.6), can be derived in a similar manner.

According to (5.9),

(5.32)
ŵn+1 −w

= (I− µnxnxTn )(ŵn −w)− ρn∂fn(ŵn) + µnvnxn.
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Noting that ŵn, xn and vn are mutually independent, we have

(5.33)

E
{
‖ŵn+1 −w‖2|ŵn

}
=

(ŵn −w)TE
{(

I− µnxnxTn
)2
}

(ŵn −w) + µ2
nσ

2
vE
{
‖xn‖2

}
+ 2ρn(w − ŵn)TE

{
I− µnxnxTn

}
∂fn(ŵn) + ρ2

n‖∂fn(ŵn)‖2.

As {xn} is a Gaussian i.i.d. process, xn is a Gaussian random vector with mean zero

and covariance σ2
xI. Thus,

(5.34) E
{(

I− µnxnxTn
)2
}

= (1− 2σ2
xµn +Nσ4

xµ
2
n)I,

(5.35) E
{
I− µnxnxTn

}
= (1− σ2

xµn)I,

and

(5.36) E
{
‖xn‖2

}
= Nσ2

x.

Substituting (5.34), (5.35) and (5.36) into (5.33), we have

(5.37)

E
{
‖ŵn+1 −w‖2|ŵn

}
=

(1− 2σ2
xµn +Nσ4

xµ
2
n) ‖ŵn −w‖2 +Nµ2

nσ
2
xσ

2
v

+ 2ρn(1− σ2
xµn)(w − ŵn)T∂fn(ŵn) + ρ2

n‖∂fn(ŵn)‖2.

As fn(·) is a convex function, by the definition of sub-gradient, we have

(5.38) (w − ŵn)T∂fn(ŵn) ≤ fn(w)− fn(ŵn) ≤ ηn − fn(ŵn).

Therefore,

(5.39)

E
{
‖ŵn+1 −w‖2|ŵn

}
≤

(1− 2σ2
xµn +Nσ4

xµ
2
n) ‖ŵn −w‖2 +Nµ2

nσ
2
xσ

2
v

− 2ρn(1− σ2
xµn)(fn(ŵn)− ηn) + ρ2

n‖∂fn(ŵn)‖2.
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Define

(5.40) C(ρn) = −2ρn(1− σ2
xµn)(fn(ŵn)− ηn) + ρ2

n‖∂fn(ŵn)‖2,

and take expectation on both sides of (5.39) with respect to ŵn to obtain

(5.41)

E
{
‖ŵn+1 −w‖2

}
≤ (1− 2σ2

xµn +Nσ4
xµ

2
n)E

{
‖ŵn −w‖2

}
+Nµ2

nσ
2
xσ

2
v

+ E {C(ρn)} .

It is easy to check that C(ρn) ≤ 0 if ρn ∈ [0, 2ρ∗n], where ρ∗n is defined in (5.11).

Therefore,

(5.42)
E
{
‖ŵn+1 −w‖2

}
≤ (1− 2σ2

xµn +Nσ4
xµ

2
n)E

{
‖ŵn −w‖2

}
+Nµ2

nσ
2
xσ

2
v

if ρn ∈ [0, 2ρ∗n]. For the standard LMS, there is

(5.43)
E
{
‖ŵ′n+1 −w‖2

}
= (1− 2σ2

xµn +Nσ4
xµ

2
n)E

{
‖ŵ′n −w‖2

}
+Nµ2

nσ
2
xσ

2
v .

Therefore, under the condition that E {‖ŵ0 −w‖2} = E {‖ŵ′0 −w‖2}, (5.10) can

be obtained from (5.42) and (5.43) using a simple induction argument.

5.6.2 Proof of Theorem V.2

We start our proof from (5.32) and calculate the following conditional MSD:

(5.44)
E
{
‖ŵn+1 −w‖2|ŵn,xn

}
=

(ŵn −w)T (I− µnxnxTn )2(ŵn −w) + µ2
nσ

2
v‖xn‖2 +D(ρn),

where

(5.45) D(ρn) = 2ρn(w − ŵn)T (I− µnxnxTn )∂fn(ŵn) + ρ2
n‖∂fn(ŵn)‖2.
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For the cross term 2ρn(w − ŵn)T (I− µnxnxTn )∂fn(ŵn) we have

(5.46)

2ρn(w − ŵn)T (I− µnxnxTn )∂fn(ŵn)

= 2ρn(w − ŵn)T∂fn(ŵn) + 2ρnµnŵ
T
nxn · xTn∂fn(ŵn)

− 2ρnµnw
Txn · xTn∂fn(ŵn)

≤ 2ρn(ηn − fn(ŵn)) + 2ρnµnŵ
T
nxn · xTn∂fn(ŵn)

+ 2ρnµn
∣∣wTxn

∣∣ · ∣∣xTn∂fn(ŵn)
∣∣ .

We now establish upper-bounds for |wTxn|. Indeed,

(5.47)

∣∣wTxn
∣∣ =

∣∣∣∣∣
J∑
j=1

wT
Ij

xn,Ij

∣∣∣∣∣
≤

J∑
j=1

∣∣∣∣βn,jwT
Ij

1

βn,j
xn,Ij

∣∣∣∣
≤

J∑
j=1

βn,j‖wIj‖2

‖xn,Ij‖2

βn,j

≤
{

J∑
j=1

βn,j‖wIj‖2

}
max
j

‖xn,Ij‖2

βn,j

= fn(wn) max
j

‖xn,Ij‖2

βn,j
≤ ηn max

j

‖xn,Ij‖2

βn,j
.

