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Abstract

Our aim is to develop a comprehensive set of principles for task-specific information ex-
traction and information exploitation that can be used to design the next generation of au-
tonomous and adaptive sensing systems. The significance of this research is that it addresses
the widespread and longstanding problem of defining, assessing, and exploiting the value of in-
formation in active sensing systems. This year we report progress in 21 areas organized around
3 main thrusts: learning and representation of high dimensional data, distributed information
fusion, and active information exploitation. In the learning and representation thrust, progress
ranges from assessing value of Kronecker representations of high dimensional covariance matri-
ces to learning to rank user preference data, an important task for human-in-the-loop decision
systems. In the distributed information fusion thrust, progress is reported in assessing value of
information in distributed information gathering and dimensionality reduction systems with ap-
plication to sensor networks. In the active information exploitation thrust, progress is reported
in information geometric trajectory planning, adversarial information collection, active learning
in Bayes nets, and multistage adaptive estimation of sparse signals. Our future plans are to
continue to develop linkages between these thrust areas, to continue our development of fun-
damental theory for designing and evaluating distributed active information collection systems,
and to account for human interactions in the sensing and processing loop.
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1 Overall objective of project

Sensing and actuation systems are inundated with diverse and high volumes of data. Much of
this data is uninformative and irrelevant to the end task of the system which can evolve over the
mission. The problem of extracting and exploiting the relevant and informative portion of sen-
sor data has been an active area of research for several decades. Despite some progress, notably
in information-driven tracking and data fusion, a general solution framework remains elusive, es-
pecially for autonomous and distributed sensing systems. The aim of this MURI is to develop a
comprehensive set of principles for task-specific information extraction and information exploitation
that can be used to design the next generation of autonomous and adaptive sensing systems. These
principles will go beyond the standard information theoretic approaches that fail to account for
non-classical information structures due to factors such as small sample size, poorly-specified tar-
get and clutter models, feedback control actions, hostile or adversarial environments, computation/
communication constraints, distributed sensing resources, and time-critical decision making.

2 Approach

Our research program aims to lay the foundations for a new systems theory that applies to gen-
eral controlled information gathering and inference systems with mission planning. The research
approach comprises three inter-related research themes that collectively address the most critical
research challenges. These thrusts are: (1) information-driven structure learning and represen-
tation; (2) distributed information fusion for fast paced uncertain environments; and (3) active
information exploitation for resource management. We aim to develop an end-to-end framework
that will result in better raw sensor data acquisition and processing, improved fusion of multiple
sources and modalities, and more effective sensor management and control.

3 Scientific barriers

This research addresses several challenges

1. Reliable value-of-information measures for active multi-modal sensing systems are not avail-
able. Existing approaches to learning and representation of information does not account
for the sequential nature of data collection. This arises in active sensing systems such as
autonomous maneuvering robots with vision/IR/LIDAR capabilities. Quantifying the value
of information collected from active sensing systems is essential but there exists no suitable
theory to do so. Classical Shannon information theory is inadequate as it was not designed
for learning in active sensing systems; rather it was designed for data transmission in commu-
nications systems. A new theory for learning the value of information is needed that accounts
for real-time feedback and control of the sensor, applies to signals that are non-linearly em-
bedded in high dimension, accounts for models with complex structural components, e.g.,
hierarchical graphical models of interactions in the scene, has scalable computation even in
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large distributed sensor systems, and accounts for the economic or human cost of acquiring
data or fielding a new sensor.

2. There is no broadly applicable theory of information fusion for fast paced uncertain environ-
ments. The design and operation of sensing systems must accommodate the collection and
delivery of a wide range of data at different times, spatial locations, and often with severely
limited bandwidth and delay constraints. These systems must not have too many user defined
tuning parameters that could overwhelm the human operator. There is no generally applica-
ble theory of multimodal information fusion that accounts for all of these factors. Existing
information theoretic measures and associated surrogates, are often only weakly predictive
of information fusion performance and usually require careful tuning when used as objec-
tive functions that drive the fusion algorithm, Reliable measures are needed for fusion in
compromised environments having high background/clutter variability and spotty situational
awareness coverage.

