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Abstract—The three-node multiterminal lossy source coding
problem is investigated. We derive an inner bound to the general
rate-distortion region of this problem which appears to be the
natural extension of the seminal work by Kaspi [1] on the
interactive two-terminal source coding problem. It is shown
that this –rather involved– inner bound contains several rate-
distortion regions of some relevant source coding settings. In
this way, besides the non-trivial extension of the interactive two
terminal problem, our results can be seen as a generalization
and hence unification of several previous works in the field.

I. INTRODUCTION

Efficient distributed data compression enormous relevance
as larger. Data compression may be the only way to guarantee
acceptable levels of performance, e.g., anomaly detection,
when energy and link bandwidth are severely limited as in
many real world sensor networks. The distributed data col-
lected by different nodes in a network can be highly correlated
and this correlation can be exploited at the application layer,
e.g., for target localization and tracking or anomaly detection.
In such cases cooperative joint data-compression can achieve
a better overall rate-distortion tradeoff that can independent
compression at each node. Interaction among nodes may
take place via distributed/successive refinement source coding,
where nodes exchange –interactively– data among themselves
over a given number of communication rounds.

The value of interaction for source coding problems was
first recognized by Kaspi in his seminal work [1], where
the interactive two-terminal lossy source coding problem was
introduced and solved under the assumption of a finite number
of communication rounds. Although several extensions to this
problem exists (e.g. see [2]–[4] and references therein), to the
best of our knowledge, a proper generalization of this setting
to interactive multiterminal (> 2) lossy source coding has not
be studied yet.

In this paper, we consider the three-terminal interactive
lossy source coding problem presented in Fig. 1. We have a
network composed of 3 nodes which can interact through rate-
limited –error free– links. Each node measures the realization
of a discrete memoryless source (DMS) and is required to
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Figure 1: Three-terminal interactive source coding network.

reconstruct the sources from the other terminals with a fidelity
criterion. Nodes are allowed to interact by interchanging
information over a finite number of communication rounds.
After the information exchange phase is over, the nodes try to
reconstruct the realization of the sources at the other nodes
using all decoded descriptions. We first derive a general
achievable region by assuming a finite number of rounds.
Then, we show that this inner bound to the rate-distortion
region allows us to recover several previous inner bounds and
rate-distortion regions of some well-known interactive –as well
non-interactive– lossy source coding problems. We summarize
the notation. Boldface letters xn and upper-case letters Xn are
used to denote vectors and random vectors of n components,
respectively. All alphabets are assumed to be finite. Entropy
is denoted by H(·) and mutual information by I(·; ·). Let
X , Y and V be three random variables on some alphabets
with probability distribution p. If p(x|yv) = p(x|y) for each
x, y, v, then they form a Markov chain, which is denoted by
X −
−Y −
−V . The set of strong typical sequences is denoted
by T n[X]ε. We simply denote these sets as T nε when clear from
the context. The cardinal of set A is denoted by ‖A‖.

II. PROBLEM STATEMENT AND MAIN RESULT

A. Problem definition

Assume three DMS’s with alphabets and pmfs given by
(X1 ×X2 ×X3, pX1X2X3

). Consider arbitrary distortion mea-
sures: di : Xi × X̂i → R≥0, i ∈ M , {1, 2, 3} where {X̂i}
are finite reconstruction alphabets. We consider the problem



of characterizing the rate-distortion region of the interactive
source coding setting described in Fig. 1. In this setting,
through K rounds of information exchange between the nodes
each one of them will attempt to recover a lossy description
of the sources that the others nodes observe, e.g., node 1
must reconstruct –while satisfying distortion constraints– the
realization of the sources Xn

2 and Xn
3 observed by nodes 2

and 3. Indeed, this setting can be seen as a generalization of
the well-known Kaspi’s problem.

