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Abstract

This interdisciplinary project is developing a comprehensive set of principles for task-specific
information extraction and information exploitation that can be used to design the next gen-
eration of autonomous and adaptive sensing systems. The significance of this research is that
it addresses the widespread and longstanding problem of defining, assessing, and exploiting the
value of information in active sensing systems. This year we report progress in twenty-six areas
organized around three main thrusts: (1) learning and representation of high dimensional data,
(2) distributed information fusion, and (3) active information exploitation. In the learning and
representation thrust, progress ranges from a new measure of VoI that is empirically estimatable
from the length of a multi-colored minimal spanning tree to a convergence results on the popu-
lar ADMM optimization algorithm used in many relevant machine learning applications. In the
distributed information fusion thrust, progress is reported in collaborative fusion over sensor
networks to dimensionality reduction and subspace tracking. In the active information exploita-
tion thrust, progress is reported in new convex proxies for VoI in wide area search problems to
the use of VoI for two-stage navigation of autonomous robot vehicles. Our future plans are to
continue to develop fundamental theory for VoI, to develop algorithms that optimize VoI for
agile sensing applications, and to validate our results on real data, including a software defined
radar testbed developed under a DURIP.
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1 Overall objective of project

Sensing and actuation systems are inundated with diverse and high volumes of data. Much of
this data is uninformative and irrelevant to the end tasks of the system, which can evolve over
the mission. The problem of extracting and exploiting the relevant and informative portion of
sensor data has been an active area of research for several decades. Despite some progress, notably
in information-driven tracking and data fusion, a general solution framework remains elusive, es-
pecially for autonomous and distributed sensing systems. The aim of this MURI is to develop a
comprehensive set of principles for task-specific information extraction and information exploitation
that can be used to design the next generation of autonomous and adaptive sensing systems. These
principles will go beyond the standard information theoretic approaches that fail to account for
non-classical information structures due to factors such as small sample size, poorly-specified tar-
get and clutter models, feedback control actions, hostile or adversarial environments, computation/
communication constraints, distributed sensing resources, and time-critical decision making.

2 Approach

Our research program aims to lay the foundations for a new systems theory that applies to gen-
eral controlled information gathering and inference systems with mission planning. The research
approach comprises three inter-related research themes that collectively address the most critical
research challenges. These thrusts are: (1) information-driven structure learning and represen-
tation; (2) distributed information fusion for fast-paced uncertain environments; and (3) active
information exploitation for resource management. We aim to develop an end-to-end framework
that will result in better raw sensor data acquisition and processing, improved fusion of multiple
sources and modalities, and more effective sensor management and control that accounts for human
intervention.

3 Scientific barriers

This research addresses several challenges:

1. Reliable value-of-information (VoI) measures for active multi-modal sensing systems are not
available. Existing approaches to learning and representation of information do not account
for the sequential nature of data collection. This arises in active sensing systems such as
autonomous maneuvering robots with vision/IR/LIDAR capabilities. Quantifying the value
of information collected from active sensing systems is essential but there exists no suitable
theory to do so. Classical Shannon information theory is inadequate as it was not designed for
learning in active sensing systems; rather it was designed for data transmission in communica-
tions systems. A new theory for learning the value of information is needed that accounts for
real-time feedback and control of the sensor, applies to signals that are non-linearly embedded
in high-dimensional spaces, accounts for models with complex structural components (e.g.,
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hierarchical graphical models of interactions in the scene), has scalable computation even in
large distributed sensor systems, and accounts for the economic or human cost of acquiring
data or fielding a new sensor.

2. There is no broadly applicable theory of information fusion for fast-paced uncertain envi-
ronments. The design and operation of sensing systems must accommodate collection and
delivery of a wide range of data at different times, spatial locations, and often with severe
bandwidth and delay constraints. These systems must not have too many user-defined tun-
ing parameters that could overwhelm the human operator. There is no generally applicable
theory of multi-modal information fusion that accounts for all of these factors. Existing in-
formation theoretic measures and associated surrogates are often only weakly predictive of
information fusion performance, and they usually require careful tuning when used as ob-
jective functions to drive the fusion algorithm. Reliable measures are needed for fusion in
compromised environments having high background/clutter variability and spotty situational
awareness coverage.

3. Most information exploitation algorithms do not accurately predict the ultimate value of a
current sensing or navigation action in the presence of uncertain hostile environments. The
sensor manager plans ahead and controls the degrees-of-freedom (actions) of the sensor and
platform in order to achieve system objectives. These degrees of freedom include: region of
focus of attention, choice of modality and mode (e.g., EO vs LIDAR), transmit waveform
selection, and path planning actions (platform maneuvering). The manager must predict the
value of information resulting from each of the candidate sensing actions. This prediction
must account for the uncertainty of the environment, time-varying visibility constraints (e.g.,
target obscuration), erratic or adversarial target behavior, and sensor resource constraints.
To date, most plan-ahead sensing and navigation approaches have been based on heuristics,
like maximizing Shannon information-gain, and do not account for the value of information
measure as a function of the end task or the uncertainty in the environment.

4. Information collection systems very often involve human intervention at some point in the
collection process. Examples are annotation through Mechanical Turk, validation of contex-
tual data, or curation of relations that have been imputed by machine into database. A basic
challenge is how to mathematically model human-human and human-machine interaction in
such as way as to be predictive of the value the intervention. Mathematical modeling is chal-
lenging since it must account for fatigue, latency, and biases that a human may unwittingly
contribute to the corpus. There has been very little theory developed for human-in-the-loop
processing for adaptive sensing that accounts for these factors and uses human cognition mod-
els from experimental psychology. This past year we have pursued several research directions
in this area, described below.

4 Significance

The significance of this research is that it addresses the longstanding problem of defining, assessing,
predicting, and exploiting the value of information in active sensing systems. By defining new
information measures that account for the future value of data collection, we can design better
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sensing, fusion, and planning algorithms that come with performance guarantees; e.g., tight value-
specific bounds and performance approximations. By developing scalable and accurate methods
to assess the value of information from empirical data, we can better design active sensor fusion
and sensor planning to exploit the information collected thus far. The impact of the research is
summarized by the following five points:

1. The research will result in more accurate prediction of performance using a new class of
information measures that account for both quality and value of information.

2. The research will provide a foundational “systems theory” for active information gathering
systems that use these new measures.

3. The research will use this foundational theory to develop highly adaptive and learning-based
sensing strategies with significantly enhanced performance having reduced user tuning re-
quirements.

4. The research will apply these sensing strategies to improve sensor signal processing, informa-
tion fusion, and sensor platform navigation and control.

5. The research will uncover new strategies for involving a human-in-the-loop and assessing the
intrinsic value of such involvement for different sensing and situational awareness tasks.

5 Specific accomplishments over the period 8/1/14 — 7/31/15

Our efforts remain organized around the three research thrusts defined in the original proposal: (1)
information-driven structure learning and representation, (2) distributed information fusion, and
(3) active information exploitation for resource management. These thrusts are interdependent and
most of our efforts fall across the boundaries between them. However, for clarity of presentation,
in what follows we associate each reported progress and accomplishment with one of these thrusts.

5.1 Information-driven structure learning and representation

Learning and feature representation are at the front-end of the data collection system and feed
the downstream functions of fusion and resource planning. By tying the learning and feature
representation directly to information we can better understand information bottlenecks, limiting
factors on performance, and evaluate the value of information delivered function relative to the
task. This year our accomplishments are organized under three topic areas: i) learning in graphical
models, ii) trade-offs between complexity and performance, and iii) representation of information
for video.

5.1.1 Learning in graphical models

Contributors: John Fisher (MIT)
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Publications: [1]

Graphical models are a parsimonious class of models that capture dependency between large sets
of variables. Gaussian graphical models (GGMs) are a subclass that compress information in
multidimensional data through a model that assumed sparsity of the inverse covariance. When
sparse inverse covariance is a valid assumption, such models are much more efficient representations
of information than standard unstructured models. We have developed new efficient and fast
converging algorithms for estimating GGMs under a sparse inverse assumption. For situations
where the inverse is not sparse we have developed theory for a generalized GGM, called a latent
variable GGM, for which the inverse covariance is not itself sparse but, when conditioned on a
few latent variables, the conditional inverse covariance is sparse. We have also established the
optimality of a single pass distributed estimation algorithms, introduced by us and discussed as
progress last year, that does not require message passing. Finally, we have developed a tractable
polynomial-complexity algorithm for Bayesian inference over latent structures. Below we report
these four advances as: i) learning sparse GGMs; ii) learning latent variable GGMs; iii) distributed
learning of GGMs; iv) learning latent variable structures.

