
COMPUTATIONAL METHODS FOR LEARNING AND
INFERENCE ON DYNAMIC NETWORKS

by

Kevin S. Xu

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
(Electrical Engineering: Systems)

in The University of Michigan
2012

Doctoral Committee:

Professor Alfred O. Hero III, Chair
Professor George Michailidis
Professor Mark E. J. Newman
Assistant Professor Rajesh Rao Nadakuditi

c© Kevin S. Xu

2012

For Elizabeth

ii

ACKNOWLEDGEMENTS

First and foremost, I would like to thank my advisor, Professor Alfred Hero, for his

guidance and mentorship. I have learned a tremendous amount about statistics, signal pro-

cessing, and the research process from working as a research assistant in his group. My

interactions with him have undoubtedly helped me develop and mature as a researcher. I

also extend thanks to my other committee members, Professor George Michailidis, Profes-

sor Mark Newman, and Professor Rajesh Rao Nadakuditi, for their valuable input to this

dissertation.

I am grateful to have worked alongside such a talented group of graduate students and

postdoctoral fellows in Professor Hero’s group. I would particularly like to acknowledge

Dr. Mark Kliger; I had the pleasure of working with him on what became Chapters II–

IV of this dissertation. I also thank Dr. Yilun Chen, Greg Newstadt, Dr. Arnau Tibau Puig,

Sung Jin Hwang, Dr. Kumar Sricharan, Ko-Jen Hsiao, Zhaoshi Meng, Tzu-Yu Liu, Dr. Ami

Wiesel, and Dr. Dennis Wei for the valuable assistance and discussions they have provided.

I am thankful for all of the encouragement and advice I have received from my pro-

fessors during my undergraduate and graduate studies. I specifically thank Professor Ravi

Mazumdar, Professor Sherman Shen, Professor Ella Atkins, Professor Sandeep Pradhan,

and the late Professor Donald Grierson for their mentorship and support.

Chapter II of this dissertation would have not possible without the support of Matthew

Prince, Eric Langheinrich, and Lee Holloway of Unspam Technologies Inc., who provided

me with the Project Honey Pot data. Thanks also to Tianbao Yang for providing me with

the source code for the probabilistic simulated annealing algorithm used in Chapter V.

iii

I am grateful for all the assistance I received from my family over the years. I am

blessed to have parents who encouraged me to pursue graduate studies. I am thankful for

all the advice they have given me and for pushing me to be the best. I am also thankful to

my brother Michael, who somehow seems to know the answer to everything.

Finally I would like to thank my fiancée Elizabeth. Her love and support and her won-

derful sense of humor have helped me through difficult times.

My contributions in this dissertation have been supported in part by NSF grant CCF

0830490 and ONR grant N00014-08-1-1065. My work was also supported in part by an

award from the Natural Sciences and Engineering Research Council of Canada.

iv

TABLE OF CONTENTS

DEDICATION . ii

ACKNOWLEDGEMENTS . iii

LIST OF FIGURES . viii

LIST OF TABLES . x

LIST OF ALGORITHMS . xi

ABSTRACT . xii

CHAPTER

I. INTRODUCTION . 1
1.1 Scope . 2
1.2 Outline . 3
1.3 List of publications . 5

II. REVEALING SOCIAL NETWORKS OF SPAMMERS 7
2.1 Preliminaries . 10

2.1.1 Project Honey Pot . 10
2.1.2 Phishing . 12
2.1.3 Related work . 13

2.2 Overview of spectral clustering 14
2.2.1 The graph partitioning problem 14
2.2.2 Finding a near-optimal solution 16
2.2.3 Choosing the number of clusters 17

2.3 Analysis methodology . 18
2.3.1 Similarity measures . 19
2.3.2 Creating the adjacency matrix 20

2.4 Results . 21
2.4.1 Similarity in spam server usage 21
2.4.2 Temporal similarity . 26

2.5 Summary . 28
III. VISUALIZING DYNAMIC NETWORKS 30

v

3.1 Background . 33
3.1.1 Multidimensional scaling 34
3.1.2 Graph Laplacian layout 36

3.2 Regularized layout methods . 38
3.2.1 Regularization framework 38
3.2.2 Dynamic multidimensional scaling 40
3.2.3 Dynamic graph Laplacian layout 43
3.2.4 Discussion . 46

3.3 Related work . 47
3.3.1 Supervised dimensionality reduction 48
3.3.2 Layout of dynamic networks 49

3.4 Experiments . 51
3.4.1 Stochastic blockmodel 52
3.4.2 Newcomb’s fraternity 58
3.4.3 MIT Reality Mining 61

3.5 Summary . 64
3.A DGLL solution in 2-D . 64

IV. TRACKING COMMUNITIES IN DYNAMIC NETWORKS 66
4.1 Background . 68

4.1.1 Static clustering algorithms 68
4.1.2 Related work . 72

4.2 Proposed evolutionary framework 75
4.2.1 Smoothed proximity matrix 76
4.2.2 Shrinkage estimation of true proximity matrix 76
4.2.3 Block model for true proximity matrix 79
4.2.4 Adaptive estimation of forgetting factor 81

4.3 Evolutionary algorithms . 82
4.3.1 Agglomerative hierarchical clustering 82
4.3.2 k-means . 83
4.3.3 Spectral clustering . 84
4.3.4 Practical issues . 84

4.4 Experiments . 86
4.4.1 Well-separated Gaussians 87
4.4.2 Two colliding Gaussians 89
4.4.3 Flocks of boids . 92
4.4.4 Reality Mining . 97

4.5 Summary . 99
4.A True similarity matrix for dynamic Gaussian mixture model 99

V. STATE-SPACE MODELS FOR DYNAMIC NETWORKS 102
5.1 Related work . 103
5.2 Stochastic blockmodels for static networks 104
5.3 State-space stochastic blockmodels for dynamic networks 106

5.3.1 A priori blockmodeling 106
5.3.2 A posteriori blockmodeling 109
5.3.3 Time complexity . 112

vi

5.3.4 Estimation of hyperparameters 112
5.4 Experiments . 114

5.4.1 Simulated stochastic blockmodels 114
5.4.2 Enron emails . 119

5.5 Summary . 123
VI. CONCLUSIONS . 125

BIBLIOGRAPHY . 128

vii

LIST OF FIGURES

2.1 The path of spam: from an email address on a web page to a recipient’s
inbox . 8

2.2 Number of emails received (per address collected) at trap addresses mon-
itored by Project Honey Pot . 11

2.3 Histogram of harvester phishing levels 13
2.4 Top 50 eigenvalues of normalized adjacency matrix 18
2.5 Network of harvesters formed by similarity in spam server usage in Octo-

ber 2006 . 23
2.6 Alternate view of network pictured in Figure 2.5, where the color of a

harvester corresponds to its phishing level 23
2.7 Network of clusters of harvesters formed by similarity in spam server

usage in October 2006 . 24
2.8 Network of harvesters formed by temporal similarity in October 2006 . . . 27
2.9 Temporal spamming plots of 208.66.195/24 group of ten harvesters 28

3.1 Costs of MDS-based layouts in the SBM experiment at each time step . . 56
3.2 Costs of GLL-based layouts in the SBM experiment at each time step . . . 56
3.3 Mean centroid and temporal costs of DMDS layouts in the SBM experi-

ment as functions of α and β . 57
3.4 Mean centroid and temporal costs of DGLL layouts in the SBM experi-

ment as functions of α and β . 57
3.5 Time plots of 1-D DGLL layouts of Newcomb’s fraternity, colored by

learned groups . 59
3.6 Time plots of 1-D CCDR layouts of Newcomb’s fraternity, colored by

learned groups . 59
3.7 Layouts of Newcomb’s fraternity at four time steps using DMDS algo-

rithm (top row) generated using proposed DMDS algorithm and node
movements between layouts (bottom row) 60

3.8 Layouts of Newcomb’s fraternity at four time steps (top row) using Visone
algorithm and node movements between layouts (bottom row) 60

3.9 Layouts of Newcomb’s fraternity at four time steps (top row) using SoNIA
algorithm and node movements between layouts (bottom row) 60

3.10 DMDS layouts of MIT Reality Mining data at four time steps using known
groups . 63

viii

3.11 DMDS layouts of MIT Reality Mining data at four time steps with α =
5, β = 3 using groups learned by clustering 63

3.12 DMDS layouts of MIT Reality Mining data at four time steps with α =
1/5, β = 3 using groups learned by clustering 63

4.1 Block structure of true proximity matrix Ψt 80
4.2 Adding and removing objects over time 85
4.3 Comparison of MSE in well-separated Gaussians experiment 88
4.4 Comparison of oracle and estimated forgetting factors in well-separated

Gaussians experiment . 88
4.5 Setup of two colliding Gaussians experiment: one cluster is slowly moved

toward the other, then a change in cluster membership is simulated 89
4.6 Comparison of MSE in two colliding Gaussians experiment 90
4.7 Comparison of Rand index in two colliding Gaussians experiment 90
4.8 Forgetting factors in two colliding Gaussians experiment 91
4.9 Setup of boids experiment: four flocks fly along parallel paths (start and

end positions shown) . 93
4.10 Comparison of complete linkage Rand index in boids experiment 93
4.11 Comparison of spectral clustering Rand index in boids experiment 95
4.12 Comparison of estimated spectral clustering forgetting factor by iteration

in boids experiment . 96
4.13 Comparison of number of clusters detected using the modularity criterion

in boids experiment . 96
4.14 Estimated αt over entire Reality Mining data trace 98
4.15 Cluster structure before (left) and after (right) beginning of winter break

in Reality Mining data trace . 99

5.1 Graphical representation of proposed model for the dynamic network . . . 108
5.2 MSE (left) and adjusted Rand index (right) comparison in SBM experi-

ment with (s0, sin, sout) = (0.2, 0.1, 0.05) 117
5.3 Variation of MSE (top) and adjusted Rand index (bottom) on hyperparam-

eter settings for EKF and PSA in fourth SBM simulation scenario 118
5.4 Mean estimated edge probabilities Θ̂t|t over all time steps for Enron data

using a priori EKF . 120
5.5 Temporal variation of EKF estimated edge probabilities from Enron CEOs

θ̂
t|t
2b . 121

5.6 Temporal variation of SSBM estimated edge probabilities from Enron
CEOs yt2b . 121

5.7 Comparison of ROC curves for link prediction on Enron data 123

ix

LIST OF TABLES

2.1 Most common subject lines from a phishing and non-phishing cluster
(truncated to 50 characters by Project Honey Pot database) 25

2.2 Validation indices for clustering results by month 26
2.3 Average temporal correlation coefficients of 208.66.195/24 group of ten

harvesters by month . 28

3.1 Mean costs of MDS-based layouts (± standard error for SBM simulation
experiment) . 53

3.2 Mean costs of GLL-based layouts (± standard error for SBM simulation
experiment) . 54

4.1 Mean and standard error of k-means Rand indices in two colliding Gaus-
sians experiment . 91

4.2 Mean and standard error of complete linkage Rand indices in boids ex-
periment . 94

4.3 Mean and standard error of spectral clustering Rand indices in boids ex-
periment . 96

4.4 Mean spectral clustering Rand indices for Reality Mining experiment . . . 98

5.1 Mean and standard error of MSE in SBM experiments 116
5.2 Mean and standard error of adjusted Rand index in SBM experiments . . . 116
5.3 AUC comparison for link prediction on Enron data 123

x

LIST OF ALGORITHMS

3.1 Pseudocode for the DMDS algorithm . 43
3.2 Pseudocode for the DGLL algorithm . 46

4.1 A general algorithm for agglomerative hierarchical clustering 69
4.2 k-means algorithm implemented using similarity matrix 70
4.3 Normalized cut spectral clustering algorithm 71
4.4 Generic algorithm for AFFECT evolutionary clustering 83

5.1 A posteriori blockmodel inference procedure at time t using the EKF . . . 111
5.2 SSBM spectral clustering initialization 111

xi

ABSTRACT

Networks are ubiquitous in science, serving as a natural representation for many com-

plex physical, biological, and social phenomena. Significant efforts have been dedicated to

analyzing such network representations to reveal their structure and provide some insight

towards the phenomena of interest. Computational methods for analyzing networks have

typically been designed for static networks, which cannot capture the time-varying nature

of many complex phenomena.

In this dissertation, I propose new computational methods for machine learning and

statistical inference on dynamic networks with time-evolving structures. Specifically, I

develop methods for visualization, tracking, and prediction of dynamic networks. The

proposed methods take advantage of the dynamic nature of the network by intelligently

combining observations at multiple time steps. This involves the development of novel

statistical models and state-space representations of dynamic networks. Using the methods

proposed in this dissertation, I identify long-term trends and structural changes in a variety

of dynamic network data sets including a social network of spammers and a network of

physical proximity among employees and students at a university campus.

xii

CHAPTER I

INTRODUCTION

The study of networks has emerged as a topic of great interest in recent years. Many

complex physical, biological, and social phenomena ranging from protein-protein interac-

tions to the formation of social acquaintances can be naturally represented by networks.

Much effort has been dedicated to analyzing real-world networks to reveal their often com-

plex structure. Empirical findings from real networks can lead to significant insights to-

wards the phenomena that are being investigated. Typically this is achieved through the

creation of a model for the network that can replicate these findings. A well-known ex-

ample consists of the small-world phenomenon, commonly referred to in the popular me-

dia as the “six degrees of separation.” The small-world phenomenon was demonstrated

experimentally by Milgram (1967), who found that the average number of intermediate

acquaintances required to connect two randomly selected individuals is surprisingly small

(around five or six in Milgram’s experiment). The phenomenon was subsequently observed

in other types of networks and can be replicated in synthetic networks generated using the

small-world model developed by Watts and Strogatz (1998).

Until recently, most of the research on networks has focused on static networks. A

static network can either represent a single time snapshot of the phenomenon being in-

vestigated or an aggregate view over time. However, most of the phenomena researchers

are interested in investigating are time-varying. A static network representation of such

a phenomenon is in many cases an oversimplification that is unable to capture important

1

features of the phenomenon such as its temporal dynamics. The natural extension is then

to consider dynamic, time-evolving networks. There has been recent interest in analyz-

ing dynamic networks, enabled by electronic means of collecting dynamic network data,

such as smartphones, email, blogs, etc. Likewise, there is significant interest in modeling

dynamic networks and making inferences from these models to help us understand and

predict complex time-varying phenomena.

This dissertation contains my contributions to both of these areas, namely analyzing

and modeling dynamic networks. I develop computational methods for several machine

learning and statistical inference problems including visualization, clustering, tracking, and

prediction. The common theme behind all of the proposed methods is the ability to take

advantage of the dynamic nature of the network being examined by intelligently combin-

ing observations at multiple points in time and by modeling the temporal evolution of the

network.

1.1 Scope

Contributions to network science have come from many branches of mathematics, sciences,

and engineering, and many different types of networks have been analyzed, including bi-

ological, social, and information networks. The methods proposed in this dissertation are

not specific to any type of network; however, the majority of the networks I examine are

social and information networks. As a result, most of the intuition and explanations are

also targeted to social and information networks.

The focus of this dissertation is on evolving networks, also sometimes referred to as

temporally rewiring networks, rather than growing networks. To understand the difference

between evolving and growing networks, consider two notions of affinity in a social net-

work. The first notion of affinity between two individuals corresponds to some measure of

communication between the individuals, such as the number of messages one sends to the

other or the amount of time they spend together on the phone or in physical proximity of

2

each other. The second notion corresponds to one or both individuals indicating in some

manner that they are friends or related in some other manner, whether it be via a survey or

an electronic mechanism such as Facebook. Under the first notion, two individuals need to

regularly communicate in some form to maintain a high affinity. Under the second notion,

two individuals can maintain a high affinity as long as they do not remove their indication

that they are friends with each other. The first notion of affinity leads to evolving networks,

where affinities fluctuate both upward and downward over time whether or not new nodes

join the network over time. The second notion leads to growing networks, where affinities

very rarely decrease over time, so that the main dynamic component is the insertion of new

nodes and edges over time. Leskovec (2008) provided a comprehensive treatment on an-

alyzing and modeling growing networks; to the best of my knowledge, no such treatment

is available for evolving networks. Both evolving and growing networks are referred to as

“dynamic networks” in the literature. In the remainder of this dissertation, I use the term

“dynamic networks” to refer solely to evolving networks unless otherwise specified.

All of the methods proposed in this dissertation deal with discrete-time dynamic net-

works; that is, a network is represented by a sequence of snapshots of the network topology

at discrete time steps. In some cases, the snapshots are taken at the actual measurement

times when the data were collected, and in others, the snapshots correspond to an aggre-

gation of the measurements over a time step. The latter approach allows us to analyze

continuous-time measurements as discrete-time dynamic networks.

1.2 Outline

In Chapter II I present a motivating application involving dynamic social networks of email

spammers. Using data on spam harvesters and servers collected through email traps, I

attempt to reveal spammers’ social structure by identifying communities of spammers with

high behavioral similarity. A community, also referred to as a cluster, is loosely defined as a

group of nodes in a network with stronger ties to other nodes within the group than to nodes

3

outside the group. In this application, communities could correspond to organizations or

gangs of spammers that collaborate for economic or other benefits. The analysis in this

chapter is performed using computational methods for static networks, applied to a single

graph snapshot at a time. Such an approach is suboptimal because it ignores information

contained in other snapshots, which motivates the development of computational methods

specific to dynamic networks.

Each of the following chapters addresses a specific problem relevant to learning and

inference on dynamic networks. Each chapter is self-contained and includes a survey of

existing literature on a particular problem involving dynamic networks along with a method

I propose to solve the problem. I then compare the performance of my proposed method

with other methods present in the literature on a variety of simulated and real networks.

Chapter III deals with the problem of visualizing dynamic networks. This problem is

particularly challenging because it is difficult to represent the entire time sequence of net-

work snapshots in a single 2-D visualization. The widely adopted approach for visualizing

dynamic networks is to present an animated 2-D layout that evolves over time to reflect the

changing topology of the network snapshots. The animation eases the transition between

time steps so the viewer can identify the elements of the network that have changed and

those that have not changed. In the graph drawing community, this is referred to as pre-

serving the mental map (Misue et al., 1995). The mental map can be preserved by creating

layouts that are stable over time, because a large number of node movements between lay-

outs may cause a viewer to lose reference of the previous layout. My contribution is the

creation of a framework for dynamic network visualization using regularized graph lay-

outs, which encourages dynamic stability by adding two penalties to the cost function of a

static graph layout algorithm.

Chapter IV discusses methods for tracking the temporal evolution of communities in

dynamic networks. Many algorithms for community detection, also known as graph clus-

tering, have been developed for static networks (Fortunato, 2010). In the dynamic network

4

setting where nodes and edges change over time, it is natural for community memberships

to change over time as well. A class of clustering algorithms called evolutionary cluster-

ing algorithms have been created to target settings with dynamic data, including dynamic

networks. The main advantage of evolutionary clustering algorithms over static cluster-

ing algorithms is their ability to detect long-term drifts in the data while being robust to

short-term variations due to noise. This is typically accomplished by adding a temporal

smoothness penalty to the cost function of a static clustering algorithm. The amount of

temporal smoothness to enforce is determined a parameter commonly referred to as the

forgetting factor. My contribution to this area is the creation of an evolutionary clustering

framework that adaptively estimates the optimal forgetting factor in terms of minimizing

mean-squared tracking error. The framework, which I call AFFECT, can be used both for

clustering dynamic feature vectors and dynamic networks. A key element of AFFECT is

the idea of a time-varying network state matrix that characterizes the long-term drifts of the

network.

Chapter V builds on the idea of a network state by extending a parametric model for

static networks, namely the stochastic blockmodel (SBM), to the dynamic network setting.

The parameters naturally become time-varying states that characterize the evolving struc-

ture of the network. I propose a state-space stochastic blockmodel for dynamic networks

along with an on-line inference procedure using the extended Kalman filter. By exploiting

the block structure of the SBM, I show that one can perform near-optimal state tracking

without requiring Monte Carlo methods, unlike other methods in the literature.

I conclude in Chapter VI with a summary of my contributions and a discussion of

possible extensions and other open problems for future work.

1.3 List of publications

The following publications were produced based on the work presented in this dissertation.

5

Journal articles

1. K. S. Xu and A. O. Hero III. Revealing social networks of spammers. The Next Wave,
18(3):26–34, 2010.

2. K. S. Xu, M. Kliger, and A. O. Hero III. Adaptive evolutionary clustering. Submitted,
2011.

3. K. S. Xu, M. Kliger, and A. O. Hero III. A regularized graph layout framework for
dynamic network visualization. Submitted, 2011.

Articles in conference proceedings

1. K. S. Xu, M. Kliger, and A. O. Hero III. Visualizing the temporal evolution of dy-
namic networks. In Proc. 9th Workshop on Mining and Learning with Graphs, 2011.

2. K. S. Xu, M. Kliger, and A. O. Hero III. Tracking communities in dynamic social
networks. In Proc. 4th International Conference on Social Computing, Behavioral-
Cultural Modeling, and Prediction, 2011.

3. K. S. Xu, M. Kliger, and A. O. Hero III. A shrinkage approach to tracking dynamic
networks. In Proc. IEEE Workshop on Statistical Signal Processing, 2011.

4. K. S. Xu, M. Kliger, and A. O. Hero III. Identifying spammers by their resource
usage patterns. In Proc. 7th Collaboration, Electronic Messaging, Anti-Abuse, and
Spam Conference, 2010.

5. K. S. Xu, M. Kliger, and A. O. Hero III. Evolutionary spectral clustering with adap-
tive forgetting factor. In Proc. IEEE International Conference on Acoustics, Speech,
and Signal Processing, 2010.

6. K. S. Xu, M. Kliger, Y. Chen, P. J. Woolf, and A. O. Hero III. Revealing social
networks of spammers through spectral clustering. In Proc. IEEE International Con-
ference on Communications, 2009.

6

CHAPTER II

REVEALING SOCIAL NETWORKS OF SPAMMERS

I begin with a motivating application involving social networks of email spammers.

Spam doesn’t really need an introduction—anyone who owns an email address likely re-

ceives spam emails every day. Spammers face many challenges in order to deliver spam

emails to their intended recipients. One such challenge is to evade spam filters, which are

provided by many email services to separate spam from other emails. Furthermore, spam

falls under a legal grey area, so spammers may try to hide their identities to make it diffi-

cult to identify and thus take legal action against them. Due to these challenges, one would

expect spammers’ behavior to be highly dynamic and constantly evolving to evade spam

filters and avoid detection. This chapter presents an analysis of spammer behavior from a

dynamic network perspective. However, the analysis in this chapter utilizes methods de-

signed for static networks rather than dynamic networks. The limitations of these methods

motivate the development of methods specifically designed for dynamic networks, which I

present in the following chapters.

Previous studies on spam have mostly focused on studying its content or its source.

Likewise, currently used anti-spam methods mostly involve filtering emails based on their

content or by their email server IP address. More recently, there have been studies on

the network-level behavior of spammers (Ramachandran and Feamster, 2006; Duan et al.,

2007). Less attention has been devoted to studying how spammers acquire the email ad-

dresses that they send spam to, a process commonly referred to as harvesting. In this chap-

7

Web page Harvester Spam server Recipient

Spammer

Figure 2.1: The path of spam: from an email address on a web page to a recipient’s inbox.

ter I present a network-level study of spammers that incorporates data on both spamming

and harvesting. Harvesting is the first phase of the spam cycle; sending the spam emails to

the acquired addresses is the second phase.

Spammers send spam emails using spam servers, which are typically compromised

computers or open proxies, both of which allow spammers to hide their identities. On the

other hand, it has been observed that spammers do not make the same effort to conceal their

identities during the harvesting phase (Prince et al., 2005), indicating that harvesters, which

are individuals or bots that collect email addresses, are closely related to the spammers who

are sending the spam emails. The harvester and spam server are the two intermediaries in

the path of spam, illustrated in Figure 2.1.

In this chapter I try to reveal social networks of spammers by identifying communities

of harvesters, which are closely related to communities of actual spammers, using data

from both phases of the spam cycle. Such communities could correspond to spam organi-

zations or gangs that operate in a collaborative manner for economic or other benefits. The

source of the data analyzed in this chapter is Project Honey Pot (Unspam Technologies,

Inc., 2012), a web-based network for monitoring harvesting and spamming activity by us-

ing trap email addresses. For every spam email received at a trap email address, the Project

Honey Pot data set provides us with the IP address of the harvester that acquired the re-

cipient’s email address in addition to the IP address of the spam server, which is contained

in the header of the email. Spammers make use of both harvesters and spam servers in

order to distribute emails to recipients, but the IP address of the harvester that acquired the

recipient’s email address is typically unknown; it is only through Project Honey Pot that it

is uncovered.

8

Project Honey Pot is a great source for studying phishing, a term commonly used to

denote the process of attempting to fraudulently acquire sensitive information from a user

by appearing to represent a trustworthy entity. I discuss Project Honey Pot and phishing in

detail and summarize some related work in Section 2.1.

I look for community structure within the network of harvesters by partitioning har-

vesters into groups such that the harvesters in each group exhibit high similarity. This is

a clustering problem, and I adopt a method commonly referred to as spectral clustering.

Identifying community structure not only reveals groups of harvesters that have high simi-

larity but also groups of spammers who may be socially connected, due to the close relation

between harvesters and spammers. I provide an overview of spectral clustering in Section

2.2, and I discuss choices of similarity measures in Section 2.3.

My main findings are as follows:

1. Most harvesters are either phishers or non-phishers (Section 2.1.2). I find that most
harvesters are either associated only with phishing emails or only with non-phishing
emails.

2. Phishers and non-phishers tend to separate into different communities when cluster-
ing based on similarity in spam server usage (Section 2.4.1). That is, phishers tend
to associate with other phishers, and non-phishers tend to associate with other non-
phishers. In particular, phishers appear in small communities with strong ties, which
suggests that they are sharing resources (spam servers) with other members of their
community.

3. Several groups of harvesters have coherent temporal behavior and similar IP ad-
dresses (Section 2.4.2). In particular, I identify a group of ten harvesters associated
with extremely large amounts of spam that have the same /24 IP address prefix, which
happens to be owned by a rogue Internet service provider. This indicates that these
harvesters are either the same spammer or a group of spammers operating from the
same physical location.

These findings suggest that spammers do indeed form social networks, and I am able to

identify meaningful communities.

9

2.1 Preliminaries

2.1.1 Project Honey Pot

Project Honey Pot is a system for monitoring harvesting and spamming activity via a net-

work of decoy web pages with trap email addresses, known as honey pots, distributed all

over the world by volunteers participating in the project. These trap addresses are embed-

ded within the HTML source code of web pages and are invisible to human visitors. Spam-

mers typically acquire email addresses by running harvesting bots that scan the HTML

source of web pages and collect email addresses automatically. Spammers could also ac-

quire addresses by manually browsing web sites and looking for them, although this is more

time-consuming. Since the trap email addresses in the honey pots are invisible to human

visitors, Project Honey Pot is trapping only the harvesting bots, and as a result, this is the

only type of harvester investigated in this chapter.

Each time a harvester visits a honey pot, the centralized Project Honey Pot server gen-

erates a unique trap email address. The harvester’s IP address is recorded and sent to the

Project Honey Pot server. The email address embedded into each honey pot is unique, so

a particular email address could only have been collected by the visitor to that particular

honey pot. Thus, when an email is received at one of the trap addresses, exactly which har-

vester acquired the address is known. These email addresses are not published anywhere

besides the honey pot, so it can safely be assumed that all emails received at these addresses

are spam.

As of May 2012, over 83 million trap email addresses, 92 million spam servers, and

130, 000 harvesters have been identified by Project Honey Pot (Unspam Technologies, Inc.,

2012). The number of emails received at the trap email addresses monitored by Project

Honey Pot in 2006 and 2007 is shown by month in Figure 2.2. The number of emails have

been normalized by the number of addresses collected to distinguish between growth of

Project Honey Pot and an increase in spam volume. October 2006 is a month of particular

10

2006−01 2006−06 2006−11 2007−04 2007−09
0

0.2

0.4

0.6

0.8

E
m

ai
ls

 p
er

 a
d
d
re

ss
Month

2006−10

Figure 2.2: Number of emails received (per address collected) at trap addresses monitored
by Project Honey Pot.

interest. Notice that the number of emails received in October 2006 increased significantly

from September 2006 then came back down in November 2006. This observation agrees

with media reports of a spam outbreak in October 2006 (Austin, 2006); thus I highlight

results for this month in the remainder of the chapter. I refer readers to (Prince et al., 2005;

Unspam Technologies, Inc., 2012) for additional details on Project Honey Pot.

In order to discover social networks of spammers, I need to associate emails to the

spammers who sent them. Since I do not know the identity of the spammer who sent a

particular email, I can associate the email either to the spam server that was used to send it

or to the harvester that acquired the recipient’s email address. A previous study using the

Project Honey Pot data set has suggested that the harvester is more likely to be associated

with the spammer than the spam server (Prince et al., 2005), so I associate each email with

the harvester that acquired the recipient’s email address. In particular, this is different

from studies by Ramachandran and Feamster (2006) and Duan et al. (2007), which did not

involve harvesters and implicitly associated emails with the spam servers that were used to

send them. Note that I am not assuming that the harvesters are the spammers themselves.