Definition 1 (K-step interactive source code): A K-step
interactive source code

(
n,
{
f lx1

, f lx2
, f lx3

}K
l=1

, g12, g13, g21,

g23, g31, g32
)

for the network model in Fig. 1 is defined by a
sequence l ∈ [1 : K] of encoder mappings:

f lx1
:Xn1 ×

(
J 1
x2
× J 1

x3
× · · · × J l−1x2

× J l−1x3

)
−→ J lx1

,

f lx2
:Xn2 ×

(
J 1
x1
× J 1

x3
× · · · × J lx1

× J l−1x3

)
−→ J lx2

,

f lx3
:Xn3 ×

(
J 1
x1
× J 1

x2
× · · · × J lx2

× J lx3

)
−→ J lx3

,

with message sets: J lxi
,
{

1, 2, . . . , Ilxi

}
, Ilxi

∈ Z≥0, and
reconstruction mappings:

gij : Xni ×
⊗

m∈M, m 6=i

(
J 1
xm
× · · · × JKxm

)
−→ X̂nj , i 6= j.

The distortion is defined as the average of the per-letter
distortion di (xn, yn) ≡ 1

n

∑n
m=1 di(xm, ym) .

Definition 2 (Achievability and rate-distortion region):
The tuple of rates and distortions (R1, R2, R3) and
D , (D12, D13, D21, D23, D31, D32), respectively, are
(K,D)-achievable if ∀ε > 0 exists a K-step interactive
source code with rates satisfying:

1

n

K∑
l=1

log ‖J lxi
‖ ≤ Ri + ε, i ∈M

and whose corresponding mean distortions verify:

E
[
di(X

n
i , X̂

n
ji)
]
≤ Dji + ε, i, j ∈M, i 6= j ,

where X̂n
ij ≡ gij (Xn

i , hi (Xn
1 , X

n
2 , X

n
3 )) i 6= j ∈M with

hi (Xn
1 , X

n
2 , X

n
3 ) ≡

⊗
m∈M, m 6=i

(
J 1
xm
× · · · × JKxm

)
.

The rate-distortion regionRK(D) is the set of all
(
R1, R2, R3,

K,D
)
-achievable tuples. Similarly, the D-achievable region

R(D) is given by R(D) = co
(⋃∞

K=1RK(D)
)
, where co (·)

denotes the closure of the convex hull.
Remark 1: Using a time-sharing argument it is easy to show

that RK(D) is closed and convex ∀K ∈ Z≥0.
Remark 2: RK(D) depends on the node ordering in the

encoding procedure. Above we defined the encoding functions{
f lx1

, f lx2
, f lx3

}K
l=1

assuming that in each round node 1 acts
first, followed by node 2, and finally by node 3, and the process
begins again from node 1. For simplicity and without loss of
generality, we will assume the canonical ordering (1→ 2→
3). However, there are 3! = 6 different orderings that may lead
to different rate-distortion regions.

B. Inner bound to the rate-distortion region
We present an achievable rate-region where each node at a

given round l will generate descriptions destined to the other
nodes based on the realization of its own source, the past
descriptions generated by him and the descriptions generated
at the other nodes and recovered by him up to the present
round. In order to precisely describe the complex rate-region,
we need to introduce some definitions. For a set M, let
C (M) = 2M \ {M, ∅} be the set of all subsets of M minus
M and the empty set. Denote the auxiliary random variables:

Ui→S,l, S ∈ C (M) , i /∈ S, l = 1, . . . ,K. (1)
Auxiliary random variables {Ui→S,l} will be used to denote
the descriptions in node i and at round l and intended to a set
of nodes S ∈ C (M) with i /∈ S1. Similarly, {U1→2,l} will
be used to denote the descriptions in node 1 at round l and
destined only to node 2. Let us also define variables:
W[i,l] ≡ Common information shared by the three nodes

available at node i at round l before encoding

V[S,l,i] ≡ Private information shared by nodes in S ∈ C (M)
available at node i ∈ S, at round l, before encoding

As an example of the above definitions, we may have:

W[1,l]={U1→23,k, U2→13,k, U3→12,k}l−1k=1

W[2,l]=W[1,l] ∪ U1→23,l, W[3,l] =W[2,l] ∪ U2→13,l

V[12,l,1]={U1→2,k, U2→1,k}l−1k=1 , V[12,l,2] = V[12,l,1] ∪ U1→2,l

V[13,l,1]={U1→3,k, U3→1,k}l−1k=1 , V[13,l,3] = V[13,l,1] ∪ U1→3,l

V[23,l,2]={U2→3,k, U3→2,k}l−1k=1 , V[23,l,3] = V[23,l,2] ∪ U2→3,l

Theorem 1 (Inner bound): Let R̄K(D) be the set of tuples:

R1≥
K∑
l=1

(
R

(l)
1→23 +R

(l)
1→2 +R

(l)
1→3

)
(2)

R2≥
K∑
l=1

(
R

(l)
2→13 +R

(l)
2→1 +R

(l)
2→3

)
(3)

R3≥
K∑
l=1

(
R

(l)
3→12 +R

(l)
3→1 +R

(l)
3→2

)
(4)

R1 +R2≥
K∑
l=1

(
R

(l)
1→23 +R

(l)
2→13 +R

(l)
1→3

+R
(l)
2→3 +R

(l)
1→2 +R

(l)
2→1

)
(5)

R1 +R3≥
K∑
l=2

(
R

(l)
1→23 +R

(l−1)
3→12 +R

(l)
1→2 +R

(l−1)
3→2 (6)

+R
(l)
1→3 +R

(l)
3→1

)
+
(
R

(1)
1→23 +R

(1)
1→2 +R

(1)
1→3 +R

(1)
3→1

+R
(K)
3→12 +R

(K)
3→2

)
(7)

R2+R3 ≥
K∑
l=1

(
R

(l)
2→13 +R

(l)
3→12 +R

(l)
2→1 +R

(l)
3→1

+R
(l)
2→3 +R

(l)
3→2

)
(8)

1U1→23,l is to be used to generate the descriptions in node 1 and round l
and destined to be transmitted to nodes 2 and 3.



Then, the rate-distortion region satisfies:

co

 ⋃
p∈P(D)

R̄K(D)

 ⊆ RK(D) , (9)

where

R
(l)
1→23>max

{
I(X1;U1→23,l|X3W[1,l])

−I(X3;U2→13,l|W[2,l]), I(X1;U1→23,l|X2W[1,l])
}

(10)

R
(l)
2→13>max

{
I(X2;U2→13,l|X1W[2,l])

−I(X1;U3→12,l|W[3,l]), I(X2;U2→13,l|X3W[2,l])
}

(11)

R
(l)
3→12>max

{
I(X3;U3→12,l|X2W[3,l])

−I(X2;U1→23,l|W[1,l+1]), I(X3;U3→12,l|X1W[3,l])
}

(12)

R
(l)
1→23+R

(l)
2→13 > I(X1X2;U1→23,lU2→13,l|X3W[1,l]) (13)

R
(l)
2→13+R

(l)
3→12 > I(X2X3;U2→13,lU3→12,l|X1W[2,l]) (14)

R
(l−1)
3→12+R

(l)
1→23 > I(X1X3;U1→23,lU3→12,l−1|X2W[3,l−1])(15)

R
(l−1)
3→2 >I(X3;U3→2,l−1|X2W[1,l]V[23,l−1,3]V[12,l,1])
−I(U3→2,l−1;U1→23,lU1→2,l|X2W[1,l]V[23],l−1,3V[12,l,1]) (16)

R
(l)
1→2>I(X1;U1→2,l|X2W[2,l]V[23,l,2]V[12,l,1]) (17)

R
(l)
1→2+R

(l−1)
3→2 > I(X1;U1→2,l|X2W[2,l]V[23,l,2]V[12,l,1])

+I(X3;U3→2,l−1|X2W[1,l]V[23,l−1,3]V[12,l,1])
−I(U3→2,l−1;U1→23,l|X2W[1,l]V[23],l−1,3V[12,l,1]) (18)

R
(l)
1→3>I(X1;U1→3,l|X3W[2,l]V[23,l,2]V[13,l,1])
−I(U1→3,l;U2→13,lU2→3,l|X3W[2,l]V[23,l,2]V[13,l,1]) (19)

R
(l)
2→3>I(X2;U2→3,l|X3W[3,l]V[23,l,2]V[13,l,3]) (20)

R
(l)
1→3+R

(l)
2→3 > I(X1;U1→3,l|X3W[2,l]V[23,l,2]V[13,l,1])
+I(X2;U2→3,l|X3W[3,l]V[23,l,2]V[13,l,3])

−I(U1→3,l;U2→13,l|X3W[2,l]V[23,l,2]V[13,l,1]) (21)