3. Most information exploitation algorithms do not accurately predict the ultimate value of a
current sensing or navigation action in the presence of uncertain hostile environments. The
sensor manager plans ahead and controls the degrees-of-freedom (actions) of the sensor and
platform in order to achieve system objectives. These degrees of freedom include: region of
focus of attention, choice of modality and mode (for example EO vs LIDAR), transmit wave-
form selection, and path planning actions (platform maneuvering). The manager must predict
the value of information resulting from each of the candidate sensing actions. This prediction
must account for the uncertainty of the environment, time-varying visibility constraints (tar-
get obscuration), erratic or adversarial target behavior, and sensor resource constraints. To
date most plan-ahead sensing and navigation approaches have been based on heuristics, like
maximizing Shannon information-gain, and do not account for the value of the information
measure as a function of the end task or the uncertainty in the environment.

4 Significance

The significance of this research is that it addresses the longstanding problem of defining, assessing,
and exploiting the value of information in active sensing systems. By defining new information
measures that account for the future value of data collection we can design better sensing, fusion,
and planning algorithms that come with performance guarantees, e.g., tight value-specific bounds
and performance approximations. By developing scalable and accurate methods to assess the value
of information from empirical data, we can better design active sensor fusion and sensor planning
to exploit the information collected thus far. The impact of the research can be summarized by
the following four points.

1. The research will result in more accurate prediction of performance using a new class of
information measures that account for both quality and value of information.

2. The research will provide a foundational ”systems theory” for active information gathering
systems that use these new measures.
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3. The research will use this foundational theory to develop highly adaptive and learning-based
sensing strategies with significantly enhanced performance having reduced user tuning re-
quirements.

4. The research will apply these sensing strategies to improve sensor signal processing, informa-
tion fusion, and sensor platform navigation and control

5 Specific accomplishments over the period (8/22/11-7/31/12):

Our efforts are organized around the three research thrusts (1) information-driven structure learning
and representation; (2) distributed information fusion; and (3) active information exploitation for
resource management. These thrusts are interdependent and most of our efforts fall across the
boundaries between them. However, for clarity in presentation we cluster each reported progress
and accomplishment around one of these thrusts.

5.1 Information-driven structure learning and representation

As learning and feature representation is one of the basic building blocks of fusion and resource
planning, this thrust is crucial for maximizing the value of information collected by a sensing, pro-
cessing, and decision-making system. Our effort in information-driven learning and representation
encompasses three areas: learning and representation of high dimensional data, value of information
for vision, and performance quantification for estimation tasks.

5.1.1 Learning and representation of high dimensional data

Contributors: Hero UM, Jordan UCB, Fisher MIT
Publications: [17], [19], [24], [3]

Feature representation and learning for high dimensional data is the starting point for studying
value of information. Poorly chosen features will deprive the system of the ability to extract useful
information for fusion, inference or resource planning. Poor learning rates will make the system
unable to adapt to fast changing scenarios. We have made significant progress in both of these
domains. This progress is described below.

Progress 1: Sparse Kronecker product representations for high dimensional covariance
matrices (Hero UM): Kronecker product representations decompose a high dimensional covari-
ance matrix Σ into an outer product of lower dimensional matrices A and B, i.e., Σ = A

⊗
B. This

type of representation has been previously proposed for spatio-temporal network sensor data, e.g.,
by Werner et alin 2008, and results in a significant reduction of the number of unknown covariance
parameters. For example, if the number of sensors is p, p = nm, and n and m are the dimensions of
the Kronecker factors A and B the number of unknowns is reduced from O(m2n2) to O(m2)+O(n2).
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As a more concrete example, consider 1000 sensors measuring 1000 time samples of a spatio-
temporal random field. The covariance matrix of all the data will be a 1,000,000 by 1,000,000 but un-
der the Kronecker product model can be completely specified by two smaller 1000 by 1000 covariance
matrices.
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Figure 1: Illustration of advantages of the proposed
sparse Kronecker structured covariance estimation al-
gorithm (KGlasso [19]) as compared to other state of
the art algorithms for estimation in spatio-temporal
graphical models. Regions of convergence for these
algorithms were established in [18] and are upper
bounded by each respective curve including: KGlasso
(converges in region below upper curve), non-sparse
structured Flip Flop estimator (below second highest
curve), non-Kronecker structured Glasso (below third
highest curve), and the standard non-sparse and non-
Kronecker sample covariance matrix estimator (SCM)
(below bottom curve). Our proposed KGlasso [19] has
the largest region of convergence implying that it can
estimate covariance matrices of high dimension (p)
with many fewer observations (n) than the other meth-
ods.