Substituting (5.46) and (5.47) into (5.45) we obtain that

(5.48) D(ρn) ≤ −2ρn(fn(ŵn)− ηn − µnrn) + ρ2
n‖∂fn(ŵn)‖2

2,

where rn is defined in (5.30). Note that D(ρn) ≤ 0 if ρn ∈ [0, 2ρ∗n] (ρ∗n is defined in

(5.29)). There is

(5.49)
E
{
‖ŵn+1 −w‖2|ŵn,xn

}
≤ (ŵn −w)T (I− µnxnxTn )2(ŵn −w) + µ2

nσ
2
v‖xn‖2,
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if ρn ∈ [0, 2ρ∗n]. Therefore,

(5.50)

E
{
‖ŵn+1 −w‖2|

}
≤ E

{
(ŵn −w)T (I− µnxnxTn )2(ŵn −w)

}
+ µ2

nσ
2
vE
{
‖xn‖2

}
= E

{
(ŵ′n −w)T (I− µnxnxTn )2(ŵ′n −w)

}
+ µ2

nσ
2
vE
{
‖xn‖2

}
= E

{
‖ŵ′n+1 −w‖2|

}
,

which proves Theorem V.2.



CHAPTER VI

Sampling Ultra-fast Sparse Spectrum Signals: Calibration
and Signal Recovery

In this chapter we introduce a sub-Nyquist sampling system based on infer-

ring high-dimensional covariance structure from its low-dimensional random projec-

tions. The state-of-the-art system, referred to as the modulated wideband converter

(MWC), origins from recent progresses of compressive sensing theories. In [2], a

hardware prototype was developed to implement the MWC system in the board

level. In this work, we focuses on the calibration and signal reconstruction problem

of the MWC prototype, which is one of the main challenges in successful transfering

the conceptual design to the real world. Our work witnessed the birth, to the best

of our knowledge, the first reported sub-Nyquist sampling hardware that is able to

compete with cutting-edge commercial analog-to-digital converters (ADCs).

6.1 Introduction

Efficient sampling of wideband analog signals is a challenging problem, since their

Nyquist rates may exceed the specifications of the best analog-to-digital convert-

ers (ADCs) nowadays by orders of magnitude. The modulated wideband converter

(MWC) [2, 114] is a recent sub-Nyquist system for sampling multiband signals of

wide spectral ranges. The MWC, depicted in Fig. 6.1 and further described in

130
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Section 6.2, consists of simple mixers and lowpass filters. By exploiting frequency

sparsity of multiband signals, the MWC is able to significantly reduce the conversion

rate.

Figure 6.1: A block diagram of the modulated wideband converter. The MWC consists of m parallel
channels, which mix the input against m periodic waveforms. The mixed signal is then
lowpass filtered and sampled at a low rate.

The MWC system is designed for sampling sparse multiband signals which con-

sist of a relatively small number of narrowband transmissions spread across a wide

spectrum range. The underlying principle is based on recently developed theories of

compressive sensing [40, 41]. The system exploits spread-spectrum techniques from

communication theory [115]. An analog mixing radio-frequency front-end aliases the

spectrum, such that a spectrum portion from each band appears in baseband. The

systems consist of multiple channels where each of them delivers low-rate digital

samples. It is demonstrated that the covariance matrix of the multi-channel low-rate

digital samples is a low-dimensional random projection from a high-dimensional but

sparse in both columns and rows covariance matrix. In principle, a sufficiently large

number of channels allows to identity the high-dimensional covariance structure and
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to recover the input sparse multi-band signal. In [2], a board-level prototype was

developed to demonstrate MWC in real scenarios.

While theories of analog compressive sensing [41, 116] appear mature and a board-

level prototype has been developed, there is still a long way to go for the final success

of the practical system. The original theorems and algorithms of MWC assume the

system works in the ideal setting. On the other hand, imperfections exist every-

where in practical circuits and the unconventional architecture design makes system

calibration and signal reconstruction, especially in the digital domain, a challenging

problem. This motivates the work presented in this chapter. Specifically we focus on

the following major issues which manifested themselves as tread stones of bridging

the gap between theories and practical systems.

• Sensing matrix estimation. Accurate estimation of the sensing matrix is crucial

to the success of compressive sensing applications. Ideally, the sensing matrix of

MWC is comprised of Fourier coefficients of periodic random mixing waveforms

and can be obtained in the design stage. However, in practice we observe signifi-

cant distortions between the measured mixing waveforms and the designed ones.

Furthermore, the non-linearity of the mixtures and the existence of equivalent

filters of board-level circuits also cause deviations of the sensing matrix from

the Fourier coefficients of the mixing waveforms. To obtain accurate estimation

we propose an end-to-end calibration scheme via multiple experiments. The

resultant estimate of the sensing matrix guarantees performances of support

recovery and accurate signal reconstruction using the MWC prototype.

• Filter compensation. The original MWC requires ideal analog lowpass filters to

accomplish the reconstruction process. In practice, implementing ideal filters

is generally difficult and the usual option is to employ high order Butterworth
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or Chebyshev filters. Direct use of such off-the-shelf filters does not guaran-

tee perfect reconstruction (PR) in the recovered signal. Indeed, this problem

is encountered in the practical implementation of the MWC. Therefore, it is

important to develop methods to compensate for imperfect lowpass filters. In

this work we extend the MWC to enable the use of practical filters. Under the

assumption of near perfect stopband response, we show that, with only a mod-

erate amount of oversampling, the imperfections caused by non-ideal filters can

be effectively corrected in the digital domain. We derive a perfect reconstruction

condition that must be satisfied by lowpass filters in the MWC and propose a

compensation method operating in the digital domain that uses a simple bank

of FIR filters. Numerical simulations and real measured data demonstrate that

the proposed compensation method can significantly reduce the reconstruction

error using low-order FIR filters.

• Synchronization and signal reconstruction. The MWC is a linear but time-

variant system. When a signal enters the RF front-end, there is an unknown

time delay between the input signal and mixing waveforms. Such a delay will

cause unexpected phase distortions in the system transfer functions and collapse

the support estimation and signal recovery. In this work we analyze the phase-

distorted system in closed-form and propose a jointly estimation method of time

delay and active supports. The effectiveness of the proposed method is validated

using real experimental data.

