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ABSTRACT
This paper presents a new Bayesian spectral unmixing algorithm to
analyse remote scenes sensed via multispectral Lidar measurements.
To a first approximation, each Lidar waveform consists of the tem-
poral signature of the observed target, which depends on the wave-
length of the laser source considered and which is corrupted by Pois-
son noise. When the number of spectral bands is large enough, it
becomes possible to identify and quantify the main materials in the
scene, on top of the estimation of classical Lidar-based range pro-
files. Thanks to its anomaly detection capability, the proposed hi-
erarchical Bayesian model, coupled with an efficient Markov chain
Monte Carlo algorithm, allows robust estimation of depth images to-
gether with abundance and outlier maps associated with the observed
3D scene. The proposed methodology is illustrated via experiments
conducted with real multispectral Lidar data.

Index Terms— Multispectral Lidar, Depth imaging, Robust
spectral unmixing, Anomaly detection, Markov Chain Monte Carlo.

1. INTRODUCTION

Laser altimetry (or Lidar) is an acknowledged tool for extracting spa-
tial structures from three-dimensional (3D) scenes. Using time-of-
flight to create a distance profile, signal analysis can recover, for
instance, tree and canopy heights, leaf area indices and ground slope
by analyzing the reflected photons from a target. Conversely, passive
multispectral (MSI) and hyperspectral images (HSI) are widely used
to extract spectral information about the scene which can also pro-
vide useful parameters about the canopy composition and/or health.
The most natural evolution to extract spatial and spectral information
from sensed scenes is to couple Lidar data and multi/hyperspectral
images [1, 2]. Although the fusion of Lidar data and HSIs can im-
prove scene characterization, data synchronization issues in space
(alignment, resolution) and time (dynamic scene, change of observa-
tion conditions, etc.) are still open issues. For these reasons, multi-
spectral Lidar (MSL) has recently received attention from the remote
sensing community for its ability to extract both structural and spec-
tral information from 3D scenes [3–5]. The key advantage of MSL
is the ability to potentially provide information on the full 3D distri-
bution of materials, especially for scenes including semi-transparent
objects (e.g., vegetation or fences). Another motivation for MSL
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is that HSI, even when fully synchronized, can only integrate the
spectral response along the path of each optical ray, not measure the
spectral response as a function of distance, e.g. depth into a for-
est canopy. In [5, 6], spectral unmixing techniques were developed
to analyze 3D scenes composed of multi-layered objects, assuming
that the spectral signatures of the materials composing the scenes
were known and assuming linear mixing processes. In this paper we
extend the method proposed in [5] to account for and identify pos-
sible deviations from the classical linear mixing model (LMM) used
to estimate the amount/abundances of each endmember (assumed
known) present in the scene. We assume that for each pixel, the pho-
tons emitted by the pulsed laser sources at different wavelength are
reflected onto a single surface. This is typically the case for short to
mid-range (up to dozens of meters) depth imaging where the diver-
gence of the laser source(s) can be neglected.

Single-photon Lidar and thus MSL systems usually record, for
each pixel/region of the scene, a histogram of time delays between
emitted laser pulses and the detected photon arrivals. Due to the
discrete nature of detected photons, Poisson noise models are more
appropriate for single-photon MSL data than Gaussian noise models
classically used when analysing HSIs. Due to the design of the pro-
posed experiments (performed indoor here) and to simplify the esti-
mation problem, we further assume that the ambient light and dark
counts can be neglected. In this paper, we demonstrate the possibility
of efficient 3D scene analysis by exploiting geometric and spectral
information contained in MSL data (33 wavelengths ranging from
500nm to 820nm), under favourable observation conditions. How-
ever, the proposed method can be easily extended to more difficult
observation conditions, as discussed in the conclusions of the paper.