Progress 1: Inference in Sparse Graphical Models (Fisher MIT):

Many estimation problems can be cast as inference in graphical models, where nodes represent
variables of interest and edges between them indicate dependence relations. Näıve inference may
have exponential complexity in the number of variables. Message passing algorithms, such as BP
reduce the complexity significantly. Despite the fact that BP performs exact inference only on
trees, it is often applied to loopy graphs (for which it is approximate) due to its computational
efficiency.

We consider the problem of inference in large-scale models. Such models which arise, for example,
in complex spatio-temporal phenomena, may be utilized in multiple settings. It is often the case
that only a subset of latent variables is of interest for different applications which may vary from
instance to instance. Additionally, the set of available measurements may vary with use or become
available at different points in time. The latter is common for any sequential estimation problem.
In such situations, general-purpose inference algorithms, such as BP may utilize many unnecessary
computations when only a small subset is desired. The complexity of such approaches becomes
prohibitive as the size of graph increases, e.g., due to constant re-evaluation of messages. There
exist several examples that fall into this category of problems. Patient monitoring provides one
such practical example. Large-scale systems may monitor the health status of many patients; how-
ever, different physicians limit their interest to patients under their immediate care. Temperature
monitoring sensors provide data over time and space, but sensitive areas (e.g., server room) may
require more careful examination for the timely response in case of abnormal behavior. Lastly,
in computational biology, the effects of mutations are explored (computational mutagenesis), with
each putative mutation resulting in a very similar problem.

This motivates methods for problems where measurements are added incrementally and the interest
is in a subset of node marginals at a given time point or the MAP sequence of the full latent graph.
This is the problem of adaptive inference, where the goal is to take advantage of previously computed
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quantities instead of performing inference from scratch. In these cases, standard BP results in many
redundant computations. Consequently, we develop an adaptive inference approach [1] which avoids
redundant computations and whose average-case performance shows significantly lower complexity
compared to BP. The main idea is to send only messages between the node where a measurement
has been obtained from (w`) and the node whose marginal is of interest (v`). The correctness of this
approach is guaranteed by propagating messages between consecutive measurement nodes w`−1, w`

at every iteration. As a result, we only send the necessary messages to guarantee that the incoming
messages to the node of interest v` are correct. We call this minimal messaging schedule adaptive
BP. We show that it gives exact results on trees (as standard BP) and provide an extension for
Gaussian loopy graphs that still guarantees exactness in the evaluation of marginals.

The proposed method requires a preprocessing step of O(N logN) time, where N is the number of
latent nodes. In the worst case, when relative distance between consecutive “measurement” nodes
is approximately the tree diameter and the diameter is on the order of N (highly unbalanced tree),
the performance is comparable – yet still faster to– standard BP. However, for height-balanced
trees worst-case performance results in O(logN) messages per update as compared to O(N) for
standard BP. In the worst case, if distance of consecutive nodes is very small, the computation
of the node marginal is obtained in constant time per iteration. We provide an extension of the
method for MAP inference and for Gaussian loopy MRFs and show how it can be used to suggest
nearly optimal measurement schedules. This method was compared to alternative approaches and
the regimes in which one approach may have advantages over the other were examined. We also
empirically demonstrated the performance of our method in a variety of synthetic datasets, as well
for two real applications.

5.1.2 Estimation and optimization of VoI metrics

Contributors: Alfred Hero (UM), Michael Jordan (UCB)
Publications: [2], [3]

This year we have made progress on the estimation and optimization of objective functions that can
be used for evaluating the value of information, distributed prediction, and maximum likelihood
estimators. Two major advances are reported: 1) empirical data-driven estimation of entropic
VoI measures and 2) convergence of ADMM optimizers. ADMM stands for alternating direction
method of multipliers and is one of the most widely used methods for constrained optimizaation in
machine learning, signal processing and statistical inference.

Progress 2: Empirical data-driven estimation of entropic VoI measures (Hero UM)
This year we report a completely new approach to estimation of entropy-based VoI measures from
observational data in any dimension. These measures include α-entropies and f -divergences that
can be related directly to VoI measures such as estimator MSE, detection ROC curves, or clas-
sifier confusion matrices. Our approach eliminates the need for mathematical models, statistical
probability densities, or computation of complicated integral representations of MSE or probability
of error. The general concept is based on building entropic graphs over the data set from which
asymptotically consistent estimators of certain f -divergences can be extracted without the need to
estimate the underlying model or probability density. We have applied this approach to empiri-
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cal estimation of the Fisher Information. The Fisher information matrix (FIM) is a foundational
concept in statistical signal processing. The FIM depends on the probability distribution, assumed
to belong to a smooth parametric family. Traditional approaches to estimating the FIM require
estimating the probability distribution function (PDF), or its parameters, along with its gradient
or Hessian. However, in many practical situations the PDF of the data is not known but the
statistician has access to an observation sample for any parameter value. We proposes a method of
estimating the FIM directly from sampled data that does not require knowledge of the underlying
PDF. The method is based on non-parametric estimation of an f -divergence over a local neighbor-
hood of the parameter space and a relation between curvature of the f -divergence and the FIM.
Thus we obtained an empirical estimator of the FIM that does not require density estimation and
is asymptotically consistent. We empirically evaluated the validity of our approach in the context
of learning the optimal tuning parameters of hearing aids from numerical data. This work was
reported earlier this year in the IEEE Signal Processing Letters [2] and was presented as an oral
presentation at the the 2015 IEEE ICASSP meeting.

Progress 3: Convergence of ADMM optimizers (Jordan UCB)
We provide a new proof of the linear convergence of the alternating direction method of multipliers
(ADMM) when one of the objective terms is strongly convex. Our proof is based on reducing
algorithm convergence to verifying the stability of a dynamical system. This approach generalizes
a number of existing results and obviates any assumptions about specific choices of algorithm
parameters. On a numerical example, we demonstrate that minimizing the derived bound on the
convergence rate provides a practical approach to selecting algorithm parameters for particular
ADMM instances. We complement our upper bound by constructing a nearly-matching lower
bound on the worst-case rate of convergence. This work will be published in the Proceedings of
the upcoming Intl Confernence on Machine Learning (ICML) [3].

5.1.3 Representation of information for visual sensors

Contributors: Stefano Soatto (UCLA)
Publications: [4], [5], [6], [7], [8], [9]

While multimodality sensing is a major theme of our MURI, including radar, acoustic, seismic,
and soft contextual information, visual data is of particular interest due to its high complexity,
potential value for scene understanding and navigation. We report on several advances including:
learning visual representations, domain-size pooling, visual textures and shape scaling.

Progress 4: Learning Visual Representations (Soatto UCLA)
For tasks involving interaction with physical space, the inference of a “representation” of the sur-
rounding space from data should be guided by maximizing task-specific information. The rep-
resentation (a function of past data) then plays the role of “memory” or “state” of the system,
and should ideally be as informative as the data for the purpose of the task at hand, but have
bounded complexity. Furthermore, the task informs the inference of a representation by determin-
ing what aspects of the data formation process is relevant. Otherwise, nuisance factors shoud be
discounted in the representation, as well as in the computation of task-specific information. Ideally,
a representation should be a minimal sufficient statistic that is invariant to nuisance factors.
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It has long been believed that these two requirements (sufficiency and invariance) are conflicting,
and therefore there is a tradeoff between the two. Indeed, when invariance is achieved by averaging
statistics [10, 11], it comes at the expense of discriminative power, or at an information loss for
classification tasks. However, we have recently shown [4] that this is not necessarily the case, and
strict invariance to nuisance factors that are composition of independent group actions can be
achieved by a combination of profiling (maximization) and marginalization of likelihood functions.

Progress 5: Domain-Size Pooling (Soatto UCLA)

This helps explaining the empirical success of “domain-size pooling” [5] that consists of averaging
empirical likelihood functions (histograms) on domains of different sizes, which would seem at first
counter-productive as one aggregates statistics from different regions. Of course, there is no “free
lunch” and the price to pay to achieve invariance without loss of discriminative power is the need
to lift the representation from sample statistics to the (infinite-dimensional) space of likelihood
functions. Such a space has necessarily to be approximated, for instance non-parametrically in [6]
but with a very crude model assuming (conditional) independence of gradient orientations at each
pixel, which reduces the (local) representation to the concatenation of one-dimensional histograms.
More accurate estimates of minimal sufficient and invariant statistics requires aggregation in high-
dimensional spaces, which is one of the foci of Thrust 1 (learning and representation of high
dimensional data).

Domain-size pooling consists of the aggregation of image statistics not just in spatial neighborhoods,
as customary in the design of local representations of image data, but also in scale neighborhoods,
which has been shown to improve the performance on image matching in benchmark datasets (the
Oxford Matching Dataset) by up to 39% (mean-average precision).