The rest of the chapter is organized as follows. Section 6.2 provides a brief intro-

duction of the theoretical system as well as the hardware prototype. In Section 6.3,

we study the aforementioned calibration problems for the practical MWC system.

Section 6.4 summarizes our principal conclusions in this chapter.
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6.2 Modulated Wideband Converter

The MWC is a sub-Nyquist sampling system for sampling sparse wideband analog

signals. It consists of two stages: sampling and reconstruction. In this section, we

briefly introduce the principle and system of the MWC. A complete description can

be found in [114, 117].

6.2.1 Sampling

In the sampling stage, the signal x(t) enters m channels simultaneously. In the ith

channel, x(t) is multiplied by a Tp- periodic mixing function pi(t). After mixing, the

output is lowpass filtered with cutoff frequency 1/(2Ts) and then uniformly sampled

at rate 1/Ts. The overall sampling frequency of the MWC is then m/Ts.

The input x(t) is assumed to be a sparse wideband analog signal bandlimited to

[−fNYQ/2, fNYQ/2], where fNYQ can be very large, much larger than the sampling

frequency m/Ts. The support of x(t) resides within N frequency intervals, or bands,

such that the width of each band does not exceed B Hz. The band positions are

arbitrary and in particular unknown in advance. For example, in communications N

represents the number of concurrent transmissions and B is specified by the specific

modulation techniques in use.

The sub-Nyquist sampling of the MWC relies on the following key observation.

The mixing operation scrambles the spectrum of x(t) such that the baseband fre-

quencies that reside below the filter cutoff contain a mixture of the spectral contents

from the entire Nyquist range.

To further illustrate this point, let us consider a single channel, and let Pi(f) be

the spectrum of the mixing function pi(t). Since pi(t) is Tp- periodic, Pi(f) can be
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expressed as

(6.1) Pi(f) =
+∞∑
l=−∞

ci,lδ(f − lfp),

where fp = 1/Tp, ci,l are arbitrary coefficients and δ(·) is the Dirac delta function.

The spectrum of the mixed signal x̃i(t) = x(t)pi(t) is then

(6.2) X̃i(f) = Pi(f) ∗X(f) =
+∞∑
l=−∞

ci,lX(f − lfp),

where X(f) is the spectrum of x(t). Lowpass filtering with a filter transfer function

H(f) results in the following relation:

(6.3) Yi
(
ej2πfTs

)
=

+∞∑
l=−∞

ci,lX(f − lfp)H(f),

where Yi
(
ej2πfTs

)
is the DTFT transform of yi[n]. We note that (6.5) is based on

the assumption that no aliasing occurs at the sampling rate fs, i.e., fs exceeds the

stopband width of H(f). Denote yi(f) = Yi
(
ej2πfTs

)
and suppose H(f) is an ideal

lowpass filter which is a unit rectangular function over Fs = [−fs/2, fs/2]. There is

(6.4) yi(f) =

L0∑
l=−L0

ci,lX(f − lfp), f ∈ Fs, i = 1, ...,m,

where L0 is the smallest integer satisfying 2L0 + 1 > fNYQ/fp. In the basic configu-

ration we choose fs = fp. This gives

(6.5) y(f) = Az(f), f ∈ Fp,

where A is a matrix comprised of ci,l and the vector y(f) and z(f) consist of yi(f), i =

1, ...,m, and X(f − lfp), l = −L0, ..., L0, respectively. The relation (6.5) ties the

output spectrum to the unknownX(f), which is the key to recover x(t). The elements

in z(f) covers all the spectral information of x(t).

The design of MWC also supports the advanced configuration where fs > fp.

This would be beneficial to reduce the number of channels at the expense of a higher
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sampling rate in each channel and additional digital processing. Without losing

generality, we assume that fs = Qfp, with odd Q = 2Q0 + 1. For the ith physical

channel, it can be shown that

(6.6) yi(f + qfp) =

L0∑
l=−L0

ci,l+qX(f − lfp), q = −Q0, ..., Q0.

This expands each physical channel into Q virtual ones:

yi(f −Q0fp)

...

yi(f)

...

yi(f +Q0fp)


=



ci,L0−Q0 · · · ci,−L0−Q0

...
. . .

...

ci,L0 · · · ci,−1 ci,0 ci,1 · · · ci,−L0

...
. . .

...

ci,L0+Q0 · · · ci,−L0+Q0




|

z(f)

|

 , f ∈ Fp,

and the form of the key relation in (6.5) remains unchanged.

6.2.2 Reconstruction

The reconstruction stage consists of two steps and is implemented completely in

the time domain. First, the spectral support is determined, and then the signal is

recovered from the samples by a closed-form expression.

Spectral support recovery relies on recent ideas developed in the context of analog

compressed sensing [41] and are implemented by a series of digital computations,

which are grouped together under the Continuous-to-Finite (CTF) block [114]. Let

the support of z(f) be S =
⋃
f∈Fp

supp(z(f)), where supp(·) is the set of indices of

the nonzero entries of a vector. In other words, if i /∈ S then zi(f) = 0 for all f ∈ Fp.

By exploiting the sparsity of z(f), the CTF efficiently infers the support S from a

low-complexity finite program.

Consider the covariance of y[n], defined by

(6.7) Σy =
∑
n

y[n]yH [n].
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According to Parseval’s theorem,

(6.8) Σy =

∫
f∈Fp

y(f)y(f)Hdf = AΣzA
H ,

where

(6.9) Σz =

∫
f∈Fp

z(f)z(f)Hdf.

Eq. (6.8) is the key equation of MWC. As z(f) is a sparse vector, Σz(i, j) 6= 0 if and

only if i, j ∈ S, where Σz(i, j) is the (i, j)-th entry of Σz. This indicates that Σz is a

high-dimensional matrix but only a portion of rows and columns are non-zero, and

Σy is a low-dimensional mapping of the high-dimensional but sparse matrix Σz. The

primary objective, referred to as the support recovery, is to infer S from Σy, given

the known sensing matrix A. Indeed, by eigen-decomposing Σy as Σy = VVH , it is

proved in [114] that the following equation

(6.10) V = AU

has a unique solution matrix U with minimal number of non-identically zero rows,

and that the locations of these rows coincide with the support S. The sparse solution

of the under determined problem (6.10) can be efficiently solved by algorithms in

[118, 119, 120, 121].