A harvester may collect email addresses for multiple spammers, or a spammer may use

multiple harvesters to collect email addresses. To summarize, I am associating emails with

harvesters and trying to discover communities of harvesters, which are closely related to

communities of actual spammers.

11

2.1.2 Phishing

Project Honey Pot happens to be an ideal data source for studying phishing emails. It

is impossible for a trap email address to, for example, sign up for a PayPal account, so

all emails supposedly received from financial institutions can immediately be classified as

phishing emails. Note that this is not possible with legitimate email addresses, which may

receive legitimate emails from these sources. Since I know that any email mentioning such

a source is a phishing email, I can classify each email as phishing or non-phishing based on

its content. I classify an email as phishing if its subject contains a commonly used phishing

word. The list of such words was built using common phishing words such as “password”

and “account” and includes those found in a study on phishing (Chandrasekaran et al.,

2006) and names of large financial institutions that do business on-line such as PayPal.

In general I find that a small percentage of the spam received through Project Honey

Pot consists of phishing emails. In 2006 and 2007, 3.9% of the spam received was phishing

spam. I define a phishing level for each harvester as the ratio of the number of phishing

emails it is associated with to the total number of emails (both phishing and non-phishing)

it is associated with. An interesting finding is that most harvesters are associated only with

phishing emails or only with non-phishing emails. This can be seen in the histogram of

harvester phishing levels in Figure 2.3. Specifically, 18% of harvesters have a phishing level

of 0.95 or higher while 69% have a phishing level of 0.05 or lower. I label all harvesters as

phishers or non-phishers based on their phishing level. I label a harvester as a phisher if its

phishing level exceeds 0.5. In total, about 23% of harvesters are labeled as phishers. Note

that phishers send less emails on a per-harvester basis than non-phishers, as only 3.9% of

emails received were phishing emails as mentioned earlier. The labeling of harvesters as

phishers or non-phishers will be used later when interpreting the clustering results.

12

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2
x 10

4

Phishing level

N
u

m
b

er
 o

f
h
ar

v
es

te
rs

Figure 2.3: Histogram of harvester phishing levels. Most harvesters are associated only
with phishing emails or only with non-phishing emails.

2.1.3 Related work

The majority of studies on spam have focused on studying its content in order to develop

classification rules for separating spam from legitimate emails (Drucker et al., 1999; An-

droutsopoulos et al., 2000; Carreras and Marquez, 2001). Several other studies have exam-

ined spam sources and the effectiveness of source-based filtering approaches such as black

listing (Jung and Sit, 2004; Ramachandran et al., 2006). More recently, there have been

studies on behavioral characteristics of spammers. Ramachandran and Feamster (2006)

and Duan et al. (2007) studied the network-level behavior of spammers but did not study

harvesting. As a result, they implicitly associated emails with the spam servers that sent

them. On the other hand, I associate emails with the harvesters that acquired the email

addresses, which are closer entities to the spammers themselves than the spam servers.

Harvesting is an area of spam that has not been very well studied, to the best of our

knowledge, likely due to the difficulty in obtaining harvesting data. There has been a

previous study (Prince et al., 2005) on the Project Honey Pot data set. One of the main

findings of that study was that spammers conceal their identity to a lesser degree when

harvesting, which is one of the main assumptions made in this chapter. However, that study

did not examine the behavioral similarities or social interactions between spammers. To

the best of our knowledge, this is the first study that attempts to reveal the social structure

13

of spammers.

Finally, the problem of identifying communities in networks has been studied by re-

searchers in many disciplines. Many methods for community detection have been pro-

posed; a survey of these methods can be found in Fortunato (2010). Identifying com-

munities in networks is intimately related to the problem of graph partitioning. Spectral

clustering (Ng et al., 2001; Yu and Shi, 2003; von Luxburg, 2007) has emerged as a com-

putationally efficient method for finding high quality graph partitions.

2.2 Overview of spectral clustering

In this study, I employ spectral clustering to identify groups of harvesters with high similar-

ity. Spectral clustering is used over other clustering techniques because of its close relation

to the graph partitioning problem of minimizing the normalized cut between clusters, which

is a natural choice of objective function for community detection as discussed in (Leskovec

et al., 2008) where it is referred to as conductance.

2.2.1 The graph partitioning problem

I represent the network of harvesters by a weighted undirected graphG = (V,E,W) where

V is the set of vertices, representing harvesters; E is the set of edges between vertices; and

W = [wij]
M
i,j=1 is the matrix of edge weights with wij indicating the similarity between

harvesters i and j. The choice of similarity measures is discussed in Section 2.3. W is

known as the adjacency matrix of the graph and is also referred to in the literature as the

similarity matrix or affinity matrix. M = |V | is the total number of harvesters. The total

weights of edges between two sets of vertices A,B ⊂ V is defined by

links(A,B) =
∑
i∈A

∑
j∈B

wij, (2.1)

14

also referred to in the literature as the association between A and B. When A and B are

disjoint, links(A,B) is usually referred to as the cut between A and B. The degree of a set

A is defined by

deg(A) = links(A, V) (2.2)

and is also referred to in the literature as the volume of A.

Our objective is to find highly similar groups of vertices in the graph, which repre-

sent harvesters that behave in a similar manner. This is a graph partitioning problem, and

our objective translates into minimizing similarity between groups, maximizing similarity

within groups, or preferably both. Let the groups be denoted by V1, V2, . . . , VK where K

denotes the number of groups to partition the graph into. I represent the graph partition by

an M -by-K partition matrix X . Let X = [x1,x2, . . . ,xK] where xij = 1 if harvester i is

in cluster j and xij = 0 otherwise.

I adopt the normalized cut disassociation measure proposed in (Shi and Malik, 2000).

The K-way normalized cut and normalized association are defined by

KNcut(X) =
1

K

K∑
i=1

links(Vi, V \Vi)
deg(Vi)

KNassoc(X) =
1

K

K∑
i=1

links(Vi, Vi)

deg(Vi)
,

where the backslash operator denotes set difference. Minimizing KNcut also maximizes

KNassoc because KNcut(X)+KNassoc(X) = 1, so one can minimize similarity between

groups and maximize similarity within groups simultaneously. Thus the normalized cut ap-

pears to be a good choice of disassociation measure for our objective, which is to minimize

KNcut, or equivalently, to maximize KNassoc.

15

2.2.2 Finding a near-optimal solution

Unfortunately, maximizing KNassoc is an NP-complete problem even for K = 2 as noted

in (Shi and Malik, 2000) so I turn to an approximate method. Define the degree matrix

D = diag(W1M) where diag(·) creates a diagonal matrix from its vector argument, and

1M is a vector of M ones. Rewrite links and deg as

links(Vi, Vi) = xT
i Wxi

deg(Vi) = xT
i Dxi.

The KNassoc maximization problem can then be written as follows:

maximize KNassoc(X) =
1

K

K∑
i=1

xT
i Wxi

xT
i Dxi

(2.3)

subject to X ∈ {0, 1}M×K (2.4)

X1K = 1M , (2.5)

where constraints (2.4) and (2.5) force each vertex to be assigned to exactly one cluster.

Let C be a diagonal matrix with cii =
∑M

j=1 xji, the number of vertices in cluster i. Let

Z = XC−1/2. (2.3)–(2.5) can be re-formulated as a trace maximization problem over Z

(Yu and Shi, 2003). The re-formulated problem is given by

maximize
1

K
tr(ZT W̃Z) (2.6)

subject to ZTZ = IK

ZC1/2 ∈ {0, 1}M×K , (2.7)

where W̃ = D−1/2WD−1/2 is a normalized adjacency matrix, and tr(·) denotes the trace

of a matrix.

As mentioned earlier, maximizing (2.3), and thus (2.6), is NP-complete. A common

16

method for finding a near global-optimal solution known as spectral clustering first relaxes

the problem into the continuous domain by dropping constraint (2.7), then discretizes the

optimal continuous solution to obtain a near global-optimal discrete solution. By a gen-

eralized version of the Rayleigh-Ritz theorem (Lütkepohl, 1997), the optimal continuous

solution is Z = [v1,v2, . . . ,vK], where vi denotes the eigenvector corresponding to the

ith largest eigenvalue of W̃ . To obtain a feasible discrete solution, a common heuristic

approach is to cluster the rows of a scaled version of Z using the K-means algorithm (Ng

et al., 2001; von Luxburg, 2007). Alternatively, Yu and Shi (2003) propose an approach

using orthogonal transformations and thresholding that is robust to random initialization

and guarantees a near global-optimal solution. I opt for this approach and refer interested

readers to Yu and Shi (2003) for more details.

2.2.3 Choosing the number of clusters

As with most clustering algorithms, the proper choice of K, the number of clusters, is

unknown in spectral clustering. A useful heuristic particularly well-suited for choosing K

in spectral clustering problems is the eigengap heuristic (von Luxburg, 2007). The goal

is to choose K such that the highest eigenvalues λ1, . . . , λK of the normalized adjacency

matrix W̃ are very close to 1 but λK+1 is relatively far away from 1.

One explanation for this heuristic is based on perturbation theory. Define a connected

component to be a set of vertices A such that any two vertices in A can be joined by a

path where all intermediate vertices on the path are in A, and there are no edges between

between vertices in A and V \A. Multiple connected components are disconnected from

each other, meaning that there is no path between them. If a graph consists of K connected

components, then the eigenvalue 1 has multiplicity K, and there is a gap to the (K + 1)th

eigenvalue (Chung, 1997). If the entries of the adjacency matrix of a graph with K con-

nected components are slightly perturbed by introducing an edge between two connected

components, then the eigenvalues of the normalized adjacency matrix are similarly per-

17

0 10 20 30 40 50

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Eigenvalue rank

E
ig

en
v

al
u

e

K=13

Figure 2.4: Top 50 eigenvalues of normalized adjacency matrix.

turbed by a small amount. Instead of seeing K eigenvalues with value 1, one would expect

to see K− 1 such eigenvalues, with the Kth eigenvalue close to 1, followed by a gap to the

(K + 1)th eigenvalue as before. Hence the eigengap heuristic assumes that the clusters in

the graph correspond to slightly perturbed connected components and selects the number

of clusters that best fits this criterion.

The top 50 eigenvalues of a normalized adjacency matrix W̃ are shown in Figure 2.4.

Notice that there is a gap between the 13th and 14th eigenvalues; hence I would choose 13

clusters for this graph based on the eigengap heuristic.

2.3 Analysis methodology

A social network is a social structure composed of actors and ties, which indicate the re-

lationships between actors. Direct relationships between harvesters (the actors) cannot be

observed, so I use indirect relationships as the ties. I explore two types of ties; each type

of tie corresponds to a similarity measure for choosing the edge weights wij between a pair

of actors corresponding to vertices i and j. I often refer to these edge weights as behav-

ioral similarities between harvesters, because the similarities are obtained by observations

of harvesters’ behavior over space or time.

18

Note that the network may evolve over time so I need to choose a time frame for analysis

that is short enough so that I should be able to see this evolution if it is present yet long

enough so that I have a large enough sample for the clustering results to be meaningful.

There is no clear-cut method for choosing the time frame. As a starting point, I split the

data set by month and analyze each month independently. This is not the optimal approach,

but it allows the network to be analyzed using static clustering methods. I develop a better

approach for clustering dynamic networks in Chapter IV.

2.3.1 Similarity measures

I examine two measures of behavioral similarity: similarity in spam server usage and tem-

poral similarity. For both of these similarity measures, I create a coincidence matrix H ,

also referred to in the literature as a co-occurrence matrix, as an intermediate step to the

creation of the adjacency matrix W , which is discussed in Section 2.3.2. The choice of

similarity measure is crucial because it determines the topology of the graph. Each similar-

ity measure provides a different view of the social network, so a poor choice of similarity

measure may lead to detecting no community structure if harvesters are too similar or too

dissimilar.

Similarity in spam server usage

Spammers typically send emails through multiple spam servers. Spam servers can be

viewed as resources for spammers to deliver spam emails to their intended recipients. Thus

common usage of resources, namely spam servers, is one way to establish similarity be-

tween harvesters. Consider a bipartite network of harvesters and spam servers described by

the M × N coincidence matrix H = [hij]
M,N
i,j=1, where M is the number of harvesters and

N is the number of spam servers. I choose hij = pij/(djei) ∈ [0, 1] where

• pij denotes the number of emails associated with harvester i and spam server j;

• dj denotes the total number of emails sent using spam server j;

• ei denotes the total number of email addresses harvester i has acquired.

19

dj is a normalization term that is included to account for the variation in the total number

of emails sent through each spam server. For example, a harvester associated with 4 emails

sent using a particular spam server that only sent 4 emails total should indicate a much

stronger connection to that spam server than a harvester associated with 4 emails sent using

a spam server that sent 1, 000 total. ei is a normalization term to account for the variation

in the number of email addresses each harvester has acquired, based on the assumption

that harvesters send an equal amount of spam to each address they have acquired. One

can interpret hij as harvester i’s percentage of usage of spam server j per address it has

acquired. The similarity between two harvesters i1 and i2 is taken to be the dot product

between rows i1 and i2 of H .

Temporal similarity

Harvesters that exhibit high similarity in their temporal behavior may also indicate a so-

cial connection between spammers, so another possibility for linking harvesters is by their

temporal spamming behavior. I look at the timestamps of all emails associated with a par-

ticular harvester and bin them into 1-hour intervals, resulting in a vector indicating how

many emails a harvester is associated with in each interval. Doing this for all of the har-

vesters, I get another coincidence matrix H but with the columns representing time (in

1-hour intervals) rather than spam servers. The entries of H are hij = sij/ei where sij

denotes the number of emails associated with harvester i in the jth time interval, and ei

is defined as before. Again I normalize by the number of email addresses acquired but

no other normalizations are necessary because the columns represent time, which does not

vary for different harvesters. The similarity between two harvesters i1 and i2 is the dot

product between rows i1 and i2 of H as before.

2.3.2 Creating the adjacency matrix

From the coincidence matrix H I create an unnormalized matrix of pairwise similarities

S = HHT . I normalize S to form a normalized matrix of pairwise similarities S ′ =

20

D
−1/2
S SD

−1/2
S , where DS is a diagonal matrix consisting of the diagonal elements of S. I

can interpret this final normalization as a scaling of the edge weights between harvesters

such that each harvester’s self-edge has unit weight. This ensures that each harvester is

equally important because there is no prior information on the importance of a particular

harvester in the network.

I create an adjacency matrix W describing the graph by connecting the harvesters to-

gether according to their similarities in S ′. There are several methods of connecting the

graph, including k-nearest neighbors, ε-neighborhood, and the fully-connected graph. I opt

for the k-nearest neighbor method, which translates into connecting vertices i and j if i is

among the vertices with the k highest similarities to j or if j is among the vertices with the

k highest similarities to i. This is the recommended choice in von Luxburg (2007) and is

less vulnerable to poor choices of the connection parameters (in this case, the value of k).

It also results in a sparse adjacency matrix, which speeds up computations and makes the

graph easier to visualize. Unfortunately, there are not many guidelines on how to choose k.

A heuristic suggested in von Luxburg (2007), motivated by asymptotic results, is to choose

k = logM . I use this choice of k as a starting point and increase k as necessary to avoid

artificially disconnecting the graph.

2.4 Results

I present visualizations of the clustering results from October 2006, which is a month of

particular interest as noted in Section 2.1.1. The visualizations are created using force-

directed layout in Cytoscape (Shannon et al., 2003). Key statistics of the clustering results

over a period of one year starting in July 2006 are presented in 3-month intervals in tables.

2.4.1 Similarity in spam server usage

The graph created using similarity in spam server usage usually consists of a giant con-

nected component and many small connected components. The small components are eas-

21

ily recognized as clusters, while the large component is divided into multiple clusters. In

Figure 2.5 I show the network of harvesters, connected using similarity in spam server us-

age, from October 2006. The shape and color of a harvester indicates the cluster it belongs

to. The heuristics discussed in Section 2.2.3 suggest that the large connected component

should be divided into 64 clusters, but to make the figure easier to interpret, I present a clus-

tering result that divides the large component into only 7 clusters. I also remove connected

components of less than ten harvesters. These modifications were made for visualization

purposes only. In my analysis, and in particular when calculating the validation indices I

present later, I use the number of clusters suggested by the heuristics discussed in Section

2.2.3 and include all small connected components.

Notice that the majority of harvesters belong in a large cluster with weak ties, which

is a subset of the large component. This agrees with the observation in Leskovec et al.

(2008) of a large network “core” that does not divide into clusters, which is found in many

different networks from different domains. On the other hand, there exist several smaller

clusters with strong ties, some of which are connected to the large cluster. Each cluster

represents a community of harvesters associated with the same resources (spam servers),

indicating that there is a strong likelihood that these harvesters correspond to spammers

who are working together.

As with any clustering problem, the results need to be validated. If common usage of

spam servers indeed indicates social connections between spammers, perhaps I can find

some other property that is consistent within clusters. Recall from Section 2.1.2 that har-

vesters can be classified as either phishers or non-phishers. In Figure 2.6 I show the same

network as in 2.5, except that it is colored by phishing level, as defined in Section 2.1.2,

rather than cluster. Note that each of the clusters consists almost entirely of phishers or al-

most entirely of non-phishers. In particular, phishers appear to concentrate in small clusters

with strong ties. This observation is further enhanced when clustering using 64 clusters as

suggested by the eigengap heuristic discussed in Section 2.2.3. However, it is difficult to

22

Figure 2.5: Network of harvesters formed by similarity in spam server usage in October
2006. The color and shape of a harvester indicate the cluster it belongs to.

Phishing level0.0 1.0

Figure 2.6: Alternate view of network pictured in Figure 2.5, where the color of a harvester
corresponds to its phishing level.

23

Phishing level0.0 1.0

Figure 2.7: Network of clusters of harvesters formed by similarity in spam server usage in
October 2006. The color and size of a cluster correspond to its phishing level and degree,
respectively, and the width of an edge corresponds to the cut size between the two clusters
it connects.

visualize the cluster membership of each vertex when the number of clusters is so large.

In Figure 2.7 I present a visualization of the network of clusters when the large con-

nected component is divided into 64 clusters. Each node denotes a cluster rather than a

harvester. The clusters are colored by their phishing level, which is the ratio of the number

of phishing emails associated with all harvesters in the cluster to the total number of emails

associated with all harvesters. The size of a node corresponds to its degree as defined in

(2.2). Finally, the width of an edge corresponds to the cut size between the two clusters

it connects, which is the links function between two clusters defined in (2.1). Notice that

most clusters have either very high or very low phishing levels, much like I found with har-

vesters. In particular, the clusters with high phishing levels tend to be small and scattered

far from the dense core of clusters with low phishing levels.

The five most common subject lines from a phishing and a non-phishing cluster are

shown in Table 2.1. Notice the distinct separation between phishing subject lines and non-

phishing subject lines. The subject headings were not provided to the clustering algorithm

and are used only for validation and interpretation of the clustering results.

Next I quantify the observation that clusters tend to divide into phishing and non-

24

Phishing cluster Non-phishing cluster

Password Change Required
Make Money by Sharing Your Life with

Friends and F

Question from eBay Member
Premiere Professional & Executive

Registries Invit
Credit Union Online (R) $50 Reward

Survey
Texas Land/Golf is the Buzz

PayPal Account Keys to Stock Market Success

PayPal Account - Suspicious Activity
An Entire Case of Fine Wine plus Exclusive

Gift to

Table 2.1: Most common subject lines from a phishing and non-phishing cluster (truncated
to 50 characters by Project Honey Pot database).

phishing clusters by examining the distribution of phishers and non-phishers in clusters.

I consider a cluster as a phishing cluster if it contains more phishers than non-phishers

and as a non-phishing cluster otherwise. Using phisher or non-phisher as a label for each

harvester, I compute the Rand index (Rand, 1971) and adjusted Rand index (Hubert and

Arabie, 1985), both commonly used indices used for clustering validation. The Rand index

is a measure of agreement between clustering results and a set of class labels and is given

by

Rand index =
a+ d

a+ b+ c+ d
(2.8)

where

• a is the number of pairs of vertices with the same label and in the same cluster;

• b is the number of pairs with the same label but in different clusters;

• c is the number of pairs with different labels but in the same cluster;

• d is the number of pairs with different labels and in different clusters.

A Rand index of 0 indicates complete disagreement between clusters and labels, and a Rand

index of 1 indicates perfect agreement. The adjusted Rand index is corrected for chance so

that the expected adjusted Rand index for a random clustering result is 0.

In this clustering problem, the Rand index indicates how well phishers and non-phishers

divide into phishing and non-phishing clusters, respectively. The adjusted Rand index in-

25

Year 2006 2007
Month July October January April July

Rand index 0.908 0.952 0.941 0.962 0.895
Adj. Rand index 0.782 0.865 0.791 0.799 0.636

Table 2.2: Validation indices for clustering results by month.

dicates how well phishers and non-phishers divide compared to the expected division that

a random clustering algorithm would produce. Both indices are shown in Table 2.2 for five

months. Note that the clustering results have excellent agreement with the labels, and the

agreement is much higher than expected by chance. The division between phishers and

non-phishers is not perfect, as there are some phishers belonging in non-phishing clusters

and vice-versa, but the high adjusted Rand index indicates that this split is highly unlikely to

be due to chance alone. Hence I have found empirical evidence that phishers tend to form

small communities with strong ties, suggesting that they share resources (spam servers)

between members of their community.

2.4.2 Temporal similarity

Unlike the graph created by similarity in spam server usage, the graph created by tempo-

ral similarity usually consists of just a single connected component. In Figure 2.8 I show

the network of harvesters, connected using temporal similarity, from October 2006, where

again the shape and color of a harvester indicates the cluster it belongs to. Again, I present

a clustering result with fewer clusters than suggested by the heuristics discussed in Section

2.2.3 for ease of visualization. Any similarity in color with Figure 2.5 is coincidental; Fig-

ure 2.8 represents a completely different view of the social network and provides different

insights.

Unfortunately I do not have validation for this clustering result on a global scale like I

did with phishing level for similarity in spam server usage. However by looking at tempo-

ral spamming plots of the small clusters, I find some local validation. Namely, I see groups

of harvesters in the same cluster with extremely coherent temporal spamming behavior. I

26

Figure 2.8: Network of harvesters formed by temporal similarity in October 2006. The
color and shape of a harvester indicate the cluster it belongs to.

notice that in several of these groups, the harvesters also have similar IP addresses. In par-

ticular, I notice a group of ten harvesters that have extremely coherent temporal spamming

patterns and have the same /24 IP address prefix, namely 208.66.195/24, indicating that

they are also in the same physical location. In Figure 2.8 they can be found in the light

green cluster of triangular nodes at the top right of the network. Their temporal spamming

plots from October 2006 are shown in Figure 2.9, where the horizontal axis corresponds to

time (in days), and vertical axis corresponds to the number of emails associated with each

harvester.

Upon further investigation, I find that their IP addresses are in the 208.66.192/22 prefix

owned by McColo Corp., a known rogue Internet service provider that acted as a gateway

to spammers and was finally removed from the Internet in November 2008 (Nazario, 2008).

This serves as further confirmation that these harvesters correspond to spammers that are

likely to be socially connected. They first appeared at the end of May 2006 and have

been among the heaviest harvesters, in terms of the number of emails sent, in every month

since then. The average correlation coefficients ρavg between two harvesters in this group

are listed in Table 2.3 for five months. Notice that their average correlation coefficients

27

0 5 10 15 20 25 30 35
0

500

1000

1500

2000

2500

3000

Day in month

N
u
m

b
er

 o
f

em
ai

ls

208.66.195.2

208.66.195.3

208.66.195.4

208.66.195.5

208.66.195.6

208.66.195.7

208.66.195.8

208.66.195.9

208.66.195.10

208.66.195.11

Figure 2.9: Temporal spamming plots of 208.66.195/24 group of ten harvesters.

Year 2006 2007
Month July October January April July
ρavg 0.980 0.988 0.950 0.949 0.935

Table 2.3: Average temporal correlation coefficients of 208.66.195/24 group of ten har-
vesters by month.

are extremely high and strongly suggest that these spammers are working together in a

coordinated matter. Also note that their behavior is still highly correlated more than a year

after they first appeared. Furthermore, I discover that they have high temporal correlation in

the harvesting phase; that is, they collect email addresses in a very similar manner as well. I

would certainly expect them to belong to the same cluster, which agrees with the clustering

results. Hence I believe that this group is either the same spammer or a community of

spammers operating from the same physical location.

2.5 Summary

In this chapter, I revealed social networks of spammers by discovering communities of

harvesters from the data collected through Project Honey Pot. Specifically, I clustered har-

vesters using two similarity measures reflecting their behavioral correlations. In addition,

I studied the distribution of phishing emails among harvesters and among clusters. I found

28

that harvesters are typically either phishers or non-phishers; that is, they are either associ-

ated only with phishing emails or only with non-phishing emails. Moreover, I discovered

that communities of harvesters divide into communities of mostly phishers and mostly

non-phishers when clustering according to similarity in spam server usage. In particular, I

observed that phishers tend to form small communities with strong ties. I also discovered

several groups of harvesters with extremely coherent temporal behavior and very similar

IP addresses, indicating that these groups are also geographically close.

Note that the two similarity measures I studied provided us with different views of the

social networks of spammers, and I gained useful insights from both of them. All of my

findings are empirical; however, I believe that they reveal some previously unknown behav-

ior of spammers, namely that spammers do indeed form social networks. Since harvesters

are closely related to spammers, the discovered communities of harvesters are closely re-

lated to communities of spammers. Identifying communities of spammers could allow us

to fight spam from a new perspective by incorporating the social structure of spammers.

A limitation of the analysis presented in this chapter is that it utilizes methodology

designed for static networks, namely static spectral clustering. To get a better idea for

the temporal evolution in this dynamic network, it would be better to apply methods that

are specifically designed for dynamic networks. In the following chapters, I develop such

methods, targeted at the problems of visualizing, clustering, tracking, and predicting dy-

namic networks.

29

CHAPTER III

VISUALIZING DYNAMIC NETWORKS

How to visually represent a network is one of the earliest questions posed by network

analysts. Visualization is an important tool that can provide insights and intuition about

networks that cannot be conveyed by summary statistics alone. The task of visualizing

dynamic networks has been an open problem that has attracted attention from sociologists

(Moody et al., 2005; Bender-deMoll and McFarland, 2006; Leydesdorff and Schank, 2008)

and the information visualization community (Brandes and Corman, 2003; Erten et al.,

2004; Frishman and Tal, 2008) among others.

Visualizing static networks is a challenge in itself. Static networks are typically repre-

sented by graphs, which have no natural representation in a Euclidean space. Many graph

layout algorithms have been developed to create aesthetically pleasing 2-D representations

of graphs (Di Battista et al., 1999; Herman et al., 2000). Common layout methods for

general graphs include force-directed layout (Kamada and Kawai, 1989; Fruchterman and

Reingold, 1991), multidimensional scaling (MDS) (Gansner et al., 2004; Borg and Groe-

nen, 2005) and graph Laplacian layout (GLL), also known as spectral layout (Hall, 1970;

Koren, 2003).

Dynamic networks are typically represented by a time-indexed sequence of graph snap-

shots; thus visualizing dynamic networks in 2-D presents an additional challenge due to the

temporal aspect. If one axis is used to represent time, then only a single axis remains to

convey the topology of the network. While it is possible to identify certain trends from a

30

1-D time plot created in this manner, it is a poor representation of the network topology.

Furthermore, it is difficult to display edges between nodes in a 1-D layout without a signif-

icant amount of overlap. Brandes and Corman (2003) presented a possible solution to this

problem by creating a pseudo-3-D visualization that treats 2-D layouts of each snapshot

as layers in a stack. Unfortunately, the resulting visualization is difficult to interpret. The

more conventional approach is to present an animated 2-D layout that evolves over time to

reflect the current snapshot (Erten et al., 2004; Moody et al., 2005; Bender-deMoll and Mc-

Farland, 2006; Frishman and Tal, 2008; Leydesdorff and Schank, 2008). A challenge with

this approach is to preserve the mental map (Misue et al., 1995) between graph snapshots

so that the transition between frames in the animation can be easily interpreted by a human

viewer. In particular, it is undesirable for a large number of nodes to drastically change

positions between frames, which may cause the viewer to lose reference of the previous

layout.

Some of the early work on dynamic network visualization simply involved creating in-

terpolated transition layouts (Moody et al., 2005; Bender-deMoll and McFarland, 2006).