The theoretical justification for performing domain-size pooling is rooted in sampling theory, and
would at first seem to go counter to the teaching of harmonic analysis and the “uncertainty prin-
ciple” that predicates the size of the spatial domain should be matched to the spatial frequency of
the signal being represented. But while such a link is sensible for data transmission and storage
tasks, it is not when the task is correspondence of different sensory data, for instance imaging data
where the size of the visible domain depends on occlusion and other spatial properties of the scene
(shape) and have little to do with its reflectance property (appearance). Yet, such a link has been a
mainstay in local image descriptors for a quarter century, following the theory of scale-space, that
was rooted in harmonic analysis and wavelets.

Progress 6: Visual Textures (Soatto UCLA)

Another special case of relevance for local representations is when the underlying scene radiance
(informally the “appearance”) can be considered to be a sample from a stationary process. This
is when the portion of the region is known as a texture. In this case, aggregating statistics in
high dimensions is still costly, but justified since the statistics are spatially homogeneous, so once
inferred from a neighborhood of a pixel, they can be extended to entire regions [7].

Progress 7: Shape Scaling (Soatto UCLA)

For tasks requiring correspondence of remote sensory modalities, scaling phenomena must be man-
aged in a task-specific representation. Domain-size pooling is a way of managing scale for local

10



MURI: Value-centered Information Theory Year 4 IPR

photometric correspondence, relevant for instance in EO image matching. For geometric correspo-
nence, relevant for instance in shape matching or range imaging, the issue of scale remains critical,
and some progress has been described [8], where we have introduced shape signatures (invariant
statistics) that aggregate data across different scale.

Of course, even an optimal representation can be rather uninformative if the data provided is such,
as any representation can be at most as informative as the data from which it is computed (data
processing inequality). This brings into focus the problem of active inference, or experiment design,
which is necessary not just to guarantee that the representation is “best” for the task given the
data available, but that the data is gathered in such a way that the performance in the task (or
the task-relevant information) is maximized. This is addressed in Thrust 3 of this MURI (active
information exploitation).

5.2 Distributed information fusion

Accurate aggregation of information at multiple sensors is a key part of the value of information
proposition we are studying. The information at a single sensor may have little or no value until
matched with information from another sensor, e.g., when the objective is to extract correlation
from the sensors for the purposes of target localization or clutter abatement. Subspace processing
and dimension reduction are widely used methods for information aggregation and our MURI is
working on minimizing any associated loss of information due to decentralized processing, mismod-
eling error, bandwidth-limited inter-sensor communications, and other factors. We report progress
in distributed fusion along three axes: (i) Decentralized learning and local information aggregation;
(ii) Subspace processing and fusion of information; and (iii) robust information-driven fusion.

5.2.1 Decentralized learning and local information aggregation

Contributors: Emre Ertin (OSU), Randy Moses (OSU), Al Hero (UM)
Publications: [12], [13], [14], [15], [16], [17]

In a large networks of sensors centralized learning and fusion of information is impractical due
to limited bandwidth interconnectivity between sensors and a fusion center that prevents global
information aggregation. An alternative is decentralized learning where sensors extract features
or estimates and share this information with their neighbors. For a successful decentralized learn-
ing protocol the sensors reach a consensus about the state, class, or other latent variable after a
sufficient amount of information sharing. Several advances have been made this year on decen-
tralized learning and information fusion: i) decentralized learning of a mixture of factor analyzers;
ii) Aggregating local information under communication constraints for decision-level fusion; iii)
decentralized cooperative target tracking.

Progress 8: Decentralized learning of a mixture of factor analyzers (Ertin and Moses
OSU)
In this research thrust, we developed a decentralized manifold learning method with a potentially
reduced data bandwidth need, and which results in a global appearance manifold model shared
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by all sensor nodes [12]. A spatially distributed sensor network can be used to construct a rich
appearance model for targets in their common field-of-view. These models can then be used to
identify previously seen objects if they reappear in the network at a later time. The ensemble of
images captured by the network forms a low-dimensional nonlinear manifold in the high-dimensional
ambient space of images. One approach to appearance modeling would be to construct independent
models of a local data manifold at each sensor and share it across the network. However, such an
ensemble of models suffers from discretization of the aspect space and poor parameter estimates
as the number of unknown parameters necessarily scale linearly with the number of sensor nodes.
Alternatively, the sensor nodes can collaborate to construct a joint model for the image ensemble.
The parameter estimates of the joint model will improve with the number of sensor nodes, since
the number of unknown parameters in the model is intrinsic to the object and fixed, whereas
the measurements scale linearly with the number of sensor nodes. The straightforward method
of pooling images to a central location for joint model construction will require large and likely
impractical network bandwidth.

We model the overall statistics as a mixture of factor analyzers (MFA) and derive a consensus-
based decentralized expectation maximization (EM) algorithm for learning model parameters. We
consider a more general MFA model suitable for modeling data observed by heterogeneous sensor
nodes differing in their aspect angle with respect to the object. Specifically, we assume observations
are drawn from the mixture density with mixture probabilities which can vary across the different
sensor nodes. In the case of learning a data manifold, the MFA model is a linearization of a
(potentially) nonlinear structure. We extend the EM algorithm for the MFA model to the case of
a spatially-distributed sensor network with goals of distributing computations across the network
and being robust to individual node failures.

We have adopted the MFA model in our recent work in modeling Synthetic Aperture Radar (SAR)
target signatures for performance prediction [13]. Specifically, we study the problem of target
identification from SAR imagery. Target classification using SAR imagery is a challenging problem
due to large variations of target signature as the target aspect angle changes. Previous work on
modeling wide angle SAR imagery has shown that point features, ex- tracted from scattering center
locations, result in a high dimensional feature vector that lies on a low dimensional manifold. We
employ MFA models for these target manifolds to analyze classification per- formance as a function
of Signal-to-noise ratio (SNR) and Bandwidth. We employ Mixture of Factor Analyzers (MoFA)
models to approximate the target manifold locally, and use error bounds for the estimation and
analysis of classification error performance. We compare our performance predictions with the
empirical performance of practical classifiers using simulated wideband SAR signatures of civilian
vehicles.

Progress 9: Aggregating local information under communication constraints for decision-
level fusion (Moses OSU)
In the area of distributed inference in sensor networks we are analyzing the interplay between
local decision, global inference, performance, and communication. In our previous work [14] we
considered a random target signal model and derive Neyman-Pearson-optimal decision rules. We
provided conditions where local and global decision rules do not need to know the target signal
distributions. We analyzed analytically and numerically how the performance scales with density
of the sensor network and the number of communications slots in the random access model. We
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showed that detection performance improves with increasing sensor density, despite an increase in
the probability of a collision per communications slot, while satisfying a constant network band-
width and satisfying a global false alarm probability. Furthermore, we showed that the detection
performance under the random access channel asymptotes to a perfect channel model as the num-
ber of communications slots increases. Lastly, we provided a bound on the confidence interval of
the receiver operating characteristic (ROC) curve to account for variability in performance across
realizations of the random sensor network and target signal.

In our recent work [15], we consider the problem of distributed detection of a radioactive source
using a network of emission count sensors. Sensor nodes observe their environment and a central
fusion node attempts to detect a change in the joint probability distribution due to the appearance
of a hazardous source at an unknown time and location. We consider a minimax-type distributed
change- point detection problem that minimizes detection delay for a desired false alarm rate. A
statistical model of the radiation source detection problem is formulated where sensors observations
are correlated with non-identical distributions. We first derive a centralized detection algorithm
that is asymptotically optimal for vanishing false alarm rate. Then we analyze the performance loss,
as measured by the detection latency, when sensor counts are quantized at each sensor node. The
detection latency of the centralized rule provides a lower bound on performance for the proposed
distributed method. The empirical results indicate that the distributed detection strategy provides
a reasonable tradeoff between latency and information bandwidth.

Progress 10: Decentralized cooperative tracking (Hero UM)
We continue to develop the 20-questions framework for tracking where multiple agents cooperate
to locate the position of a target based on sensing inputs; e.g., noisy imagery or ranging data.
Last year we reported on our collaborative 20 questions framework with a human response model,
which was published in the IEEE Information Theory Transactions [17] this year. This year we
report on a networked multi-agent extension of this work that applies to a large network of agents
that iteratively converge on target location estimates using message passing in a decentralized 20
questions framework. The social learning model for information sharing is used and we proved
convergence and concensus of our distributed algorithm under this model. This work has been
published in the IEEE Signal Processing Transactions [16]. Over the coming year we have the
following plans. 1) to establish tight bounds on entropy-based approaches to 20-questions like
the ones taken in [17] and [16]; 2) to use these bounds to predict when this entropy-minimization
approach will have slow convergence; 3) to develop a new approach to collaborative 20-questions
model based on minimizing a weighted entropy criterion that is related to unequal error protection
in channel coding theory. We will then apply this relation to define improved collaborative 20-
questions approaches that have better convergence rates. This work is in collaboration with Brian
Sadler at ARL.