In our recent papers [17] and [19] we have pro-
posed two algorithms for estimating the pa-
rameters of Kronecker factors under the ma-
trix normal Gaussian model when the covari-
ance is both sparse and Kronecker structured.
The convergence rate of these algorithms was
proven and the algorithms were shown to yield
consistent estimates. More importantly, as con-
cerns the VoI topic of this MURI grant, in [18]
we obtained tight bounds on the rate of con-
vergence of the MSE as a function of the num-
ber n of available observations. This establishes
the incremental value of observations in terms
of reduction of MSE when the covariance has
Kronecker product structure. Figure 1 shows
a comparison of the convergence region of our
algorithm as compared to different algorithms.
Our proposed algorithm has the fastest rate of
MSE convergence. The work described in [18]
has been submitted to a journal.

Progress 2: Sparse learning in sensor
networks (Jordan UCB): Data accumula-
tion and modeling in large sensor networks of-
ten run aground on problems of high dimen-
sionality. In such setting it is essential to learn
sparse solutions that retain a small subset of the
available predictors. To address such sparse re-
gression problems, we have proposed a new fam-
ily of sparsity-inducing priors that we refer to as
exponential power-generalized inverse Gaussian
(EP-GIG) distributions [24]. Our framework
allows us to induce non-convex losses which are
effective in obtaining sparse solutions. We have
also developed hierarchical Bayesian methods
based on these loss functions.

Progress 3: Structure learning for multivariate time series (Fisher MIT): We have
extended prior work on learning the structure of interactions between vector-valued time-series. In-
ference over interactions structures is super-exponential in the number of time-series (i.e., O(NN )).
As such, exact inference presents a significant computational challenge. We have extended our
prior work on exact polynomial-time algorithms for Bayesian inference over structure - so called,
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switching temporal interaction models (STIMs) - to include state space models. Prior methods
required time-series to be fully observed, whereas the new method allows for noisy observations
and (importantly) missing data. The computational complexity of the new formulation remains
polynomial, O(Nk), where N is the number of time-series under consideration and k is number of
allowed interactions.

Progress 4: Learning to rank from partial user preference data (Jordan UCB): When
evaluating proposed actions in uncertainty environments, users often prefer to receive a ranked
list of the options, and are most interested in the value associated with the actions near the top
of the list. To address this need, we have been studying loss functions and the corresponding
risks that are appropriate for supervised ranking [3]. In this problem the task is to rank sets
of candidate items returned in response to queries. Although there exist statistical procedures
that come with guarantees of consistency in this setting, these procedures require that individuals
provide a complete ranking of all items, which is rarely feasible in practice. Instead, individuals
routinely provide partial preference information, such as pairwise comparisons of items, and more
practical approaches to ranking have aimed at modeling this partial preference data directly. As
we show, however, such an approach has serious theoretical shortcomings. Indeed, we demonstrate
that many commonly used surrogate losses for pairwise comparison data do not yield consistency;
surprisingly, we show inconsistency even in low-noise settings. With these negative results as
motivation, we present a new approach to supervised ranking based on aggregation of partial
preferences and develop U -statistic-based empirical risk minimization procedures. We present an
asymptotic analysis of these new procedures, showing that they yield consistency results that
parallel those available for classification.

5.1.2 Value of information for vision

Contributors: Soatto UCLA
Publications: [5], [16]

In the area of value of information for vision the effort is to develop invariant representations of
pose and appearance for shape spaces. Such representations can be used to specify subspaces
over which information measures can be defined for assessing the value of information for sensor
platforms with mobility. For such a representation the relevant observable information is defined
on the pose/appearance quotient space of shapes. We are working on quantifying and minimizing
the information gap between the quotient shape space and the complete shape space. This gap will
specify the information lost due to object pose and appearance uncertainty.