R
(l)
2→1>I(X2;U2→1,l|X1W[3,l]V[12,l,2]V[13,l,3])
−I(U2→1,l;U3→12,lU3→1,l|X1W[3,l]V[12,l,2]V[13,l,3]) (22)

R
(l)
3→1>I(X3;U3→1,l|X1W[1,l+1]V[12,l+1,1]V[13,l,3]) (23)

R
(l)
2→1+R

(l)
3→1 > I(X2;U2→1,l|X1W[3,l]V[12,l,2]V[13,l,3])

+I(X3;U3→1,l|X1W[1,l+1]V[12,l+1,1]V[13,l,3])
−I(U2→1,l;U3→12,l|X1W[3,l]V[12,l,2]V[13,l,3]) .(24)

and P(D,K) denote the set of all joint probability measures
satisfying the following Markov chains for every l ∈ [1 : K]:

1) U1→23,l−
− (X1W[1,l])−
− (X2X3V[12,l,1]V[13,l,1]V[23,l,2])
2) U1→2,l −
− (X1W[2,l]V[12,l,1])−
− (X2X3V[13,l,1]V[23,l,2])
3) U1→3,l −
− (X1W[2,l]V[13,l,1])−
− (X2X3V[12,l,2]V[23,l,2])
4) U2→13,l−
− (X2W[2,l])−
− (X1X3V[12,l,2]V[13,l,3]V[23,l,2])
5) U2→1,l −
− (X2W[3,l]V[12,l,2])−
− (X1X3V[13,l,3]V[23,l,2])
6) U2→3,l−
−(X2W[3,l]V[23,l,2])−
−(X1X3V[12,l+1,1]V[13,l,3])

7) U3→12,l−
−(X3W[3,l])−
−(X1X2V[12,l+1,1]V[13,l,3]V[23,l,3])
8) U3→1,l−
−(X3W[1,l+1]V[13,l,3])−
−(X1X2V[12,l+1,1]V[23,l,3])
9) U3→2,l−
−(X3W[1,l+1]V[23,l,3])−
−(X1X2V[12,l+1,1]V[13,l+1,1])

such that there exist mappings:

g̃ji
(
X1,V[ji,K+1,1],W[1,K+1]

)
= X̂ji (25)

with E
[
di(Xi, X̂ji)

]
≤ Dji for each i, j ∈M and i 6= j.

III. CASES OF SPECIAL INTEREST AND RELATED WORK

Several inner bounds and rate-distortion regions on multiter-
minal source coding problems can be derived by specializing
the inner bound (9). Below we summarize only a few of them
for lack of space.

1) Distributed source coding with side information [5],
[6]: Consider the distributed source coding problem where
two nodes encode separately sources X1 and X2 to rates
(R1, R2) and a decoder by using side information X3 must
reconstruct both sources with average distortion less than D1

and D2, respectively. By considering only one round/way
information exchange from nodes 1 and 2 (the encoders) to
node 3 (the decoder), the results in [5], [6] can be recovered
as a special case of the inner bound (9). Specifically, we
set: U1→23,l = U2→13,l = U3→12,l = U1→2,l = U2→1,l =
U3→1,l = U3→2,l = ∅, ∀l and U1→3,l = U2→3,l = ∅, ∀l > 1.
In this case, the above Markov chains imply: U1→3,1−
−X1−

− (X2X3U2→3,1) and U2→3,1−
−X2−
− (X1X3U1→3,1) and
thus the rate-distortion region (9) reduces to the results in [6]

R1>I(X1;U1→3,1|X3U2→3,1), R2 > I(X2;U2→3,1|X3U1→3,1)

R1 +R2 > I(X1X2;U1→3,1U2→3,1|X3) .

2) Source coding with side information at 2-decoders [7],
[8]: Consider the setting where one encoder X1 transmits
descriptions to two decoders with different side informations
(X2, X3) and distortion requirements D2 and D3. Again we
consider only one way/round information exchange from node
1 (the encoder) to nodes 2 and 3 (the decoders). In this
case, we set: U2→13,l = U3→12,l = U2→1,l = U3→1,l =
U3→2,l = U2→3,l = ∅, ∀l and U1→23,l = U1→23,l =
U1→2,l = U1→3,l = ∅, ∀l > 1. The above Markov chains
imply (U1→23,1U1→2,1U1→3,1) −
−X1 −
− (X2X3) and thus
the rate-distortion region (9) reduces to the results in [7], [8]

R1>max {I(X1;U1→23,1|X2), I(X1;U1→23,1|X3)}
+I(X1;U1→2,1|X2U1→23,1) + I(X1;U1→3,1|X3U1→23,1).