5.2.2 Subspace processing and fusion of information

Contributors: Raj Nadakuditi (UM), Michael Jordan (UCB), Alfred Hero (UM),
Publications: [18], [19],[20],[21], [22],[23], [24]
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Dimension reduction is at the heart of the information fusion function of data collection systems
as it extracts the space containing common information residing in different components of the
data. Dimension reduction should depend on the definition of the task, e.g., classification, pa-
rameter estimation, or tracking, which determines the value of the information contained in the
subspace. Overestimation of the dimension of this subspace leads to high sensitivity to noise while
underestimation of the subspace dimension leads to bias due to omission of important information
carrying components. Spectral methods have been used in machine learning and signal processing
to accurately determine the correct subspace dimension and perform dimension reduction. Three
areas of progress are reported this year: i) spectral measures and subspace detection from random
matrices; ii) generalized matrix rank estimation.

Progress 11: Spectral measures and subspace detection from random matrices (Nadaku-
diti UM)
In the area of non-commutative information theory, we have established fundamental limits on
the information that can be extracted from non-commutative observations, such as random ma-
trices and tensors. For symmetric matrices these limits are governed by the asymptotic behavior
of eigenvalues and eigenvectors of the matrix, and they specify phase transition thresholds of SNR
and matrix dimension for which these eigen-quantities cannot be reliably estimated empirically.
Such phase transition thresholds are key for developing the non-commutative information theory
of dimensionality reduction, which is relevant, for example, to variable selection in sensor fusion.

These non-commutative value of information type metrics can help quantify the “informativeness”
of an information sources. This past year, we focused on utilizing these metrics to improve the
fusion of multiple sources, where each source is assumed to have different SNR. The key idea that
we exploit is that signals of interest or targets will occupy different low dimensional subspaces for
each modality the expressiveness of a modality depends on the target signature for that modality
(e.g. hyperspectral versus EO/IR ). A combination of these probing multiple modalities yields
optimal detection or classification performance.

The technical challenge is to automatically compute the weighting coefficient that is to be assigned
to each modality modalities with greater informational content should receive a higher weight
while modalities with lower information content should receive a lower weight or not be used at all.

Last year we made substantial progress in developing data-driven algorithm (OptFuse) [18] which
computes the optimal linear combination of the signal-plus-noise matrices that produces the most
accurate estimate of the latent signal subspace. The algorithm builds on the OptShrink algorithm
[25] developed in the previous reporting year for denoising a low-rank signal matrix buried in noise
by optimal singular value shrinkage. OptFuse also explicitly utilizes information in the “noise por-
tion” of the singular value spectrum to compute these optimal linear weighting coefficients and
returns an estimate of the approximation MSE that is provably consistent and that can serve as a
new VoI metric.
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These ideas can be applied to the fusion of graph-valued signals. We have initiated collaborations
with ARL (Dr. Ananthram Swami and Dr. Terrence Moore) on inference from time-varying, multi-
modal graphs. A PhD student (Himanshu Nayar) spent the summer of 2015 at ARL furthering
this collaboration. We are actively collaborating with MURI co-PIs to investigate applications of
the multi-modal fusion algorithm. In the upcoming year, we plan to test our algorithms on real-
world datasets generated using the DURIP testbed. Other successes in the past year include a new
algorithm for estimation of low-rank matrices with Kronecker structure [19], new algorithms for
passive bistatic radar detection [20, 21], finite sample performance analysis of the Tucker HOSVD
algorithm [26] and the MUSIC DOA algorithm [22, 23] under noise and missing data assumptions.

Progress 12: Generalized matrix rank estimation (Jordan UCB)
The estimation of matrix rank is an important precursor to subspace processing and tracking and
s at the core of most data fusion algorithms. We have studied the following generalized matrix
rank estimation problem: given an n × n matrix and a constant c > 0, estimate the number
of eigenvalues that are greater than c. In the distributed setting, the matrix of interest is the
sum of m matrices held by separate machines. We show that any deterministic algorithm solving
this problem must communicate Ω(n) bits, which is order-equivalent to transmitting the whole
matrix. In contrast, we propose a randomized algorithm that communicates only O(n) bits. The
upper bound is matched by an Ω(n) lower bound on the randomized communication complexity.
We demonstrate the practical effectiveness of the proposed algorithm with numerical experiments.
This work will appear at the Intl Conference on Machine Learning (ICML) [24].

5.2.3 Robust information-driven fusion

Contributors: Alfred Hero (UM), Emre Ertin (OSU)
Publications: [27], [28, 29]

An information fusion criterion that lacks robustness to model mismatch may perform poorly when
deploying sensing algorithms in uncertain environments. More importantly, in terms of MURI
goals, if not accounted for, model mismatch will cause the computed value-of-information to be
inaccurate and possibly lead to violation of the performance guarantees and error control levels
that have been designed into the system. This year we report progress on i) information fusion
with partial and unreliable information, and ii) learning to aggregate information for sequential
inference. The former is a parametric Bayesian approach while the latter is a non-parametric
approach to fusion.

Progress 13: Information fusion with partial and unreliable information (Hero UM)
In collaboration with Nasser Nasrabadi at ARL, we have continued to address the important prob-
lem of sensor fusion in the presence of partial or unreliable information. Last year we reported a
new approach published in the 2014 IEEE ICASSP proceedings [30] that applied minimum entropy
discrimination (MED) to multimodality sensing systems when training data may be contaminated
by sensor failures. This year we report progress on applying a similar MED approach to fusing
partial information collected from multiple views of an information source when there are many
unlabeled samples. We extend the MED approach, developed by Jaakola (2001), to perform semi-
supervised information fusion by combining the multiple view data in such a way so as to maximize
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the value of information (relative entropy) subject to a constraint on classifier performance. The
problem is formulated under the multi-view learning framework and a Consensus-based Multi-View
Maximum Entropy Discrimination (CMV-MED) algorithm is proposed. By iteratively maximizing
the stochastic agreement between multiple classifiers on the unlabeled dataset, the algorithm si-
multaneously learns multiple high accuracy classifiers. We demonstrate that our proposed method
can yield improved performance over previous multi-view learning approaches by comparing per-
formance on three real multi-sensor data sets, including the ARL footstep data evaluated in our
previous work [30]. In the coming year we will be preparing journal papers on this work and ap-
plying the work to data acquired with OSU’s software radar testbed. This work was presented as
an oral presentation and was published in the 2015 IEEE ICASSP Proceedings [27]. This is joint
work performed in collaboration with Nasser Nasrabadi at ARL.

Progress 14: Learning to aggregate information for sequential inference (Ertin OSU)
Sequential decision strategies outperform their fixed sample size counterparts in achieving same
decision risk using less number of samples on the average. Even when the cost of samples are not
a major concern, sequential techniques can be used to reduce the computational cost of obtaining
relevant information from a data sample. Thus sequential test is still a method of great potential
in any time sensitive scenario. For example, in many computer vision problems, more sophisti-
cated feature is usually expensive and slow to obtain even though they provide higher accuracy.
Therefore cascading classifier is widely used due to their sequential nature. For the case of known
class conditional densities accumulating likelihood statistics and comparing with fixed thresholds
minimizes the average stopping time under fixed error constraints. In our recent research [28, 29],
we consider the case where the class conditional densities generating the data is unknown and
sequential decision rule has to be learned directly from labeled data samples. While there exists
plethora of supervised learning algorithms to learn fixed sample test rules using parametric and
non-parametric forms, there exist relatively few algorithms designed to learn to perform sequential
classification. Unlike the single sample classification problems where only the decision boundary is
critical, sequential decision rules require a mapping from sample space to a state space for aggre-
gation of evidence and making stopping rules. First, using Martingale theory we derive an upper
bound on stopping performance of learned likelihood ratio function estimators. Next, we show that
the problem of minimizing this upper-bound can be posed as a convex optimization problem using
a Reproducing Kernel Hilbert Space representation for the log-density ratio function. The resulting
binary sequential classifier is tested on synthetic and real world data sets comparing its performance
to previously suggested approaches for density ratio estimation. Our empirical results show that
the classifier trained with the modified error metric tailored for sequential inference achieves smaller
average sampling cost than previous classifiers proposed in the literature for the same error rate.

5.3 Active information exploitation for resource management

The active information exploitation thrust completes the feedback loop from acquisition, learning
and fusion to control of sensing resources. In active information exploitation one takes a sensing
action based on prior measurements and sensing actions. This active feedback of information
to control sensing actions is one of the aspects of our project that differentiates it much of the
prior work on quality of information. A key component to making effective use of feedback is the
specification of suitable proxies for the value of information delivered by each potential sensing
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action. Another component, which we have made progress on, is the possible role of humans in
this feedback loop. Another area of progress is laying the foundations for an information geometric
theory of actively controlled sensing systems. These components of progress are described below.