While interpolation does make an animation more aesthetically pleasing, it does not con-

strain the successive layouts in any way to make them more interpretable. In many real

networks, individual snapshots have high variance, so creating a layout for each snapshot

using a static graph layout method could result in large node movements between time

steps. Often, this is not due to a failure of the static graph layout algorithm but simply

a consequence of the cost function it is attempting to optimize, which does not consider

any other snapshots. When dealing with dynamic networks, better performance can be ob-

tained by using regularized methods that consider the historical snapshots in addition to

the current snapshot. Such an approach has been used to develop regularized clustering

algorithms for dynamic networks, also known as evolutionary clustering algorithms, which

will be discussed in detail in Chapter IV. In the context of dynamic network visualization,

regularization encourages layouts to be stable over time, thus preserving the mental map

31

between snapshots. The concept of regularization has been employed in many problems in

statistics and machine learning, including ridge regression (Hoerl and Kennard, 1970), also

known as Tikhonov regularization, the LASSO (Tibshirani, 1996), and penalized matrix

decomposition (Witten et al., 2009). It is often used to introduce additional information

or constraints and to give preference to solutions with certain desirable properties such as

sparsity, smoothness, or in this chapter, dynamic stability in order to preserve the mental

map.

I introduce a framework for dynamic network visualization using regularized graph

layouts. The framework is designed to generate layouts in the on-line setting where only

present and past snapshots are available, although it can also be used in the off-line setting.

It involves optimizing a modified cost function that augments the cost function of a static

graph layout algorithm with two penalties:

1. A grouping penalty, which discourages nodes from deviating too far from other nodes
belonging to the same group;

2. A temporal penalty, which discourages nodes from deviating too far from their pre-
vious positions.

Groups could correspond to a priori knowledge, such as participant affiliations in social

networks. If no a priori group knowledge is available, groups can be learned from the

network using, for example, the evolutionary clustering algorithms in Chapter IV. The

grouping penalty keeps group members close together in the sequence of layouts, which

helps to preserve the mental map because nodes belonging to the same group often evolve

over time in a similar fashion. The temporal penalty helps to preserve the mental map by

discouraging large node movements that may cause a human to lose reference of previous

node positions, such as multiple nodes moving unnecessarily from one side of the layout

to the opposite side. Using the proposed framework, I develop two dynamic layout algo-

rithms, dynamic multidimensional scaling (DMDS) and dynamic graph Laplacian layout

(DGLL), that are regularized versions of MDS and GLL, respectively.

To the best of my knowledge, this is the first work that presents a general regularization

32

framework for dynamic network visualization, whereas previously proposed methods have

been specific to a particular static graph layout method, typically force-directed layout.

The algorithms DMDS and DGLL are also unique in that they add both grouping and

temporal regularization to MDS and GLL, respectively. Existing methods for temporal

regularization in MDS (Baur and Schank, 2008) and grouping regularization in GLL (Costa

and Hero III, 2005) are subsumed by DMDS and DGLL, respectively. The methods for

grouping regularization in MDS and temporal regularization in GLL used in this chapter

are novel. I apply the proposed algorithms on a selection of dynamic network data sets

to demonstrate the importance of both grouping and temporal regularization in creating

interpretable visualizations.

3.1 Background

I begin by specifying the notation I shall use in this chapter. Time-indexed quantities are

indicated using square brackets, e.g. X[t]. I represent a dynamic network by a discrete-

time sequence of graph snapshots. Each snapshot is represented by a graph adjacency

matrix W [t] where wij[t] denotes the weight of the edge between nodes i and j at time t

(chosen to be 1 for unweighted graphs), and wij[t] = 0 if no edge is present. I assume all

graphs are undirected, so that wij[t] = wji[t]. For simplicity of notation, I typically drop

the time index for all quantities at time step t, i.e. W is assumed to denote W [t].

I refer to a graph layout by a matrix X ∈ Rn×s, where n denotes the number of nodes

present at time t, and each row x(i) corresponds to the s-dimensional position of node i.

One is usually interested in 2-D visualization (s = 2), although the proposed methods

can also be applied to other values of s. The ith column of X is denoted by xi, and the

individual entries by xij . The superscript in x
(h)
i is used to denote the value of xi at iteration

h of an algorithm. The norm operator ‖·‖ refers to the l2-norm, and tr(·) denotes the matrix

trace operator. I denote the all ones column vector by 1.

I now summarize the static graph layout methods of multidimensional scaling and graph

33

Laplacian layout, which operate on a single graph snapshot. I develop regularized versions

of these methods for dynamic networks in Section 3.2.

3.1.1 Multidimensional scaling

Multidimensional scaling (MDS) is a family of statistical methods that aim to find an op-

timal layout X ∈ Rn×s such that the distance between x(i) and x(j) for all i 6= j is as

close as possible to a desired distance δij . There are a variety of different cost functions

and associated algorithms for MDS; I refer interested readers to Borg and Groenen (2005).

Here I describe the cost function known as stress and its associated majorization algorithm.

The stress of a layout X is given by

stress(X) =
1

2

n∑
i=1

n∑
j=1

vij
(
δij − ‖x(i) − x(j)‖

)2
, (3.1)

where vij denotes the weight or importance of maintaining the desired distance δij . I refer to

the matrix V = [vij] as the MDS weight matrix to avoid confusion with the graph adjacency

matrix W , which is also sometimes referred to as a weight matrix.

In order to use stress MDS for graph layout, the graph adjacency matrix W is first

converted into a desired distance matrix ∆ = [δij]. This is done by defining a distance

metric over the graph and calculating distances between all pairs of nodes. The distance

between two nodes i and j is typically taken to be the length of the shortest path between

the nodes (Gansner et al., 2004). For weighted graphs, it is assumed that the edge weights

denote dissimilarities; if the edge weights instead denote similarities, they must first be

converted into dissimilarities before computing ∆.

The MDS weights vij play a crucial role in the aesthetics of the layout. The commonly

used Kamada-Kawai (KK) force-directed layout (Kamada and Kawai, 1989) is a special

case of stress MDS where the weights are chosen to be vij = δ−2ij for i 6= j and vii = 0.

The objective of stress MDS is to find a layout X that minimizes (3.1). (3.1) can be

34

decomposed into

1

2

n∑
i=1

n∑
j=1

vijδ
2
ij +

1

2

n∑
i=1

n∑
j=1

vij‖x(i) − x(j)‖2 −
n∑

i=1

n∑
j=1

vijδij‖x(i) − x(j)‖. (3.2)

Note that the first term of (3.2) is independent of X . The second term of (3.2) can be

written as tr(XTRX) where the n× n matrix R is given by

rij =

−vij i 6= j,∑

k 6=i vik i = j.

(3.3)

tr(XTRX) is quadratic and convex in X and is easily optimized.

The third term of (3.2) cannot be written as a quadratic form. However, it can be opti-

mized by an iterative majorization method known as “scaling by majorizing a complicated

function” (SMACOF) (Borg and Groenen, 2005). This non-quadratic term is iteratively

majorized, and the resulting upper bound for the stress is then optimized by differentiation.

For a matrix Z ∈ Rn×s, define the matrix-valued function S(Z) by

sij(Z) =

−vijδij/‖z(i) − z(j)‖ i 6= j,

−
∑

k 6=i sik(Z) i = j.

(3.4)

Then, it is shown in (Gansner et al., 2004; Borg and Groenen, 2005) that

− tr(XTS(Z)Z) ≥ −1

2

n∑
i=1

n∑
j=1

vijδij‖x(i) − x(j)‖

so that an upper bound for the stress is

1

2

n∑
i=1

n∑
j=1

vijδ
2
ij + tr(XTRX)− 2 tr(XTS(Z)Z). (3.5)

By setting the derivative of (3.5) with respect to X to 0, the minimizer of the upper bound

35

is found to be the solution to the equation RX = S(Z)Z.

The algorithm for optimizing stress is iterative. Let X(0) denote an initial layout. Then

at each iteration h, solve

Rx(h)
a = S

(
X(h−1))x(h−1)

a (3.6)

for x(h)
a for each a = 1, . . . , s. (3.6) can be solved using a standard linear equation solver.

Note that R is rank-deficient; this is a consequence of the stress function being translation-

invariant (Gansner et al., 2004). The translation-invariance can be removed by fixing the

location of one point, e.g. by setting x(1) = 0, removing the first row and column of R, and

removing the first row of S
(
X(h−1))X(h−1) (Gansner et al., 2004). (3.6) can then be solved

efficiently using Cholesky factorization. The iteration can be terminated when

stress
(
X(h−1))− stress

(
X(h)

)
stress

(
X(h−1)

) < ε, (3.7)

where ε is the convergence tolerance of the iterative process.

3.1.2 Graph Laplacian layout

Graph Laplacian layout (GLL) methods optimize a quadratic function associated with the

graph Laplacian matrix (Koren, 2003), which I call the GLL energy. The graph Laplacian is

obtained from the adjacency matrix by L = D−W , whereD is the diagonal matrix of node

degrees defined by dii =
∑n

j=1wij . For weighted graphs, GLL assumes that the weights

correspond to similarities between nodes, rather than dissimilarities as in MDS. GLL is

also referred to as “spectral layout” because the optimal solution involves the eigenvectors

of the Laplacian, as I will show. The GLL energy function is defined by

energy(X) =
1

2

n∑
i=1

n∑
j=1

wij‖x(i) − x(j)‖2. (3.8)

36

It is easily shown that energy(X) = tr(XTLX). The GLL problem can be formulated as

(Hall, 1970; Koren, 2003):

min
X

tr(XTLX) (3.9)

subject to XTX = nI (3.10)

XT1 = 0. (3.11)

From (3.8), it can be seen that minimizing the GLL energy function aims to make edge

lengths short by placing nodes connected by heavy edges close together. (3.11) removes

the trivial solution xa = 1, which places all nodes at the same location in one dimension.

It can also be viewed as removing a degree of freedom in the layout due to translation

invariance (Belkin and Niyogi, 2003) by setting the mean of xa to 0 for all a. Since xa

has zero-mean, (xT
axa)/n corresponds to the variance or scatter of the layout in dimension

a. Thus (3.10) constrains the layout to have unit variance in each dimension and zero

covariance between dimensions so that each dimension of the layout provides as much

additional information as possible. Moreover, one can see that (3.10) differs slightly from

the usual constraint XTX = I (Belkin and Niyogi, 2003; Koren, 2003), which constrains

the layout to have variance 1/n in each dimension. In the dynamic network setting where

n can vary over time, this is undesirable because the layout would change scale between

time steps if the number of nodes changes.

By a generalization of the Rayleigh-Ritz theorem (Lütkepohl, 1997), an optimal solu-

tion to the GLL problem is given by X∗ =
√
n[v2,v3, . . . ,vs+1], where vi denotes the

eigenvector corresponding to the ith smallest eigenvalue of L. Note that v1 = (1/
√
n)1

is excluded because it violates the zero-mean constraint (3.11). Using the property that

tr(ABC) = tr(CAB), the cost function (3.9) is easily shown to be invariant to rotation

and reflection, so X∗R is also an optimal solution for any RTR = I .

In practice, it has been found that using degree-normalized eigenvectors often results in

37

more aesthetically pleasing layouts (Belkin and Niyogi, 2003; Koren, 2003). The degree-

normalized layout problem differs only in that the dot product in each of the constraints

is replaced with the degree-weighted dot product, resulting in the following optimization

problem:

min
X

tr(XTLX)

subject to tr(XTDX) = tr(D)I

XTD1 = 0.

The optimal solution is given by X∗ =
√

tr(D) [u2,u3, . . . ,us+1] or any rotation or reflec-

tion of X∗, where ui denotes the generalized eigenvector corresponding to the ith smallest

generalized eigenvalue of (L,D). Again, u1 =
(
1/
√

tr(D)
)
1 is excluded because it vio-

lates the zero-mean constraint. A discussion on the merits of the degree normalization can

be found in (Koren, 2003).

3.2 Regularized layout methods

3.2.1 Regularization framework

The aforementioned static layout methods can be applied snapshot-by-snapshot to create a

visualization of a dynamic network; however, the resulting visualization is often difficult

to interpret due to the lack of regularization. I propose a regularized layout framework that

uses a modified cost function, defined by

Cmodified = Cstatic + αCgrouping + βCtemporal.

The static cost Cstatic corresponds to the cost function optimized by the static layout algo-

rithm. For example, in MDS, it is the stress function defined in (3.1), and in GLL, it is

the energy defined in (3.8). The grouping cost Cgrouping is chosen to discourage nodes from

deviating too far from other group members; α controls the importance of the grouping

38

cost, so I refer to αCgrouping as the grouping penalty. Similarly, the temporal cost Ctemporal is

chosen to discourage nodes from deviating too far from their previous positions; β controls

the importance of the temporal cost, so I refer to βCtemporal as the temporal penalty. I pro-

pose quadratic forms for these penalties, similar to ridge regression (Hoerl and Kennard,

1970).

Let k denote the number of groups. Define the group membership by an n × k matrix

C where

cil =

1 node i is in group l at time step t,

0 otherwise.
(3.12)

I introduce grouping regularization by adding group representatives, which also get mapped

to an s-dimensional position, stored in the matrix Y ∈ Rk×s. The proposed grouping cost

is given by

Cgrouping(X, Y) =
k∑

l=1

n∑
i=1

cil‖x(i) − y(l)‖2, (3.13)

where y(l) denotes the position of the lth representative. Notice that the grouping cost is

decreased by moving y(l) and x(i) towards each other if node i is in group l. Notice also that

I do not require knowledge of the group membership of every node. Nodes with unknown

group memberships correspond to all-zero rows in C and are not subject to any grouping

penalty.

I introduce temporal regularization on nodes present at both time steps t and t − 1

by discouraging node positions from deviating significantly from their previous positions.

Define the diagonal matrix E by

eii =

1 node i was present at time step t− 1,

0 otherwise.
(3.14)

39

The proposed temporal cost is then given by

Ctemporal(X,X[t− 1]) =
n∑

i=1

eii‖x(i) − x(i)[t− 1]‖2. (3.15)

The temporal cost is decreased by moving x(i) towards x(i)[t−1], but unlike in the grouping

cost, x(i)[t−1] is fixed because it was assigned at the previous time step. Thus the previous

node position acts as an anchor for the current node position.

Next I demonstrate how the grouping and temporal penalties can be introduced into

MDS and GLL as examples of the proposed regularization framework.

3.2.2 Dynamic multidimensional scaling

The dynamic multidimensional scaling (DMDS) modified cost is given by the modified

stress function

Mstress(X, Y) =
1

2

n∑
i=1

n∑
j=1

vij
(
δij − ‖x(i) − x(j)‖

)2
+ α

k∑
l=1

n∑
i=1

cil‖x(i) − y(k)‖2 + β
n∑

i=1

eii‖x(i) − x(i)[t− 1]‖2.
(3.16)

The first term of (3.16) is the usual MDS stress function, while the second term corresponds

to the grouping penalty, and the third term corresponds to the temporal penalty. The con-

stants α and β are the grouping and temporal regularization parameters, respectively.

To optimize (3.16), I begin by re-writing the first two terms into a single term. Define

the augmented MDS weight matrix by

Ṽ =

 V αC

αCT 0

 , (3.17)

where the zero corresponds to an appropriately sized all-zero matrix. Similarly, define the

(n + k) × (n + k) augmented desired distance matrix ∆̃ by filling the added rows and

40

columns with zeros, i.e.

∆̃ =

∆ 0

0 0

 (3.18)

Let

X̃ =

X
Y

 (3.19)

denote the positions of the both the nodes and the group representatives. Then, the first two

terms of (3.16) can be written as

1

2

n+k∑
i=1

n+k∑
j=1

ṽij

(
δ̃ij − ‖x̃(i) − x̃(j)‖

)2
,

which has the same form as in the usual stress defined in (3.1). The third term in (3.16) can

be written as a quadratic function of X̃ , namely

β
[
tr
(
X̃T ẼX̃

)
− 2 tr

(
X̃T ẼX̃[t− 1]

)
+ tr

(
X̃T [t− 1]ẼX̃[t− 1]

)]
,

where the (n+ k)× (n+ k) matrix Ẽ and the (n+ k)× s matrix X̃[t− 1] are constructed

by zero-filling as in the definition of ∆̃.

Following the derivation in Section 3.1.1, for any (n + k) × s matrix Z, (3.16) can be

majorized by

1

2

n+k∑
i=1

n+k∑
j=1

ṽij δ̃
2
ij + tr(X̃T R̃X̃)− 2 tr(X̃T S̃(Z)Z) + β

[
tr(X̃T ẼX̃)

− 2 tr(X̃T ẼX̃[t− 1]) + tr(X̃T [t− 1]ẼX̃[t− 1])
]
,

(3.20)

where R̃ and S̃ are defined by substituting the augmented matrices Ṽ and ∆̃ for V and ∆,

respectively, in (3.3) and (3.4). (3.20) is quadratic and convex in X so the minimizer of the

41

upper bound is found by setting the derivative of (3.20) to 0, resulting in the equation

(
R̃ + βẼ

)
X̃ = S̃

(
Z
)
Z + βẼX̃[t− 1].

This can again be solved sequentially over each dimension. As in Section 3.1.1, I solve this

iteratively using the previous iteration as the majorizer, i.e. at iteration h, solve

(
R̃ + βẼ

)
x̃(h)
a = S̃

(
X̃(h−1))x̃(h−1)

a + βẼx̃a[t− 1]. (3.21)

for x̃(h)
a for each a = 1, . . . , s. The process is iterated until the convergence criterion (3.7)

is attained. The first iterate can be taken to be simply the previous layout x̃a[t− 1]. Unlike

in ordinary MDS, the system of linear equations in (3.21) has a unique solution provided

that at least a single node was present at time step t − 1, because R̃ + βẼ has full rank in

this case.

Pseudocode for the DMDS algorithm for t = 1, 2, . . . is shown in Algorithm 3.1, where

shortest paths(·) computes the matrix of shortest paths between all pairs of nodes, and

MDS weights(·) computes the MDS weight matrix. (3.21) can be solved by performing a

Cholesky factorization on (R̃+ βẼ) followed by back substitution. At the initial time step

(t = 0), there are no previous node positions to initialize with, so a random initialization is

used. Also, at t = 0, the position of one node should be fixed before solving (3.21) due to

the translation-invariance discussed in Section 3.1.1. The time complexity of the algorithm

at all subsequent time steps is dominated by the O(n3) complexity of the Cholesky fac-

torization, assuming k � n, but the factorization only needs to be computed at the initial

iteration (h = 1). All subsequent iterations require only matrix-vector products and back

substitution and thus have O(n2) complexity.

42

Algorithm 3.1 Pseudocode for the DMDS algorithm.
1: for t = 1, 2, . . . do
2: ∆← shortest paths(W)
3: V ← MDS weights(∆)
4: Construct Ṽ and ∆̃ using (3.17) and (3.18), respectively
5: Construct R̃ by substituting Ṽ for V in (3.3)
6: h← 0
7: X̃(0) ← X̃[t− 1]
8: repeat
9: h← h+ 1

10: Construct S̃
(
X̃(h−1)) by substituting Ṽ , ∆̃, and X̃(h−1) for V , ∆, and Z, respec-

tively, in (3.4)
11: for a = 1, . . . , s do
12: Solve

(
R̃ + βẼ

)
x̃(h)
a = S̃

(
X̃(h−1))x̃(h−1)

a + βẼx̃a[t− 1] for x̃(h)
a

13: end for
14: until

[
Mstress

(
X̃(h−1))−Mstress

(
X̃(h)

)]
/Mstress

(
X̃(h−1)) < ε

15: X̃ ← X̃(h)

16: end for

3.2.3 Dynamic graph Laplacian layout

The dynamic graph Laplacian layout (DGLL) modified cost is given by the modified energy

function

Menergy(X, Y) =
1

2

n∑
i=1

n∑
j=1

wij‖x(i) − x(j)‖2 + α
k∑

l=1

n∑
i=1

cil‖x(i) − y(l)‖2

+ β
n∑

i=1

eii‖x(i) − x(i)[t− 1]‖2.
(3.22)

Like with DMDS, the first term of (3.22) is the usual GLL energy function, while the

second term corresponds to the grouping penalty, and the third term corresponds to the

temporal penalty. Again, the parameters α and β correspond to the grouping and temporal

regularization parameters, respectively.

I first re-write (3.22) in a more compact form using the graph Laplacian. Define the

43

augmented adjacency matrix by

W̃ =

 W αC

αCT 0

 . (3.23)

Notice that the group representatives have been added as nodes to the graph, with edges

between each node and its associated representative of weight α. Define the augmented

degree matrix by D̃ by d̃ii =
∑n+k

j=1 w̃ij , and the augmented graph Laplacian by L̃ = D̃−W̃ .

The first two terms of (3.22) can thus be written as tr(X̃T L̃X̃), where X̃ is as defined in

(3.19). The third term of (3.22) can be written as

β
[
tr(X̃T ẼX̃)− 2 tr(X̃T ẼX̃[t− 1]) + tr(X̃T [t− 1]ẼX̃[t− 1])

]
, (3.24)

where Ẽ is zero-filled as described in Section 3.2.2. The final term in (3.24) is independent

of X̃ and is henceforth dropped from the modified cost.

I now consider the constraints, which differ depending on whether the layout is degree-

normalized, as discussed in Section 3.1.2. I derive the constraints for the degree-normalized

layout; the equivalent constraints for the unnormalized layout can simply be obtained by

replacing D̃ with the identity matrix in the derivation. First I note that, due to the temporal

regularization, the optimal layout is no longer translation-invariant, so I can remove the

zero-mean constraint. As a result, the variance and orthogonality constraints become more

complicated because I need to subtract the mean. Denote the degree-weighted mean in

dimension a by

µ̃a =
1∑n+k

i=1 d̃ii

n+k∑
i=1

d̃iix̃ia.

44

Then the degree-weighted covariance between the ath and bth dimensions is given by

cov(x̃a, x̃b) =
1∑n+k

i=1 d̃ii

n+k∑
i=1

d̃ii(x̃ia − µ̃a)(x̃ib − µ̃b)

=
1∑n+k

i=1 d̃ii

n+k∑
i=1

d̃iix̃iax̃ib −
1(∑n+k

i=1 d̃ii

)2
(

n+k∑
i=1

d̃iix̃ia

)(
n+k∑
i=1

d̃iix̃ib

)

=
x̃T
aM x̃b

tr(D̃)
,

where M is the centering matrix defined by

M = D̃ − D̃11T D̃

tr(D̃)
. (3.25)

Combining the modified cost function with the modified constraints, the normalized

DGLL problem is as follows:

min
X̃

tr(X̃T L̃X̃) + β
[
tr(X̃T ẼX̃)− 2X̃T ẼX̃[t− 1])

]
(3.26)

subject to tr(X̃TMX̃) = tr(D̃)I. (3.27)

Again, the unnormalized problem can be obtained by replacing D̃ with the identity matrix

in (3.25) and (3.27). Note that (3.26) contains a linear term in X̃ . Hence the optimal so-

lution is not given by scaled generalized eigenvectors as in the static GLL problem. (3.26)

can be solved using standard algorithms for constrained nonlinear optimization (Bazaraa

et al., 2006). The cost function and constraints consist only of linear and quadratic terms,

so the gradient and Hessian are easily computed in closed form (see Appendix 3.A). Unfor-

tunately, the problem is not convex due to the equality constraints; thus a good initialization

is important. The natural choice is to initialize using the previous layout X̃(0) = X̃[t− 1].

To avoid getting stuck in poor local minima, one could use multiple restarts with random

initialization.

45

Algorithm 3.2 Pseudocode for the DGLL algorithm.
1: for t = 1, 2, . . . do
2: Construct W̃ using (3.23) and its corresponding Laplacian L̃ = D̃ − W̃
3: Construct the centering matrix M using (3.25)
4: X̃(0) ← X̃[t− 1]
5: Solve (3.26) using the forms for∇f , g, H , and J in Appendix 3.A
6: for r = 1→ max restarts do {if multiple random restarts are necessary}
7: Randomly assign X̃(0)

8: Solve (3.26) using the forms for∇f , g, H , and J in Appendix 3.A
9: end for

10: X̃ ← best solution to (3.26) over all initializations
11: end for

Pseudocode for the DGLL algorithm for t = 1, 2, . . . is shown in Algorithm 3.2. I

use the interior-point algorithm of Byrd et al. (1999) to solve (3.26). I find in practice that

random restarts are not necessary unless β is extremely small because the temporal regular-

ization penalizes solutions that deviate too far from the previous layout. For other choices

of β, I find that the interior-point algorithm indeed converges to the global minimum when

initialized using the previous layout. The most time-consuming operation in solving (3.26)

consists of a Cholesky factorization, which must be updated at each iteration. At the ini-

tial time step (t = 0), there are no previous node positions, and hence, no linear term in

(3.26), so the layout is obtained using scaled generalized eigenvectors, as described in Sec-

tion 3.1.2. The time complexity at all subsequent time steps is dominated by the O(n3)

complexity of the Cholesky factorization.

3.2.4 Discussion

I chose to demonstrate the proposed framework with MDS and GLL; however, it is also

applicable to other graph layout methods, such as the Fruchterman-Reingold method of

force-directed layout (Fruchterman and Reingold, 1991). Since the static cost functions of

MDS and GLL encourage different appearances, the same is true of DMDS and DGLL.

Ultimately, the decision of which type of layout to use depends on the type of network

and user preferences. Kamada-Kawai MDS layouts are often preferred in 2-D because

46

they discourage nodes from overlapping due to the large MDS weights assigned to main-

taining small desired distances. On the other hand, if a 1-D layout is desired, so that the

entire sequence can be plotted as a time series, node overlap is a lesser concern. For such

applications, DGLL may be a better choice.

Another decision that needs to be made by the user is the choice of the parameters α and

β, which can be tuned as desired to create a meaningful animation. Unlike in supervised

learning tasks such as classification, there is no ground truth in visualization so the selec-

tion of parameters in layout methods is typically done in an ad-hoc fashion. Furthermore,

multiple layouts created by differing choices of parameters could be useful for visualiz-

ing different portions of the network or yielding different insights (Witten and Tibshirani,

2011). This is particularly true of the grouping regularization parameter α. When a high

value of α is used, nodes belonging to the same group are placed much closer together than

nodes belonging to different groups. The resulting visualization emphasizes node move-

ments between groups (for nodes that change group between time steps) while sacrificing

the quality of the node movements within groups. On the other hand, when a low value of

α is used, node movements within groups are more clearly visible, but node movements

between groups are more difficult to see. I explore the effect of changing parameters on the

resulting animation in several experiments in Section 3.4.

3.3 Related work

The regularized graph layout framework proposed in this chapter employs two types of

penalties: a penalty that places nodes belonging to the same group together and a penalty

that places nodes near their positions at neighboring time steps. The former problem has

been investigated, albeit in a static setting, in the related field of supervised dimensionality

reduction. The latter problem has been formulated as an objective in previous work on

dynamic network visualization.

47

3.3.1 Supervised dimensionality reduction

The objective of dimensionality reduction (DR) is to find a mapping φ : Rp → Rs, p > s

from a high-dimensional space to a lower-dimensional space while preserving many of the

characteristics of the data representation in the high-dimensional space (Lee and Verleysen,

2007). For example, MDS is a DR method that attempts to preserve pairwise distances

between data points. In the supervised DR setting, one also has a priori knowledge of

the group memberships of some of the data. Supervised DR methods pose the additional

constraint that data points within the same group should be closer together in the low-

dimensional space than points in separate groups. Notice that this is the same grouping

constraint posed in the regularized layout framework proposed in this chapter.

Witten and Tibshirani (2011) proposed a supervised version of MDS (SMDS) that op-

timizes the following cost function over X:

1

2

n∑
i=1

n∑
j=1

(δij − ‖x(i) − x(j)‖)2 + α
∑

i,j:yj>yi

(yj − yi)
s∑

a=1

(
δij√
s
− (xja − xia)

)2

, (3.28)

where yi is an ordinal value denoting the group membership of data point i. Notice that the

first term in (3.28) is the ordinary MDS stress with vij = 1 for all i, j, while the second

term provides the grouping regularization. α controls the trade-off between the two terms.

The key difference between the SMDS grouping penalty and the DMDS grouping penalty

proposed in this chapter is in the way groups are treated. SMDS assumes that groups are

labeled with an ordinal value that allows them to be ranked, and the form of the grouping

penalty in (3.28) does indeed tend to rank groups in Rs by encouraging xja > xia, a =

1, . . . , s for all i, j : yj > yi. On the other hand, the proposed grouping penalty in this

chapter treats group labels as categorical. It does not rank groups in Rs but simply pulls

nodes belonging to the group together.

Another related method for supervised DR is classification constrained dimensionality

reduction (CCDR) (Costa and Hero III, 2005), which is a supervised version of Laplacian

48

eigenmaps (Belkin and Niyogi, 2003). CCDR optimizes the following cost function over

(X, Y):
1

2

n∑
i=1

n∑
j=1

‖x(i) − x(j)‖2 + α

k∑
l=1

n∑
i=1

cil‖x(i) − y(l)‖2.

Notice that this cost function is simply the sum of the GLL energy and the DGLL grouping

penalty. Indeed, DGLL can be viewed as an extension of CCDR to time-varying data. The

CCDR solution is given by the matrix of generalized eigenvectors Ũ = [ũ2, . . . , ũs+1] of

(L̃, D̃), where L̃ and D̃ are as defined in Section 3.2.3. Although the addition of the tem-

poral regularization due to the anchoring presence of the previous layout X[t− 1] prevents

the DGLL problem from being solved using generalized eigenvectors, it discourages large

node movements between time steps in order to better preserve the mental map.