Once the support S is determined, it follows from (6.5) that

(6.11)
zS[n] = A†Sy[n]

zi[n] = 0, i /∈ S,

where z[n] = (z1[n], . . . , zL[n])T and zi[n] is the inverse DTFT of zi(f). zS[n] and

AS mean the subvector and submatrix comprised of the rows of z[n] and A indexed

by S, respectively. The notation (·)† denotes the pseudo inverse. Equation (6.11)
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Table 6.1: Prototype parameters
Parameter Choice
Signal model N = 6, B = 19 MHz, fNYQ = 2 GHz
Number of channels m (basic) 4
Number of channels mQ (advanced) 12
Waveform type periodic sign alternation
Alternation rate 2.075 GHz
Sign pattern length 108
Period fp 2.075/108 = 19.212 MHz
Filter cutoff 33 MHz
Sampling rate/channel fs 70 MHz

allows zi[n] to be generated at the low rate fs. Every zi[n] is then interpolated to a

continuous baseband signal at rate fs (e.g., using digital-to-analog devices) yielding

(complex valued) zi(t):

(6.12) zi(t) =
∞∑

n=−∞

zi[n]h(t− nTs),

where h(t) = sinc(πt/Ts). Finally, x(t) is reconstructed by modulating zi(t) to their

corresponding bands:

(6.13) x̂(t) =
∑

i∈S,i>L0

Re {zi(t)} cos(2πifpt) + Im {zi(t)} sin(2πifpt),

where Re(·) and Im(·) denote the real and imaginary part of their argument, respec-

tively.

6.2.3 Prototype

To validate the MWC concept a board-level prototype of the system was developed

in [2]. The hardware consists of a pair of printed boards: the analog board and digital

board. It aims at supporting input signals with 2GHz sampling rate and 120MHz

spectrum occupancy, with arbitrary transmission frequencies. The sampling rate is

as low as 280MHz and the system uses the advanced configuration where Q = 3,

yielding 12 equivalent channels. The specifications that were used in the circuit

realization are summarized in Table 6.1.
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Fig. 6.2 shows a photo snapshot of the analog board, which is comprised of

three consecutive stages: splitting the input into four channels, mixing with the sign

patterns pi(t), and lowpass filtering. The input signal passes through a 100MHz

highpass filter to reject the range of radio stations and airport transmissions, which

are typically not of interest. A breakdown diode is used to project the circuit from

instantaneous high input power. After passing a low-noise amplifier (LNA) and

several digitally controlled attenuators, the signal is split to four channels using a

passive splitter and two RF switches. For each channel, the signal is equalized and

then mixed with the corresponding waveform pi(t) that is provided by the digital

board. The mixing stage, which is the heart of the prototype, uses passive mixture

devices (SYM25-DHW) whose working points are carefully adjusted. Two cascaded

elliptic lowpass filters of order seven finally conclude the channel, yielding the output

signal yi(t).

Figure 6.2: The analog (left) and digital (right) boards of the sampling prototype developed in [2].

The digital board, also shown in Fig. 6.2, is designed to general the mixing

waveforms that feed into the mixtures of the analog board. It is comprised of a shift-

register of 96 bits at emitter-coupled-logic technology, concatenating 12 packages of

an 8-bit shift-register each. The initial value of the SR is 43 A7 A5 D7 96 AB 62

B7 2A B3 5C AC. Each analog channel receives a different tap of the shift-registers
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Figure 6.3: Modeling imperfections in the hardware calibration: equivalent front-end filter g(t), de-
layed and distorted mixing waveform p(t), the non-linear mixture and non-ideal lowpass
filter h(t).

and the waveforms pi(t) are shifted version of each other. The clock network for

the shift-register packages is derived from a 2.075GHz sine waveform by locking a

standard VCO to a 25 MHz temperature compensated crystal oscillator. The 12

shift-registers uses separate clocks routed in short straight lines to avoid unintended

time skews.

6.3 MWC in practice: Calibration and reconstruction

The actual hardware realization of the MWC contains several imperfections, which

are modeled in Fig. 6.3. For simplicity, we shall focus on a specific channel and omit

the index i in the presentation below.

Several difficulties follows from the hardware model:

1. The circuit distortion makes the measured mixing waveform p(t) far different

from that in the conceptual design and this is the key reason for calibration.

2. The sampling grid t = nTs is chosen arbitrarily by the scope and is therefore

not synchronized to the beginning of a period of p(t). The unknown offset τ

implies an uncertainty of the form cl exp(j2πlfpτ).

3. The input signal has unknown phase with respect to the sampling grid. This is

another source for errors due to missing synchronization.

4. The lowpass filter h(t) has nonideal response. In addition, the chain of amplifi-
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Figure 6.4: The proposed calibration system. The oscilloscope is triggered by p1(t) to synchronize
the mixing waveform and the measured input and output signals.

cation stages from the input to the mixer is also nonideal, modeled by the filter

g(t).

5. The mixing procedure is nonlinear, so that instead of three output frequencies

for a given sinusoid at the input, we get additional tones due to nonlinear effects.

The power of these undesired tones is reduced from the energy of cl.