[31] this past year. Last year we reported progress on fundamental limits specifying the value
of information gained by using such convex proxies for planning. This year we have published a
complete analysis of VoI in IEEE Transactions on Information Theory [32] for the case of target
detection and localization. In collaboration with co-PI John How, we have used this analysis
to motivate a convex proxy approach to sensor planning for multi-class targets where successful
detection of different classes of targets have different value payoffs relative to the mission. A
conference paper on this multi-class convex proxy approach was published in a special session on
information-centric fusion in the proceedings of the IEEE Fusion conference [33]

5.3.1 Optimization approaches to sequential planning and navigation

Contributors: Michael Jordan (UCB), Alfred Hero (UM), John How (MIT), John Fisher (MIT),
Doug Cochran (ASU)

Publications: [34], [31], [32], [33], [35], [36], [37], [38], [39].

Sequential multistage planning and decisionmaking is capable of significant performance gains rel-
ative to static offline approaches to resource constrained sensing. Using feedback of information at
the current stage to improve the action taken to collect information at the next stage can reduce
learning delay and time to detect a target. This year progress is reported in: convergence of greedy
optimizers of submodular functions, two-stage focused inference for navigation, and convex proxies
for VoI-driven search.

Progress 15: Convergence of greedy optimizers of submodular functions (Jordan UCB)
Submodular functions describe a variety of discrete problems in machine learning, signal process-
ing, computer vision and, in particular, multistage sensor planning using mutual information as
the planning criterion. However, minimizing submodular functions poses a number of algorith-
mic challenges. Recent work introduced an easy-to-use, parallelizable algorithm for minimizing
submodular functions that decompose as the sum of “simple” submodular functions. Empirically,
this algorithm performs extremely well, but no theoretical analysis was given. In this paper, we
show that the algorithm converges linearly, and we provide upper and lower bounds on the rate
of convergence. Our proof relies on the geometry of submodular polyhedra and draws on results
from spectral graph theory. This work was published in the Proceedings of the 2014 Conference on
Neural Information Processing Systems (NIPS) [34].

Progress 16: Two-stage focused inference for navigation (How MIT)
Sensor breakthroughs in the past decade have greatly improved the capability of robots to gather
data about the environments. These technologies have enabled many new capabilities for mobile
robots operating in complicated, partially-known worlds, but they also introduce new challenges on
processing data and extract valuable information. This work considers scenarios in which mobile
robots operate in uncertain and GPS-denied environments, and thus must autonomously build
a map that can be used to achieve some mission objective. As the robot continues to explore
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more of the environment, the data collected and the features/variables that must be kept track
off in the environment will increase. Thus for long-term operations for a robot that is resource-
constrained, some hard decisions will have to be made about which variables (i.e. landmarks) and
data (measurements from a chosen landmark) to process - there is likely going to be too much
data for the robot to be able to process it all. This research tackles the problem of choosing which
data is likely to be the most useful to help achieve the mission task, which is a key VoI question.
Furthermore this work presents the first known approach to tackle both variable growth and data
growth.

The approach has two stages. First, a subset of the variables (focused variables) is selected that is
most useful for a particular task. Second, a task-agnostic and principled method (focused inference)
is proposed to select a subset of the measurements that maximizes the information over the focused
variables. The approach is then applied to the specific task of robot navigation in an obstacle-
rich environment. In this case, variables are locations of landmarks and data is measurements of
landmark locations. A set of focused landmarks are selected to minimize the probability of collision
and then a set of measurements are selected to best localize those landmarks. In the experiment,
we compare 3 approaches:

1. focused-info: the proposed two-stage approach that selects focused landmarks in terms of
minimizing collision probability and selects measurements based on information gain over
focused landmarks.

2. focused-downselect : select focused landmarks but downsampling measurements of these fo-
cused landmarks.

3. full-info use all landmarks but select measurements based on information gain over all land-
marks.

Fig. 1a–1c shows sample navigation trials with the map built with the three different algorithms.
Fig. 1d shows the overall probabilities of collision obtained from all trials. The trials are stopped
whenever there is an actual collision with an obstacle. In the newly developed focused-info case,
the procedure picks the landmarks that contribute the most to reducing the robot’s uncertainty in
task-important regions (narrow passages) and exerts the computational budget to process the data
that helps reduce the uncertainty of these focused landmarks. In case full-info, the measurements
are selected to maximize information on all available landmarks. As a result, only a limited amount
of resources are spent on each landmark. In particular, very little resource is expended to reduce
the uncertainty in the important landmarks and the method failed to recover a meaningful map
for navigation. In the focused-downselect case, more computational resources are spent on the
focused landmarks, thus the map is more accurate than full-info, but the measurement selection
is not based on how much they contribute to uncertainty reduction, so bad choices are made and
the landmark positions are much less accurate than focused-info. The key point to note about
the proposed approach in Fig. 1a is that the robot uncertainty is preferentially reduced (smaller
uncertainty ellipses) in the areas of the environment where the corridors are tight and there is a
higher chance of collision.

In the real-world experiment, we ran a Pioneer robot in a cluttered office space. Fig. 2a shows the
floor plan of the environment. AprilTags were put up to create an initial pool of landmarks. The
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(a) focused-info (b) focused-downselect

(c) full-info (d) Collision probability in Monte Carlo sim.

Figure 1: Comparison of map building results and navigation with different maps. Green circles
represent learned landmark positions with their size representing uncertainty. Blue lines are the
nominal trajectories each robot wants to follow with red circles representing pose uncertainty. The
two-stage focused approach has much more accurate landmark estimates and much less uncertainty
in narrow passages, thus lower collision probability compared to the unfocused case

odometry measurements are obtained by matching visual features in consecutive RGBD images.
Fig. 2 compares mapping results of the same cases. The rebuilt robot trajectory is shown with a
color map, where the red color on the trajectory indicates the risky (close to obstacles) regions and
blue indicates the safer regions. Magenta circles represent landmarks with the size representing
its uncertainty. The focused-info approach (Fig. 2b) can concentrate the measurements on the
narrow passage and door way, resulting in less uncertainty there. The other approaches scatter
the measurements across different landmarks, and thus have much higher landmark uncertainty in
narrow passages.

Both simulation and hardware experiment showed the the proposed approach can build a reduced
map that retains the important information about the environment. The reduced map is much
smaller than the original full map with all available variables and measurements, thus make it
much more memory and computationally efficient for navigation. These results have been reported
in the conference publication [35].
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(a) floor map (b) focused-info (c) focused-downselect (d) full-info

Figure 2: Mapping results. Color line represent robots risk of collision. Magenta circles rep-
resent landmarks with the size representing its uncertainty. The proposed two-stage approach
(focused-info) outperforms either only selecting measurements (full-info) or only selecting land-
marks (focused-downselect).

Our future research will further explore our new approach of combining model learning and trajec-
tory planning as an integrated problem. With a partial map learned from the places the robot has
visited, the new approach samples feasible points in the partial map, and computes a path from
the feasible points that gives maximum future information on the robot tasks. Our new approach
explicitly accounts for the fact that when the robot moves to the boundary, it can observe new
features from previously unknown regions, thus gain new information about the environment. The
information in observed features and new features is quantified with a unified metric. Therefore,
the proposed approach can compare the benefits between exploring unknown regions and revisiting
explored regions with the same metric, and balance between them.

Progress 17: Convex proxies for VoI-driven search (Hero UM)
Results on convex VoI-driven strategies for the wide area search problem have been developed and
published this year. Convex proxies are very effective since they are easily optimized over the
planning space, e.g., the amount radar energy allocated to a particular region of a field of view or
the particular sensing modality selected. We continue to use a simple convex proxy that captures
detection and localization performance in a natural manner. This convex proxy is very simple to
analyze and we can often obtain closed form analytical characterizations of the optimal policy, the
associated VoI, and the associated exploration vs exploitation tradeoff. This has been applied to
adaptive search and tracking of sparse dynamic targets under resource constraints, published in the
IEEE Trans. of Signal Processing [31] this past year. Last year we reported progress on fundamental
limits specifying the value of information gained by using such convex proxies for planning. This
year we have published a complete analysis of VoI in IEEE Transactions on Information Theory [32]
for the case of target detection and localization. In collaboration with co-PI John How, we have
used this analysis to motivate a convex proxy approach to sensor planning for multi-class targets
where successful detection of different classes of targets have different value payoffs relative to the
mission. A conference paper on this multi-class convex proxy approach was published in a special
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session on information-centric fusion in the proceedings of the IEEE Fusion conference [33] and a
full paper on this approach has been accepted in the IEEE Trans on Signal Processing [40]. This
work is the fruit of collaboration between MIT and UM.