3.3.2 Layout of dynamic networks

There have been several previous studies on the problem of laying out dynamic networks

while preserving the mental map between time snapshots. Moody et al. (2005) proposed

to generate dynamic layouts using a static layout method such as Kamada-Kawai MDS

and to initialize at each time step using the layout generated at the previous time step.

The idea of this approach is to anchor the nodes initially so that the entire layout does

not get rotated. The anchoring differs from the temporal regularization proposed in this

chapter, which penalizes changes in node positions over time and can be thought of as

anchoring all iterations rather than just the initial iteration. The approach of (Moody et al.,

2005) is implemented in the social network visualization software SoNIA (Bender-deMoll

and McFarland, 2012). Experimentally, I find that solely anchoring the initialization is

insufficient at preventing drastic node movements over time (see Section 3.4 for examples).

Baur and Schank (2008) proposed a temporally regularized MDS algorithm that uses

the following localized update rule at each iteration h for each node i at each time step t:

x
(h)
ia =

x̃
(h−1)
ia + β(eiixia[t− 1] + fiixia[t+ 1])∑

j 6=i vij + β(eii + fii)
, (3.29)

49

where

x̃
(h−1)
ia =

∑
j 6=i

vij

(
x
(h−1)
ja + δij

x
(h−1)
ia − x(h−1)ja

‖x(h−1)
(i) − x

(h−1)
(j) ‖

)
,

and F is the diagonal matrix defined by

fii =

1 node i is present at time step t+ 1,

0 otherwise.

This algorithm is implemented in the social network analysis and visualization software

Visone (Visone–WWW) and was used in (Leydesdorff and Schank, 2008) for visualizing

similarities in journal content over time. (3.29) is an off-line update because it uses both

the node positions at time steps t − 1 and t + 1 to compute the node position at time step

t, whereas the methods I propose, including DMDS, are on-line methods that use only

current and past data. (3.29) can be modified into an on-line update by removing the terms

involving fii. It was shown in (Baur and Schank, 2008) that the localized update of (3.29)

optimizes the sum of the Mstress function in (3.16) over all t with k = 0, i.e. without a

grouping penalty. Likewise, the on-line modification optimizes the Mstress function at a

single time step with k = 0. Hence the proposed DMDS layout method can be viewed as

an on-line modification of the method of (Baur and Schank, 2008) with the addition of a

grouping penalty.

Other methods for layout of dynamic networks have also been proposed (Erten et al.,

2004; Frishman and Tal, 2008). TGRIP (Erten et al., 2004) is a modified force-directed

layout method with added edges between vertices present at multiple time steps. The user-

selected weights of these added edges control the amount of temporal regularization in

the layouts. The method of Frishman and Tal (2008) is also a modified force-directed

layout. It is an on-line method that uses pinning weights to previous node positions to

achieve temporal regularization and a GPU-based implementation to reduce run-time. The

emphasis in both methods is on improving scalability to deal with extremely large networks

50

by using approximations and graph coarsening. As a result, they are applicable to much

larger networks than the O(n3) methods proposed in this chapter. However, these methods

do not incorporate any sort of grouping regularization to discourage nodes from deviating

too far from other nodes in the same group.

3.4 Experiments

I demonstrate the proposed framework by applying DMDS and DGLL on a simulated data

set and two real data sets. Several snapshots of the resulting visualizations are presented.

In the second experiment, there is no a priori group knowledge. Hence I learn the

groups using the AFFECT evolutionary spectral clustering algorithm, which I describe in

Chapter IV. In the other two experiments, there is a priori group knowledge. I compute

layouts both using the known groups and the groups learned by clustering. I also compute

layouts using several existing methods for comparison. DMDS is compared to the method

of Moody et al. (2005) used in SoNIA (Bender-deMoll and McFarland, 2012) and the

method of Baur and Schank (2008) used in Visone (Visone–WWW). The SoNIA layouts

are created by anchoring the initial node positions, as described in Section 3.3.2. To provide

a fair comparison with DMDS and SoNIA, which are on-line methods, I use an on-line

modification of the Visone method, also described in Section 3.3.2. DGLL is compared to

the CCDR method of Costa and Hero III (2005) and the standard spectral GLL solution

(Koren, 2003).

Summary statistics from the experiments are presented in Tables 3.1 and 3.2 for the

MDS- and GLL-based methods, respectively, and are discussed in the individual subsec-

tions. The Kamada-Kawai choice of MDS weights is used for all of the MDS-based meth-

ods, and degree-normalized layout is used for all of the GLL-based methods.

I define three measures of layout quality: static cost, centroid cost, and temporal cost.

The static cost measures how well the current layout coordinates fit the current graph snap-

shot. It is the cost function that would be optimized by a static graph layout algorithm. The

51

static cost for the MDS-based methods is taken to be the static MDS stress defined in (3.1).

The static cost for the GLL-based methods is the GLL energy defined in (3.8). The centroid

cost is the sum of squared distances between each node and its group centroid, which is also

the cost function of the well-known method of k-means clustering (MacQueen, 1967). It is

used to measure how close nodes are to members of their group1. When prior knowledge

of the groups is available, I calculate the centroid cost with respect to the known groups,

even for the layouts where groups are learned by clustering. When prior knowledge is not

available, I calculate the centroid cost with respect to the learned groups. The temporal

cost (3.15) is a measure of the amount of node movement between consecutive layouts.

The costs displayed are appropriately normalized (either by the number of nodes or pairs

of nodes, depending on the quantity) so they are comparable across different data sets. For

the MDS-based methods, I also compare the number of iterations required for convergence

to a tolerance of ε = 10−4.

As expected, DMDS and DGLL have lower centroid and temporal costs than the com-

peting methods due to the incorporation of both grouping and temporal regularization. The

lower centroid and temporal costs are achieved by choosing node positions with a higher

static cost. Also notice that DMDS requires significantly less iterations to converge than

SoNIA, which employs no regularization at all, and slightly less than Visone, which em-

ploys only temporal regularization. The results for each experiment will be discussed in

greater detail in the following subsections.

3.4.1 Stochastic blockmodel

In this experiment, I generate simulated networks using a stochastic blockmodel (SBM)

(Holland et al., 1983). An SBM creates networks with k groups, where nodes in a group

are stochastically equivalent, i.e. the probability of forming an edge between nodes i and j

1Note that I cannot simply use the grouping cost (3.13) because it is not defined for methods that do not
incorporate grouping regularization.

52

E
xp

er
im

en
t

A
lg

or
ith

m
M

D
S

st
re

ss
C

en
tr

oi
d

co
st

Te
m

po
ra

lc
os

t
M

D
S

ite
ra

tio
ns

SB
M

D
M

D
S

(k
no

w
n)

0.
16

1
±

0.
00

0
0
.2
5
8
±

0
.0
0
1

0
.2
6
4
±

0
.0
0
2

4
6
.1

±
0
.4

D
M

D
S

(l
ea

rn
ed

)
0.

16
0
±

0.
00

0
0.

30
6
±

0.
00

2
0.

29
6
±

0.
00

2
4
6
.8

±
0
.4

V
is

on
e

0.
15

7
±

0.
00

0
0.

42
8
±

0.
00

3
0.

34
1
±

0.
00

2
51
.6
±

0.
4

So
N

IA
0
.1
3
6
±

0
.0
0
0

0.
62

3
±

0.
00

3
1.

20
6
±

0.
00

9
10

7.
4
±

0.
9

N
ew

co
m

b
D

M
D

S
(l

ea
rn

ed
)

0.
13

6
0
.6
4
5

0
.0
8
9

1
4
.8

V
is

on
e

0.
10

7
1.

23
1

0.
12

5
16
.9

So
N

IA
0
.0
8
0

1.
52

3
1.

24
6

57
.1

M
IT

D
M

D
S

(k
no

w
n)

0.
15

5
1
.3
3
4

0
.2
0
8

3
8
.4

D
M

D
S

(l
ea

rn
ed

)
0.

15
4

1.
52

7
0.

24
0

40
.0

V
is

on
e

0.
14

5
1.

92
3

0.
30

1
47
.8

So
N

IA
0
.0
9
4

2.
57

5
3.

14
4

10
4.

0

Ta
bl

e
3.

1:
M

ea
n

co
st

s
of

M
D

S-
ba

se
d

la
yo

ut
s

(±
st

an
da

rd
er

ro
r

fo
r

SB
M

si
m

ul
at

io
n

ex
pe

ri
m

en
t)

.
T

he
sm

al
le

st
qu

an
tit

y
(w

ith
in

on
e

st
an

da
rd

er
ro

r)
in

ea
ch

co
lu

m
n

fo
r

ea
ch

ex
pe

ri
m

en
ti

s
bo

ld
ed

.
D

M
D

S
re

su
lts

us
in

g
bo

th
a

pr
io

ri
kn

ow
n

gr
ou

ps
(w

he
n

av
ai

la
bl

e)
an

d
gr

ou
ps

le
ar

ne
d

by
cl

us
te

ri
ng

ar
e

sh
ow

n.

53

Experiment Algorithm GLL energy Centroid cost Temporal cost

SBM

DGLL (known) 0.658± 0.002 0.296 ± 0.002 0.752 ± 0.008

DGLL (learned) 0.655± 0.002 0.411± 0.005 0.881± 0.011

CCDR 0.629± 0.002 0.413± 0.003 4.650± 0.040

Spectral 0.604 ± 0.002 0.964± 0.008 4.655± 0.029

Newcomb
DGLL (learned) 0.820 1.325 0.379

CCDR 0.786 1.334 5.230

Spectral 0.761 1.373 3.981

MIT

DGLL (known) 0.131 1.251 0.278

DGLL (learned) 0.128 1.356 0.319

CCDR 0.099 1.300 4.591

Spectral 0.090 1.643 4.783

Table 3.2: Mean costs of GLL-based layouts (± standard error for SBM simulation ex-
periment). The smallest quantity (within one standard error) in each column for each ex-
periment is bolded. DGLL results using both a priori known groups (when available) and
groups learned by clustering are shown.

is dependent only on the groups to which i and j belong. An SBM is completely specified

by the set of probabilities {pcd, c = 1, . . . , k, d = c, c + 1, . . . , k}, which represent the

probability of forming an edge between any particular node in group c and any particular

node in group d.

I generate 20 independent samples from a 30-node 4-group SBM with parameters pii =

0.6 and pij = 0.2 for all i 6= j. Each sample corresponds to a graph snapshot at a single

time step. The group memberships are randomly assigned at the initial time step and remain

unchanged up to t = 9. At t = 10, 1/4 of the nodes are randomly re-assigned to different

groups to simulate a change in the network structure. The group memberships are then held

constant. I create layouts of the network using parameters α = β = 1.

In Figure 3.1, I plot the variation over time of the static, centroid, and temporal costs of

the MDS-based methods. The costs are averaged over 100 simulation runs. As expected,

the static cost is higher for the regularized layouts than for the unregularized SoNIA layout.

However, the grouping regularization in DMDS results in lower centroid cost. When the

groups are learned by clustering, the centroid cost is slightly higher than with the known

groups, which is to be expected because the groups are not perfectly recovered by clus-

54

tering, but the centroid cost is still much lower than that of Visone and SoNIA. Although

Visone has only temporal regularization, notice that it also has a lower centroid cost than

SoNIA. This is because the SBM parameters are held constant from time steps 0 to 9 and

from time steps 10 to 19, so that the group structure can be partially revealed by temporal

regularization alone once enough time samples have been collected. The temporal reg-

ularization of both DMDS and Visone results in a significantly lower temporal cost than

SoNIA. The grouping regularization of DMDS also decreases the temporal cost slightly

compared to Visone. An added benefit of the regularization in DMDS is the significant re-

duction in the number of iterations required for the MDS algorithm to converge, as shown

in Table 3.1. On average, DMDS required less than half as many iterations as SoNIA, and

slightly less than Visone.

In Figure 3.2, I plot the variation over time of the static, centroid, and temporal costs of

the GLL-based methods. Similar to the MDS-based methods, the static cost is higher for

the regularized layouts, but the centroid and temporal costs are much lower. In particular,

only DGLL is able to generate layouts with low temporal cost. The grouping regularization

in CCDR reduces the centroid cost but does not improve the temporal cost. The temporal

regularization in DGLL also helps to lower the centroid cost; in particular, from Table 3.2,

it should be noted that the mean centroid cost of CCDR, with known groups, is within

one standard error of the mean centroid cost of DGLL, with unknown groups learned by

clustering.

I demonstrate the effects of varying the regularization parameters in DMDS and DGLL,

respectively, in Figures 3.3 and 3.4. I generate layouts using 10 choices each of α and β,

uniformly distributed on a log scale between 0.1 and 10. The observations are similar for

both DMDS and DGLL. As expected, the temporal cost decreases for increasing β. For low

values of β, increasing α also decreases the temporal cost. This is a sensible result because

nodes can move significantly over time but must remain close to the group representative,

which lowers the temporal cost. The result is slightly different when it comes to the centroid

55

0 5 10 15 20
10

−0.9

10
−0.8

10
−0.7

Time step

M
D

S
 s

tr
e
s
s

Change point

0 5 10 15 20
10

−1

10
0

Time step

C
e
n
tr

o
id

 c
o
s
t

Change point

0 5 10 15 20
10

−1

10
0

10
1

Time step

T
e
m

p
o
ra

l
c
o
s
t

Change point

DMDS (known groups)

DMDS (learned groups)

Visone

SoNIA

Figure 3.1: Costs of MDS-based layouts in the SBM experiment at each time step. The
DMDS layouts have the lowest centroid and temporal costs but the highest MDS stress due
to the regularization.

0 5 10 15 20
10

−0.3

10
−0.2

10
−0.1

Time step

G
L
L
 e

n
e
rg

y

Change point

0 5 10 15 20
10

−1

10
0

10
1

Time step

C
e
n
tr

o
id

 c
o
s
t

Change point

0 5 10 15 20
10

−1

10
0

10
1

Time step

T
e

m
p

o
ra

l
c
o

s
t

Change point

DGLL (known groups)

DGLL (learned groups)

CCDR

Spectral

Figure 3.2: Costs of GLL-based layouts in the SBM experiment at each time step. The
DGLL layouts have the lowest centroid and temporal costs but the highest GLL energy.

56

10
−1

10
0

10
1

10
−1

10
0

10
1

0

0.2

0.4

0.6

βα

C
e
n
tr

o
id

 c
o
s
t

0.1

0.2

0.3

0.4

0.5

10
−1

10
0

10
1

10
−1

10
0

10
1

0

0.5

1

1.5

βα

T
e
m

p
o
ra

l
c
o
s
t

0.2

0.4

0.6

0.8

1

Figure 3.3: Mean centroid and temporal costs of DMDS layouts in the SBM experiment as
functions of α and β. The centroid and temporal costs decrease as α and β are increased,
respectively; however, α also affects the temporal cost, and β also affects the centroid cost.

10
−1

10
0

10
1

10
−1

10
0

10
1

0

0.5

1

βα

C
e
n
tr

o
id

 c
o
s
t

0.2

0.4

0.6

0.8

10
−1

10
0

10
1

10
−1

10
0

10
1

0

1

2

3

βα

T
e
m

p
o
ra

l
c
o
s
t

0.5

1

1.5

2

Figure 3.4: Mean centroid and temporal costs of DGLL layouts in the SBM experiment as
functions of α and β. The behavior of both costs as functions of α and β is similar to their
behavior in DMDS.

cost. As expected, increasing α decreases centroid cost. For low values of α, increasing

β also decreases centroid cost to a point, but a very high β may actually increase centroid

cost, especially in DMDS. This is also a sensible result because a very high β places too

much weight on the initial time step and prevents nodes from moving towards their group

representative at future time steps.

From this experiment one can see that there is a coupled effect between grouping and

temporal regularization, and that a combination of both can sometimes result in better per-

formance with respect to both centroid and temporal cost. However, it is important to note

that this is not always true. For example, if a node changes group between two time steps,

then the two penalties can oppose each other, with the temporal penalty attempting to pull

the node towards its previous position and the grouping penalty attempting to pull the node

towards its current representative, which could be quite far from the node’s previous posi-

57

tion. This is reflected by the spike in both temporal and grouping costs at t = 10 in Figures

3.1 and 3.2 for DMDS and DGLL, respectively.

3.4.2 Newcomb’s fraternity

This data set was collected by Nordlie and Newcomb (Nordlie, 1958; Newcomb, 1961) as

part of an experiment on interpersonal relations. It has been examined in previous studies

including (Moody et al., 2005; Bender-deMoll and McFarland, 2006). 17 incoming male

transfer students at the University of Michigan were housed together in fraternity housing.

Each week, the participants ranked their preference of each of the other individuals in the

house, in private, from 1 to 16. Data was collected over 15 weeks in a semester, with one

week of data missing during week 9, corresponding to Fall break.

I process the rank data in the same manner as (Moody et al., 2005; Bender-deMoll and

McFarland, 2006) to give a fair comparison with SoNIA. Graph snapshots are created by

connecting each participant to his 4 most preferred students with weights from 4 decreasing

to 1 corresponding to the most preferred to the 4th most preferred student. The graph is

converted to an undirected graph by taking the edge weight between i and j to be the larger

of the directed edge weights. The weights are converted into dissimilarities by dividing

each similarity weight by the maximum similarity of 4. No group information is known a

priori, so the group structure is learned using the AFFECT clustering algorithm.

In Figure 3.5, I show a time plot of 1-D layouts created using DGLL, where the color of

a line segment between time steps t and t+ 1 denotes the group membership of the node at

time step t, and the location of the endpoints correspond to the node’s position in the layouts

at time steps t and t+ 1. The regularization parameters are chosen to be α = β = 1. While

a 1-D layout does a poor job of conveying the topology of the network, some temporal

trends can be seen. For example, two mostly stable groups form after several weeks, but

two nodes appear to switch from the blue to the red group around Fall break. In Figure 3.6,

I show the same time plot created using CCDR, which uses only grouping regularization

58

0 2 4 6 8 10 12 14

−2

−1

0

1

2
Fall break

Time step

Figure 3.5: Time plots of 1-D DGLL layouts of Newcomb’s fraternity, colored by learned
groups. Node positions in the layout are relatively stable over time unless nodes are chang-
ing group.

0 2 4 6 8 10 12 14

−2

−1

0

1

2

Fall break

Time step

Figure 3.6: Time plots of 1-D CCDR layouts of Newcomb’s fraternity, colored by learned
groups. Node positions are unstable so it is difficult to see when nodes change group.

as discussed in Section 3.3.2. Notice that the groups are well-separated, but the temporal

evolution is difficult to interpret due to the lack of temporal regularization. In particular,

the movement of all of the nodes obscures the previous observation of two nodes switching

from the blue to the red group around Fall break.

In Figures 3.7-3.9, I present a comparison of the first four snapshots from the layouts

created using DMDS, Visone, and SoNIA, respectively. In all of the figures, the top row

corresponds to the layouts, and the bottom row illustrates the movements of each node

over time. In the plots on the bottom row, each node is drawn twice: once at its current

position at time t and once at its previous position at time t−1. An edge connects these two

positions; the length of the edge indicates how far a node has moved between time steps

t− 1 and t.

At t = 0, the blue and green groups are mixed together in the Visone and SoNIA

59

 1

 2

 3

 4

 5 6

 7

 8

 9

10
1112 13

14

15

16

17

t = 0

 1

 2

 3

 4

 5 6

 7

 8

 9

10

11
12

13

14

15

16

17

t = 1

 1

 2

 3

 4

 5

 6

 7

 8

 9

10
11

12

13

14

15

16

17

t = 2

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

t = 3

MDS stress:
Centroid cost:
Temporal cost:

0.099
0.353

0.145
0.857
0.202

0.170
0.610
0.097

0.150
0.662
0.159

Figure 3.7: Layouts of Newcomb’s fraternity at four time steps (top row) generated us-
ing proposed DMDS algorithm and node movements between layouts (bottom row). The
groups remain well-separated.

 1

 2
 3

 4

 5 6

 7

 8

 9

10

11

12

1314

15

16

17

t = 0

 1

 2
 3

 4

 5 6

 7

 8

 9

10

11

12

1314

15

16 17

t = 1

 1

 2 3

 4

 5
 6

 7

 8

 9

10

11

12

1314
15

16 17

t = 2

 1

 2 3

 4

 5
 6

 7

 8

 9

10

11

12

1314
15

16 17

t = 3

MDS stress:
Centroid cost:
Temporal cost:

0.070
1.066

0.135
1.324
0.162

0.145
1.111
0.075

0.120
1.252
0.347

Figure 3.8: Layouts of Newcomb’s fraternity at four time steps (top row) using the Visone
algorithm and node movements between layouts (bottom row). The groups are not as well-
separated as in the DMDS layouts.

 1

 2
 3

 4

 5 6

 7

 8

 9

10

11

12

13
14

15

16

17

t = 0

 1

 2

 3
 4

 5
 6

 7

 8

 9

10

1112

13

14
15 16

17

t = 1

 1

 2

 3 4

 5
 6

 7

 8
 9

10

11

12

13

1415
16

17

t = 2

 1

 2
 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14 15

16
17

t = 3

MDS stress:
Centroid cost:
Temporal cost:

0.075
1.037

0.068
1.658
0.780

0.119
1.415
2.801

0.072
1.883
2.080

Figure 3.9: Layouts of Newcomb’s fraternity at four time steps (top row) using the SoNIA
algorithm and node movements between layouts (bottom row). There is excessive node
movement, and the groups are not as well-separated as in the DMDS layouts.

60

layouts, while they are easily distinguished in the DMDS layout due to the grouping reg-

ularization. Furthermore, the node movements over time in the SoNIA layouts are much

more extreme than in the DMDS layouts. The excessive node movement is reflected in

the substantially higher temporal cost of SoNIA compared to DMDS, as shown in Table

3.1. DMDS also outperforms Visone in both mean centroid and temporal cost, although

the improvement in temporal cost is smaller than compared to SoNIA because Visone also

employs temporal regularization. Finally, the mean number of iterations required for the

SoNIA layout to converge is almost four times that of DMDS, so DMDS presents signifi-

cant computational savings in addition to better preservation of the mental map.

3.4.3 MIT Reality Mining

The MIT Reality Mining data set (Eagle et al., 2009) was collected as part of an experiment

on inferring social networks by using cell phones as sensors. 94 students and staff at MIT

were given access to smartphones that were monitored over two semesters. The phones

were equipped with Bluetooth sensors, and each phone recorded the Media Access Control

addresses of nearby Bluetooth devices at five-minute intervals. Using this proximity data,

I construct a sequence of graph snapshots where each participant is connected to the 5

participants he or she was in highest proximity to during a time step. I divide the data into

time steps of one week, resulting in 46 time steps between August 2004 and June 2005.

From the MIT academic calendar (MIT–WWW), the dates of important events such as the

beginning and end of school terms are known. It is also known that 26 of the participants

were incoming students at the university’s business school, while the rest were colleagues

working in the same building. These affiliations are used as the known groups.

The DMDS layouts at four time steps computed using the known groups with α =

1, β = 3 are shown in Figure 3.10. A higher value of β is chosen compared to the previous

experiments in order to create more stable layouts due to the higher number of nodes.

Node labels are not displayed to reduce clutter in the figure. t = 5 corresponds to the first

61

week of classes. Notice that the two groups are slightly overlapped at this time step. As

time progresses, the group of incoming students separates quite clearly from the colleagues

working in the same building. This result suggests that the incoming students are spending

more time in proximity with each other than with the remaining participants, which one

would expect as the students gain familiarity with each other as the semester unfolds.

The same observation can be made from the DMDS layouts computed using the groups

learned by the AFFECT clustering algorithm. Initially at t = 5, the separation between

groups is not clear so many nodes are not correctly classified, but at subsequent time steps

when the separation is clearer, almost all of the nodes are correctly classified. Between

time steps 5 and 6 many nodes switch groups. This can be seen in Figure 3.11, where

the colors correspond to the learned groups rather than the true groups. These layouts

are created using α = 5, β = 3; the high value of α emphasizes the node movements

between groups while sacrificing the quality of movements within groups, as discussed in

Section 3.2.4. Compare these layouts to those shown in Figure 3.12, which are created

using α = 1/5, β = 3. The low value of α better shows movements within groups, but

the large changes in groups between time steps 5 and 6 is not as obvious as in Figure 3.11.

Both layouts are useful and provide slightly different insights into the network dynamics;

however, the observation of the incoming students separating from the other participants is

evident in both visualizations.

The benefits of the regularization can be seen once again from the statistics in Tables

3.1 and 3.2. With group information provided, the DMDS and DGLL layouts have lower

mean centroid and temporal costs compared to all competing layouts. Without group infor-

mation, the DMDS and DGLL layouts using groups learned by clustering still outperform

competing methods in temporal cost, and only CCDR, which uses the known group in-

formation, outperforms DGLL without group information in terms of centroid cost. The

DMDS methods also converge more quickly than both Visone and SoNIA.

62

t = 5 t = 6 t = 7 t = 8

MDS stress:
Centroid cost:
Temporal cost:

0.136
1.344

0.167
1.467
0.208

0.159
1.243
0.191

0.140
1.325
0.268

Figure 3.10: DMDS layouts of MIT Reality Mining data at four time steps using the known
groups. Blue nodes denote colleagues working in the same building, and red nodes denote
incoming students. The incoming students separate from the others after the first week of
classes (t = 5).

t = 5 t = 6 t = 7 t = 8

MDS stress:
Centroid cost:
Temporal cost:

0.163
1.329

0.210
1.025
0.133

0.201
0.840
0.129

0.179
0.877
0.191

Figure 3.11: DMDS layouts of MIT Reality Mining data at four time steps with α = 5, β =
3 using groups learned by clustering. Colors correspond to learned groups. There is a lot of
node movement between groups but very little movement within groups, resulting in high
MDS stress.

t = 5 t = 6 t = 7 t = 8

MDS stress:
Centroid cost:
Temporal cost:

0.138
1.638

0.176
1.810
0.271

0.151
1.518
0.324

0.143
1.551
0.308

Figure 3.12: DMDS layouts of MIT Reality Mining data at four time steps with α =
1/5, β = 3 using groups learned by clustering. Colors correspond to learned groups. There
is more movement within groups, resulting in lower MDS stress, but it is more difficult to
identify movement between groups.

63

3.5 Summary

In this chapter I proposed a regularized graph layout framework for dynamic network visu-

alization. The proposed framework incorporates grouping and temporal regularization into

graph layout in order to discourage nodes from deviating too far from other nodes in the

same group and from their previous position, respectively. The layouts are generated in an

on-line manner using only present and past data. I introduced two dynamic layout algo-

rithms, DMDS and DGLL, which are regularized versions of their static counterparts, and

demonstrated the importance of the regularizers for preserving the mental map in multiple

experiments. The proposed methods generalize existing approaches for temporal regular-

ization in MDS and grouping regularization in GLL.

3.A DGLL solution in 2-D

I derive the expressions for the terms ∇f , g, H , and J used in DGLL for the 2-D case.

These vectors and matrices are computed at each iteration in the DGLL algorithm to solve

(3.26) using the interior-point algorithm (Byrd et al., 1999) as discussed in Section 3.2.3.

The constraints can be written as g(X̃) = 0 where

g(X̃) =

x̃T
1M x̃1 − tr(D̃)

x̃T
2M x̃2 − tr(D̃)

x̃T
2M x̃1

 .

The gradient of the objective function is given by

∇f(X̃) =

(2L̃+ 2βẼ)x̃1 − 2βẼx̃1[t− 1]

(2L̃+ 2βẼ)x̃2 − 2βẼx̃2[t− 1]

 .

64

The Jacobian of the constraints is given by

J(X̃) =

2x̃T

1M 0

0 2x̃T
2M

x̃T
2M x̃T

1M

 .

Finally, the Hessian is obtained by

H(X̃,µ) = ∇2f(X̃) + µ1∇2g1(X̃) + µ2∇2g2(X̃) + µ3∇2g3(X̃)

=

2L̃+ 2βẼ + 2µ1M µ3M

µ3M 2L̃+ 2βẼ + 2µ2M

 .

65

CHAPTER IV

TRACKING COMMUNITIES IN DYNAMIC
NETWORKS

An empirical finding from many real networks in different fields is the presence of com-

munities or clusters of nodes (Girvan and Newman, 2002). I use the terms “community”

and “cluster” interchangeably to denote a group of nodes with stronger ties to other nodes

within the group than to nodes outside the group. In a dynamic network where nodes and

edges evolve over time, one might expect the communities to evolve over time as well. One

could track the evolution of communities in a dynamic network by running a static com-

munity detection algorithm on each time snapshot individually; indeed, such an approach

is commonly employed in the literature. However, this approach is extremely sensitive to

noise and other short-term variations, and the detected communities are unstable and in-

consistent with communities detected at neighboring time steps. Better performance can

be obtained using evolutionary clustering algorithms that take advantage of the dynamic

nature of the network. Specifically, evolutionary clustering algorithms aim to produce clus-

tering results that reflect long-term drifts in the statistical properties of the network while

being robust to short-term variations1.

Several evolutionary clustering algorithms have recently been proposed by adding a

temporal smoothness penalty to the cost function of a static clustering method. This penalty

1The term “evolutionary clustering” has also been used to refer to clustering algorithms motivated by
biological evolution, which are unrelated to the methods discussed in this chapter.