6.3.1 Sensing matrix estimation

Due to the nonlinearity of the circuit, cl cannot be obtained from direct mea-

surement of p(t). In order to estimate cl as accurate as possible, we decided on the

calibration system of Fig. 6.4, which is based on end-to-end measurements. In the

sequel, we explain how this setup allows solving for cl with respect to the above dif-

ficulties. In the proposed scheme, the output signals is measured by a four-terminal

Agilent DSO80204 oscilloscope, which is triggered by the mixing waveform p(t) of

the first channel from the digital board. In this way, we synchronize x(t) and p(t) and

eliminate the unknown offset τ in the calibration. The precision for the triggering

time is as low as 1 ns, which is accurate enough in our setting. We then use a set of

end-to-end measurements to estimate {c0, c1, c2, ...} and use c−l = c∗l to obtain the
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remaining coefficients with negative indices. The input signal is chosen as a sinusoid

with a sweeping frequency fk:

(6.14) x(k)(t) = 2Ak cos (2πfkt+ ψk) ,

where

(6.15) fk = f0 + kfp,

where Ak and ψ are the magnitude and initial phase of the input sinusoid, f0 is a

pre-fixed frequency and the superscript k in (6.14) denotes the k-th measurement.

For the kth measurement, the output signal is

(6.16) y(k)(t) =
{

[x(k)(t) ∗ g(t)]p(t)
}
∗ h(t).

The 3dB cutoff frequency of the lowpass filter is 33MHz. Noting that fp = 19.212MHz,

a sinusoid input signal generally result in three non-vanishing peaks within [−33MHz, 33MHz]

in the output. The spectrum of y(k)(t) can be then expressed as

(6.17) Y (k)(f) =
1∑

q=−1

Fq(k) δ(f − fq) +
1∑

q=−1

Fq(k)∗ δ(f + fq).

Let l0 be the band index of frequency f0, where

(6.18) l0 =

⌊
f0

fp
+

1

2

⌋
.

Then, the parameters in (6.17) are expressed as

(6.19) fq = f0 − l0fp + qfp,

and

(6.20) Fq(k) = Ake
jψk ·G(fk) ·H(fq) · c−l0−k+q,
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c−6 c−5 c−4
Measurement #1 0.3251 + j0.1454 0.7290− j0.3957 0.6676 + j0.0308
Measurement #2 0.3246 + j0.1413 0.7219− j0.4075 0.6663 + j0.0252
Measurement #3 0.3258 + j0.1407 0.7194− j0.4081 0.6669 + j0.0219

Table 6.2: Three independent calibration results for Channel 1.

where q = −1, 0, 1. G(f) and H(f) is the frequency response of the high-pass and

the low-pass filter, respectively.

As f0 is fixed, {fq}q=−1,0,1 are constant values. We then estimate Fq(k) from

samples of y(k)(t). The frequency responses of G(f) and H(f) are measured and

stored by an Agilent HP8753E network analyzer. To calculate c−l0−k+q from Fq(k),

we set k = l0, l0 + 1, l0 + 2, ... and obtain {c0, c−1, c−2, ...} from each measurement.

The procedure is summarized as follows:

1. Estimate Ak and ψk from the input x(t).

2. Look up H(fq) and G(fk).

3. Substitute Ak, ψk, G(fk) and H(fq) into (6.20) to obtain {c0, c−1, c−2, ...}.

The oscilloscope in use has only four input terminals with two of them reserved by

p(t) and x(t). Thus only two terminals are available to measure the output signals.

Three measurements are then conduct to calibrate channel 1 and 2, channel 1 and

3, and channel 1 and 4, respectively. The results are merged and show in Fig. 6.5,

where coefficients in the central part are zero due to the 100MHz highpass filter G(f).

The size of the sensing matrix A is 12×121 and the calibrated system supports input

signals from 100MHz to 1.16GHz. As a by product we get three copies of calibrated

coefficients for channel 1, where a subset of those coefficients are provided in Table

6.2 as a validation of synchronization.
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Figure 6.5: Heatmap of the calibrated 12× 121 sensing matrix A (magnitude).

6.3.2 Filter compensation

The lowpass filters in the standard MWC are treated as ideal rect functions in

the frequency domain. Imperfect lowpass filters not only affect the sensing matrix

estimation but also impact perfect recovery in the reconstructed signal. Hereby we

investigate how those imperfections results in signal recovery and propose compensa-

tion schemes to correct those imperfections. We start our discussion from the basic

configuration where Q = 1 and then extend our results to the advanced configuration

as used in the prototype.

The perfect recovery condition

The basic configuration applied here is slightly different than that in the concep-

tual design: while each physical channel still provide a single equation in (6.5), we no

longer require fs = fp. Instead, we choose to oversample yi(t) at the rate fs which is

larger than both fp and the stopband width of H(f). Our analysis is based on (6.3),

which applies to any analog filter H(f). Indeed, (6.3) can be expressed as

(6.21) Y
(
ej2πfTs

)
=

L0∑
l=−L0

clQl(f), f ∈ Fs,
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where Fs = [−fs/2, fs/2] and

(6.22) Ql(f) = X(f − lfp)H(f).

Therefore, from (6.5) we actually solve Ql(f) rather than zl(f). After interpolation

in (6.12) and modulation in (6.13), the resulted spectrum of the reconstructed signal

is calculated as

(6.23) X̂(f) =

L0∑
l=−L0

Ql

(
2π

fs
(f + lfp)

)
.

Substituting (6.22) in (6.23) we obtain

(6.24) X̂(f) =

(
L0∑

l=−L0

H(f + lfp)

)
X(f).

Since X(f) is only non-zero within [−fNYQ/2, fNYQ/2], the PR condition for H(f)

is then

(6.25)

L0∑
l=−L0

H(f + lfp) = 1, f ∈
[
−fNYQ

2
,
fNYQ

2

]
.

We note that the PR condition in (6.25) coincides with the well-known Nyquist ISI

criterion [122], and any lowpass filter that satisfies (6.25) is usually referred to as a

Nyquist filter. Typical examples include raised cosine functions, Kaiser windows and

others [122]. Any such filter will lead to PR without requiring any further processing.

Digital compensating FIR filters

In the above discussion we demonstrated that any Nyquist filter which satisfies

(6.25) ensures PR. For lowpass filters that do not meet the PR condition, we now

propose a simple compensation in the digital domain. The compensation scheme

is illustrated in Fig. 6.6 for a single channel. Let D(ejω) be the digital frequency

response of the compensation filter, where we use the notation ejω to emphasis that
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Figure 6.6: Illustration of one channel of the digital correction scheme.

the DTFT is 2π-periodic. The relationship in (6.21) still holds by replacing Ql(ω)

with

Ql(f) = X (f − lfp)H (f)D
(
ej2πTsf

)
.