5.3.2 Information-based approaches to sequential planning and exploitation

Contributors: John Fisher (MIT), Doug Cochran (ASU)
Publications: [36], [37], [38], [39].

Progress 18: Efficient Information Planning in Gaussian MRFs (Fisher MIT):

In the sequential setting, complexity issues arise when planning multiple time-steps ahead. Specif-
ically, the complexity of active planning methods is combinatorial in the number of sensing actions
and exponential in the planning horizon. A commonly utilized choice of information measure,
mutual information (MI), is submodular when the measurements are statistically independent con-
ditioned on the quantity of interest. As such, tractable greedy selection methods are guaranteed
to be within a factor of the optimal (though, intractable) selection. Previous analysis provides
guarantees for greedy selection for the more general case of inference in graphical models when
measurements are divided into subsets with local constraints on subset selection and when the
latent variable structure may not be fully specified a priori (e.g., inference in Markov chains for
streaming data). It is important to emphasize that this analysis is about the basis for planning the
sensing actions. Inference proceeds after having selected a plan. Consequently, a first step is to
evaluate the reward of the prospective plan.

An important, often neglected, aspect of information-based approaches, however, is the computa-
tional cost of evaluating a given plan. While the bounds for greedy selection hold for any plan
subject to the same constraints, one is free to reorder the sequence in which subsets are considered.
Some reorderings have significantly higher information rewards than others. A simple example oc-
curs in a Markov chain where at each node one may choose k out of N measurements. A näıve plan
considers each node in order (greedily selecting k out of N available measurements at each node).
Alternatively, one may consider nodes in random order selecting a single measurement (from those
that have not already been selected), but ensuring each node is considered k times. Evaluating
the information reward of the näıve plan has significantly lower computational complexity than
the random plan, but the random plan will often have significantly higher information reward.
Thus, there is motivation to expend computational resources for exploring multiple plans subject
to the same constraints. Furthermore, when exploring multiple plans, the plan with lowest reward
provides the lowest upper bound on the optimal plan yielding a tighter performance guarantee as
compared to the greedy plan with highest reward.

This work [36, 37] considers the computational complexity of evaluating information rewards for
measurement selection in Gaussian models. In such models, complexity depends on the number of
latent variables, the number of measurements to be explored and the visitation order. We show
speedups up to a thousand times by taking advantage of sparsity in the measurement process
without changing the outcome of the greedy algorithm. In addition, we demonstrate that by
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working with the information form of Gaussian, we can provide the sufficient statistics at every
step with much reduced computation. We achieve that by deploying a variant of belief propagation
that is more suitable for adaptive inference settings. The results of the later technique are exact
for Markov chains, trees, and poly-trees. This analysis is particularly useful for large-scale models,
since the evaluation of information rewards poses a major computational bottleneck. Additionally,
we demonstrate empirically that both the information reward and evaluation complexity are largely
decoupled and as such, exploration of low-complexity walks yields high information rewards and
tighter upper bounds.

Progress 19: Value of information sharing in networked systems (Cochran ASU)
This vein of our work is seeking to quantify the value of sharing information in a class of detection
and estimation problems involving multiple networked sensors. Last year’s activity in this area
examined the relative performance of such systems when data shared on links between sensor nodes
in the network graph is replaced by proxy data obtained by an entropy maximization procedure
constrained by the actual data on other links [39]. This year’s work developed a theory of gauge-
invariant data registration for networks that enables alignment of the local coordinate systems at
individual sensors in the the network. This facilitates fusion of data across the network and enables
multi-sensor detection and estimation algorithms that require appropriately aligned data.

The new developments marry the mathematical machinery of connections on principal bundles
(gauge theory) with statistical estimation theory [38]. Sensor data may reside in data spaces that
are naturally parameterized by nonlinear manifolds (e.g., measurements of the three-dimensional
orientation of a target are parameterized by the special orthogonal group SO(3)), so the estimation
component entails probability distributions on such structures (i.e., Lie groups). Estimators use
sensor data that allow approximate local alignment between adjacent nodes in the network graph
to be deduced. From this local data, they estimate global gauge transformations that will align all
nodes in the network to a common coordinate system.

Framing this class of alignment problems in terms of statistical estimation theory enables the
use of information-geometric quantities (e.g., Fisher information) and methods to analyze and
bound algorithm performance in estimation of the desired gauge transformations. In particular,
performance is seen to depend both on the accuracy with which alignment of coordinates locally
at neighboring nodes in the network graph can be ascertained and on the global topology of the
network graph. Quantifying how network topology affects performance provides insight into how
the passing of information in a sensor network can be prioritized when communication resources
are constrained or can be allocated: If one edge of the network graph must be sacrificed, which one
will have least impact on global performance? If one link can be added, where will it have the most
impact? Importantly, and in contrast to existing work in the context of communication networks,
value of information sharing between nodes is measured here with respect to sensing objectives
rather than measures of data throughput.

5.3.3 Human-in-the-loop distributed search

Contributors: Angela Yu UCSD, John Fisher MIT
Publications: [41], [42], [43], [44]
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A human observer can provide essential contextual information to help automated sensing al-
gorithms to perform estimation, tracking, classification and situational awareneness, among other
tasks. Good computational and mathematical models for human-interaction systems are not widely
available, especially in the context of collaborative estimation and competitive foraging, areas that
we have addressed with new theory, simulation, and human experiments. We continue to develop
mathematical models for human-human and human-machine interaction that are relevant to the
human’s added-value to the value of information. This year we report progress in computational
models of human cognition for cooperative search problems.

Progress 20: Computational models of human cognition in cooperative search prob-
lems (Yu UCSD)
This continuing activity seeks to understand the computational processes underlying human cog-
nition, in particular how the brain represents and seeks out information from the environment as
it tries to achieve behavioral goals in varying contexts. She takes a multi-pronged approach of
understanding human behavior by incorporating state-of-the-art techniques in Bayesian inference
and Markov decision processes as modeling tools, developing tractable approximations motivated
by human behavioral data, designing and executing human experiments that serve as testbed for
model assumptions and scientific hypotheses, and predicting behavior in novel task settings. Spe-
cific applications of her work within the context of the VOI MURI includes developing reduced
models of human behavior, inferring “true” human confidence in judgment and decision-making,
optimizing situation-dependent choice of human experts, and designing individualized training to
optimize human performance.

In the past year, we have continued to investigate, via modeling and behavioral experiments, the
value of information in human cognition. We have focused on two main problems, multi-arm bandit
task and multi-attribute preference choice. In the multi-arm bandit task, we find that humans do
not utilize the computationally intense optimal algorithm, but rather adopt heuristic algorithms
that effectively trade off informational gain (exploration) and immediate reward (exploitation).
Intriguingly, we find that the best algorithm for capturing bandit behavior in young adults (uni-
versity students) is the knowledge gradient algorithm [41], which greedily computes the value of
exploration, but that older adult’s behavior are best captured by the softmax algorithm [42], which
stochastically deviates from optimal exploitation with no explicit representation of the value of
exploration). It remains to be seen whether this age-related difference replicates, and, if so, why
aging affects the representation and utilization of the value of information in humans in this way.

Separately, we have been analyzing human behavior in multi-attribute preference choice (e.g. buy-
ing a car as a function of safety and efficiency), where, curiously, the relative preference between
two options has been shown to systematically depend on the presence/absence of a third option.
We have developed and iteratively refined a Bayesian statistical inference model to demonstrate
that this apparently irrational behavior actually naturally arises from humans using the available
options as a source of information regarding the relative utilities of two attribute dimensions, and
the unavailability of some options (sold out) as a source of social information with regard to the
attribute values [45]. In the past year, we developed a better model to account for individual differ-
ences in this task [43]. Currently, we are trying to develop a model of active preference discovery,
whereby we assume that consumption outcomes inform humans of their own intrinsic valuation of
different attributes and therefore consumption choices reflect not only exploitative value but also
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incorporate a longer-term strategy of value exploration.

Progress 21: Boosting Crowdsourcing with Expert Labels: Local vs. Global Effects
(Fisher MIT)

Crowdsourcing has emerged as a powerful approach for collecting data and information at large
scales. The idea is to outsource tasks that are easy for humans but difficult for machines, sending
them to online “crowd” workers who are given a relatively small incentive. Crowdsourcing has
been widely used in many application and scientific domains, including machine learning, human-
computer interaction and social forecasting, to name only a few.