66

prevents the clustering result at any given time from deviating too much from the clustering

results at neighboring time steps. This approach has produced evolutionary extensions of

commonly used static clustering methods such as agglomerative hierarchical clustering

(Chakrabarti et al., 2006), k-means (Chakrabarti et al., 2006), Gaussian mixture models

(Zhang et al., 2009), and spectral clustering (Chi et al., 2007; Tang et al., 2008) among

others. How to choose the penalty weight in an optimal manner in practice, however,

remains an open problem.

In this chapter, I propose a different approach to evolutionary clustering by treating it

as a problem of proximity tracking followed by static clustering (Section 4.2). I model

the observed matrix of proximities between objects at each time step, which can be ei-

ther similarities or dissimilarities, as a linear combination of a true proximity matrix and a

zero-mean noise matrix. The true proximities, which vary over time, can be viewed as un-

observed states of a dynamic system. Our approach involves estimating these states using

both current and past proximities, then performing static clustering on the state estimates.

The states are estimated using a restricted class of estimators known as shrinkage esti-

mators. I develop a method for estimating the optimal weight to place on past proximities

so as to minimize the mean squared error (MSE) between the true proximities and our es-

timates. I call this weight the forgetting factor. One advantage of our approach is that it

provides an explicit formula for the optimal forgetting factor, unlike existing evolutionary

clustering methods. The forgetting factor is estimated adaptively, which allows it to vary

over time to adjust to the conditions of the dynamic system.

The proposed framework, which I call Adaptive Forgetting Factor for Evolutionary

Clustering and Tracking (AFFECT), can extend any static clustering algorithm that uses

pairwise similarities or dissimilarities into an evolutionary clustering algorithm. It is flex-

ible enough to handle changes in the number of clusters over time and to accommodate

objects entering and leaving the data set between time steps. I demonstrate how AFFECT

can be used to extend three popular static clustering algorithms, namely hierarchical clus-

67

tering, k-means, and spectral clustering, into evolutionary clustering algorithms (Section

4.3).

The proposed framework is tested on several synthetic and real data sets (Section 4.4). I

find that it not only outperforms static clustering, but also outperforms existing evolutionary

clustering algorithms due to the adaptively selected forgetting factor.

4.1 Background

4.1.1 Static clustering algorithms

I begin by reviewing three commonly used static clustering algorithms. I demonstrate the

evolutionary extensions of these algorithms in Section 4.3, although the AFFECT frame-

work can be used to extend many other static clustering algorithms. The term “clustering”

is used in this chapter to refer to both data clustering and graph clustering. The notation

i ∈ c is used to denote object i being assigned to cluster c. |c| denotes the number of objects

in cluster c, and C denotes a clustering result (the set of all clusters).

In the case of data clustering, I assume that the n objects in the data set are stored in

an n × p matrix X , where object i is represented by a p-dimensional feature vector xi

corresponding to the ith row of X . From these feature vectors, one can create a proximity

matrix W , where wij denotes the proximity between objects i and j, which could be their

Euclidean distance or any other similarity or dissimilarity measure.

For graph clustering, I assume that the n nodes in the graph are represented by an n×n

adjacency matrix W where wij denotes the weight of the edge between nodes i and j. If

there is no edge between i and j, then wij = 0. For the usual case of undirected graphs

with non-negative edge weights, an adjacency matrix is equivalent to a similarity matrix,

so I shall refer to it also as a proximity matrix.

68

Algorithm 4.1 A general algorithm for agglomerative hierarchical clustering.
1: Assign each object to its own cluster
2: repeat
3: Compute dissimilarities between each pair of clusters
4: Merge clusters with the lowest dissimilarity
5: until all objects are merged into one cluster
6: return dendrogram

Agglomerative hierarchical clustering

Agglomerative hierarchical clustering algorithms are greedy algorithms that create a hi-

erarchical clustering result, often represented by a dendrogram (Hastie et al., 2001). The

dendrogram can be cut at a certain level to obtain a flat clustering result. There are many

variants of agglomerative hierarchical clustering. A general algorithm for agglomerative

hierarchical clustering is provided in Algorithm 4.1. Varying the definition of dissimilarity

between a pair of clusters often changes the clustering results. Three common choices are

to use the minimum dissimilarity between objects in the two clusters (single linkage), the

maximum dissimilarity (complete linkage), or the average dissimilarity (average linkage)

(Hastie et al., 2001).

k-means

k-means clustering (MacQueen, 1967; Hastie et al., 2001) attempts to find clusters that

minimize the sum of squares cost function

D(X, C) =
k∑

c=1

∑
i∈c

‖xi −mc‖2, (4.1)

where ‖ · ‖ denotes the l2-norm, and mc is the centroid of cluster c, given by

mc =

∑
i∈c xi

|c|
.

Each object is assigned to the cluster with the closest centroid. The cost of a clustering

result C is simply the sum of squared Euclidean distances between each object and its

69

Algorithm 4.2 k-means algorithm implemented using similarity matrix.
1: i← 0
2: C(0) ← vector of random integers in {1, . . . , k}
3: Compute similarity matrix W
4: repeat
5: i← i+ 1
6: Calculate squared distance between all objects and centroids using (4.2)
7: Compute C(i) by assigning each object to its closest centroid
8: until C(i) = C(i−1)
9: return C(i)

closest centroid. The squared distance in (4.1) can be rewritten as

‖xi −mc‖2 = wii −
2
∑

j∈cwij

|c|
+

∑
j,l∈cwjl

|c|2
, (4.2)

where wij = xix
T
j , the dot product of the feature vectors. Using the form of (4.2) to

compute the k-means cost in (4.1) allows the k-means algorithm to be implemented with

only the similarity matrix W = [wij]
n
i,j=1 consisting of all pairs of dot products. The

algorithm is shown in Algorithm 4.2.

Spectral clustering

Spectral clustering (Shi and Malik, 2000; Ng et al., 2001; von Luxburg, 2007) is a popular

modern clustering technique inspired by spectral graph theory. It can be used for both data

and graph clustering. When used for data clustering, the first step in spectral clustering

is to create a similarity graph with nodes corresponding to the objects and edge weights

corresponding to the similarities between objects. I represent the graph by an adjacency

matrix W with edge weights wij given by a positive definite similarity function s(xi,xj).

The most commonly used similarity function is the Gaussian similarity function s(xi,xj) =

exp{−‖xi−xj‖2/(2ρ2)} (Ng et al., 2001), where ρ is a scaling parameter. Let D denote a

diagonal matrix with elements corresponding to row sums of W . Define the unnormalized

graph Laplacian matrix by L = D − W and the normalized Laplacian matrix (Chung,

1997) by L = I −D−1/2WD−1/2.

Three common variants of spectral clustering are average association (AA), ratio cut

70

Algorithm 4.3 Normalized cut spectral clustering algorithm.
1: Z ← k smallest eigenvectors of L
2: for i = 1 to k do
3: zi ← zi/‖zi‖
4: end for
5: C ← kmeans(Z)
6: return C

(RC), and normalized cut (NC) (Shi and Malik, 2000). Each variant is associated with an

NP-hard graph optimization problem. The normalized cut graph optimization problem was

previously described in Section 2.2.1. Spectral clustering solves relaxed versions of these

problems. The relaxed problems can be written as (von Luxburg, 2007; Chi et al., 2007)

AA(Z) = max
Z∈Rn×k

tr(ZTWZ) subject to ZTZ = I (4.3)

RC(Z) = min
Z∈Rn×k

tr(ZTLZ) subject to ZTZ = I (4.4)

NC(Z) = min
Z∈Rn×k

tr(ZTLZ) subject to ZTZ = I. (4.5)

These are variants of a trace optimization problem; the solutions are given by a general-

ized Rayleigh-Ritz theorem (Lütkepohl, 1997). The optimal solution to (4.3) consists of

the matrix containing the eigenvectors corresponding to the k highest eigenvalues of W as

columns. Similarly, the optimal solutions to (4.4) and (4.5) consist of the matrices contain-

ing the eigenvectors corresponding to the k smallest eigenvalues of L and L, respectively.

The optimal relaxed solution Z is then discretized to obtain a clustering result, typically by

running the standard k-means algorithm on the rows of Z or a normalized version of Z.

An algorithm (Ng et al., 2001) for normalized cut spectral clustering is shown in Al-

gorithm 4.3. To perform ratio cut spectral clustering, compute eigenvectors of L instead

of L and skip the for loop. Similarly, to perform average association spectral clustering,

compute instead the k largest eigenvectors of W and skip the for loop.

71

4.1.2 Related work

I now summarize existing work in evolutionary clustering and the related area of incremen-

tal clustering.

Incremental clustering

The term “incremental clustering” has typically been used to describe two types of cluster-

ing problems2:

1. Sequentially clustering objects that are each observed only once.

2. Clustering objects that are each observed over multiple time steps by incrementally
updating clustering results at previous time steps.

Type 1 is also known as data stream clustering, and the focus is on clustering the data in a

single pass and with limited memory (Charikar et al., 2004; Gupta and Grossman, 2004).

It is not directly related to this chapter because in data stream clustering each object is

observed only once.

Type 2 is of greater relevance to this chapter and targets the same problem setting. Sev-

eral incremental algorithms of this type have been proposed (Li et al., 2004; Sun et al.,

2007; Ning et al., 2010). These incremental clustering algorithms could also be applied

to the type of problems I consider; however, the focus of incremental clustering is on low

computational cost at the expense of clustering quality. The incremental clustering re-

sult is often worse than the result of performing static clustering at each time step, which

is already a suboptimal approach as mentioned at the beginning of the chapter. On the

other hand, evolutionary clustering is concerned with improving clustering quality by in-

telligently combining data from multiple time steps and is capable of outperforming static

clustering.

2It is also sometimes used to refer to the simple approach of performing static clustering at each time step.

72

Evolutionary clustering

The topic of evolutionary clustering has attracted significant attention in recent years.

Chakrabarti et al. (2006) introduced the problem and proposed a general framework for evo-

lutionary clustering by adding a temporal smoothness penalty to a static clustering method.

Evolutionary extensions for agglomerative hierarchical clustering and k-means were pre-

sented as examples of the framework. Chi et al. (2007) expanded on this idea by proposing

two frameworks for evolutionary spectral clustering, which they called Preserving Cluster

Quality (PCQ) and Preserving Cluster Membership (PCM). Both frameworks proposed to

optimize the modified cost function

Ctotal = αCtemporal + (1− α)Csnapshot, (4.6)

where Csnapshot denotes the ordinary spectral clustering cost, which is typically taken to be

the average association, ratio cut, or normalized cut as discussed in Section 4.1.1. The two

frameworks differ in how the temporal smoothness penalty Ctemporal is defined. In PCQ,

Ctemporal is defined to be the cost of applying the clustering result at time t to the similarity

matrix at time t − 1. In other words, it penalizes clustering results that disagree with past

similarities. In PCM, Ctemporal is defined to be a measure of distance between the clustering

results at time t and t − 1. In other words, it penalizes clustering results that disagree

with past clustering results. My work takes a different approach than that of Chi et al.

(2007) but the resulting framework shares some similarities with the PCQ framework. In

particular, AFFECT paired with average association spectral clustering is an extension of

PCQ to longer history, which I discuss in Section 4.3.3.

Following these works, other evolutionary clustering algorithms that attempt to opti-

mize the modified cost function defined in (4.6) have been proposed (Tang et al., 2008;

Lin et al., 2009; Zhang et al., 2009; Mucha et al., 2010). The definitions of snapshot and

temporal cost and the clustering algorithms vary by approach. None of the aforementioned

73

works address the problem of how to choose the parameter α in (4.6), which determines

how much weight to place on historic data or clustering results. It has typically been sug-

gested (Chi et al., 2007; Lin et al., 2009) to choose it in an ad-hoc manner according to the

user’s subjective preference on the temporal smoothness of the clustering results.

It could also be beneficial to allow α to vary with time. Zhang et al. (2009) proposed

to choose α adaptively by using a test statistic for checking dependency between two data

sets (Gretton et al., 2007). However, this test statistic also does not satisfy any optimality

properties for evolutionary clustering and still depends on a global parameter reflecting the

user’s preference on temporal smoothness, which is undesirable.

The existing method that is most similar to AFFECT is that of Rosswog and Ghose

(2008), which I refer to as RG. The authors proposed evolutionary extensions of k-means

and agglomerative hierarchical clustering by filtering the feature vectors using a Finite

Impulse Response (FIR) filter, which combines the last l + 1 measurements of the feature

vectors by the weighted sum yt
i = b0x

t
i + b1x

t−1
i + · · ·+ blx

t−l
i , where l is the order of the

filter, yt
i is the filter output at time t, and b0, . . . , bl are the filter coefficients. The proximities

are then calculated between the filter outputs rather than the feature vectors.

The main resemblance between RG and AFFECT is that RG is also based on tracking

followed by static clustering. In particular, RG adaptively selects the filter coefficients

based on the dissimilarities between cluster centroids at the past l time steps. However,

RG cannot accommodate varying numbers of clusters over time nor can it deal with objects

entering and leaving at various time steps. It also struggles to adapt to changes in clusters,

as I demonstrate in Section 4.4. AFFECT, on the other hand, is able to adapt quickly to

changes in clusters and is applicable to a much larger class of problems.

Finally, there has also been recent interest in model-based evolutionary clustering. In

addition to the aforementioned method involving mixtures of exponential families (Zhang

et al., 2009), methods have also been proposed using semi-Markov models (Wang et al.,

2007), Dirichlet process mixtures (DPMs) (Ahmed and Xing, 2008; Xu et al., 2008b), and

74

hierarchical DPMs (Xu et al., 2008a,b; Zhang et al., 2010). For these methods, the temporal

evolution is controlled by hyperparameters that can be estimated in some cases.

4.2 Proposed evolutionary framework

The proposed framework treats evolutionary clustering as a tracking problem followed by

ordinary static clustering. In the case of data clustering, I assume that the feature vectors

have already been converted into a proximity matrix, as discussed in Section 4.1.1.

I treat the proximity matrices, denoted by W t, as realizations from a non-stationary

random process indexed by discrete time steps, denoted by the superscript t. Furthermore

I posit the linear observation model

W t = Ψt +N t, t = 0, 1, 2, . . . (4.7)

where Ψt is an unknown deterministic matrix of unobserved states, and N t is a zero-mean

noise matrix. Ψt changes over time to reflect long-term drifts in the proximities. Although

I do not place a dynamic model on Ψt, I assume that it is varying smoothly over time. I

refer to Ψt as the true proximity matrix, and my goal is to accurately estimate it at each

time step. On the other hand, N t reflects short-term variations due to noise. Thus I assume

that N t, N t−1, . . . , N0 are mutually independent.

A common approach for tracking unobserved states in a dynamic system is to use a

Kalman filter (Harvey, 1989; Haykin, 2001) or some variant. Since the states correspond

to the true proximities, there are O(n2) states and O(n2) observations, which makes the

Kalman filter impractical for two reasons. First, it involves specifying a parametric model

for the state evolution over time, and secondly, it requires the inversion of anO(n2)×O(n2)

covariance matrix, which is large enough in most evolutionary clustering applications to

make matrix inversion computationally infeasible. I present a simpler approach that in-

volves a recursive update of the state estimates using only a single parameter αt, which I

75

define in (4.8).

4.2.1 Smoothed proximity matrix

If the true proximity matrix Ψt is known, one would expect to see improved clustering

results by performing static clustering on Ψt rather than on the current proximity matrixW t

because Ψt is free from noise. My objective is to accurately estimate Ψt at each time step.

I can then perform static clustering on my estimate, which should also lead to improved

clustering results.

The naı̈ve approach of performing static clustering on W t at each time step can be

interpreted as usingW t itself as an estimate for Ψt. The main disadvantage of this approach

is that it suffers from high variance due to the observation noise N t. As a consequence, the

obtained clustering results can be highly unstable and inconsistent with clustering results

from adjacent time steps.

A better estimate can be obtained using the smoothed proximity matrix Ψ̂t defined by

Ψ̂t = αtΨ̂t−1 + (1− αt)W t (4.8)

for t ≥ 1 and by Ψ̂0 = W 0. Notice that Ψ̂t is a function of current and past data only, so

it can be computed in an on-line setting. Ψ̂t incorporates proximities not only from time

t− 1, but potentially from all previous time steps and allows us to suppress the observation

noise. The parameter αt controls the rate at which past proximities are forgotten; hence

I refer to it as the forgetting factor. The forgetting factor in the proposed framework can

change over time, allowing the amount of temporal smoothing to vary.

4.2.2 Shrinkage estimation of true proximity matrix

The smoothed proximity matrix Ψ̂t is another natural candidate for estimating Ψt. It is

a convex combination of two estimators: W t and Ψ̂t−1. Since N t is zero-mean, W t is an

unbiased estimator but has high variance because it uses only a single observation. Ψ̂t−1 is a

76

weighted combination of past observations so it should have lower variance than W t, but it

is likely to be biased since the past proximities may not be representative of the current ones

as a result of long-term drift in the statistical properties of the objects. Thus the problem of

estimating the optimal forgetting factor αt may be considered as a bias-variance trade-off

problem.

A similar bias-variance trade-off has been investigated in the problem of shrinkage

estimation of covariance matrices (Ledoit and Wolf, 2003; Schäfer and Strimmer, 2005;

Chen et al., 2010), where a shrinkage estimate of the covariance matrix is taken to be

Σ̂ = λT + (1 − λ)S, a convex combination of a suitably chosen target matrix T and

the standard estimate, the sample covariance matrix S. Notice that the shrinkage estimate

has the same form as the smoothed proximity matrix given by (4.8) where the smoothed

proximity matrix at the previous time step Ψ̂t−1 corresponds to the shrinkage target T ,

the current proximity matrix W t corresponds to the sample covariance matrix S, and αt

corresponds to the shrinkage intensity λ. I derive the optimal choice of αt in a manner

similar to the derivation of the optimal λ for shrinkage estimation of covariance matrices

by Ledoit and Wolf (2003).

As in (Ledoit and Wolf, 2003; Schäfer and Strimmer, 2005; Chen et al., 2010), I choose

to minimize the squared Frobenius norm of the difference between the true proximity ma-

trix and the smoothed proximity matrix. That is, I take the loss function to be

L
(
αt
)

=
∥∥∥Ψ̂t −Ψt

∥∥∥2
F

=
n∑

i=1

n∑
j=1

(
ψ̂t
ij − ψt

ij

)2
.

I define the risk to be the conditional expectation of the loss function given all of the previ-

ous observations

R
(
αt
)

= E

[∥∥∥Ψ̂t −Ψt
∥∥∥2
F

∣∣∣∣W (t−1)
]

where W (t−1) denotes the set {W t−1,W t−2, . . . ,W 0}. Note that the risk function is differ-

entiable and can be easily optimized if Ψt is known. However, Ψt is the quantity that I am

77

trying to estimate so it is not known. I first derive the optimal forgetting factor assuming it

is known. I shall henceforth refer to this as the oracle forgetting factor.

Under the linear observation model of (4.7),

E
[
W t
∣∣W (t−1)] = E

[
W t
]

= Ψt (4.9)

var
(
W t
∣∣W (t−1)) = var

(
W t
)

= var
(
N t
)

(4.10)

because N t, N t−1, . . . , N0 are mutually independent and have zero mean. From the defini-

tion of Ψ̂t in (4.8), the risk can then be expressed as

R
(
αt
)

= E

[(
αtψ̂t−1

ij +
(
1− αt

)
wt

ij − ψt
ij

)2 ∣∣∣∣W (t−1)
]

= var
(
αtψ̂t−1

ij +
(
1− αt

)
wt

ij − ψt
ij

∣∣∣W (t−1)
)

+ E
[
αtψ̂t−1

ij +
(
1− αt

)
wt

ij − ψt
ij

∣∣∣W (t−1)
]2
.

(4.11)

(4.11) can be simplified using (4.9) and (4.10) and by noting that the conditional variance

of ψ̂t−1
ij is zero and that ψt

ij is deterministic. Thus

R
(
αt
)

=
n∑

i=1

n∑
j=1

{(
1− αt

)2
var
(
nt
ij

)
+
(
αt
)2 (

ψ̂t−1
ij − ψt

ij

)2}
. (4.12)

From (4.12), the first derivative is easily seen to be

R′
(
αt
)

= 2
n∑

i=1

n∑
j=1

{(
αt − 1

)
var
(
nt
ij

)
+ αt

(
ψ̂t−1
ij − ψt

ij

)2}
.

To determine the oracle forgetting factor (αt)
∗, simply set R′(αt) = 0. Rearranging to

78

isolate αt, I obtain

(
αt
)∗

=

n∑
i=1

n∑
j=1

var
(
nt
ij

)
n∑

i=1

n∑
j=1

{(
ψ̂t−1
ij − ψt

ij

)2
+ var

(
nt
ij

)} . (4.13)

(αt)
∗ does indeed minimize the risk because R′′(αt) ≥ 0 for all αt.

The oracle forgetting factor (αt)
∗ leads to the best estimate in terms of minimizing risk

but is not implementable because it requires oracle knowledge of the true proximity ma-

trix Ψt, which is what I am trying to estimate, as well as the noise variance var (N t). It

was suggested in (Schäfer and Strimmer, 2005) to replace the unknowns with their sam-

ple equivalents. In this setting, I would replace ψt
ij with the sample mean of wt

ij and

var(nt
ij) = var(wt

ij) with the sample variance of wt
ij . However, Ψt and potentially var (N t)

are time-varying so I cannot simply use the temporal sample mean and variance. Instead, I

propose to use the sample mean and variance over other proximities. Since objects belong

to clusters, it is reasonable to assume that the structure of Ψt and var (N t) should reflect the

cluster memberships. Hence I make an assumption about the structure of Ψt and var (N t)

in order to proceed.

4.2.3 Block model for true proximity matrix

I propose a block model for the true proximity matrix Ψt and var (N t) and use the assump-

tions of this model to compute the desired sample means and variances. The assumptions

of the block model are as follows:

1. ψt
ii = ψt

jj for any two objects i, j that belong to the same cluster.

2. ψt
ij = ψt

lm for any two distinct objects i, j and any two distinct objects l,m such that
i, l belong to the same cluster, and j,m belong to the same cluster.

The structure of the true proximity matrix Ψt under these assumptions is shown in Fig. 4.1.

ψt
(c) denotes ψt

ii for all objects i in cluster c, and ψt
(cd) denotes ψt

ij for all distinct objects i, j

79

Figure 4.1: Block structure of true proximity matrix Ψt.

such that i is in cluster c and j is in cluster d. In short, I am assuming that the true proximity

is equal inside the clusters and different between clusters. I make the same assumptions on

var (N t) that I do on Ψt, namely that it also possesses the assumed block structure.

One scenario where the block assumptions are completely satisfied is the case where

the data at each time t are realizations from a dynamic Gaussian mixture model (GMM)

(Carmi et al., 2009), which is described as follows. Assume that the k components of the

dynamic GMM are parameterized by the k time-varying mean vectors {µt
c}

k
c=1 and covari-

ance matrices {Σt
c}

k
c=1. Let {φc}kc=1 denote the mixture weights. Objects are generated in

the following manner:

1. (Only at t = 0) Draw n samples {zi}ni=1 from the categorical distribution specified
by {φc}kc=1 to determine the component membership of each object.

2. (For all t) For each object i, draw a sample xt
i from the Gaussian distribution param-

eterized by
(
µt

zi
,Σt

zi

)
.

Notice that while the parameters of the individual components change over time, the com-

ponent memberships do not, i.e. objects stay in the same components at all times.

The dynamic GMM is a model for clusters that move over time. In Appendix 4.A, I

show that at each time t, the mean and variance of the dot product similarity matrix W t,

which correspond to Ψt and var (N t) respectively under the observation model of (4.7), do

indeed satisfy the assumed block structure. This scenario forms the basis of the experiment

80

in Section 4.4.1.

Although the proposed block model is rather simplistic, I believe that it is a reasonable

choice when there is no prior information about the shapes of clusters. A nice feature of the

block model is that it is permutation invariant with respect to the clusters; that is, it does

not require objects to be ordered in any particular manner.

4.2.4 Adaptive estimation of forgetting factor

Under the block model assumption, the means and variances of proximities are identical in

each block. As a result, one can sample over all proximities in a block to obtain sample

means and variances. Unfortunately, the true true block structure is unknown because the

cluster memberships are unknown.

To work around this problem, I estimate the cluster memberships along with (αt)
∗ in

an iterative fashion. First I initialize the cluster memberships. Two logical choices are to

use the cluster memberships from the previous time step or the memberships obtained from

performing static clustering on the current proximities. I then sample over each block to

estimate the entries of Ψt and var (N t) as detailed below, and substitute them into (4.13)

to obtain an estimate (α̂t)
∗ of (αt)

∗. Now substitute (α̂t)
∗ into (4.8) and perform static

clustering on Ψ̂t to obtain an updated clustering result. This clustering result is then used

to refine the estimate of (αt)
∗, and this iterative process is repeated to improve the quality

of the clustering result. I find, empirically, that improvements are rarely seen after the third

iteration.

To estimate the entries of Ψt = E [W t], I proceed as follows. For two distinct objects i

and j both in cluster c, I estimate ψt
ij using the sample mean

Ê
[
wt

ij

]
=

1

|c| (|c| − 1)

∑
l∈c

∑
m∈c
m6=l

wt
lm.

81

Similarly, I estimate ψt
ii by

Ê
[
wt

ii

]
=

1

|c|
∑
l∈c

wt
ll.

For distinct objects i in cluster c and j in cluster d with c 6= d, I estimate ψt
ij by

Ê
[
wt

ij

]
=

1

|c||d|
∑
l∈c

∑
m∈d

wt
lm.

var (N t) = var (W t) can be estimated in a similar manner by taking unbiased sample

variances over the blocks.

4.3 Evolutionary algorithms

From the derivation in Section 4.2.4, I obtain a generic algorithm for AFFECT, shown in

Algorithm 4.4. This generic algorithm applies to any static clustering algorithm cluster(·)

that takes a similarity or dissimilarity matrix as input and returns a flat clustering result.

I provide some details and interpretation of this generic algorithm when used with three

popular static clustering algorithms: agglomerative hierarchical clustering, k-means, and

spectral clustering.

4.3.1 Agglomerative hierarchical clustering

The proposed evolutionary extension of agglomerative hierarchical clustering has an in-

teresting interpretation in terms of the modified cost function defined in (4.6). Recall that

agglomerative hierarchical clustering is a greedy algorithm that merges the two clusters

with the lowest dissimilarity at each iteration. The dissimilarity between two clusters can

be interpreted as the cost of merging them. Thus, performing agglomerative hierarchical

clustering on Ψ̂t results in merging the two clusters with the lowest modified cost at each

iteration. The snapshot cost of a merge corresponds to the cost of making the merge at

time t using the dissimilarities given by W t. The temporal cost of a merge is a weighted

combination of the costs of making the merge at each time step s ∈ {0, 1, . . . , t− 1} using

82

Algorithm 4.4 Generic algorithm for AFFECT evolutionary clustering.
1: Ct ← Ct−1
2: for i = 1, 2, . . . do
3: Compute Ê [W t] and v̂ar (W t) using Ct
4: Calculate (α̂t)

∗ by substituting estimates Ê [W t] and v̂ar (W t) into (4.13)
5: Ψ̂t ← (α̂t)

∗
Ψ̂t−1 +

[
1− (α̂t)

∗]
W t

6: Ct ← cluster(Ψ̂t)
7: end for
8: return Ct

the dissimilarities given by W s. This can be seen by expanding the recursive update in

(4.8) to obtain

Ψ̂t =
(
1− αt

)
W t + αt

(
1− αt−1)W t−1 + αtαt−1 (1− αt−2)W t−2 + · · ·

+ αtαt−1 · · ·α2
(
1− α1

)
W 1 + αtαt−1 · · ·α2α1W 0.

(4.14)

4.3.2 k-means

k-means is an iterative clustering algorithm and requires an initial set of cluster member-

ships to begin the iteration. In static k-means, typically a random initialization is employed.

A good initialization can significantly speed up the algorithm by reducing the number of

iterations required for convergence. For evolutionary k-means, an obvious choice is to ini-

tialize using the clustering result at the previous time step. I use this initialization in our

experiments in Section 4.4.

The proposed evolutionary k-means algorithm can also be interpreted as optimizing

the modified cost function of (4.6). The snapshot cost is D (X t, Ct) where D(·, ·) is the

sum of squares cost defined in (4.1). The temporal cost is a weighted combination of

D (X t, Cs) , s ∈ {0, 1, . . . , t− 1}, i.e. the cost of the clustering result applied to the data at

time s. Hence the modified cost measures how well the current clustering result fits both

current and past data.

83

4.3.3 Spectral clustering

The proposed evolutionary average association (AA) spectral clustering algorithm involves

computing and discretizing eigenvectors of Ψ̂t rather than W t. It can also be interpreted

in terms of the modified cost function of (4.6). Recall that the cost in static AA spectral

clustering is tr
(
ZTWZ

)
. Performing AA spectral clustering on Ψ̂t optimizes

tr

(
ZT

[
t∑

s=0

βsW s

]
Z

)
=

t∑
s=0

βs tr
(
ZTW sZ

)
, (4.15)

where βs corresponds to the coefficient in front of W s in (4.14). Thus, the snapshot cost is

simply tr
(
ZTW tZ

)
while the temporal cost corresponds to the remaining t terms in (4.15).