Therefore, to ensure perfect reconstruction we need to design a digital filter D(ejω)

such that the frequency response of the corrected analog filter

(6.26) T (f) = H(f)D
(
ej2πTsf

)
satisfies (6.25).

Here we show that we can implement D(ejw) by an FIR filter. Let {dn}N0

n=−N0
be

the coefficients of an FIR filter with order 2N0 + 1. The digital frequency response

D(ejω) is

(6.27) D(ejω) =

N0∑
n=−N0

dne
−jω.

Combining (6.26) and (6.27),

(6.28) T (f) = h(f)Hd,

where h(f) = H(f)∗(e−j2πN0Tsf , . . . , ej2πN0Tsf )T , and d is the coefficient vector d =

(d−N0 , . . . , dN0)
T . The design objective is to seek coefficients {dn}N0

n=−N0
such that

T (f) in (6.28) best meets the PR condition in terms of integrated squared error:

(6.29) min
d

∫ fNYQ/2

−fNYQ/2

∣∣∣∣∣
L0∑

l=−L0

h(f − lfp)Hd− 1

∣∣∣∣∣
2

df.
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Since (6.29) is a least-squares problem, it has a closed-form solution. It can be shown

that the optimal solution is:

(6.30) dopt =

[∫ fNYQ/2

−fNYQ/2

g(f)g(f)Hdf

]−1 ∫ fNYQ/2

−fNYQ/2

g(f)df

where g(f) =
∑L0

l=−L0
h(f − lfp). When h(f) contains H(f) and is not specified

analytically, computing the integrals in (6.30) can be performed using numerical

methods.

The minimum of problem (6.29) also has a closed-form expression:

(6.31) ε = fNYQ − dHopt

∫ fNYQ/2

−fNYQ/2

g(f)df.

This result can be used to bound the reconstruction error caused by H(f) in advance.

Indeed, by using Parseval’s theorem it can be shown that

(6.32)

∫
(x̂(t)− x(t))2 dt ≤ ε

∫
x2(t)dt,

which indicates that the reconstruction SNR ≥ 10 log10(1/ε).

Experimental validation

Hereby we demonstrate the proposed compensation method by experimental re-

sults, where two examples are studied.

In the first example we simulate the MWC system with non-ideal filters and

evaluate the overall performance of the proposed compensation. The input x(t) is a

multiband signal consisting of 3 pairs of bands, each of width B = 50 MHz, defined

as

(6.33) x(t) =
3∑
i=1

√
EiBsinc(B(t− τi)) cos(2πfi(t− τi)),

where the energy coefficients Ei = {1, 2, 3}, the time offsets τi = {1.1, 0.3, 0.7} µsecs,

and the carriers are set to fi = {1.8, 1.2, 2.8} GHz. The Nyquist rate of x(t) is
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fNYQ = 10 GHz. We choose L0 = 97 and fp = fNYQ/(2L0 + 1) ' 51.3 MHz. The

number of channels is m = 50 and the same mixing functions pi(t) are used as in

[114]. The main difference between the simulation in [114] and the one proposed here

is that we use an 8-order Butterworth filter in each channel. The 3-dB bandwidth

of the Butterworth filter is set to fp. With a moderate oversampling, fs is chosen as

fs = 5/3fp. Finally, all the continuous signals are represented by a dense grid of 78975

samples observed within [0, 1.6] µsecs, where the time resolution is 1/(5fNYQ). As

Figure 6.7: Reconstructions using Butterworth filters. (a) The multiband input signal x(t). (b)
Direct reconstruction signal. (c) Reconstructed signal after digital corrections.

predicted by our analysis, direct reconstruction using the standard approach yields

distortions in the recovered signal, which can be found be comparing Fig. 6.7(b)

with Fig. 6.7(c). We use a 21-order FIR filter to correct the non-ideal Butterworth

filter in each channel. The coefficients are determined by (6.30) and the results

are plotted in Fig. 6.8. We note that since the group delay of Butterworth filters

is not constant, the coefficients of the correcting FIR filter is not symmetric. The

reconstructed signal after applying digital corrections is plotted in Fig. 6.7(c). As
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Figure 6.8: Coefficients of the correcting FIR filter.

expected, near perfect recovery is achieved. For further demonstration, we examine

the PR condition of the employed Butterworth filter H(f) and the corrected filter

T (f) (obtained by (6.26)) in Fig. 6.9, where
∑

lH(f + lfp) and
∑

l T (f + lfp) are

plotted in dB. It can be seen that for H(f) there exists significant distortions, which

illustrates why direct reconstruction does not ensure PR.

Figure 6.9: PR condition. Dot line represents 20 log10 |
∑

lH(f + lfp)|, and solid line represents
20 log10 |

∑
l T (f + lfp)|.

In the second example, we employ the proposed method to correct a real analog

lowpass filter implemented in a recent hardware realization of the MWC system [2].

The frequency response is measured by an Agilent HP8753E network analyzer and

the magnitude is shown in Fig. 6.10. Here we set fp = 60 MHz and fs = 100 MHz,

The results of the correcting FIR filter and the PR condition test are shown in Fig.

6.11 and Fig. 6.12. These results indicate that our proposed compensator can be

applied to practical applications in signal processing and communications.

Generalization to the advanced configuration

The MWC prototype uses the advanced configuration, where each channel requires

three digital filters to split the output sequences. The following discussions extend the
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Figure 6.10: Frequency response of a real lowpass filter.

Figure 6.11: Coefficients of the correcting FIR filter for the real filter.