3) Two terminal interactive source coding [1]: Our inner
bound (9) is basically the generalization of the two termi-
nal problem to the three-terminal setting. Assume only two
encoders-decoders X1 and X2 which must reconstruct the
other terminal source 3 with distortion constraints D1 and
D2, and after K rounds of information exchange. Let us
set: U1→23,l = U2→13,l = U3→12,l = U1→3,l = U3→1,l =
U2→3,l = U3→2,l = ∅, ∀l and X3 = ∅. The Markov chains
become U1→2,l −
− (X1V[12,l,1]) −
− X2 and U2→1,l −
−



(X2V[12,l,2])−
−X2 for l ∈ [1 : K] and thus the rate-distortion
region (9) to the results in [1]

R1 > I(X1;V[12,K+1,1]|X2), R2 > I(X2;V[12,K+1,1]|X1).

4) Two terminal interactive source coding with a helper
[2]: Consider now two encoders/decoders, namely X2 and
X3, that must reconstruct the other terminal source with
distortion constraints D2 and D3, respectively, using K com-
munication rounds. Assume also that another encoder X1

provides both nodes (2, 3) with a common description before
beginning the information exchange and then remains silent.
Such common description can be exploited as coded side
information. Let us set: U2→13,l = U3→12,l = U1→3,l =
U1→2,l = U1→3,l = U2→1,l = U3→1,l = ∅, ∀l and
U1→23,l = ∅, ∀l > 1. The Markov chains reduce to:

U1→23,1 −
−X1 −
− (X2X3) ,

U2→3,l −
− (X2U1→23,1V[23,l,2])−
− (X1X3) ,

U3→2,l −
− (X3U1→23,1V[23,l,3])−
− (X1X2) .

The rate-distortion region (9) reduces to

R1>max {I(X1;U1→23,1|X2), I(X1;U1→23,1|X3)}
R2>I(X2;V[23,K+1,2]|X3U1→23,1)

R3>I(X3;V[23,K+1,2]|X2U1→23,1),

This region contains the region in [2]. As in that paper it is
further assumed (in order to have a converse result) that X1−
−
X3−
−X2, the value of R1 satisfies R1 > I(X1;U1→23,1|X2).
Obviously, with the same extra Markov chain we obtain the
same limiting value for R1.

IV. PROOF OF THE INNER BOUND IN THEOREM 1

A. Main idea behind the proof

We first provide the basic idea of the random coding scheme
that achieves the rate-region in Theorem 1 for the case of K
communication rounds.

Assume that all codebooks are randomly generated and re-
vealed to all the nodes before the information exchange begins
and consider the encoding ordering given by 1 → 2 → 3 so
that we begin at round l = 1 in node 1. From the observation
of the source Xn

1 , node 1 generates a set of descriptions
for each of the other nodes in the networks. Then, node 2
tries to recover the descriptions destined to it (using Xn

2 as
side information) and generates its own descriptions, based on
source Xn

2 and the recovered descriptions from node 1. The
same process goes on until node 3, which tries to recover the
descriptions generated by node 1 and node 2 destined to it
–using Xn

3 as side information–, and then generates its own
descriptions destined to nodes 1 and 2. Finally, node 1 tries to
recover all the descriptions destined to it generated by nodes
2 and 3. After this, round l = 1 is over, and round l = 2
begins with node 1 generating new descriptions using Xn

1 ,
its encoding history (from previous round) and the recovered
descriptions from the other nodes. The process continues in
a similar manner until we reach round l = K where node 3

recovers the descriptions from the other nodes and generates
its own ones. Node 1 recovers the last descriptions destined
to it from nodes 2 and 3 but does not generate new ones. The
same holds for node 2 who only recovers the descriptions
generated by node 3 and thus terminating the information
exchange procedure. At termination each node recovers an
estimate of the other sources by using all decoded descriptions
available from K rounds.