I note that in the case where αt−1 = 0, this modified cost is identical to that of PCQ, which

incorporates historical data from time t − 1 only. Hence the proposed generic framework

reduces to PCQ in this special case.

Chi et al. (2007) noted that PCQ can easily be extended to accommodate longer history

and suggested to do so by using an exponentially weighted forgetting factor. The proposed

framework uses an adaptively weighted forgetting factor, which should improve clustering

performance, especially if the rate at which the statistical properties of the data are evolving

is time-varying.

Evolutionary ratio cut and normalized cut spectral clustering can be performed by form-

ing the appropriate graph Laplacian, Lt or Lt, respectively, using Ψ̂t instead of W t. They

do not admit any obvious interpretation in terms of a modified cost function since they

operate on Lt and Lt rather than W t.

4.3.4 Practical issues

Adding and removing objects over time

Up to this point, I have assumed that the same objects are being observed at multiple time

steps. In many application scenarios, however, new objects are often introduced over time

84

Objects to be removed

New objects

Figure 4.2: Adding and removing objects over time. Shaded rows and columns are to
be removed before computing Ψ̂t. The rows and columns for the new objects are then
appended to Ψ̂t.

while some existing objects may no longer be observed. In such a scenario, the indices of

the proximity matrices W t and Ψ̂t−1 correspond to different objects, so one cannot simply

combine them as described in (4.8).

These types of scenarios can be dealt with in the following manner. Objects that were

observed at time t − 1 but not at time t can simply be removed from Ψ̂t−1 in (4.8). New

objects introduced at time t have no corresponding rows and columns in Ψ̂t−1. These new

objects can be naturally handled by adding rows and columns to Ψ̂t after performing the

smoothing operation in (4.8). In this way, the new nodes have no influence on the update

of the forgetting factor αt yet contribute to the clustering result through Ψ̂t. This process is

illustrated graphically in Fig. 4.2.

Selecting the number of clusters

The task of optimally choosing the number of clusters at each time step is a difficult model

selection problem that is beyond the scope of this chapter. However, since the proposed

framework involves simply forming a smoothed proximity matrix followed by static clus-

tering, heuristics used for selecting the number of clusters in static clustering can also be

used with the proposed evolutionary clustering framework. One such heuristic applicable

to many clustering algorithms is to choose the number of clusters to maximize the average

silhouette width (Rousseeuw, 1987). For hierarchical clustering, selection of the number

85

of clusters is often accomplished using a stopping rule; a review of many such rules can be

found in (Milligan and Cooper, 1985). The eigengap heuristic (von Luxburg, 2007) and the

modularity criterion (Newman, 2006) are commonly used heuristics for spectral clustering.

Such heuristics can be employed at each time step to choose the number of clusters, which

can change over time.

Matching clusters between time steps

While evolutionary clustering provides a clustering result at each time that is consistent

with past results, one still faces the challenge of matching clusters at time t with those

at times t − 1 and earlier. This requires permuting the clusters in the clustering result

at time t. If the number of clusters k is relatively small, the optimal permutation can be

found by enumerating all k! possible permutations and choosing the one that maximizes

agreement with previous clustering results; however, this is computationally infeasible for

most applications.

A scalable heuristic approach for matching clusters is to use a greedy method. The

clusters at time t and t−1 with the highest fraction of common nodes are matched, and this

process is repeated until either all clusters at time t or at time t − 1 have been exhausted.

This approach was investigated by Dimitriadou et al. (2002) in the context of ensemble

clustering and can be easily extended to match clustering results at time t with multiple

previous time steps.

4.4 Experiments

I investigate the performance of the proposed AFFECT framework in four experiments in-

volving both synthetic and real data sets. Tracking performance is measured in terms of the

MSE E
[
‖Ψ̂t −Ψt‖2F

]
, which is the criterion I seek to optimize. Clustering performance

is measured by the Rand index (Rand, 1971), which is a quantity between 0 and 1 that

indicates the amount of agreement between a clustering result and a set of labels, which

86

are taken to be the ground truth. A higher Rand index indicates higher agreement, with a

Rand index of 1 corresponding to perfect agreement. I run at least one experiment for each

of hierarchical clustering, k-means, and spectral clustering and compare the performance

of AFFECT against the competing evolutionary clustering methods RG, PCQ, and PCM.

4.4.1 Well-separated Gaussians

This experiment is designed to test the tracking ability of AFFECT. I draw 40 samples

equally from a mixture of two 2-D Gaussian distributions with mean vectors (4, 0) and

(−4, 0) and with both covariance matrices equal to 0.1I . At each time step, the means of

the two distributions are moved according to a one-dimensional random walk in the first

dimension with step size 0.1, and a new sample is drawn with the component memberships

fixed, as described in Section 4.2.3. At time 19, I change the covariance matrices to 0.3I to

test how well the framework can respond to a sudden change.

I run this experiment 100 times over 40 time steps using evolutionary k-means clus-

tering. The two clusters are well-separated so even static clustering is able to correctly

identify them. However the tracking performance is improved significantly by incorporat-

ing historical data, which can be seen in Fig. 4.3 where the MSE between the estimated

and true similarity matrices is plotted for several choices of forgetting factor, including

the estimated αt. I also compare to the oracle αt, which can be calculated using the true

moments and cluster memberships of the data as shown in Appendix 4.A but is not im-

plementable in a real application. Notice that the estimated αt performs very well, and its

MSE is very close to that of the oracle αt. The estimated αt also outperforms all of the

constant forgetting factors.

The estimated αt is plotted as a function of time in Fig. 4.4a. Since the clusters are

well-separated, only a single iteration is performed to estimate αt. Notice that both the

oracle and estimated forgetting factors quickly increase from 0 then level off to a nearly

constant value until time 19 when the covariance matrix is changed. After the transient due

87

0 10 20 30 40
10

3

10
4

10
5

Time step

M
S

E

Covariance

changed

Estimated α
t

Oracle α
t

Static

α
t
 = 0.25

α
t
 = 0.5

α
t
 = 0.75

Figure 4.3: Comparison of MSE in well-separated Gaussians experiment. The estimated
αt performs best and approaches the MSE of the oracle αt.

0 10 20 30 40
0

0.2

0.4

0.6

0.8

1

Time step

α
t

Covariance

changed

Estimated α
t

Oracle α
t

(a) 40 samples

0 10 20 30 40
0

0.2

0.4

0.6

0.8

1

Time step

α
t

Covariance

changed

Estimated α
t

Oracle α
t

(b) 200 samples

Figure 4.4: Comparison of oracle and estimated forgetting factors in well-separated Gaus-
sians experiment. The gap between the estimated and oracle forgetting factors decreases as
the sample size increases.

to the change in covariance, both the oracle and estimated forgetting factors again level off.

This behavior is to be expected because the two clusters are moving according to random

walks. Notice that the estimated αt does not converge to the same value the oracle αt

appears to. This bias is due to the finite sample size. The estimated and oracle forgetting

factors are plotted in Fig. 4.4b for the same experiment but with 200 samples rather than

40. The gap between the steady-state values of the estimated and oracle forgetting factors

is much smaller now, and it continues to decrease as the sample size increases.

88

−6 −4 −2 0 2 4 6
−6

−4

−2

0

2

4

6

Figure 4.5: Setup of two colliding Gaussians experiment: one cluster is slowly moved
toward the other, then a change in cluster membership is simulated.

4.4.2 Two colliding Gaussians

The objective of this experiment is to test the effectiveness of the AFFECT framework

when a cluster moves close enough to another cluster so that they overlap. I also test the

ability of the framework to adapt to a change in cluster membership.

The setup of this experiment is illustrated in Fig. 4.5. I draw 40 samples from a mixture

of two 2-D Gaussian distributions, both with covariance matrix equal to identity. The

mixture proportion (the proportion of samples drawn from the second cluster) is initially

chosen to be 1/2. The first cluster has mean (3, 3) and remains stationary throughout the

experiment. The second cluster’s mean is initially at (−3,−3) and is moved toward the

first cluster from time steps 0 to 9 by (0.4, 0.4) at each time. At times 10 and 11, I switch

the mixture proportion to 3/8 and 1/4, respectively, to simulate objects changing cluster.

From time 12 onwards, both the cluster means and mixture proportion are unchanged. At

each time, I draw a new sample.

I run this experiment 100 times using evolutionary k-means clustering. The MSE in

this experiment for varying αt is shown in Fig. 4.6. As before, the oracle αt is calculated

using the true moments and cluster memberships and is not implementable in practice. It

can be seen that the choice of αt affects the MSE significantly. The estimated αt performs

the best, excluding the oracle αt, which is not implementable. Notice also that αt = 0.5

89

0 5 10 15 20 25
10

3

10
4

10
5

10
6

Time step

M
S

E

Change 1 Change 2

Estimated α
t

Oracle α
t

Static

α
t
 = 0.25

α
t
 = 0.5

α
t
 = 0.75

Figure 4.6: Comparison of MSE in two colliding Gaussians experiment. The estimated αt

performs best both before and after the change points.

0 5 10 15 20 25
0.5

0.6

0.7

0.8

0.9

1

Time step

R
a

n
d

 i
n

d
e

x

Change 1

Change 2

Estimated α
t

Oracle α
t

Static

RG (3rd order)

RG (10th order)

Figure 4.7: Comparison of Rand index in two colliding Gaussians experiment. The esti-
mated αt detects the changes in clusters quickly unlike the RG method.

performs well before the change in cluster memberships at time 10, i.e. when cluster 2 is

moving, while αt = 0.75 performs better after the change when both clusters are stationary.

The clustering accuracy for this experiment is plotted in Fig. 4.7. Since this experiment

involves k-means clustering, I compare to the RG method. I simulate two filter lengths

for RG: a short-memory 3rd-order filter and a long-memory 10th-order filter. In Fig. 4.7

it can be seen that the estimated αt also performs best in Rand index, approaching the

performance of the oracle αt. The static method performs poorly as soon as the clusters

begin to overlap at around time step 7. All of the evolutionary methods handle the overlap

well, but the RG method is slow to respond to the change in clusters, especially the long-

memory filter. In Table 4.1, I present the mean and standard error (over the simulation runs)

of the mean Rand indices of each method over all time steps. For AFFECT, I also show

90

Method Parameters Rand index
Static - 0.897± 0.001

AFFECT
Estimated αt 0.982± 0.001

αt = 0.5 0.974± 0.001

RG
l = 3 0.954± 0.001

l = 10 0.860± 0.001

Table 4.1: Mean and standard error of k-means Rand indices in two colliding Gaussians
experiment. Bolded number indicates best performer.

0 5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

Time step

α
t

Change 1 Change 2

1st iteration

2nd iteration

3rd iteration

4th iteration

5th iteration

Oracle α
t

Figure 4.8: Comparison of oracle and estimated forgetting factors in two colliding Gaus-
sians experiment. There is no noticeable improvement after the third iteration.

the performance of arbitrarily setting αt = 0.5, which also happens to outperform the RG

method in this experiment. The poorer performance of the RG method is to be expected

because it places more weight on time steps where the cluster centroids are well-separated,

which again results in too much weight on historical data after the cluster memberships are

changed.

The estimated αt is plotted by iteration in Fig. 4.8 along with the oracle αt. Notice that

the estimate gets better over the first three iterations, while the fourth and fifth show no

visible improvement. The plot of the suggests why the estimated αt is able to outperform

the constant αt’s. It is almost constant at the beginning of the experiment when the sec-

ond cluster is moving, then it decreases over the two times when cluster memberships are

changed, and finally it increases when the two clusters are both stationary. The values of

the oracle αt before and after the change corroborate the previous observation that αt = 0.5

performs well before the change, but αt = 0.75 performs better afterwards. Notice that the

91

estimated αt appears to converge to a lower value than the oracle αt. This is once again

due to the finite-sample effect discussed in Section 4.4.1.

4.4.3 Flocks of boids

This experiment involves simulation of a natural phenomenon, namely the flocking behav-

ior of birds. To simulate this phenomenon I use the bird-oid objects (boids) model proposed

by Reynolds (1987). The boids model allows us to simulate natural movements of objects

and clusters.

The behavior of the boids are governed by three main rules:

1. Boids try to fly towards the average position (centroid) of local flock mates.

2. Boids try to keep a small distance away from other boids.

3. Boids try to fly towards the average heading of local flock mates.

My implementation of the boids model is based on the pseudocode of Parker (2007). At

each time step, I move each boid 1/100 of the way towards the average position of local

flock mates, double the distance between boids that are within 10 units of each other, and

move each boid 1/8 of the way towards the average heading.

I run two experiments using the boids model; one with a fixed number of flocks over

time and one where the number of flocks varies over time.

Fixed number of flocks

Four flocks of 25 boids are initially distributed uniformly in separate 60×60×60 cubes. To

simulate boids moving continuously in time while being observed at regular time intervals,

I allow each boid to perform five movements per time step according to the aforementioned

rules. Similar to Reynolds (1987), I use goal setting to push the flocks along parallel paths.

Note that unlike in the previous experiments, the flocking behavior makes it possible to

simulate natural changes in cluster, simply by changing the flock membership of a boid. I

92

0
500

1000

−100

0

100
−100

0

100

Figure 4.9: Setup of boids experiment: four flocks fly along parallel paths (start and end
positions shown). At each time step, a randomly selected boid joins one of the other flocks.

0 10 20 30 40
0.8

0.85

0.9

0.95

1

Time step

R
a

n
d

 i
n

d
e

x

Estimated α
t

Static

RG (3rd order)

RG (10th order)

Figure 4.10: Comparison of complete linkage Rand index in boids experiment. The esti-
mated αt outperforms both static clustering and the RG method.

change the flock memberships of a randomly selected boid at each time step. The initial

and final positions of the flocks for one realization are shown in Fig. 4.9.

I run this experiment 100 times using complete linkage hierarchical clustering. Un-

like in the previous experiments, the true proximity matrix is unknown so MSE cannot be

calculated. Clustering accuracy, however, can still be computed using the true flock mem-

berships. The clustering performance of the various approaches is displayed in Fig. 4.10.

Notice that AFFECT once again performs better than RG, both with short and long mem-

ory, although the difference is only visible after a significant number of boids have changed

flocks. The mean and standard error of the Rand indices for the various methods are listed

in Table 4.2. Again, it can be seen that AFFECT is the best performer. The estimated

αt in this experiment is roughly constant at around 0.6. This is not a surprise because all

93

Method Parameters Rand index
Static - 0.908± 0.001

AFFECT
Estimated αt 0.950± 0.001

αt = 0.5 0.944± 0.001

RG
l = 3 0.942± 0.001

l = 10 0.937± 0.000

Table 4.2: Mean and standard error of complete linkage Rand indices in boids experiment.

movements in this experiment, including changes in clusters, are smooth as a result of the

flocking motions of the boids. This also explains the good performance of simply choosing

αt = 0.5 in this particular experiment.

Variable number of flocks

The difference between this second boids experiment and the first is that the number of

flocks changes over time in this experiment. Up to time 16, this experiment is identical

to the previous one. At time 17, I simulate a scattering of the flocks by no longer moving

them toward the average position of local flock mates as well as increasing the distance at

which boids repel each other to 20 units. The boids are then rearranged at time 19 into two

flocks rather than four.

I run this experiment 100 times. The RG framework cannot handle changes in the num-

ber of clusters over time, thus I switch to normalized cut spectral clustering and compare

AFFECT to PCQ and PCM. The number of clusters at each time step is estimated using the

modularity criterion (Newman, 2006). PCQ and PCM are not equipped with methods for

selecting α. As a result, for each run of the experiment, I first perform a training run where

the true flock memberships are used to compute the Rand index. The α which maximizes

the Rand index is then used for the test run.

The clustering performance is shown in Fig. 4.11. The Rand indices for all methods

drop after the flocks are scattered, which is to be expected. Shortly after the boids are

rearranged into two flocks, the Rand indices improve once again as the flocks separate

from each other. AFFECT once again outperforms the other methods, which can also be

94

0 10 20 30 40
0

0.2

0.4

0.6

0.8

1

Time step

R
a

n
d

 i
n

d
e

x

Flocks scattered Flocks rearranged

Estimated α
t

Static

PCQ

PCM

Figure 4.11: Comparison of spectral clustering Rand index in boids experiment. The esti-
mated αt and PCQ perform well, but PCM performs poorly.

seen from the summary statistics presented in Table 4.3. The performance of PCQ and

PCM with both the trained α and arbitrarily chosen α = 0.5 are listed. From Fig. 4.11, it

can be seen that the estimated αt responds quickest to the rearrangement of the flocks. The

estimated forgetting factor by iteration is shown in Fig. 4.12. Notice that the estimated αt

drops when the flocks are scattered. Thus the quick response of AFFECT may be attributed

to the adaptive forgetting factor. As before, the estimates of αt do not appear to change after

the third iteration. Unlike in the previous experiments, αt = 0.5 does not perform well in

this experiment.

Another interesting observation is that the most accurate estimate of the number of

clusters at each time is obtained when using AFFECT, as shown in Fig. 4.13. Prior to the

flocks being scattered, using AFFECT, PCQ, or PCM all result in good estimates for the

number of clusters, while using the static method results in overestimates. However, after

the rearrangement of the flocks, the number of clusters is only accurately estimated when

using AFFECT or PCQ, which partially contributes to the poorer Rand index of PCM in

Fig. 4.11.

95

Method Parameters Rand index
Static - 0.765± 0.001

AFFECT
Estimated αt 0.920± 0.001

αt = 0.5 0.872± 0.002

PCQ
Trained α 0.910± 0.001

α = 0.5 0.823± 0.001

PCM
Trained α 0.842± 0.002

α = 0.5 0.810± 0.001

Table 4.3: Mean and standard error of spectral clustering Rand indices in boids experiment.

0 10 20 30 40
0

0.2

0.4

0.6

0.8

1

Time step

E
s
ti
m

a
te

d
 α

t

Flocks scattered

Flocks rearranged

1st iteration

2nd iteration

3rd iteration

4th iteration

5th iteration

Figure 4.12: Comparison of estimated spectral clustering forgetting factor by iteration in
boids experiment. The estimated forgetting factor drops at the change point, i.e. when the
flocks are scattered.

0 10 20 30 40
2

3

4

5

6

Time step

D
e

te
c
te

d
 n

u
m

b
e

r
o

f
c
lu

s
te

rs

Flocks scattered Flocks rearranged

Estimated α
t

Static

PCQ

PCM

Figure 4.13: Comparison of number of clusters detected using the modularity criterion in
boids experiment. Using the estimated αt results in the best estimates of the number of
flocks (4 before the change point and 2 after).

96

4.4.4 Reality Mining

The objective of this experiment is to test the proposed framework on a real data set with

objects entering and leaving at different time steps. The experiment is conducted on the

MIT Reality Mining data set (Eagle et al., 2009). The data was collected by recording cell

phone activity of 94 students and staff at MIT over a year. Each phone recorded the Media

Access Control (MAC) addresses of nearby Bluetooth devices at five-minute intervals. Us-

ing this device proximity data, I construct a similarity matrix where the similarity between

two students corresponds to the number of intervals where they were in physical proximity.

I divide the data into time steps of one week, resulting in 46 time steps between August

2004 and June 2005. In this data set there is partial ground truth. Namely the affiliations of

each participant are available. Eagle et al. (2009) found that two dominant clusters could

be identified from the Bluetooth proximity data, corresponding to new students at the Sloan

business school and coworkers who work in the same building. The affiliations are likely

to be representative of the cluster structure, at least during the school year.

I perform normalized cut spectral clustering into two clusters for this experiment. Since

this experiment involves real data, I cannot simulate training sets to select α for PCQ and

PCM. Instead, I use 2-fold cross-validation, which I believe is the closest substitute. A

comparison of clustering performance is given in Table 4.4. Both the mean Rand indices

over the entire 46 weeks and only during the school year are listed. AFFECT is the best

performer in both cases. Surprisingly, PCQ and PCM barely outperform static spectral

clustering when the cross-validated α is used and even worse than static clustering when

α = 0.5 is used. I believe this is due to the way PCQ and PCM suboptimally handle

objects entering and leaving at different time steps by estimating previous similarities and

memberships, respectively. On the contrary, the method used by AFFECT, described in

Section 4.3.4, performs well even with objects entering and leaving over time.

The estimated αt is shown in Fig. 4.14. Six important dates are labeled. The start

and end dates of the terms were taken from the MIT academic calendar (MIT–WWW) to

97

Method Parameters
Rand index

Entire trace School year
Static - 0.852 0.905

AFFECT
Estimated αt 0.891 0.953

αt = 0.5 0.884 0.949

PCQ
Cross-validated α 0.854 0.908

α = 0.5 0.767 0.822

PCM
Cross-validated α 0.855 0.922

α = 0.5 0.552 0.532

Table 4.4: Mean spectral clustering Rand indices for Reality Mining experiment.

0 5 10 15 20 25 30 35 40 45
0

0.2

0.4

0.6

0.8

1

E
s
ti
m

a
te

d
 α

t

Time step

Fall term
begins

Thanksgiving

Fall term
ends

Winter term
begins

Spring
break

Winter term
ends

Figure 4.14: Estimated αt over entire Reality Mining data trace. Six important dates are
indicated. The sudden drops in the estimated αt indicate change points in the network.

be the first and last day of classes, respectively. Notice that the estimated αt appears to

drop around several of these dates. These drops suggest that physical proximities changed

around these dates, which is reasonable, especially for the students because their physical

proximities depend on their class schedules. For example, the similarity matrices at time

steps 18 and 19, before and after the beginning of winter break, are shown in Fig. 4.15.

The detected clusters using the estimated αt are superimposed onto both matrices, with

rows and columns permuted according to the clusters. The empty cluster in the upper left

consists of inactive students. Notice that the similarities, corresponding to time spent in

physical proximity of other students, are much lower at time 19, particularly in the smaller

cluster. The change in the structure of the similarity matrix, along with the knowledge

that the fall term ended and the winter break began around this time, suggests that the low

estimated forgetting factor at time 19 is appropriate.

98

20 40 60 80

20

40

60

80

20 40 60 80

20

40

60

80

Figure 4.15: Cluster structure before (left) and after (right) beginning of winter break in
Reality Mining data trace. Darker entries correspond to greater time spent in physical
proximity. The empty cluster to the upper left consists of inactive participants during the
time step.

4.5 Summary

In this chapter I proposed a novel adaptive framework for evolutionary clustering by per-

forming tracking followed by static clustering. The objective of the framework was to

accurately track the true proximity matrix at each time step. This was accomplished using

a recursive update with an adaptive forgetting factor that controlled the amount of weight

to apply to historic data. I proposed a method for estimating the optimal forgetting factor

in order to minimize mean squared tracking error. The main advantages of my approach

are its universality, allowing almost any static clustering algorithm to be extended to an

evolutionary one, and that it provides an explicit method for selecting the forgetting factor,

unlike existing methods. The proposed framework was evaluated on several synthetic and

real data sets and displayed good performance in tracking and clustering. It was able to out-

perform both static clustering algorithms and existing evolutionary clustering algorithms.

4.A True similarity matrix for dynamic Gaussian mixture
model

I derive the true similarity matrix Ψ and the matrix of variances of similarities var(W),

where the similarity is taken to be the dot product, for data sampled from the dynamic

99

Gaussian mixture model described in Section 4.2.3. These matrices are required in order to

calculate the oracle forgetting factor for the experiments in Sections 4.4.1 and 4.4.2. I drop

the superscript t to simplify the notation.

Consider two arbitrary objects xi ∼ N(µc,Σc) and xj ∼ N(µd,Σd) where the entries

of µc and Σc are denoted by µck and σckl, respectively. For any distinct i, j the mean is

E
[
xix

T
j

]
=

p∑
k=1

E [xikxjk] =

p∑
k=1

µckµdk,

and the variance is

var
(
xix

T
j

)
= E

[(
xix

T
j

)2]− E
[
xix

T
j

]2
=

p∑
k=1

p∑
l=1

{E [xikxjkxilxjl]− µckµdkµclµdl}

=

p∑
k=1

p∑
l=1

{(σckl + µckµcl) (σdkl + µdkµdl)− µckµdkµclµdl}

=

p∑
k=1

p∑
l=1

{σcklσdkl + σcklµdkµdl + σdklµckµcl}

by independence of xi and xj . This holds both for xi,xj in the same cluster, i.e. c = d, and

for xi,xj in different clusters, i.e. c 6= d. Along the diagonal,

E
[
xix

T
i

]
=

p∑
k=1

E
[
x2ik
]

=

p∑
k=1

(
σckk + µ2

ck

)
.

The calculation for the variance is more involved. I first note that

E
[
x2ikx

2
il

]
= µ2

ckµ
2
cl + µ2

ckσcll + 4µckµclσckl + µ2
clσckk + 2σ2

ckl + σckkσcll,

which can be derived from the characteristic function of the multivariate Gaussian distri-

100

bution (Anderson, 2003). Thus

var
(
xix

T
i

)
=

p∑
k=1

p∑
l=1

{
E
[
x2ikx

2
il

]
−
(
σckk + µ2

ck

) (
σcll + µ2

cl

)}
=

p∑
k=1

p∑
l=1

{
4µckµclσckl + 2σ2

ckl

}
.

The calculated means and variances are then substituted into (4.13) to compute the oracle

forgetting factor. Since the expressions for the means and variances depend only on the

clusters and not any objects in particular, it is confirmed that both Ψ and var(W) do indeed

possess the assumed block structure discussed in Section 4.2.3.

101

CHAPTER V

STATE-SPACE MODELS FOR DYNAMIC NETWORKS

In Section 4.2, I introduced the concept of a network state Ψt along with the linear

observation model W t = Ψt + N t, where N t is a zero-mean noise matrix. Such a model

assumes a state for each pair of nodes, and as mentioned in Section 4.2, it presents a compu-

tational problem when it comes to tracking the states in an optimal manner due to the need

to invert an O(|V t|2) × O(|V t|2) matrix, where |V t| denotes the number of nodes at time

t. In this chapter, I explore methods for modeling a dynamic network using much fewer

than O(|V t|2) states, which enables us to use more sophisticated, near-optimal methods for

tracking and prediction.

Specifically I propose a state-space model for dynamic networks that combines two

types of models: a static model for the individual network snapshots and a temporal model

for the state evolution. Statistical models for static networks have a long history in statistics

and sociology among other fields. A survey of the literature in statistical network models

can be found in Goldenberg et al. (2010). Several of these models are of particular interest

because they extend very naturally to the dynamic setting.

1. Exponential random graph models (ERGMs), also known as p∗ models, attempt to
replicate certain network statistics such as the number of edges, stars, and triangles
(Wasserman and Pattison, 1996; Robins et al., 2007).

2. Latent space models (LSMs) represent nodes in a low-dimensional space where the
distance between nodes and the values of node- or dyad-specific attributes determine
the probability of forming an edge between a pair of nodes (Hoff et al., 2002).

3. Stochastic blockmodels (SBMs) divide nodes in the network into multiple classes and

102

generate edges independently with probabilities dependent on the class memberships
of the nodes (Holland et al., 1983; Nowicki and Snijders, 2001; Airoldi et al., 2008).

In this chapter, I propose a state-space SBM that extends the SBM to the dynamic

setting. Using a Central Limit Theorem approximation, I develop a near-optimal on-line

inference procedure using the extended Kalman filter. I apply the proposed procedure to

perform tracking and prediction on several simulated and real dynamic networks.

5.1 Related work

There has been previous work on extending each of the three static models mentioned

in the introduction to dynamic networks. For ERGMs, temporal extensions include the

hidden temporal ERGM (htERGM) (Guo et al., 2007) and the TESLA model (Ahmed and

Xing, 2009). For LSMs, Sarkar and Moore (2005) propose a temporal extension using

multidimensional scaling (MDS) with a Procrustes transform to track node positions over

time. Westveld and Hoff (2011) propose a temporal extension along with a Markov chain

Monte Carlo (MCMC) inference method.

More closely related to the state-space model I propose are several temporal extensions

of SBMs. Xing et al. (2010) propose a temporal extension of the mixed-membership SBM

(Airoldi et al., 2008) involving a linear state-space model for a single prior distribution of

class memberships for all nodes. Ho et al. (2011) extend this model to multiple prior dis-

tributions corresponding to clusters of nodes, where each node belongs to a single cluster.

Yang et al. (2011) propose a dynamic SBM involving a transition matrix that specifies the

probability that a node in class i at time t switches to class j at time t + 1 for all i, j, t

and fit the model using a combination of Gibbs sampling and simulated annealing, which

they refer to as probabilistic simulated annealing (PSA). This model is similar to the one I

propose; hence the performance of the PSA algorithm serves as a good baseline for com-

parison with the inference procedure proposed in this chapter.