A major challenge in crowdsourcing is quality control. The (often anonymous) crowd workers have
unknown and highly diverse levels of expertise, making it a critical problem to evaluate workers’
performance and optimally combine their labels. In addition, human judgments are inherently noisy,
often with significant individual biases; this is especially common in the estimates of continuous
quantities, such as probabilities, product prices, and point spreads in sports, where people tend
to give under- or over-estimates based on their personal experience. In these cases, it is necessary
to calibrate the crowdsourcing results by incorporating some ground truth information or accurate
labels from domain experts.

Because the expert or true labels are often much more expensive than the labels from the crowd,
this raises an important problem of understanding the values of these valuable resources and hence
making optimal use of them. In this work [44], we study the optimal allocation of the true labels
to best calibrate the crowd labels for estimating continuous quantities. We frame the problem
into a minimization of a conditional variance criterion, and establish its monotonic submodularity,
enabling efficient approximation via greedy selection. We observe that our greedy selection rule
decomposes into two terms that reflect a trade-off between a local effect and a global effect, where
the local effect encourages acquiring true labels from the most uncertain items, which improve the
performance in a local, myopic fashion, while the global effect favors the most “influential” items,
whose true labels provide valuable information for decreasing the uncertainty on their associated
workers’ performance, and significantly improve the prediction of all the other items via a snowball
effect. We show that it is critical to consider the global effect when allocating the true labels,
especially in the initial stage when the number of acquired true labels is small, and the uncertainty
on the workers’ performance is relatively large.

5.4 Related activities: DURIP Software Defined Radar Testbed

A collaborative DURIP grant for building X-band radars was awarded to OSU (PI Emre Ertin)
in mid-2013. The primary purpose of these software defined radars is to provide an experimental
testbed for MURI researchers. Small radars (breadbox size) and a larger radar (rack mountable)
have been designed, constructed and field tested. These radars have been deployed at ARL Ab-
erdeen proving grounds, as described below, and have been scheduled for use by MURI researchers
beginning in August 2015. Here we report on progress on i) the software defined radar testbed,
and ii)structured sensing matrix designs for high resolution radar, which can be deployed in future
versions of the software defined radar testbed.
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Progress 22: Software defined radar testbed (Ertin OSU)
Microwave radar systems are crucial components of any standoff sensor system due to their all-
weather capabilities and proven performance for tracking, imaging, and situational awareness.
MIMO radar systems which can transmit independent waveforms on multiple antennas have been
suggested for improving detection, parameter estimation and clutter suppression capabilities. Un-
der a DURIP grant we have built a collaborative research resource based on software defined radar
(SDR) platforms that can adaptively modify both transmit waveforms and receive signal-processing
tasks in real time [46]. We have focused development of a low power, short range versatile radar
system that combines a high speed FPGA digital back-end with sideband digital/analog and ana-
log/digital converters with a custom built RF Frontend. The key idea is software defined radar sys-
tem is to sample the transmit/receive waveforms using high speed digital/analog and analog/digital
converters and to implement key processing stages using programmable digital hardware. This col-
laborative research resource will be utilized by faculty and students of the Ohio State University,
University of Michigan, Massachusetts Institute of Technology and Arizona State University. The
testbed consists of 14 Micro SDR Platforms with 2 transmit and 1 receive antennas. We have
participated in a recent data collection effort by ARL at the Aberdeen Proving Grounds in July
2015 for characterization of multimodal signature personnel and civilian vehicles. In Fall 2015 we
plan to conduct multiple data collection campaigns to support demonstration of algorithms and
VOI theory developed under the MURI.

Progress 23: Structured sensing matrix designs for high resolution radar (Ertin OSU)
Radar imaging systems transmit modulated wide- band waveform to achieve high range resolution
resulting in high sampling rates at the receiver proportional to the bandwidth of the transmit
waveform. Analog processing techniques can be used on receive to reduce the number of measure-
ments to N , the number of potential delay bins. If the scene interrogated by the radar is assumed
to be sparse consisting of K point targets, results from compressive sensing suggest that num-
ber of measurements can be further reduced to scale with K logN for stable recovery of a sparse
scene from measurements with additive noise. While unstructured random projectors guarantee
successful recovery under sparsity constraints, they cannot be implemented in the radar hardware
in practice. Recently, structured random Toeplitz and Circulant matrices that result from using
stochastic wave- forms in time delay estimation setting have been shown to yield recovery guaran-
tees similar to unstructured sensing matrices. However, the corresponding transmitter and receiver
structures have high complexity and large storage requirements. In our recent work [47], we propose
an alternative low complexity compressive wideband radar sensor which combines multitone signal
chirp waveform on transmit with a receiver that utilizes an analog mixer followed with a uniform
sub-Nyquist sampling stage. We derive the recovery guarantees for the resulting structured mea-
surement matrix and sufficient conditions for the number of tones. The only random component
of our design is the sparse tone spectrum implementable efficiently in hardware. Our analytical
and empirical results show that the performance of our scheme is in par with unstructured random
sensing matrices and structured Toeplitz and Circulant matrices with random entries. While the
proposed method for sensing matrix design is offline, our results establish a foundation from which
to investigate active and adaptive designs based on structure assumptions.
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6 Future research plans and anticipated scientific accomplishments

Future research plans in the individual projects are discussed in the context of each project in Sec.
5.

As described above, key elements of a fundamental theory for value-of-information for adaptive
sensing, distributed fusion, and information exploitation systems are being developed. Mathemati-
cal bounds and limits on the VoI have been established for several important problems in learning,
fusion and control for adaptive sensing. These results have been used to develop algorithms that
outperform the state-of-the-art.

In the last year of this MURI, several of the co-PIs plan to demonstrate our progress on VoI-
driven algorithms and theory using the radar testbed. The testbed has been used to collect data
for vehicle and dismount signatures that can supplement other data that we have been using to
validate our algorithms, e.g., the ARL footstep data. The testbed will be used to collect data on
dynamic interactive multi-agent systems that will allow validation of models for target search and
classification, predicting human behavior from partially observed data, signal subspace detection
and information fusion, information sharing in emulated decentralized sensor networks, and value-
of-information driven fusion and sensor planning that accounts for mission-dependent rewards,
among other models.
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title of each and give the total number for each of the following categories:
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3. Visar Berisha, Alan Wisler, Alfred O. Hero, and Andreas Spanias, “Empirically Es-
timable Classification Bounds Based on a New Divergence Measure,” arxiv 1412.6534,
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10. S. Gogineni, P. Setlur, M. Rangaswamy, and R. R. Nadakuditi, “Random matrix
theory inspired passive bistatic radar detection of low-rank signals,” IEEE Radar
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23. S. D. Howard, D. Cochran, and W. Moran, “Gauge-invariant registration in net-
works,” Proceedings of the International Conference on Information Fusion, July
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24. Lauren Crider and Douglas Cochran, “Effects of network topology on the con-
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of the Asilomar Conference on Signals, Systems, and Computers, pp. 465–469,
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Information Theory, to appear.

2. Harlé, K M, Zhang, S, Schiff, M, Mackey, S, Paulus, M P, and Yu, A J., “Altered belief
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Jan 2015. In review.

6. N. Sugavanam and E. Ertin, “Recovery guarantees for multifrequency chirp waveforms
in compressed radar sensing,” submitted to IEEE JSTSP, (in review) July 2015.

e. Books (2)

1. A. O. Hero, “Sparsity regularized image reconstruction,” in Review of Progress in Quan-
titative Nondestructive Evaluation, Vol. 34, edited by Dale E. Chimenti and L. J. Bond,
published by American Institute of Physics, Melville, NY, 2015. This paper supports
Hero’ keynote address given at QNDE 2014 in Boise ID.