B. Sketch of the proof

1) Codebook generation: Consider the round l ∈ [1 : K]

in node 1. Generate 2nR̂
(l)
1→23 independent and identically

distributed n-length codewords Un1→23,l(m1→23,l,mW[1,l]
) ac-

cording to the product probability measure:
n∏
i=1

Pr
(
u1→23,l,i(m1→23,l,mW[1,l]

)|w[1,l],i(mW[1,l]
)
)
.

Index them with m1→23,l ∈ [1 : 2nR̂
(l)
1→23 ] and let

mW[1,l]
denote the indices of the descriptions Wn

[1,l] pre-

viously generated. Distribute them uniformly over 2nR
(l)
1→23

bins denoted by B1→23,l

(
p1→23,l,mW[1,l]

)
, and index them

with p1→23,l ∈ [1 : 2nR
(l)
1→23 ]. Also generate 2nR̂

(l)
1→2

and 2nR̂1→3,l independent and identically distributed n-
length codewords Un1→2,l(m1→2,l,mW[2,l]

,mV[12,l,1]), and

index them with m1→23,l ∈ [1 : 2nR̂
(l)
1→2 ] and

Un1→3,l(m1→3,l,mW[2,l]
,mV[13,l,1]) with m1→3,l ∈ [1 :

2nR̂
(l)
1→3 ] according to the product probability measures:

n∏
i=1

Pr
(
u1→2,l,i(m1→2,l,mW[2,l]

,mV[12,l,1])
∣∣w[2,l],i(mW[2,l]

),

v[12,l,1],i(mV[12,l,1])
)
,

n∏
i=1

Pr
(
u1→3,l,i(m1→2,l,mW[2,l]

,mV[13,l,1])
∣∣w[2,l],i(mW[2,l]

),

v[13,l,1],i(mV[13,l,1])
)
.

These codewords are distributed uniformly on 2nR
(l)
1→2 bins

denoted by B1→2,l

(
p1→2,l,mW[2,l]

,mV[12,l,1]
)
, indexed with

p1→2,l ∈ [1 : 2nR
(l)
1→2 ] and on 2nR

(l)
1→3 bins denoted by

B1→3,l

(
p1→3,l,mW[2,l]

,mV[13,l,1]
)
, indexed with p1→3,l ∈ [1 :

2nR
(l)
1→3 ], respectively. The descriptions in nodes 2 and 3 are

generated by following a similar procedure.

2) Encoding technique: Consider node 1 at
round l ∈ [1 : K]. Encoder 1 first looks for
a codeword un1→23,l(m1→23,l, m̂W[1,l]

) such that(
xn1 , w

n
[1,l](m̂W[1,l]

)un1→23,l(m1→23,l, m̂W[1,l]
)
)

is typical
and where m̂W[1,l]

is the estimated index of Wn[1, l] at
node 1 (notice that some components in this codeword
are generated at node 1 and are perfectly known). If more
than one codeword satisfied this condition, then we choose
the one with the smallest index. Otherwise, if no such
codeword exists, we choose an arbitrary index and declare
an error. With the chosen index m1→23,l, we determine
the index p1→23,l of the bin B1→23,l

(
p1→23,l, m̂W[1,l]

)
to which m1→23,l belongs. Similarly, Encoder 1
looks for codewords un1→2,l(m1→2,l, m̂W[2,l]

, m̂V[12,l,1]),



un1→3,l(m1→2,l, m̂W[2,l]
, m̂V[13,l,1]) such that they are jointly

typical with
(
xn1 , w

n
[2,l](m̂W[2,l]

), vn[12,l,1](m̂V[12,l,1])
)

and(
xn1 , w

n
[2,l](m̂W[2,l]

), vn[13,l,1](m̂V[13,l,1])
)

, respectively. The
encoding procedure continues by finally determining p1→2,l

and p1→3,l in a similar manner. Node 1 then transmits to node
2 and 3 the determined indices (p1→23,l, p1→2,l, p1→3,l). The
encoding in nodes 2 and 3 follows along the same lines.