Adopting a classical Bayesian approach, appropriate prior dis-
tributions are chosen for the unknown parameters of the model and
the joint posterior distribution of these parameters is then derived.
A Markov chain Monte Carlo (MCMC) method is used to generate
samples according to the posterior of interest. This fully Bayesian
approach allows a careful study of the estimation performance
(through the derivation of measures of uncertainty). Although very
interesting, algorithmic improvement in terms of computational
complexity is out of scope of this paper and is worthy of more effort
which we will report in future work.

The remainder of the paper is organized as follows. Section 2
introduces the observation model associated with MSL returns for a
single-layered object to be analyzed. Section 3 presents the hierar-
chical Bayesian model associated with the robust spectral unmixing
problem considered and the associated posterior distribution. Sec-
tion 4 describes the MCMC method used to sample from the poste-
rior of interest and subsequently approximate appropriate Bayesian



estimators. Results of experiments conducted on real MSL data are
shown and discussed in Section 5 and conclusions are finally re-
ported in Section 6.

2. PROBLEM FORMULATION

This section introduces the observation statistical model associated
with MSL returns for a single-layered object which will be used in
Section 3 for robust spectral unmixing of MSL data. We consider a
4-D array Y of Lidar waveforms and of dimension Nrow × Ncol ×
L × T , where Nrow and Ncol stands for the number of rows and
columns of the regular spatial sampling grid (in the transverse plane),
L is the number of spectral bands or wavelengths used to reconstruct
the scene and T is the number of temporal (corresponding to range)
bins. Let yi,j,` = [Y]i,j,`,t = [yi,j,`,1, . . . , yi,j,`,T ]

T be the Lidar
waveform obtained in the pixel (i, j) using the `th wavelength. The
element yi,j,`,t is the photon count within the tth bin of the `th spec-
tral band considered. Let di,j be the position of an object surface at a
given range from the sensor, whose spectral signature (observed at L
wavelengths) is denoted as λi,j = [λi,j,1, . . . , λi,j,L]

T . According
to [7,8] and assuming that the ambient illumination and dark photon
counts can be neglected, each photon count yi,j,`,t is assumed to be
drawn from the following Poisson distribution

yi,j,`,t|λi,j,`, ti,j ∼ P (λi,j,`g0,`(t− ti,j)) (1)

where g0,`(·) is the photon impulse response whose shape can differ
between wavelength channels and ti,j is the characteristic time-of-
flight of photons emitted by a pulsed laser source and reaching the
detector after being reflected onto a target at range di,j (di,j and
ti,j are linearly related in free-space propagation). Moreover, the
impulse responses {g0,`(·)} are assumed to be known and can usu-
ally be estimated during the imaging system calibration. We further
assume that the spectral signatures of the scene surfaces can be de-
composed as linear mixtures of R known spectral signatures mr

(also referred to as endmembers and gathered in the matrix M =
[m1, . . . ,mR]) possibly corrupted by sparse anomalies, that is

λi,j = Mai,j + ri,j , ∀i, j, (2)

where ai,j = [ai,j,1, . . . , ai,j,R]
T contains the abundances of the R

endmembers in the pixel (i, j) and ri,j ∈ RL
+ is a sparse anomaly

vector. In a similar fashion to [9, 10], these anomalies or deviations
to the LMM can be due to actual outliers/corrupted data, nonlinear
spectral mixtures or intrinsic endmember variability. Note that due
to physical considerations the unknown abundance vectors {ai,j}i,j
are assumed to have positive entries. It is important to recall that
in this work, we consider applications where the observed objects
consist of a single visible surface per pixel. We do not consider
cases where the photons can penetrate through objects (e.g., semi-
transparent materials for which we would like to infer the internal
composition) or be reflected onto multiple surfaces. This assumption
allows the spectral unmixing problem to be reduced to a two spatial
dimensions problem, which could be extended for distributed tar-
gets in future work (see Conclusion). The problem addressed in this
paper consists of jointly estimating the range of the targets (for all
the image pixels) and solving the robust spectral unmixing problem
(e.g., estimating the abundance vectors and identifying the pixels
corrupted by anomalies). The next section studies a new Bayesian
model developed to solve the problem considered.