103

5.2 Stochastic blockmodels for static networks

I first introduce some notation and provide a summary of the static stochastic blockmodel

(SSBM), which I use as the static model for the individual network snapshots. I represent

a dynamic network by a time-indexed sequence of graph snapshots, with W t = [wt
ij] de-

noting the adjacency matrix of the graph observed at time step t. wt
ij = 1 if there is an

edge from node i to node j at time t, and wt
ij = 0 otherwise. Unless otherwise specified, I

assume that the graphs are directed, so that wt
ij 6= wt

ji in general. I assume for simplicity

that there are no self-edges, i.e. wt
ii = 0. W (s) denotes the set of all snapshots up to time

s, {W s,W s−1, . . . ,W 1}. The notation i ∈ a is used to indicate that node i is a member

of class a. |a| denotes the number of nodes in class a. The classes of all nodes at time

t is given by a vector ct with cti = a if i ∈ a at time t. I denote the submatrix of W t

corresponding to the relations between nodes in class a and class b by W t
[a][b]. I denote the

vectorized equivalent of a matrix X , i.e. the vector obtained by simply stacking columns

of X on top of one another, by x. Doubly-indexed subscripts such as xij denote entries of

matrix x, while singly-indexed subscripts such as xi denote entries of vector x.

Consider a snapshot at an arbitrary time step t. An SSBM is parameterized by a k × k

matrix Θt = [θtab], where θtab denotes the probability of forming an edge between a node

in class a and a node in class b, and k denotes the number of classes. It decomposes

the adjacency matrix into k2 blocks, where each block is associated with relations between

nodes in two classes a and b. Each block corresponds to a submatrixW t
[a][b] of the adjacency

matrix W . Thus, given the class membership vector ct, each entry of W t is an independent

realization of a Bernoulli random variable with a block-dependent parameter; that is, wt
ij ∼

Bernoulli
(
θt
ctic

t
j

)
.

SBMs are used in two settings:

1. the a priori blockmodeling setting, where class memberships are known or assumed,
and the objective is to estimate the matrix of edge probabilities Θt, and

2. the a posteriori blockmodeling setting, where the objective is to simultaneously esti-

104

mate Θt and the class membership vector ct.

Since each entry of W t is independent, the likelihood for the SBM is given by

f
(
W t; Φt

)
=
∏
i 6=j

(
θtcicj

)wt
ij
(

1− θtcicj
)1−wt

ij

= exp

{
k∑

a=1

k∑
b=1

[
mt

ab log
(
θtab
)

+
(
nt
ab −mt

ab

)
log
(
1− θtab

)]}
, (5.1)

where

mt
ab =

∑
i∈a

∑
j∈b

wt
ij

nt
ab =

|a||b| a 6= b

|a|(|a| − 1) a = b.

(5.2)

The parameters are given by Φt = Θt in the a priori setting, and Φt = {Θt, ct} in the a

posteriori setting. In the a priori setting, a sufficient statistic for estimating Θt is given by

the matrix Y t of block densities (ratio of observed edges to possible edges within a block)

defined by

ytab =
mt

ab

nt
ab

. (5.3)

Y t also happens to be the maximum-likelihood (ML) estimate of Θt, which can be shown

by setting the derivative of the logarithm of (5.1) to 0.

Estimation in the a posteriori setting is more involved, and many methods have been

proposed, including expectation-maximization (EM) (Snijders and Nowicki, 1997), Gibbs

sampling (Snijders and Nowicki, 1997; Nowicki and Snijders, 2001), label-switching meth-

ods (Karrer and Newman, 2011; Zhao et al., 2011), and spectral clustering (Rohe et al.,

2011; Sussman et al., 2012). The label-switching methods use a heuristic for solving the

combinatorial optimization problem of maximizing the likelihood (5.1) over the set of pos-

sible class memberships, which is often too large to perform an exhaustive search. On the

105

other hand, spectral clustering attempts to discover the optimal choice of class memberships

using the eigenvectors of W t or a similar matrix. Each node is mapped to a k-dimensional

position in the eigenspace, and the estimated class memberships are obtained by clustering

the nodes based on their positions in the eigenspace using, for example, k-means clustering.

5.3 State-space stochastic blockmodels for dynamic net-
works

I propose a state-space model for dynamic networks that consists of a temporal extension

of the static stochastic blockmodel. First I present the model and inference procedure

for a priori blockmodeling, then I discuss the additional steps necessary for a posteriori

blockmodeling. The inference procedure is on-line, i.e. the state estimate at time t is formed

using only observations from time t and earlier.

5.3.1 A priori blockmodeling

In the a priori SSBM setting, Y t is a sufficient statistic for estimating Θt as discussed in

Section 5.2. Thus in the a priori dynamic SBM setting, I can equivalently treat Y t as the

observation rather than W t. By the Central Limit Theorem, ytab is approximately Gaussian

distributed with mean θtab and variance

(
σt
ab

)2
=
θtab(1− θtab)

nt
ab

, (5.4)

where nt
ab was defined in (5.2). I assume that ytab is indeed Gaussian for all (a, b) and posit

the linear observation model

Y t = Θt + Zt, (5.5)

whereZt is a zero-mean independent and identically distributed (iid) Gaussian noise matrix

with variance (σt
ab)

2 for the (a, b)th entry.

In the dynamic network setting where historical snapshots are indeed available, the

106

observations would be given by the set Y (t). The set Θ(t) can be viewed as states of a

dynamic system that is generating the noisy observation sequence. I complete the model

by specifying a model for the state evolution over time. Since θtab is a probability and

must be bounded between 0 and 1, I instead work with the matrix Ψt = [ψt
ab] where ψt

ab =

log(θtab)−log(1−θtab), the logit of θtab. A simple model for the state evolution is the random

walk model

ψt = ψt−1 + vt,

where ψt is the vector representation of the matrix Ψt, and vt is a random vector of zero-

mean Gaussian entries, commonly referred to as process noise, with covariance matrix

Γ. The entries of the process noise vector are not necessarily independent or identically

distributed (unlike the entries of Zt) to allow for states to evolve in a correlated manner.

The observation equation (5.5) can then be written in terms of ψt as

yt = h
(
ψt
)

+ zt, (5.6)

where I have converted the block densities Y t and observation noise Zt to their respective

vector representations, and the function h : Rp → Rp is defined by hi(x) = 1/(1 + e−x),

i.e. the logistic function applied to each entry of X . I denote the covariance matrix of zt

by Σt, which is a diagonal matrix with entries given by (5.4)1. A graphical representation

of the proposed model for the dynamic network is shown in Figure 5.1. The rectangular

boxes denote observed quantities, and the ovals denote unobserved quantities.

To perform inference on this model, I assume the initial stateψ0 ∼ N (µ0,Γ0) and that

{ψ0,v1, . . . ,vt, z0, . . . , zt} are mutually independent. If (5.6) was linear in ψt, then the

optimal estimate of ψt in terms of minimum mean-squared error (MMSE) would be given

by the Kalman filter. Due to the non-linearity, I apply the extended Kalman filter (EKF),

1The indices (a, b) for σ2
ab are converted into a single index i corresponding to the vector representation

zt.

107

Logistic

SBM

. . .

Figure 5.1: Graphical representation of proposed model for the dynamic network. The
logistic SBM refers to applying the logistic function to each entry of Ψt to obtain Θt then
generating W t using Θt and ct.

which linearizes the dynamics about the predicted state and provides an approximately

optimal estimate of ψt. The Jacobian of h evaluated at the predicted state is a diagonal

matrix with (i, i)th entry given by

htii =
exp

(
−ψ̂

t|t−1
i

)
[
1 + exp

(
−ψ̂

t|t−1
i

)]2 .
The linearized model is thus given by the equations

yt = H tψt + et + zt (5.7)

ψt = ψt−1 + vt (5.8)

where et = h
(
ψ̂

t|t−1)
− H tψ̂

t|t−1
. For the model specified by (5.7) and (5.8), the EKF

prediction equations are as follows (Haykin, 2001):

Prior state estimate: ψ̂
t|t−1

= ψ̂
t−1|t−1

(5.9)

Prior estimate covariance: Rt|t−1 = Rt|t−1 + Γ (5.10)

108

The EKF correction (update) equations are as follows (Haykin, 2001):

Near-optimal Kalman gain: Kt = Rt|t−1 (H t
)T [

H tRt|t−1 (H t
)T

+ Σt
]−1

(5.11)

Posterior state estimate: ψ̂
t|t

= ψ̂
t|t−1

+Kt
[
yt − h

(
ψ̂

t|t−1)]
(5.12)

Posterior estimate covariance: Rt|t =
(
I −KtH t

)
Rt|t−1 (5.13)

Using equations (5.9)–(5.13), a near-optimal prediction ψ̂
t|t−1

and corrected estimate ψ̂
t|t

can be obtained at each time step.

5.3.2 A posteriori blockmodeling

In many applications, the class memberships ct are not known a priori and must be esti-

mated along with Ψt. This can be done using label-switching methods similar to Karrer and

Newman (2011) and Zhao et al. (2011); however, rather than maximizing the likelihood, I

maximize the posterior state density given the entire sequence of observations W (t) up to

time t.

For t ≥ 2, the posterior state density is given by

f
(
ψt |W (t)

)
∝ f

(
W t |ψt,W (t−1)) f (ψt |W (t−1))

= f
(
W t |ψt

)
f
(
ψt |W (t−1)) , (5.14)

where equality follows from the conditional independence of current and past observa-

tions given the current state. Since θt = h(ψt), the first term in (5.14) is simply ob-

tained by substituting h(ψt) for θt in (5.1). The second term in (5.14) is equivalent to

f
(
ψt |y(t−1)) because the class memberships at all previous time steps have already been

estimated. By applying the Kalman filter to the linearized model specified by (5.7) and

(5.8), f
(
ψt |y(t−1)) ∼ N (ψ̂t|t−1

, Rt|t−1
)

. Thus the logarithm of the posterior density for

109

t ≥ 2 is given by

log f
(
ψt |W (t)

)
= c− 1

2

(
ψt − ψ̂

t|t−1)T (
Rt|t−1)−1 (ψt − ψ̂

t|t−1)
+

k∑
a=1

k∑
b=1

{
mt

ab log
[
h
(
ψt
ab

)]
+
(
nt
ab −mt

ab

)
log
[
1− h

(
ψt
ab

)]}
,

(5.15)

where c is a constant term independent of ψt that can be ignored.

At the initial time step t = 1, the posterior is given by

f
(
ψ1 |W (1)

)
= f

(
ψ1 |W 1

)
∝ f

(
W 1 |ψ1

)
f
(
ψ1
)
. (5.16)

The first term is obtained again by substituting h(ψt) for θt in (5.1). Since I assume

the initial state ψ0 ∼ N (µ0,Γ0), it follows from the state evolution model (5.8) that

ψ1 ∼ N (µ0,Γ0 + Γ). Thus the logarithm of the posterior density for t = 1 is given by

log f
(
ψ1 |W (1)

)
= d− 1

2

(
ψ1 − µ0

)T (
Γ0 + Γ

)−1 (
ψ1 − µ0

)
+

k∑
a=1

k∑
b=1

{
m1

ab log
[
h
(
ψ1
ab

)]
+
(
n1
ab −m1

ab

)
log
[
1− h

(
ψ1
ab

)]}
,

(5.17)

where d is another constant that can be ignored.

I use the appropriate log-posterior, either (5.15) for t ≥ 2 or (5.17) for t = 1, as the

objective function for label-switching. I find that a simple local search (hill climbing) ini-

tialized using the estimated class memberships at the previous time steps suffices, because

only a small fraction of nodes change classes between time steps in most applications.

The inference procedure for a posteriori blockmodeling using local search and the EKF

is presented in Algorithm 5.1. At the initial time step, multiple random initializations could

be employed to avoid getting stuck in local optima. A faster approach is to use the spectral

clustering algorithm of Sussman et al. (2012) for the SSBM as the initialization, which

appears to work well in practice. Pseudocode for the SSBM spectral clustering algorithm

110

Algorithm 5.1 A posteriori blockmodel inference procedure at time t using the EKF.
1: while iter ≤ max iter do
2: ĉt ← ĉt−1 {Initialize class memberships}
3: Compute block densities Y t using W t and ĉt

4: Compute ψ̂
t|t

using EKF equations (5.9)–(5.13)
5: Compute log-posterior pt by substituting ψ̂

t|t
for ψt in (5.15) or (5.17)

6: p̄t ← −∞ {Posterior probability of best neighboring solution up to a constant}
7: c̃t ← ĉt {Solution currently being visited}
8: for i = 1 to |V t| do {Local search (hill climbing) algorithm}
9: for j = 1 to k do

10: c̃ti ← j {Change class of a single node}
11: Compute block densities Ỹ t using W t and c̃t

12: Compute ψ̃
t|t

using EKF equations (5.9)–(5.13)
13: Compute log-posterior p̃t by substituting ψ̃

t|t
for ψt in (5.15) or (5.17)

14: if p̃t > p̄t then {Visited solution is better than best neighboring solution}
15:

[
p̄t, ψ̄

t|t
, c̄t
]
←
[
p̃t, ψ̃

t|t
, c̃t
]

16: end if
17: c̃ti ← ĉt−1i {Reset class membership of current node}
18: end for
19: end for
20: if p̄t > pt then {Best neighboring solution is better than current best solution}
21:

[
pt, ψ̂

t|t
, ĉt
]
←
[
p̄t, ψ̄

t|t
, c̄t
]

22: else {Reached local maximum}
23: break
24: end if
25: end while
26: return

[
ψ̂

t|t
, ĉt
]

Algorithm 5.2 SSBM spectral clustering initialization.
1: Compute singular value decomposition of W 1

2: Σ̃← diagonal matrix of k largest singular values
3: (Ũ , Ṽ)← left and right singular vectors for Σ̃

4: Z̃ ←
[
ŨΣ̃1/2, Ṽ Σ̃1/2

]
{concatenate scaled left and right singular vectors}

5: ĉ0 ← k-means clustering on rows of Z
6: return ĉ0

111

is shown in Algorithm 5.2.

5.3.3 Time complexity

I begin with an analysis of the time complexity of the inference procedure for a priori block-

modeling at each time step. Calculating the matrix of block densities Y t involves summing

over all edges present at time t, which has O(|Et|) time complexity, where |Et| denotes the

number of edges in the graph at time t. Application of the EKF requires only matrix-vector

multiplications and a matrix inversion (to calculate the Kalman gain). The size of both the

observation and state vectors in the EKF is p = O(k2), so the time complexity of the EKF

is dominated by the O(p3) = O(k6) complexity of the matrix inversion. Hence the overall

time complexity at time t is O(|Et|+ k6).

A posteriori blockmodeling involves performing a local search at each time step. At

each iteration of the local search, all |V t|(k − 1) neighboring class assignments are vis-

ited. For each class assignment, I compute the EKF estimate ψ̂
t|t

and substitute it into the

log-posterior (5.15) or (5.17). As previously mentioned, computing the EKF estimate is

dominated by the O(k6) complexity of an inverting a O(k2) × O(k2) matrix. Evaluating

the log-posterior also requires inversion of a O(k2)×O(k2) matrix. The matrix inversions

are independent of the class assignments so they only need to be performed once at each

time step rather than at each iteration of the local search. Thus the time complexity at each

local search iteration is reduced to O(k4) for the matrix-vector multiplications. The overall

time complexity at time t then becomesO(|Et|+k6+ |V t|lk5), where l denotes the number

of local search iterations.

5.3.4 Estimation of hyperparameters

The EKF requires four hyperparameters to be specified:

1. the mean µ0 of the initial state ψ0,

2. the covariance matrix Γ0 of the initial state ψ0,

112

3. the covariance matrix Σt of the observation noise zt, and

4. the covariance matrix Γ of the process (state evolution) noise vt.

The first two hyperparameters relate to the initial state. In the absence of prior infor-

mation about the network, specifically the matrix Θ0 of probabilities of forming edges, I

employ a diffuse prior; that is, I let the variances of the initial states approach ∞. This

can be implemented by simply taking ψ̂
1|1

= g (y1) and and R1|1 = GtΣ1(Gt)T , where

gi(x) = h−1i (x) = log(x)− log(1− x) is the logit of x, and Gt is the Jacobian of g, which

is a diagonal matrix with entries given by gtii = 1/p+1/(1−p). Thus the initial state mean

and covariance are given by the transformed initial observation and its covariance.

The third hyperparameter Σt denotes the covariance matrix of the observation noise. In

many Kalman filtering applications, it is assumed to be time-invariant and estimated jointly

with Γ. In the state-space SBM setting, however, Σt is necessarily time-varying because it

is related to the current stateψt through (5.4) and the logistic function h. Taking advantage

of this relationship, I use a plug-in estimator for Σt by substituting h
(
ψ̂

t|t−1)
for Θt in

(5.4).

The final hyperparameter Γ denotes the covariance matrix of the process noise vt. Un-

like Σt, Γ is assumed to be time-invariant and is not necessarily diagonal because states

could evolve in a correlated manner. For example, if ψt
ab increases from time t− 1 to time

t, it may be a result of some action by nodes in class a, which could also affect the other

entries in row a of Ψt. Although Γ is not necessarily diagonal, it is desirable to impose

some structure on Γ so that one does not have to estimate all p2 = O(k4) covariances

individually. Accordingly I assume the structure of Γ is such that

γij =

s2in, i = j

s2out, i, j are neighboring cells in Ψt

0, otherwise,

(5.18)

113

where i, j being neighboring cells means that the matrix indices (ai, bi) corresponding to i

in Ψt are in the same row or column as matrix indices (aj, bj). This choice for Γ exploits

the fact that the state Ψt is actually a matrix that has been flattened into a vector ψt.

The objective is then to estimate sin and sout. Several methods have been proposed for

learning hyperparameters in non-linear dynamic systems. One approach, often referred to

as the joint EKF, involves treating the hyperparameters as additional states of the dynamic

system. These hyperparameters are then estimated at each time step jointly with the states

(Haykin, 2001). Another approach involves iteratively maximizing the likelihood of the

observation sequence W (t) using the expectation-maximization (EM) algorithm because

the true values of the states are unknown (Ghahramani and Roweis, 1998). This approach

has been found to be successful in the off-line setting where past, present, and future ob-

servations are available to estimate the present state; however, not much is known about

its performance in the on-line setting. I opt for the simpler approach of simply choosing

hyperparameters to minimize the empirical average prediction error

t−1∑
s=1

∥∥∥ys+1 − h
(
ψ̂

s+1|s)∥∥∥2
2
.

5.4 Experiments

5.4.1 Simulated stochastic blockmodels

In this experiment I generate synthetic networks in a manner similar to Yang et al. (2011).

The procedure is a dynamic extension of a synthetic network generator proposed by New-

man and Girvan (2004). The network consists of 128 nodes initially split into 4 classes of

32 nodes each. The mean µ0 of the initial state ψ0 is chosen so that E [θtaa] = 0.2580 and

E [θtab] = 0.0834 for a, b = 1, 2, 3, 4; a 6= b. This results in a fixed mean degree of 16 with

the mean number of edges from a node to nodes in other classes z = 4. The initial state

covariance Γ0 is chosen to be a scaled identity matrix s20I .

Θt evolves through the random walk model defined on ψt in (5.8). Γ is constructed

114

using (5.18), where sin and sout are varied to simulate different types of environments.

At each time step, 10% of the nodes are randomly selected to leave their class and are

randomly assigned to one of the other three classes. 20 time steps are generated in each

simulation run, and the results presented are averaged over 50 simulation runs. At each

time, I draw a new graph snapshot from the SBM parameterized by Θt and ct. The graph

snapshots in this experiment are undirected.

I compare the performance of the proposed state-space SBM fitted using the EKF to two

baselines: the static stochastic block model (SSBM) fitted by maximum-likelihood and the

probabilistic simulated annealing (PSA) algorithm proposed by Yang et al. (2011), which

uses a combination of Gibbs sampling and simulated annealing to perform approximate

inference. The PSA algorithm fits a dynamic SBM that is similar to the one I propose.

There are, however, two differences:

1. Yang et al. (2011) explicitly model changes in class memberships over time using a
transition matrix, as discussed in Section 5.1.

2. Yang et al. (2011) treat the matrix of edge probabilities Θt as a random time-invariant
parameter, where each entry has a prior distribution of Beta(αab, βab).

In the a priori setting, only the EKF and SSBM are applicable, while all three methods are

applicable in the a posteriori setting.

The mean and standard error (over the 50 simulation runs) of the MSE and mean ad-

justed Rand index (Hubert and Arabie, 1985) over all time steps are shown in Tables 5.1 and

5.2, respectively. Table 5.1 shows the MSE for both a priori and a posteriori methods. Four

different simulated scenarios, corresponding to differing combinations of (s0, sin, sout), are

used:

1. (s0, sin, sout) = (0.02, 0.01, 0.005).

2. (s0, sin, sout) = (0.02, 0.1, 0.05).

3. (s0, sin, sout) = (0.2, 0.01, 0.005).

4. (s0, sin, sout) = (0.2, 0.1, 0.05).

115

Method
Simulation scenario

1 2 3 4

A priori
EKF 0.16± 0.01 1.28± 0.04 0.36± 0.02 1.32± 0.03

SSBM 2.06± 0.04 2.11± 0.05 2.02± 0.05 2.17± 0.05

A posteriori
EKF 0.27± 0.02 3.34± 0.27 1.30± 0.12 4.04± 0.91

SSBM 3.99± 0.21 10.54± 1.34 7.90± 1.00 12.16± 2.09

PSA 1.76± 0.27 9.70± 0.78 4.22± 0.60 14.13± 2.17

Table 5.1: Mean and standard error of MSE in SBM experiments. Simulation scenario
corresponds to choices of simulation parameters (s0, sin, sout). Bolded number indicates
best performer. All entries are ×10−3.

Method
Simulation scenario

1 2 3 4
EKF 0.803± 0.003 0.729± 0.015 0.752± 0.015 0.743± 0.017

SSBM 0.791± 0.004 0.703± 0.019 0.726± 0.017 0.718± 0.020

PSA 0.881± 0.004 0.796± 0.015 0.813± 0.015 0.794± 0.019

Table 5.2: Mean and standard error of adjusted Rand index in SBM experiments.

The results shown for both EKF and PSA are for optimally chosen hyperparameters. Notice

that for each combination, the EKF has the lowest MSE in both the a priori and a posteriori

settings. Since PSA assumes that Θt is time-invariant, one might expect it to perform

poorly in the second and fourth scenarios where the variation of Θt over time is certainly

not negligible. However, I find that PSA performs poorly in terms of MSE for all four

combinations, including the first and third scenarios where Θt is almost time-invariant.

When it comes to accuracy in terms of estimating the true classes, PSA outperforms the

EKF and SSBM as shown in Table 5.2. This is to be expected because the dynamic SBM of

Yang et al. (2011) explicitly models changes in class memberships, whereas the state-space

SBM I propose only implicitly constrains such changes by placing a state-space model on

Θt. The variation of MSE and adjusted Rand indices over time for each method in the

fourth simulation scenario are shown in Figure 5.2. Notice once again that PSA performs

extremely poorly in terms of estimating Θt but performs well in estimating the true class

memberships. However, the improved performance in estimating class memberships comes

at the cost of higher computation time compared to the EKF. PSA required 743 seconds to

116

0 5 10 15 20
10

−3

10
−2

10
−1

Time step

M
S

E

EKF (a pri.)

SSBM (a pri.)

EKF (a post.)

SSBM (a post.)

PSA

0 5 10 15 20
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

Time step

A
d

ju
s
te

d
 R

a
n

d
 i
n

d
e

x

EKF (a post.)

SSBM (a post.)

PSA

Figure 5.2: MSE (left) and adjusted Rand index (right) comparison in SBM experiment
with (s0, sin, sout) = (0.2, 0.1, 0.05). Error bars denote one standard error.

process the data compared to 265 seconds for the EKF and 53 seconds for the SSBM. Recall

that the EKF does not require any usage of Monte Carlo methods, whereas PSA involves

Gibbs sampling, which accounts for its increased computation time.

While PSA is able to outperform the proposed EKF methods in adjusted Rand index

(at the cost of higher computation time), it is also more sensitive to the choices of hyperpa-

rameters. In Figure 5.3, I plot the variation of MSE and adjusted Rand index for different

choices of hyperparameters for both the a posteriori EKF and PSA. All plots are for the

fourth simulation scenario. While the EKF is somewhat robust to poor choices of hyper-

parameters, PSA is extremely sensitive to poor choices. Yang et al. (2011) recommend

choosing values of αab and βab that maximize the modularity criterion (Newman and Gir-

van, 2004), which is a measure of the strength of community structure for a given partition

(when ground truth is not available). However, simply optimizing modularity may result in

extremely high values in αab and βab, which correspond to extremely low variances in the

prior distribution for Θt and lead to poor estimates of Θt, as shown in Figure 5.3b. Further-

more, it is not applicable when the classes do not correspond to communities, i.e. when Θt

is not diagonally dominant.

117

��
��

��
��

��
��

��
�

�
�
�

�

�	�

�	�

�	�

�	

�	�

�	�

�	

�	�

�	�

�

�
�
��
�
��
�
��
�
�
�
��
�
�
�
�

(a) EKF (a posteriori)

��
��

��
��

��
��

��
�

�
�
�

�

�	�

�	�

�	�

�	

�	�

�	�

�	

�	�

�	�

�

�
�
��
�
��
�
��
�
�
�
��
�
�
�
�

(b) PSA

Figure 5.3: Variation of MSE (top) and adjusted Rand index (bottom) on hyperparameter
settings for EKF and PSA in fourth SBM simulation scenario. α̂ab = 1 in all settings for
PSA.

118

5.4.2 Enron emails

This experiment involves the Enron email data set (Priebe et al., 2009), which consists of

about 0.5 million email messages between 184 Enron employees from 1998 to 2002. I

construct the network by placing directed edges between employees i and j at time t if i

sends at least one email to j during time step t. I take each time step to correspond to a

1-week interval. I make no distinction between emails sent “to”, “cc”, or “bcc”. In addition

to the email data, the roles of most of the employees within the company are available. I

divide employees into seven roles:

1. directors,

2. CEOs,

3. presidents,

4. vice presidents,

5. managers,

6. traders, and

7. others,

which I use as classes for a priori blockmodeling.

The mean over all time steps of the estimated matrix of edge probabilities Θ̂t|t using the

a priori EKF is shown in Figure 5.4. Several observations can be made about the overall

structure of the network over the entire duration of the data trace. First notice that the

highest probabilities of emails are sent among CEOs and presidents. For a company that

was known to have engaged in fraud involving the CEOs and presidents, this is not terribly

surprising. Another observation is the asymmetry of emails sent to and received from the

board of directors. Emails are occasionally sent to directors, but emails are very rarely

received from directors. This is also to be expected, as management are held accountable

by the directors, who mostly observe and do not get involved in the day-to-day operations of

the company. A more surprising observation is that the managers are more likely to email

119

Recipient class

S
e

n
d

e
r

c
la

s
s

1 2 3 4 5 6 7

1

2

3

4

5

6

7
0.02

0.04

0.06

0.08

0.1

0.12

0.14

Figure 5.4: Mean estimated edge probabilities Θ̂t|t over all time steps for Enron data using a
priori EKF. The entry in row i, column j denotes the estimated probability that an employee
in class i sends an email to an employee in class j.

CEOs and presidents than they are to email vice presidents. This is surprising because

managers typically sit one level below the vice presidents on the corporate ladder; thus one

might expect the managers to correspond more frequently with the vice presidents than

the presidents and CEOs. In short, by simply looking at the mean estimated probabilities

over the duration of the trace, one can discover some interesting insights into the company

structure.

While the insights gained from looking at the mean Θ̂t|t are interesting, they could have

also been obtained by fitting a static stochastic blockmodel (SSBM) to the entire data trace

aggregated into a single static network. The power of the state-space approach is that it

estimates a time series of matrices Θ̂t|t. Of particular interest are the estimated probabilities

of emails originating from the CEOs, corresponding to the second row of Θ̂t|t. These

seven time series are shown in Figure 5.5. Notice that there are three spikes, which can be

viewed as anomalies, that show up in several of the time series; these spikes occur shortly

after several important events in the timeline of the Enron scandal, which supports their

interpretation as anomalies. The week corresponding to highlighted date 2 was also found

to be anomalous by Priebe et al. (2005) using scan statistics. These spikes are difficult to

120

0 20 40 60 80 100 120
0

0.2

0.4

0.6

0.8

1

Time step

E
K

F
 e

s
ti
m

a
te

 o
f

e
d

g
e

 p
ro

b
a

b
ili

ti
e

s

1 2 3 To directors

To CEOs

To presidents

To VPs

To managers

To traders

To others

Figure 5.5: Temporal variation of EKF estimated edge probabilities from Enron CEOs θ̂t|t2b .
The three highlighted dates correspond to (1) Enron issuing a Code of Ethics; (2) Enron’s
stock closing below $60, a critical point in one of their partnerships; and (3) CEO Jeffrey
Skilling’s resignation.

0 20 40 60 80 100 120
0

0.2

0.4

0.6

0.8

1

Time step

S
S

B
M

 e
s
ti
m

a
te

 o
f

e
d

g
e

 p
ro

b
a

b
ili

ti
e

s

1 2 3 To directors

To CEOs

To presidents

To VPs

To managers

To traders

To others

Figure 5.6: Temporal variation of SSBM estimated edge probabilities from Enron CEOs
yt2b. The spikes in email activity at the highlighted dates is less noticeable due to the high
variance.