3) Decoding technique: Consider round l ∈ [1 : K+1] and
node 2. The indices (p1→23,l, p3→12,l−1, p1→2,l, p3→2,l−1)
are the ones relevant to node 2. Knowing this set of
indices, node 2 aims to recover the exact values of
(m1→23,l,m3→12,l−1,m1→2,l,m3→2,l−1). This is done
through successive decoding where first, the common
information indices are recovered by looking for the
unique tuple of codewords un1→23,l(m1→23,l, m̂W[1,l]

),
un3→12,l−1(m3→23,l−1, m̂W[3,l−1]

) which are jointly typical

with
(
xn2 , w

n
[3,l−1](m̂W[3,l−1]

)
)

, and also belongs to the
bins given by p1→23,l and p3→12,l−1, and where m̂W[3,l−1]

is composed of indices of common information recovered
and generated at node 2 at the previous rounds. If there
are more than one pair of codewords, or none that satisfies
this, we choose a predefined one and declare an error. After
this, node 2 can recover the private information indices
by looking at codewords un1→2,l(m1→2,l, m̂W[2,l]

, m̂V[12,l,1])
and un3→2,l−1(m3→2,l−1, m̂W[1,l]

, m̂V[23,l−1,3]
) which are

jointly typical with
(
xn2 , w

n
[2,l](m̂W[2,l]

), vn[12,l,1](m̂V[12,l,1]),

vn[23,l−1,3](m̂V[23,l−1,3]
)
)

and are in the bins given by p1→2,l

and p3→2,l−1. If there are more than one pair of codewords,
or none that satisfies this, we choose a predefined one and
declare an error.

4) Lossy reconstructions: After all rounds are accom-
plished, each node needs to estimate the source. For instance,
node 1 reconstruct the source of node 2 by using:

x̂12,i = g12
(
x1i, v[12,K+1,1]i, w[1,K+1]i

)
, (26)

for i = 1, 2, . . . , n and similarly, for the source of node 3.
Reconstruction at nodes 2 and 3 is done in the same way.

5) Error and distortion analysis: For lack of space we only
provide a brief discussion. Denote with an upper case letter
the true indices generated at the nodes, i.e. M1→23,l. Consider
the event Gl with l ∈ [1 : K + 1](

Xn
1 , X

n
2 , X

n
3 ,Wn

[1,l](MW[1,l]
),Vn[12,l,1](MV[12,l,1]),

Vn[13,l,1](MV[13,l,1]),V
n
[23,l,2](MV[23,l,3])

)
∈T nεl , εl>0,

The key is to prove that P (GK+1) → 1 with n → ∞. If
this is the case it is straightforward to show that the average
distortions satisfy the required fidelity constraints. Let El the
event that during round l and in any node there is at least one
error at the encoding and that at the decoding at least one of
true indices are not recovered. It is not hard to see that

P
(
ḠK+1

)
≤

K∑
l=1

P
(
El ∩ Ḡl

)
+ P

(
Ḡ1
)
. (27)

When n → ∞ it is clear that P
(
Ḡ1
)
→ 0. Similarly, using

standard arguments, it can be shown that P
(
El ∩ Ḡl

)
→

0,∀l ∈ [1 : K]. From the resulting rate equations we then
need to eliminate the terms R̂li→S with S ∈ C (M), i /∈ S and
l ∈ [1 : K]. This is accomplished through a Fourier-Motzkin
elimination procedure [9]. In this manner the rates in equations
(10)-(24) are obtained.

Remark 3: It is worth mentioning here that we constrained
our scheme to use successive decoding, i.e., by recovering
first common and then private descriptions. Although the best
would be to allow joint decoding, only successive decoding
makes possible our derivation of a closed-form rate-region.

Remark 4: The idea behind our derivation of the achievable
region can be extended to any number M (> 3) of nodes
in the network. This can be accomplished by generating a
greater number of superimposed coding layers. First a layer
of codes that generates descriptions intended to be decoded
by all nodes. The next layer corresponding to all subsets of
size M − 1, etc, until we reach the final layer composed by
codes that generate private descriptions for each of nodes.
Again, succesive decoding is used at the nodes to recover the
descriptions in these layers destined to them.

V. SUMMARY AND DISCUSSION

We introduced the interactive three-terminal source coding
problem and derived an inner bound to the rate-distortion
region. Several previous results for interactive –as well non-
interactive– lossy source coding problems were shown to be
special case of this inner bound. Although not included (for
lack of space) in this short ISIT submission format, an outer
bound has also been derived which shows to be tight in several
novel cases of interest [10].
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