3. BAYESIAN MODEL

3.1. Likelihood

Assuming that the MSL waveforms yi,j = {yi,j,`,t}`,t of a
given pixel (i, j) result from the photons reflection onto a sur-
face associated with the spectrum λi,j , the likelihood associated
with the pixel (i, j) can be expressed as f(yi,j |λi,j , ti,j) =∏

`,t fP(yi,j,`,t;λi,j,`g0,`(t − ti,j)) , when assuming that the de-
tected photon counts/noise realizations, conditioned on their mean
in all channels/spectral bands are independent. Considering that the
noise realizations in the different pixels are independent, the joint
likelihood can be expressed as

f(Y|Λ,T) =
∏
i,j

f(yi,j |λi,j , ti,j), (3)

where Λ = {λi,j}i,j and T is a matrix gathering the target ranges.

3.2. Prior distributions

In this work, we do not account for the potential spatial correlations
between the target distances in neighbouring pixels of the scene.
Thus, each target position is considered as a discrete variable de-
fined on T = {tmin, . . . , tmax}, such that 1 ≤ tmin ≤ tmax ≤ T
(in this paper we set (tmin, tmax) = (1, T )) and assign the target
ranges independent uniform priors p(ti,j = t) = 1/T ′, ∀t ∈ T,
where T ′ = card(T). Note that more informative priors could be
used, e.g., to capture potential spatial correlations affecting the range
profiles, as in [8]. However, when the number of spectral bands L
considered and the number of detected photon are significant, the
depth estimation does not require informative regularization (as the
L bands are used to estimate ti,j). For this reason and for paper
length constraints, we simply consider uniform priors here.

The following classical conjugate gamma/inverse-gamma prior
model

ai,j,r|θr ∼ G(ai,j,r|1, θr), (4a)
θr ∼ IG(θr; ε, ε), (4b)

is assigned to the unknown abundances, where θr controls the prior
mean and variance of the abundances of the rth endmember and ε is
fixed to ε = 10−2, yielding weakly informative prior models. Note
that the hierarchical model (4) promotes abundance sparsity and as-
sumes that the abundances of a given material share a priori similar
statistical properties (through rk) while being flexible enough to al-
low to wide range of abundance values. Note also that prior models
promoting abundance spatial smoothness could also be used, in a
similar fashion to [8].

As in [9, 10], the outliers are assumed to be sparse, i.e.,
for most of the pixels and spectral bands, the outliers are ex-
pected to be exactly equal to zero. To model the outlier spar-
sity, we factorize the outlier matrix as ri,j = zi,j � xi,j , where
zi,j = [zi,j,1, . . . , zi,j,L]

T ∈ {0, 1}L is a label vector, xi,j ∈ RL

and � denotes the Hadamard (term-wise) product. This decompo-
sition allows one to decouple the location of the sparse components
from their values. More precisely, zi,j,n = 1 if an outlier is present
in the `th spectral band of the pixel (i, j) with value equal to
ri,j,` = xi,j,`. Assuming the potential anomalies a priori share the
same statistical properties, we consider the following independent
conjugate gamma priors

xi,j,`|α, β ∼ G(xi,j,`;α, β), ∀i, j, `, (5)



where (α, β) are arbitrarily fixed parameters (we set (α, β) =
(2, 0.5) here from preliminary runs for brevity but these parame-
ters could also be estimated by including them in the hierarchical
Bayesian model).

For many applications, the locations of outliers are likely to be
spectrally (e.g., water absorption bands) and/or spatially (weakly
represented components, local nonlinear mixtures,. . . ) correlated.
An interesting way to take correlated outliers/nonlinear effects into
account is to consider Markov random fields (MRF) to build a joint
prior for the anomaly labels in Z = {zi,j}i,j . In this paper, we use
the Ising model proposed in [10] for robust linear unmixing of HSIs
to define the prior f(Z) (this model is not detailed here for brevity
and the interested reader is invited to consult [10] for discussions
about the Ising model considered).