2. S. Kumar, M. Al’Absi, G. Beck, E. Ertin, and M. Scott, “Behavioral Monitoring and
Assessment via Mobile Sensing Technologies,” Book Chapter in Behavioral Health Care
and Technology Using Science-Based Innovations to Transform Practice, edited by Lisa
Marsch, Sarah Lord and Jesse Dallery, Oxford University Press, Dec 2014.

f. Honors and Awards

i. Alfred Hero, Keynote speaker, IEEE International Telecommunications Symposium,
Sao Paolo Brazil, Aug 2014.

ii. Alfred Hero, Plenary speaker, IEEE Intl. Conference on Image Processing, Paris
France. Oct 2014.

iii. Alfred Hero, Keynote speaker, Scale Space and Variational Methods in Computer
Vision Conference, Lege Cap Ferrat, France June 2015.

iv. Michael Jordan, John von Neumann Lecture, Brown University.

v. Michael Jordan, Coxeter Lecture Series, Fields Institute for Research in Mathematical
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33



MURI: Value-centered Information Theory Year 4 IPR

vi. Michael Jordan, Bahadur Memorial Lecture, University of Chicago.

vii. Michael Jordan, Keynote speaker, 34th ACM Symposium on Principles of Database
Systems (PODS).

viii. Michael Jordan, Keynote speaker, International Conference on Computing, Network-
ing and Communications (ICNC 2015).

ix. Michael Jordan, Keynote speaker, Hadoop/Strata Conference.

x. Michael Jordan, Keynote speaker, Stanford/Berkeley Robotics Symposium,

xi. Michael Jordan, Keynote speaker, Artificial Intelligence and Statistics (AISTATS).

xii. Michael Jordan, Keynote speaker, Statistical Society of Canada Annual Meeting.

xiii. Michael Jordan, Keynote speaker, Computational Learning Theory Annual Conference
(COLT).

xiv. Michael Jordan, Keynote speaker, International Conference on Machine Learning
(ICML).

xv. R. Moses, Sparse Methods in Radar Signal Processing, Plenary Keynote Lecture,
Sensor Signal Processing for Defence Conference, Edinburgh, Scotland, Sep 2014.

xvi. Jon How was appointed Editor in Chief of the IEEE Control Systems Magazine

xvii. Stefano Soatto, Best Conference Paper Award, Intl. Conf. on Robotics and Automa-
tion (ICRA), 2015

xviii. Raj Rao Nadakuditi, DARPA Young Investigator Award 2014.

xix. Doug Cochran, Fulbright Distinguished Chair in Science and Technology, 2015-2016.

g. Title of Patents Disclosed during the reporting period

h. Patents Awarded during the reporting period

2. Student/Supported Personnel Metrics for this Reporting Period

a. Graduate Students

1. Doctoral Students (21)

(a) ASU student Lauren Crider supported at 33% annualized FTE (since beginning
PhD study in May 2015)

(b) ASU student Shih-Ling Phuong supported at 5% annualized FTE (100

(c) ASU student Kaitlyn Beaudet supported at 25% FTE

(d) MIT student Beipeng Mu supported at 50% annualized FTE

(e) MIT student Georgios Paperchristoudis at 50% annualized FTE

(f) MIT student Christopher Dean at 50% annualized FTE

(g) MIT student Randi Cabezas at 50% annualized FTE

(h) MIT student Julian Straub at 50% annualized FTE

(i) OSU student Nithin Sugavanam supported at 50% annualized FTE

(j) OSU student Diyan Teng supported at 50% annualized FTE

(k) OSU student Gene Whipps supported at 0% annualized FTE (Note: Whipps is a
researcher at Army Research Laboratory who is on temporary assignment to Ohio
State in order to complete his PhD degree. His research is fully aligned with this
MURI)
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(l) UC Berkeley student Yuchen Zhang supported at 50% annualized FTE

(m) UC Berkeley student Lihua Lei supported at 50% annualized FTE

(n) UCLA student Georgios Georgiadis supported at 10% annualized FTE

(o) UCLA student Vasiliy Karasev supported at 5% annualized FTE

(p) UCSD student Sheeraz Ahmad supported at 50% annualized FTE

(q) UM student Zhaoshi Meng supported at 25% GSRA Aug 2014

(r) UM student Tianpei Xie: 50% Fall 2014 + Winter 2015 + SS 2015

(s) UM student Pin-Yu Chen: 50% Fall 2014

(t) UM student Brandon Oselio 50% GSRA May - June 12, 2015

(u) UM student Himanshu Nayyar 50% GSRA SS 2015

2. Masters Students (2)

(a.) ASU student Kaitlyn Beaudet supported at 10% annualized FTE

(b.) UM student Alfredo Bravo Iniguez: 25% annualized FTE

b. Post Doctorates (10)

1. Virginia Estellers, UCLA, 50% annualized FTE

2. Shunan Zhang, UCSD, 50% annualized FTE

3. Goran Marjonovic, UM, 4% annualized FTE

4. Jie Chen 50%, UM, 8% annualized FTE

5. Hye Won Chung, UM, 100% annualized FTE

6. Taposh Banerjee, UM, 33% annualized FTE

7. Yasin Yilmaz, UM, 33% annualized FTE

8. Oren Freifeld, MIT, 25% annualized FTE

9. Qiang Liu, MIT, 40% annualized FTE

10. Guy Rosman, MIT, 25% annualized FTE

c. Faculty (10)

1. Stefano Soatto, UCLA (10% FTE)

2. Douglas Cochran, ASU (5% FTE)

3. Emre Ertin, OSU (20% FTE)

4. Randy Moses, OSU (0% FTE)

5. John Fisher, MIT (20% FTE)

6. Alfred Hero, UM (0% FTE)

7. Jonathan How, MIT (0%)

8. Michael Jordan, UC Berkeley (0%)

9. Raj Nadakaduti, UM (8% FTE)

10. Angela Yu, UCSD (8% FTE)

d. Undergraduate Students (2)

1. ASU undergraduate Lauren Crider supported at 25% FTE

2. Derek Allman 20% FTE
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e. Graduating Undergraduate Metrics (funded by this agreement and graduating during this
reporting period):

f. Masters Degrees Awarded (3)

1. Alfredo Bravo Iniguez, M.S., UM

2. Kaitlyn Beaudet, M.S., ASU

3. Christoper Dean, S.M., MIT

g. Ph.D.s Awarded (3)

1. Zhaoshi Meng, UM

2. Nick Asendorf, UM

3. Giorgos Papachristoudis, MIT

h. Other Research Staff (3)

1. Taco Cohen, UCLA

2. Gottfried Graber, UCLA

3. Massimo Cairo, UCLA

3. Technology Transfer (any specific interactions or developments which would constitute tech-
nology transfer of the research results). Examples include patents, initiation of a start-up
company based on research results, interactions with industry/Army R&D Laboratories or
transfer of information which might impact the development of products.

1. Technology Transitions

2. Student interns at Service Labs

(a) UM student Brandon Oselio did an internship at ARL on dynamic social media analysis
under Lance Kaplan in summer 2014 and 2015.

(b) UM student Brandon Oselio did an internship on anomaly detection in social media
at MIT Lincoln Laboratory under mentorship of Kevin Carter in summer 2015.

(c) UM student Tianpei Xie did an internship on robust fusion at ARL in summers of
2013, 2014 and 2015 under mentorship of Nasser Nasrabadi.

(d) UM student Himanshu Nayar did an internship at Army Research Lab with Dr. Anan-
thram Swami and Dr. Terence Moore in summer 2015.

(e) ASU student Davis Gilton did an internship at AFRL in summer 2015 with a project
on SAR.

(f) ASU student Theresa Scarnati did an internship at AFRL in summer 2015 with a
project on geolocation.

3. Co-PI interactions with ARL and other Federal research labs

(a) co-PI Ertin has participated in a recent data collection effort by ARL at the Ab-
erdeen Proving Grounds in July 2015 for characterization of multimodal signatures of
personnel and civilian vehicles.

(b) PI Hero and co-PIs Cochran, Ertin, and Fisher visited ARL in July 2015 where they
briefed ARL researchers on research under this grant and engaged in technical dis-
cussions. ARL researchers engaged in this visit included Brian Sadler, and Nasser
Nasrabadi.
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(c) PI Hero and co-PIs Cochran, Ertin and Fisher interacted with ARL researchers Lance
Kaplan and Tien Pham at the IEEE Fusion meeting in Washington DC in July 2015.

(d) PI Hero and co-PI Fisher interacted with LANL researchers during their visit to Los
Alamos National Laboratory in Jan 2015.

(e) PI Hero was one of 5 invited panelists for the AFOSR Workshop Challenges in Fusion,
Dayton OH Aug. 2014.

(f) co-PI Ertin has applied performance prediction theory developed under this MURI,
for algorithm development to assess information value of Radar/Ladar signatures in
ATR tasks under the AFRL/OPERA program under a subcontract to Leidos, Inc.

4. Other relevant co-PI activities on national committees

(a) PI Hero is a member of the US National Academies of Sciences, Engineering, and
Medicine Intelligence Science and Technology Group (ISTEG) (2015-).

(b) PI Hero serves on the National Academy of Sciences Committee on Applied and The-
oretical Statistics (2011-present)

(c) PI Hero serves on the DARPA Biosynchronicity Grand Challenge committee (2015-)

(d) Co-PI Moses serves on the National Academy of Sciences Panel on Information Science
at the Army Research Laboratory (2011-present).

(e) R. Moses serves on the Board of Directors for the American Society of Engineering
Education (ASEE) and as Chair of the ASEE Engineering Research Council, 2014-
present.

(f) co-PIs Hero and Fisher co-organized a special session on Value centered fusion at the
IEEE Fusion conference that took place in Washington DC in July 2015.

(g) Co-PI Soatto is Program Co-Chair, SIAM Conference on Imaging Science, 2016 (with
Rebecca Willett)

5. Co-PI Cochran organized a workshop on passive radar at AFRL in September 2014.
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