121

identify when fitting an SSBM to each time step individually, as shown in Figure 5.6, where

they are buried in the high variance of the SSBM estimates. This example demonstrates the

superiority of the state-space approach, which constrains estimates at successive time steps

to smooth out the time series in a near-optimal manner.

Next I evaluate the performance of both the a priori and a posteriori EKF inference

for the task of link prediction. The link prediction problem in dynamic networks involves

predicting the edges that will be present at time t + 1 from the observations W (t). In the

usual link prediction setting, a predictor is trained over a certain period of time then em-

ployed to predict newly formed edges in a growing network (Liben-Nowell and Kleinberg,

2007; Lichtenwalter et al., 2010). Link prediction in evolving networks differs because the

predictor must simultaneously predict the new edges that will be formed at time t + 1 as

well as the current edges (as of time t) that will disappear at time t + 1. The latter task is

not addressed by most link prediction methods in the literature.

Since the SBM assumes stochastic equivalence between nodes in the same class, the

EKF alone is only a good predictor of the block densities Y t, not the edges themselves.

However, the EKF (either a priori or a posteriori), which makes predictions at the block

level, can be combined with another predictor that makes predictions at the individual level

to form a good link predictor. A simple predictor at the individual level is the exponentially-

weighted moving average (EWMA) given by Ŵ t+1 = λŴ t + (1 − λ)W t. By taking

a convex combination of the EKF and EWMA predictors, one might expect to achieve

better link prediction performance than either predictor individually. This is confirmed

by the receiver operating characteristic (ROC) curves, shown in Figure 5.7, and the area

under the curves (AUCs), shown in Table 5.3. Both the ROC curves and AUCs are for

λ = 0.5. Notice that the a priori EKF performs worse than the a posteriori EKF; this is not

surprising because the a posteriori EKF is able to find a better fit to the state-space SBM

by assigning nodes to classes to maximize the posterior probability. Notice also that the

EWMA outperforms both the a priori and a posteriori EKF alone in terms of AUC. Thus

122

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

False positive rate

T
ru

e
 p

o
s
it
iv

e
 r

a
te

EKF (a pri.)

EKF (a post.)

EWMA

EKF (a pri.) + EWMA

EKF (a post.) + EWMA

Figure 5.7: Comparison of ROC curves for link prediction on Enron data.

Method AUC
EKF (a priori) 0.840

EKF (a posteriori) 0.863

EWMA 0.898

EKF (a priori) + EWMA 0.929

EKF (a posteriori) + EWMA 0.934

Table 5.3: AUC comparison for link prediction on Enron data.

it can be concluded that block-level characteristics are not enough to accurately predict

individual links. However, by combining the EKF and EWMA, I obtain a significantly

improved link predictor that accounts for both block-level characteristics (through the EKF)

and individual-level characteristics (through the EWMA).

5.5 Summary

In this chapter I proposed a statistical model for dynamic networks using a state-space

representation. The proposed model uses the stochastic blockmodel to represent individ-

ual network snapshots and a state-space model to represent the temporal evolution of the

network. The model can be used in either the a priori setting, where nodes are known

or assumed to belong to specific classes, or the a posteriori setting, where class mem-

123

berships are estimated along with probabilities of forming edges. I developed an on-line

inference procedure for the proposed model that performs near-optimal state tracking in a

computationally efficient manner using the extended Kalman filter. The proposed method

was applied to a set of synthetic networks and a real dynamic social network and showed

promising results in both tracking and link prediction.

124

CHAPTER VI

CONCLUSIONS

A variety of complex time-varying phenomena are well-modeled by dynamic, time-

evolving networks. In this dissertation I presented computational methods for machine

learning and statistical inference on dynamic networks, encompassing the tasks of visual-

ization, clustering, tracking, and prediction. The proposed methods take advantage of the

dynamic nature of the network by incorporating multiple time snapshots of the network

and by modeling the temporal evolution of the network.

In Chapter II I presented an analysis of the social networks of email spammers. Specifi-

cally, I discovered communities of spammers that utilized common resources, namely spam

servers, as well as communities of spammers that exhibited high temporal correlation when

sending spam. Although the network was dynamic, I used an algorithm designed for static

networks, namely spectral clustering, to perform the analysis one month at a time. The

approach was suboptimal because it neglected the dynamic nature of the network, which

motivated the development of the computational methods for dynamic networks in the fol-

lowing chapters.

In Chapter III I proposed a framework for visualizing dynamic networks using ani-

mated 2-D graph layouts. Effectively visualizing dynamic networks is an important step

toward understanding the temporal dynamics and structural evolution of the networks. The

proposed framework creates regularized graph layouts, which encourage dynamic stability

of the network visualization over time, allowing a human to interpret the changes in the

125

network structure without being overwhelmed by large quantities of node movements.

Chapter IV discussed the problem of tracking the evolution of communities or clusters

in dynamic networks. I proposed an adaptive evolutionary clustering framework that refor-

mulated evolutionary clustering as a problem of optimal state tracking followed by static

clustering. Under the proposed framework, called AFFECT, I created dynamic extensions

of three static clustering algorithms, including the static spectral clustering algorithm used

in Chapter II for analyzing communities of spammers. The proposed evolutionary cluster-

ing algorithms produced more stable and consistent clustering results over time.

In Chapter V I proposed a state-space stochastic blockmodel for dynamic networks

along with an inference procedure using the extended Kalman filter (EKF). The proposed

model is an extension of the static stochastic blockmodel to dynamic networks. It charac-

terizes a dynamic network by assigning each node to one of k classes at each time step then

specifying the probability that any node in class a will form an edge with any node in class

b at any particular time step. These edge-forming probabilities are treated as time-varying

states of the dynamic network. Using the proposed model and inference procedure, it is

possible to perform near-optimal state tracking in a computationally efficient manner. The

estimated states reveal the underlying structure of the network from the noisy observations

at each time step.

There are many interesting problems for future work, particularly in developing statisti-

cal models for dynamic networks such as the one I developed in Chapter V. Specifically, it

would be desirable to add individual attributes to the state-space stochastic block model to

create a richer representation that could lead to better link prediction ability. Another useful

extension would be to build a hierarchical blockmodel that could allow for scalability to

higher numbers of classes by restricting covariances at different levels of the hierarchy.

An issue that has not been adequately addressed in dynamic network modeling involves

the temporal aspect of the model. Existing work assumes a simple temporal model for the

state evolution, such as a random walk. I also assume a random walk model in Chapter V.

126

However, such a simple model likely cannot characterize the complex temporal dynamics

of networks such as social networks, which likely exhibit linear and non-linear trends,

periodicity, and change points among others. Capturing such dynamics fits nicely into the

state-space framework; however, many questions including model selection and evaluation

remain to be answered.

Another interesting area for future work involves combining models for dynamic net-

works with models of influence on networks. Most existing models for dynamic networks

assume that the network is passively observed. However in many situations, one might be

able to locally affect the network by exerting influence on other nodes. By combining net-

work models with influence models, one could possibly be able to predict the effects that

one’s actions could have on the network state in the future, which could have significant im-

plications for sociologists, marketers, computer scientists, and the intelligence community

among others.

127

BIBLIOGRAPHY

A. Ahmed and E. P. Xing. Dynamic non-parametric mixture models and the recurrent
chinese restaurant process: with applications to evolutionary clustering. In Proc. SIAM
International Conference on Data Mining, 2008.

A. Ahmed and E. P. Xing. Recovering time-varying networks of dependencies in social and
biological studies. Proceedings of the National Academy of Sciences, 106(29):11878–
11883, 2009.

E. M. Airoldi, D. M. Blei, S. E. Fienberg, and E. P. Xing. Mixed membership stochastic
blockmodels. Journal of Machine Learning Research, 9:1981–2014, 2008.

T. W. Anderson. An introduction to multivariate statistical analysis. Wiley, 3rd edition,
2003.

I. Androutsopoulos, J. Koutsias, K. V. Chandrinos, G. Paliouras, and C. D. Spyropoulos.
An evaluation of naive Bayesian anti-spam filtering. In Proc. Workshop on Machine
Learning in the New Information Age, 11th European Conference on Machine Learning,
2000.

M. Austin. Spam at epic levels, Nov. 2006. URL http://www.itpro.co.uk/
97589/spam-at-epic-levels.

M. Baur and T. Schank. Dynamic graph drawing in Visone. Technical report, 2008.

M. S. Bazaraa, H. D. Sherali, and C. M. Shetty. Nonlinear programming: Theory and
algorithms. Wiley, 2006.

M. Belkin and P. Niyogi. Laplacian eigenmaps for dimensionality reduction and data rep-
resentation. Neural Computation, 15(6):1373–1396, 2003.

S. Bender-deMoll and D. A. McFarland. The art and science of dynamic network visual-
ization. Journal of Social Structure, 7(2):1–38, 2006.

S. Bender-deMoll and D. A. McFarland. SoNIA - Social Network Image Animator, 2012.
URL http://www.stanford.edu/group/sonia/.

I. Borg and P. J. F. Groenen. Modern multidimensional scaling. Springer, 2nd edition,
2005.

128

http://www.itpro.co.uk/97589/spam-at-epic-levels
http://www.itpro.co.uk/97589/spam-at-epic-levels
http://www.stanford.edu/group/sonia/

U. Brandes and S. R. Corman. Visual unrolling of network evolution and the analysis of
dynamic discourse. Information Visualization, 2(1):40–50, 2003.

R. H. Byrd, M. E. Hribar, and J. Nocedal. An interior point algorithm for large-scale
nonlinear programming. SIAM Journal on Optimization, 9(4):877–900, 1999.

A. Carmi, F. Septier, and S. J. Godsill. The Gaussian mixture MCMC particle algorithm
for dynamic cluster tracking. In Proc. 12th International Conference on Information
Fusion, 2009.

X. Carreras and L. Marquez. Boosting trees for anti-spam email filtering. In Proc. Recent
Advances in Natural Language Processing, 2001.

D. Chakrabarti, R. Kumar, and A. Tomkins. Evolutionary clustering. In Proc. 12th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, 2006.

M. Chandrasekaran, K. Narayanan, and S. Upadhyaya. Phishing e-mail detection based on
structural properties. In Proc. 9th New York State Cyber Security Conference, 2006.

M. Charikar, C. Chekuri, T. Feder, and R. Motwani. Incremental clustering and dynamic
information retrieval. SIAM Journal on Computing, 33(6):1417–1440, 2004.

Y. Chen, A. Wiesel, Y. C. Eldar, and A. O. Hero III. Shrinkage algorithms for MMSE
covariance estimation. IEEE Transactions on Signal Processing, 58(10):5016–5029,
2010.

Y. Chi, X. Song, D. Zhou, K. Hino, and B. L. Tseng. Evolutionary spectral clustering by
incorporating temporal smoothness. In Proc. 13th ACM SIGKDD International Confer-
ence on Knowledge Discovery and Data Mining, 2007.

F. R. K. Chung. Spectral Graph Theory. American Mathematical Society, 1997.

J. A. Costa and A. O. Hero III. Classification constrained dimensionality reduction. In Proc.
IEEE International Conference on Acoustics, Speech, and Signal Processing, 2005.

G. Di Battista, P. Eades, R. Tamassia, and I. G. Tollis. Graph drawing: Algorithms for the
visualization of graphs. Prentice Hall, 1999.

E. Dimitriadou, A. Weingessel, and K. Hornik. A combination scheme for fuzzy clustering.
International Journal of Pattern Recognition and Artificial Intelligence, 16(7):901–912,
2002.

H. Drucker, D. Wu, and V. N. Vapnik. Support vector machines for spam categorization.
IEEE Transactions on Neural Networks, 10(5):1048–1054, 1999.

Z. Duan, K. Gopalan, and X. Yuan. Behavioral characteristics of spammers and their
network reachability properties. In Proc. IEEE International Conference on Communi-
cations, 2007.

129

N. Eagle, A. Pentland, and D. Lazer. Inferring friendship network structure by using mobile
phone data. Proceedings of the National Academy of Sciences, 106(36):15274–15278,
2009.

C. Erten, P. J. Harding, S. G. Kobourov, K. Wampler, and G. Yee. Exploring the computing
literature using temporal graph visualization. In Proc. Conference on Visualization and
Data Analysis, 2004.

S. Fortunato. Community detection in graphs. Physics Reports, 486(3–5):75–174, 2010.

Y. Frishman and A. Tal. Online dynamic graph drawing. IEEE Transactions on Visualiza-
tion and Computer Graphics, 14(4):727–740, 2008.

T. M. J. Fruchterman and E. M. Reingold. Graph drawing by force-directed placement.
Software: Practice and Experience, 21(11):1129–1164, 1991.

E. R. Gansner, Y. Koren, and S. North. Graph drawing by stress majorization. In Graph
Drawing, 2004.

Z. Ghahramani and S. T. Roweis. Learning nonlinear dynamical systems using an EM
algorithm. In Advances in Neural Information Processing Systems 11, 1998.

M. Girvan and M. E. J. Newman. Community structure in social and biological networks.
Proceedings of the National Academy of Sciences, 99(12):7821–7826, 2002.

A. Goldenberg, A. X. Zheng, S. E. Fienberg, and E. M. Airoldi. A survey of statistical
network models. Foundations and Trends R© in Machine Learning, 2(2):129–233, 2010.

A. Gretton, K. M. Borgwardt, M. Rasch, B. Schölkopf, and A. J. Smola. A kernel approach
to comparing distributions. In Proc. 22nd AAAI Conference On Artificial Intelligence,
2007.

F. Guo, S. Hanneke, W. Fu, and E. P. Xing. Recovering temporally rewiring networks: A
model-based approach. In Proc. 24th International Conference on Machine Learning,
2007.

C. Gupta and R. Grossman. GenIc: A single pass generalized incremental algorithm for
clustering. In Proc. SIAM International Conference on Data Mining, 2004.

K. M. Hall. An r-dimensional quadratic placement algorithm. Management Science, 17(3):
219–229, 1970.

A. C. Harvey. Forecasting, structural time series models and the Kalman filter. Cambridge
University Press, 1989.

T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical Learning: Data
Mining, Inference, and Prediction. Springer, 2001.

S. Haykin. Kalman filtering and neural networks. Wiley-Interscience, 2001.

130

I. Herman, G. Melançon, and M. S. Marshall. Graph visualisation and navigation in in-
formation visualisation: A survey. IEEE Transactions on Visualization and Computer
Graphics, 6(1):24–43, 2000.

Q. Ho, L. Song, and E. P. Xing. Evolving cluster mixed-membership blockmodel for time-
varying networks. In Proc. 14th International Conference on Artificial Intelligence and
Statistics, 2011.

A. E. Hoerl and R. W. Kennard. Ridge regression: Biased estimation for nonorthogonal
problems. Technometrics, 12(1):55–67, 1970.

P. D. Hoff, A. E. Raftery, and M. S. Handcock. Latent space approaches to social network
analysis. Journal of the American Statistical Association, 97(460):1090–1098, 2002.

P. Holland, K. B. Laskey, and S. Leinhardt. Stochastic blockmodels: First steps. Social
Networks, 5(2):109–137, 1983.

L. Hubert and P. Arabie. Comparing partitions. Journal of Classification, 2(1):193–218,
1985.

J. Jung and E. Sit. An empirical study of spam traffic and the use of DNS black lists. In
Proc. 4th Internet Measurement Conference, 2004.

T. Kamada and S. Kawai. An algorithm for drawing general undirected graphs. Information
Processing Letters, 31(12):7–15, 1989.

B. Karrer and M. E. J. Newman. Stochastic blockmodels and community structure in
networks. Physical Review E, 83:016107, 2011.

Y. Koren. On spectral graph drawing. In Proc. 9th International Computing and Combina-
torics Conference, 2003.

O. Ledoit and M. Wolf. Improved estimation of the covariance matrix of stock returns
with an application to portfolio selection. Journal of Empirical Finance, 10(5):603–621,
2003.

J. A. Lee and M. Verleysen. Nonlinear dimensionality reduction. Springer, 2007.

J. Leskovec. Dynamics of large networks. PhD thesis, Carnegie Mellon University, 2008.

J. Leskovec, K. J. Lang, A. Dasgupta, and M. W. Mahoney. Statistical properties of com-
munity structure in large social and information networks. In Proc. 17th International
Conference on the World Wide Web, 2008.

L. Leydesdorff and T. Schank. Dynamic animations of journal maps: Indicators of struc-
tural changes and interdisciplinary developments. Journal of the American Society for
Information Science and Technology, 59(11):1810–1818, 2008.

Y. Li, J. Han, and J. Yang. Clustering moving objects. In Proc. 10th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, 2004.

131

D. Liben-Nowell and J. Kleinberg. The link-prediction problem for social networks. Jour-
nal of the American Society for Information Science and Technology, 58(7):1019–1031,
2007.

R. N. Lichtenwalter, N. Dame, J. T. Lussier, and N. V. Chawla. New perspectives and
methods in link prediction. In Proceedings of the 16th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, 2010. ISBN 9781450300551.

Y. R. Lin, Y. Chi, S. Zhu, H. Sundaram, and B. L. Tseng. Analyzing communities and their
evolutions in dynamic social networks. ACM Transactions on Knowledge Discovery
from Data, 3(2):8, 2009.

H. Lütkepohl. Handbook of matrices. Wiley, 1997.

J. MacQueen. Some methods for classification and analysis of multivariate observations.
In Proc. 5th Berkeley Symposium on Mathematical Statistics and Probability, 1967.

S. Milgram. The small world problem. Psychology Today, 1(1):61–67, 1967.

G. W. Milligan and M. C. Cooper. An examination of procedures for determining the
number of clusters in a data set. Psychometrika, 50(2):159–179, 1985.

K. Misue, P. Eades, W. Lai, and K. Sugiyama. Layout adjustment and the mental map.
Journal of Visual Languages and Computing, 6(2):183–210, 1995.

MIT–WWW. MIT Academic Calendar 2004-2005, 2005. URL http://web.mit.
edu/registrar/www/calendar0405.html.

J. Moody, D. McFarland, and S. Bender-deMoll. Dynamic network visualization. American
Journal of Sociology, 110(4):1206–1241, 2005.

P. J. Mucha, T. Richardson, K. Macon, M. A. Porter, and J. P. Onnela. Community structure
in time-dependent, multiscale, and multiplex networks. Science, 328(5980):876–878,
2010.

J. Nazario. Third bad ISP disappears — McColo gone, Nov.
2008. URL http://ddos.arbornetworks.com/2008/11/
third-bad-isp-dissolves-mccolo-gone/.

T. M. Newcomb. The acquaintance process. Holt, Rinehart and Winston, 1961.

M. E. J. Newman. Modularity and community structure in networks. Proceedings of the
National Academy of Sciences, 103(23):8577–8582, 2006.

M. E. J. Newman and M. Girvan. Finding and evaluating community structure in networks.
Physics Review E, 69(2):026113, 2004.

A. Ng, M. Jordan, and Y. Weiss. On spectral clustering: Analysis and an algorithm. In
Proc. Advances in Neural Information Processing Systems 14, 2001.

132

http://web.mit.edu/registrar/www/calendar0405.html
http://web.mit.edu/registrar/www/calendar0405.html
http://ddos.arbornetworks.com/2008/11/third-bad-isp-dissolves-mccolo-gone/
http://ddos.arbornetworks.com/2008/11/third-bad-isp-dissolves-mccolo-gone/

H. Ning, W. Xu, Y. Chi, Y. Gong, and T. S. Huang. Incremental spectral clustering by
efficiently updating the eigen-system. Pattern Recognition, 43(1):113–127, 2010.

P. G. Nordlie. A longitudinal study of interpersonal attraction in a natural group setting.
PhD thesis, University of Michigan, 1958.

K. Nowicki and T. A. B. Snijders. Estimation and prediction for stochastic blockstructures.
Journal of the American Statistical Association, 96(455):1077–1087, 2001.

C. Parker. Boids pseudocode, 2007. URL http://www.vergenet.net/˜conrad/
boids/pseudocode.html.

C. E. Priebe, J. M. Conroy, D. J. Marchette, and Y. Park. Scan statistics on Enron graphs.
Computational & Mathematical Organization Theory, 11(3):229–247, 2005.

C. E. Priebe, J. M. Conroy, D. J. Marchette, and Y. Park. Scan statistics on Enron graphs,
2009. URL http://cis.jhu.edu/˜parky/Enron/enron.html.

M. Prince, B. Dahl, L. Holloway, A. Keller, and E. Langheinrich. Understanding how
spammers steal your e-mail address: An analysis of the first six months of data from
Project Honey Pot. In Proc. 2nd Conference on Email and Anti-Spam, 2005.

A. Ramachandran and N. Feamster. Understanding the network-level behavior of spam-
mers. In Proc. ACM SIGCOMM, 2006.

A. Ramachandran, D. Dagon, and N. Feamster. Can DNS-based blacklists keep up with
bots? In Proc. 3rd Conference on Email and Anti-Spam, 2006.

W. M. Rand. Objective criteria for the evaluation of clustering methods. Journal of the
American Statistical Association, 66(336):846–850, 1971.

C. W. Reynolds. Flocks, herds, and schools: A distributed behavioral model. In Proc.
14th ACM SIGGRAPH International Conference on Computer Graphics and Interactive
Techniques, 1987.

G. Robins, P. Pattison, Y. Kalish, and D. Lusher. An introduction to exponential random
graph (p∗) models for social networks. Social Networks, 29(2):173–191, 2007.

K. Rohe, S. Chatterjee, and B. Yu. Spectral clustering and the high-dimensional stochastic
blockmodel. Annals of Statistics, 39(4):1878–1915, 2011.

J. Rosswog and K. Ghose. Detecting and tracking spatio-temporal clusters with adaptive
history filtering. In Proc. 8th IEEE International Conference on Data Mining Workshops,
2008.

P. J. Rousseeuw. Silhouettes: a graphical aid to the interpretation and validation of cluster
analysis. Journal of Computational and Applied Mathematics, 20:53–65, 1987.

P. Sarkar and A. W. Moore. Dynamic social network analysis using latent space models.
ACM SIGKDD Explorations Newsletter, 7(2):31–40, 2005.

133

http://www.vergenet.net/~conrad/boids/pseudocode.html
http://www.vergenet.net/~conrad/boids/pseudocode.html
http://cis.jhu.edu/~parky/Enron/enron.html

J. Schäfer and K. Strimmer. A shrinkage approach to large-scale covariance matrix estima-
tion and implications for functional genomics. Statistical Applications in Genetics and
Molecular Biology, 4(1):32, 2005.

P. Shannon, A. Markiel, O. Ozier, N. S. Baliga, J. T. Wang, D. Ramage, N. Amin,
B. Schwikowski, and T. Ideker. Cytoscape: A software environment for integrated mod-
els of biomolecular interaction networks. Genome Research, 13(11):2498–2504, 2003.

J. Shi and J. Malik. Normalized cuts and image segmentation. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 22(8):888–905, 2000.

T. A. B. Snijders and K. Nowicki. Estimation and prediction for stochastic blockmodels
for graphs with latent block structure. Journal of Classification, 14(1):75–100, 1997.

J. Sun, S. Papadimitriou, P. S. Yu, and C. Faloutsos. Graphscope: Parameter-free mining
of large time-evolving graphs. In Proc. 13th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, 2007.

D. L. Sussman, M. Tang, D. E. Fishkind, and C. E. Priebe. A consistent adjacency spectral
embedding for stochastic blockmodel graphs. arXiv preprint, 2012.

L. Tang, H. Liu, J. Zhang, and Z. Nazeri. Community evolution in dynamic multi-mode
networks. In Proc. 14th ACM SIGKDD International Conference on Knowledge Discov-
ery and Data Mining, 2008.

R. Tibshirani. Regression shrinkage and selection via the lasso. Journal of the Royal
Statistical Society: Series B (Statistical Methodology), 58(1):267–288, 1996.

Unspam Technologies, Inc. Project Honey Pot, 2012. URL http://www.
projecthoneypot.org.

Visone–WWW. Visone, 2012. URL http://www.visone.info/.

U. von Luxburg. A tutorial on spectral clustering. Statistics and Computing, 17(4):395–
416, 2007.

Y. Wang, S. X. Liu, J. Feng, and L. Zhou. Mining naturally smooth evolution of clusters
from dynamic data. In Proc. SIAM International Conference on Data Mining, 2007.

S. Wasserman and P. Pattison. Logit models and logistic regressions for social networks: I.
an introduction to markov graphs and p∗. Psychometrika, 61(3):401–425, 1996.

D. J. Watts and S. H. Strogatz. Collective dynamics of ‘small-world’ networks. Nature,
393(6684):440–442, 1998.

A. H. Westveld and P. D. Hoff. A mixed effects model for longitudinal relational and
network data, with applications to international trade and conflict. Annals of Applied
Statistics, 5(2A):843–872, 2011.

134

http://www.projecthoneypot.org
http://www.projecthoneypot.org
http://www.visone.info/

D. M. Witten and R. Tibshirani. Supervised multidimensional scaling for visualization,
classification, and bipartite ranking. Computational Statistics & Data Analysis, 55(1):
789–801, 2011.

D. M. Witten, R. Tibshirani, and T. Hastie. A penalized matrix decomposition, with appli-
cations to sparse principal components and canonical correlation analysis. Biostatistics,
10(3):515–534, 2009.

E. P. Xing, W. Fu, and L. Song. A state-space mixed membership blockmodel for dynamic
network tomography. Annals of Applied Statistics, 4(2):535–566, 2010.

T. Xu, Z. Zhang, P. S. Yu, and B. Long. Evolutionary clustering by hierarchical Dirichlet
process with hidden Markov state. In Proc. 8th IEEE International Conference on Data
Mining, 2008a.

T. Xu, Z. Zhang, P. S. Yu, and B. Long. Dirichlet process based evolutionary clustering. In
Proc. 8th IEEE International Conference on Data Mining, 2008b.

T. Yang, Y. Chi, S. Zhu, Y. Gong, and R. Jin. Detecting communities and their evolutions
in dynamic social networks—a Bayesian approach. Machine Learning, 82(2):157–189,
2011.

S. X. Yu and J. Shi. Multiclass spectral clustering. In Proc. 9th IEEE International Con-
ference on Computer Vision, 2003.

J. Zhang, Y. Song, G. Chen, and C. Zhang. On-line evolutionary exponential family mix-
ture. In Proc. 21st International Joint Conference on Artificial Intelligence, 2009.

J. Zhang, Y. Song, C. Zhang, and S. Liu. Evolutionary hierarchical Dirichlet processes
for multiple correlated time-varying corpora. In Proc. 16th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, 2010.

Y. Zhao, E. Levina, and J. Zhu. On consistency of community detection in networks.
Technical report, 2011. arXiv:1110.3854v1 [math.ST].

135

	Dedication
	Acknowledgements
	Table of Contents
	List of Figures
	List of Tables
	List of Algorithms
	Abstract
	Introduction
	Scope
	Outline
	List of publications

	Revealing social networks of spammers
	Preliminaries
	Project Honey Pot
	Phishing
	Related work

	Overview of spectral clustering
	The graph partitioning problem
	Finding a near-optimal solution
	Choosing the number of clusters

	Analysis methodology
	Similarity measures
	Similarity in spam server usage
	Temporal similarity

	Creating the adjacency matrix

	Results
	Similarity in spam server usage
	Temporal similarity

	Summary

	Visualizing dynamic networks
	Background
	Multidimensional scaling
	Graph Laplacian layout

	Regularized layout methods
	Regularization framework
	Dynamic multidimensional scaling
	Dynamic graph Laplacian layout
	Discussion

	Related work
	Supervised dimensionality reduction
	Layout of dynamic networks

	Experiments
	Stochastic blockmodel
	Newcomb's fraternity
	MIT Reality Mining

	Summary
	DGLL solution in 2-D

	Tracking communities in dynamic networks
	Background
	Static clustering algorithms
	Agglomerative hierarchical clustering
	k-means
	Spectral clustering

	Related work
	Incremental clustering
	Evolutionary clustering

	Proposed evolutionary framework
	Smoothed proximity matrix
	Shrinkage estimation of true proximity matrix
	Block model for true proximity matrix
	Adaptive estimation of forgetting factor

	Evolutionary algorithms
	Agglomerative hierarchical clustering
	k-means
	Spectral clustering
	Practical issues
	Adding and removing objects over time
	Selecting the number of clusters
	Matching clusters between time steps

	Experiments
	Well-separated Gaussians
	Two colliding Gaussians
	Flocks of boids
	Fixed number of flocks
	Variable number of flocks

	Reality Mining

	Summary
	True similarity matrix for dynamic Gaussian mixture model

	State-space models for dynamic networks
	Related work
	Stochastic blockmodels for static networks
	State-space stochastic blockmodels for dynamic networks
	A priori blockmodeling
	A posteriori blockmodeling
	Time complexity
	Estimation of hyperparameters

	Experiments
	Simulated stochastic blockmodels
	Enron emails

	Summary

	Conclusions
	Bibliography