Figure 6.12: Tests of the PR condition for the real filter.
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Figure 6.13: The magnitude of the frequency response of the low-pass filter H(f). Illustrations for
the corrected filters T (f), T (f + fp) and T (f − fp).

results for the basic configuration into the advanced scenario that Q = 3. In contrast

to the above discussion, we need to determine three digital filters to split and output

samples and to compensate the non-ideal lowpass filter H(f). Fig. 6.13 provides an

illustration as well as the magnitude frequency response of H(f) in the linear scale.

Denote the DTFT of the digital filters in the three regions as D−1(ejω), D0(ejω) and

D1(ejω), respectively. Using a similar derivation as for the basic configuration, the

PR condition for the advanced configuration (Q = 3) is

(6.34) H(f)D0(ej2πTsf ) = H(f−fp)D−1

(
ej2πTs(f−fp)

)
= H(f+fp)D1

(
ej2πTs(f+fp)

)
,

and

(6.35)

L0∑
l=−L0

T (f − lfp) = 1,

where T (f), referred to as the template filter, is defined as

(6.36) T (f) = H(f)D0(ej2πTsf ).

The digital filters can be implemented using FIR filters:

(6.37) Dq(e
j2πω) =

N0∑
n=−N0

d(q)
n e−j2πω,

where q = 0,−1, 1 and 2N0 + 1 is the order of the FIR filters. We propose to

determine d
(q)
n using least squares methods. We begin by calculating the coefficients
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{d(1)
n } using the same approach as in Section 6.3.2. We then obtain the template

filter

T (f) = H(f + fp)

N0∑
n=−N0

d(1)
n (ej2πTs(f+fp)).

Finally, the filter coefficients {d(0)
n } and {d(−1)

n } are chosen in the manner that the

equivalent corrected analog filters approximate T̂ (f) in terms of least squares:

(6.38) d(q)
n = arg min

d
(q)
n

∫ fNYQ

−fNYQ

∣∣∣∣∣H(f − kfp)
N0∑

n=−N0

d(q)
n e−j2πTsf − T (f)

∣∣∣∣∣
2

df, q = −1, 0.

Specifically, denote d(q) = (d
(q)
−N0

, ..., d
(q)
N0

). The solution to (6.38) has a closed form:

(6.39) d(q) = R−1
q rq,

where

(6.40) Rq =

∫ L0fp

−L0fp

|H(f − qfp)|2e(f)e(f)Hdf,

and

(6.41) rq =

∫ L0fp

−L0fp

T (f)H∗(f − qfp)e(f)df,

with e(f) defined as

(6.42) e(f) = (e−j2πN0Tsf , ..., ej2πN0Tsf )T .

In practice, we set N0 = 20. Using the above approach, the corrected filter T̂ (f) is

shown in Fig. 6.14 and the FIR filter coefficients are shown in Fig. 6.15. Finally,

Fig. 6.16 provides results of the PR test.

6.3.3 Synchronization and signal reconstruction

In the conceptual design of MWC, the input signal x(t) is mixed by the periodic

waveform p(t) and then lowpass filtered by h(t), yielding y(t) = (x(t)p(t)) ∗ h(t).
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Figure 6.14: The magnitude of the corrected filter T (f) by a least square design.

Figure 6.15: The FIR coefficients for the digital filters by the least square design. The first, second
and third row corresponds to results for k = 0, k = 1, and k = −1, respectively.

Figure 6.16: Tests of the PR condition in the advanced configuration (Q = 3):

20 log10

∣∣∣∑1
q=−1 T (f − qfp)

∣∣∣ v.s. frequency.
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However, in practice, there is an unknown time offset between x(t) and p(t) when

the input signal enters the system. Furthermore, such an offset varies for each inde-

pendent experiment. In the calibration stage we avoid this problem by using p(t) to

trigger the oscilloscope. However, in signal recovery this trick is no long valid and

the unknown time offset has to be estimated. In fact, this is the main problem we

encountered in signal reconstruction using MWC.

We start by deriving the system transfer function that includes all the above

imperfections.. For ease of derivation we work in the analog domain. Denote the

unknown time offset as τ . According to our imperfect modeling, the output signal

y(t) becomes

(6.43) y(t) = ((x(t) ∗ g(t))p(t− τ))) ∗ h(t).

In the frequency domain,

(6.44) y(f) =
∑
l

cle
−j2lπfpτX(f − lfp)G(f − lfp)H(f).

y(t) is then processed by the q-th correcting filter, resulting in y′q(t) with its spectrum

y′q(f) = y(f)Dq(e
j2πTsf ) =

∑
l

cle
−j2lπfpτX(f − lfp)G(f − lfp)H(f)Dq(e

j2πTsf ).

According to (6.34),

(6.45) H(f)Dq(e
j2πTsf ) = T (f − qfp).

There is

y′q(f) =
∑
l

cle
−j2lπfpτX(f − lfp)G(f − lfp)T (f − qfp).

Now consider y′q(f + qfp):

(6.46)

y′q(f + qfp) =
∑
l

cle
−j2lπfpτX(f − lfp + qfp)G(f − lfp + qfp)T (f),

=

L0∑
l=−L0

cl+qe
−j2qπfpτX ′(f − lfp)e−j2lπfpτ ,
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where

(6.47) X ′(f − lfp) = X(f − lfp)G(f − lfp)T (f).

Defining

(6.48) θ = 2πfpτ

and expressing (6.46) in the vector form, we have

(6.49) y′(f) = D1(θ)AD2(θ)z′(f), f ∈ Fs,

or equivalently

(6.50) y′[n] = D1(θ)AD2(θ)z′[n],

in the time domain, where y′(f) consists of y′q(f+qfp), q = −1, 0, 1, for each physical

channel, z′(f) is comprised of X ′(f − lfp), l = −L0, ..., L0, and D1(θ) and D2(θ) are

two diagonal matrices defined by

(6.51) D1(θ) = diag
(
ejθ, 1, ej−θ, · · · , ejθ, 1, e−jθ

)
and

(6.52) D2(θ) = diag
(
ejL0θ, · · · , ej−L0θ, · · · , ejL0θ, · · · , e−jL0θ

)
.