3.3. Joint Posterior distribution

From the joint likelihood and prior model specified in Sections
3.1 and 3.2, we can now derive the joint posterior distribution for
T,A = {ai,j} ,Z,X = {xi,j} and θ = [θ1, . . . , θR]

T , given the
observed waveforms Y and the value of the fixed hyperparameters
Φ = (η, α, β). Using Bayes’ theorem, and assuming prior inde-
pendence between T, A, X and Z, the joint posterior distribution
associated with the proposed Bayesian model is given by
f(T,A,Z,X,θ|Y,Φ)

∝ f(Y|T,A,Z,X)f(A|θ)f(T)f(θ|ε)f(X|α, β)f(Z) (6)

4. ESTIMATION STRATEGY

The posterior distribution (6) models our complete knowledge about
the unknowns given the observed data and the prior information
available. To perform joint depth estimation and spectral unmix-
ing of the MSL data, we use the following four Bayesian estimators:
1) the minimum mean square error estimator (MMSE) of the abun-
dances, 2) the marginal maximum a posteriori (MMAP) estimator of
target ranges, 3) the MMAP estimator of the anomaly labels and 4)
conditionally on the estimated outliers location, the MMSE estima-
tor of the anomaly values (in a similar fashion to [11]). Note that
we use the MMAP estimators for the target ranges and labels, as this
estimator is particularly adapted to estimate discrete parameters.

In order to approximate these estimators of interest, we adopt
a fully Bayesian approach and consider a Markov chain Monte
Carlo method to generate samples according to the joint posterior
(6). More precisely, we use a Metropolis-within-Gibbs sampler (in-
cluding Hamiltonian Monte Carlo (HMC) updates [12]) to generate
sequentially the unknown parameters from their conditional distri-
butions and the samples are then used to approximate the Bayesian
estimators of interest (after having discarded the first samples asso-
ciated with the burn-in period of the sampler).

As in [8], the depth parameters can be updated in a parallel man-
ner by sampling from discrete (with finite supports) distributions. In
a similar fashion to [10], sampling each label zi,j,` from its condi-
tional distribution can be achieved by drawing in {0, 1} with known
probabilities. In our experiments we used a Gibbs sampler imple-
mented using a colouring scheme such that many labels can be up-
dated in parallel.Regarding the abundance updates, it can be shown
that the NrowNcol abundances vectors are a posteriori conditionally
independent and can thus be updated independently (and thus in a
parallel manner). It can also be shown that their conditional distri-
butions, although non-standard, are log-concave and we use HMC

updates to sample the abundances (as in [11]). Similarly, HMC up-
dates are used to update the anomaly values in X. Finally, using the
conjugacy of (4a) and (4b), updating θr can be achieved by sampling
from inverse-gamma distributions.

5. RESULTS

We propose comparing the performance of the proposed method to
analyze the depth and spectral profiles of an approximately 5× 5cm
scene (see Fig. 1 (a)) composed of different objects made of poly-
mer clay and mounted on a dark-grey backboard at a distance of
1.8m from a time-of-flight scanning sensor, based on time-correlated
single photon counting (TCSPC). The 16 clay objects have been cre-
ated by mixing 4 different clays (green, red, blue and orange) with
known proportions (volume fractions). The transceiver system and
data acquisition hardware used for this work is broadly similar to
that described in [13,14], which was previously developed at Heriot-
Watt University. The measurements have been performed indoor, in
the dark to limit the influence of ambient illumination. The scene
has been scanned using a regular spatial grid of 190 × 190 pixels
and L = 33 regularly spaced wavelengths ranging from 500nm to
820nm. The histograms consist of T = 3000 bins of 2ps, which
represents a depth resolution of 300µm per bin. The power of the su-
percontinuum laser source has been adjusted from preliminary runs
and the per-pixel acquisition time is 10ms for each wavelength. The
instrumental impulse responses g0,`(·) were estimated from prelim-
inary experiments by analyzing the distribution of photons reflected
onto a Spectralon panel (a commercially available Lambertian scat-
terer). The proposed algorithm has been applied with NMC = 5000
sampler iterations (including Nbi = 2000 burn-in iterations). Fig.
1 (b) shows the estimated depth/range image which is in very good
agreement with the structure of the scene in Fig. Fig. 1 (a) (the
reference range being set to the range of the backboard).