Equation (6.50) is the new system transfer function connecting the input and

output of the prototype. An important observation is that D2(θ)z′(f) shares the

same support of z(f) in (6.5). On the other hand, D1(θ) can lead to erroneous

support recovery if the unknown phase θ is not properly estimated. Empirical results

reveal that accurate estimation of θ is essential to the success of support recovery

and the relationship between θ and recovery results may be complicated. Once
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θ is obtained, the support recovery can be computed efficiently using fast greedy

algorithms described in [120, 121]. Therefore, in this work we propose a brutal

searching method to jointly estimate θ and the active spectrum slices. The procedure

is depicted as follows.

1. Calculate the matrix Σ′y =
∑

n y′[n]y′[n]H . Eigen-decompose Σ′y as Σ′y = VVH .

2. For i = 1, 2, ..., N0

(a) Set θi = 2πi/N0 and calculate D1(θi);

(b) Solve the MMV problem: D−1
1 (θi)V = AU, and calculate the errors of the

solution, stored by score(i);

3. Let i0 = arg mini score(i). Run CTF to solve D1(θi0)
−1V = AU. The output

support S is then the recovered support.

4. Use θi0 to calculate D2(θi0). Solve z[n] by

(6.53) z′[n] = D−1
2 (θi0)A

†
SD−1

1 (θi0)y
′[n],

and reconstruct the highpass filtered input signal x′(t) = x(t) ∗ g(t) by submit-

ting z′[n] into (6.12) and (6.13);

5. The input signal x(t) is recovered by applying an inverse filter of g(t) to x′(t).

Finally, we verify our calibration and reconstruction scheme using real experi-

mental data. Two signal generators were combined at the input terminal of the

MWC prototype: an amplitude-modulated (AM) signal at 246.0MHz with 50kHz

cosine envelope and a frequency-modulated (FM) source at 130.7MHz with 100kHz

frequency deviation. The carrier positions were chosen so that their aliases overlay

at baseband, as shown in Fig. 6.17. The digital recovery algorithm described above

was implemented and detected the correct support set. The unknown carrier fre-

quencies were estimated up to 10 kHz accuracy. In addition, correct reconstruction
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of the AM and FM signal contents is validated and shown in Fig. 6.18 and Fig.

6.19, respectively. Please note that the carrier information is completely blind in the

support estimation and recovery stage. The success of separating the AM and FM

signals from their baseband mixtures demonstrates the effectiveness of our proposed

calibration and reconstruction algorithms.

Figure 6.17: The spectrum of the output signal y1(t). The baseband spectrum of the AM and FM
signals are mixed to each other.

Figure 6.18: Reconstructed AM spectrum (baseband) from the MWC prototype.

6.4 Conclusion

In this chapter, we introduced the calibration and signal reconstruction meth-

ods for the MWC prototype, which is, to our best knowledge, the first reported
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Figure 6.19: Reconstructed FM spectrum (baseband) from the MWC prototype.

sub-Nyquist hardware sampling system. The basic principle is to use compressive

sensing algorithms to recover the sparse structure of a high-dimensional covariance

matrix from its low-dimensional random projections. As an important step bridg-

ing theories and practical hardware prototype, we investigated the calibration and

signal reconstruction problems for MWC. We identified and discussed three major

problems: sensing matrix estimation, imperfect filter compensation and signal re-

construction. For each problem we proposed and derived effective solutions that

conquered the difficulties caused by various imperfections of practical circuits. The

proposed schemes and methods were demonstrated using real experimental data,

which finally marked the success of MWC in practice.



CHAPTER VII

Conclusion and future works

Covariance matrix estimation has played an important role in many signal pro-

cessing and machine learning applications. This thesis develops several important

strategies and solutions for high-dimensional covariance estimation that accounts for

small sample size, outlier sensitivity, and online implementation constraints.

In Chapter II, under a Gaussian assumption we improve upon the LW shrink-

age covariance estimator using state-of-the-art Stein approaches. Chapter III then

generalizes Chapter II for samples distributed in the elliptical family, yielding a ro-

bust covariance estimator in the high-dimensional setting. Unlike Chapter II and

III which address covariance estimation for general purposes, in Chapter IV we con-

sider covariance estimation with a time-varying graphical model. We divide online

estimation of an unknown time-varying covariance into multiple adaptive system

identification problem and propose the `1,∞ recursive group lasso that can be online

updated efficiently using homotopy methods. Chapter V continues the discussion

of regularized adaptive system identification and focuses on the stochastic gradient

algorithm for low computational costs. In Chapter VI, we work on a real-time board-

level sampling hardware that is based on covariance structure recovery of random

projections. Our work bridges the gap between theories and practice and introduce

159
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the state-of-the-art sub-Nyquist sampling equipment.

Both Chapter II and III are devoted to developing shrinkage covariance estima-

tors to correct the systematical distortion of high-dimensional eigen-structures. The

estimators presented in Chapter II can be used when the samples are Gaussian and

no clear prior model can be imposed. When there are heavy-tails or outliers among

the samples and the sample size is not enough to perform an outlier rejection, we

recommend to use the estimator developed in Chapter III. However, all the methods

proposed in Chapter II and III are based on Steinian type shrinkage estimator to-

wards an identity matrix. We believe there are better options and in the future work

we would like to develop data-dependent methods for shrinkage target selection.

In Chapter IV and V we developed regularized algorithms for identifying an un-

known time-varying system. We split the (inverse) covariance estimation to a set of

regression problems which can be then solved by the proposed system identification

methods. The “divide-and-conquer” approach follows Meinshausen’s strategy and

achieves the capability of efficient online implementation. However, it may compro-

mise the estimation accuracy. As pointed by [18], the multiple regression problems

generally couple to each other if casting the covariance estimation into the regu-

larized maximum-likelihood (ML) framework. As most regularized ML covariance

estimators are computationally expensive for online implementation, developing an

online covariance estimation method that efficiently updates the entire covariance

matrix would be another future direction.
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