(a)

(b) (c)

Fig. 1. (a): Standard RGB image of the scene composed of differ-
ent coloured clays fixed on a dark-grey backboard. (b) Estimated
depth/range image in millimetre (the reference range corresponds to
the backboard range). (c) Anomaly map (log(‖ri,j‖2 /L)) associ-
ated with the region of interest.



Fig. 2. Spectral signatures of the backboard and the 4 polymer clays
(green, red, blue and orange)mixed to create the objects of the scene.

Fig. 2 shows the spectral signatures of the backboard and the 4
kinds of clay used to create the objects. This figure highlights the
fact that the blue clay and the backboard have low reflectances and
present very similar profiles from 550nm to 750nm, which makes
the unmixing problem particularly difficult.

Fig. 3. Top: reference abundances (computed from volume fractions
for mixtures of clays) associated with the R = 5 main materials
composing the scene. Bottom: Abundance maps estimated by the
proposed method (all images have the same dynamic, i.e., between
0 and 1).

Fig. 3 compares the estimated abundances to the reference mix-
ing coefficients (volume fractions) used to create the scene. The es-
timated abundances are generally in good agreement with the refer-
ence images as it is possible to identify the regions where the differ-
ent clays are present. However, significant difference appear in the
blue clay and backboard abundances maps, mainly due to the rea-
sons mentioned above. Note also that the reference volume fractions
do not necessarily translate directly into the abundances involved in
the spectral mixtures, (which is why the top sub-images of Fig. 3 are
referred to as reference and not ground truth). This can explain the
difference between the reference and estimated maps.

Finally, Fig. 1 (c) shows the estimated anomaly map. This figure
highlights a first region of significant deviations from the classical
LMM, in the central region of the scene (two horizontal stripes).
These deviations (high reflectivities between 750nm and 820nm)
correspond to the presence of residual glue used to fix the clay ob-
jects on the backboard. The second region of less significant devi-
ations (top left corner, mixture of red and blue clays) are detected
between 500nm and 550nm correspond to a shift of the edge present
in the red clay spectrum (see Fig. 2) toward the left and might be
due to nonlinear mixing effects. Indeed these effects can also be
observed less clearly in the top right corner of the scene (mixture
of orange and blue clays). It seems reasonable to think that the re-
maining regions, of lower anomaly levels, are mainly affected by the
spectral variability of the materials considered.

6. CONCLUSION

We proposed a new Bayesian model and a joint depth estimation
and robust spectral unmixing algorithm for 3D scene analysis from
MSL data. Assuming the ambient illumination can be neglected, the
spectra of the scene surfaces visible by the imaging system were de-
composed into linear mixtures of known endmembers, potentially
corrupted by sparse deviations/anomalies. Adopting a Bayesian ap-
proach, prior distributions were assigned to the unknown model pa-
rameters; in particular, a 3D Ising model was used to model the spa-
tial organization of the anomalies. Including ambient illumination
and dark count levels in the observation model (as in [8, 14–16]) is
the obvious next step from a more general application (especially for
long-range imaging applications) of the proposed method. In future
work, and especially for remote sensing applications, it will be cru-
cial to account for the presence of distributed (multi-layered) targets,
which would yield multiple returns in the MSL data. This could po-
tentially allows the estimation of real 3D abundance profiles
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