Progress 5: Event detection for live fire monitoring systems (Soatto UCLA): In [16]
we have tackled the problem of event detection for processes manifest in time-series that exhibit
complex multi-scale temporal variability spanning from the minute to the year. A prototypical
problem is outdoor fire detection: The data is affected by nuisance variability due to illumination,
weather, terrain shape, etc. Simply “learning away” such a variability would require temporal
observation over a span of at least one year (to capture seasonal variability), and the procedure
would have to be repeated for each sensor (monitoring station). Furthermore, the change due to
the onset of a fire is typically trumped by normal-mode variability, and no “positive examples” are
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available for the majority of monitoring stations. We have therefore set out to study systematic
ways to canonize nuisance variability that can be factored out from the data via pre-processing in a
lossless fashion: model nuisance variability that can be easily normalized with side-information (e.g.
the dime of the day, or the location of the horizon); and learn the residual variability (e.g., cast
shadows). The results, published at ECCV [16], represent the basis for a live fire monitoring stations
that has benchmarked against human performance, beating it not only for untrained subjects, but
also for expert fire monitors.

Progress 6: Salient motion detection from a moving sensor platform (Soatto UCLA):
In [5], published at CVPR, we have tackled the problem of “salient” event detection from a moving
sensor. If the sensor was static, relatively simple statistical models of the “background” can be
used as a test against the hypothesis of an alarm (“foreground”), as customary in surveillance.
However, when the camera is moving, the entire domain of the image is deforming, and explicitly
modeling the deformation due to the background is highly problematic, because – as shown by
Sundaramoorthi et al2009, – even a single static scene can induce on the domain of a moving image
a deformation that spans the entire group of diffeomorphisms. The situation is even more complex
when occlusion phenomena occurs, in which case the deformation cannot even be represented as
the graph of (however complex) a function. We have thus defined “salient” motions in the scene
that are not compatible with the motion of the camera. Both, however, are unknown, and we
were determined to determine saliency without explicitly estimating the motion of the camera or
the independent motion of objects in 3-D. Using the properties of (infinite-dimensional) orthogonal
projector operators, we were able to detect independently moving objects as a violation of the
assumption of epipolar domain deformation, but without actually computing the camera motion.
We have also discovered empirically, and therefore proved analytically, that absence of knowledge
of camera calibration does not affect the classification (saliency), even though of course it would
affect the estimate of motion. The resulting system has shown effective at detecting motion of
even very small objects seen from a moving platform (e.g., vehicles moving as seen from an aerial
platform).

5.1.3 Performance quantification

Contributors: Jordan UCB, Cochran ASU
Publications: [6], [2]

Value of information is closely connected to performance quantification. Performance quantifi-
cation is divided into 1) offline performance benchmarking and analysis and 2) online empirical
performance prediction from measurements. We have made significant advances in both of these
areas.

Progress 7: Performance quantification by BLB (Jordan UCB): In the area of performance
quantification we have developed a new approach to empirical estimation of estimator uncertainty
using a ”bag of little bootstraps” (BLB) [6]. Our sampling approach allows one to use compact
representations of the resamples to provide major reductions in the computational complexity of the
bootstrap while preserving its asymptotic theoretical guarantees. Recently we have completed the
development of a large-scale distributed implementation of BLB using the Spark cluster computing
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framework. This framework allows us to either read data from disk (making its performance
comparable to traditional Hadoop MapReduce) or use a cluster of compute nodes to cache it in
memory (when such an amount of memory is indeed available) making repeated accesses of the data
significantly faster. As a result, in [6] we were able to analyze datasets of size 150GB, which would
be computationally intractable for traditional bootstrap. In ongoing research we are developing a
system for applying BLB to the estimation of quality of query processing algorithms in very large
databases. The goal of this work is to not only return BLB-based estimates when to a wide range
of queries, but to also automatically identify statistical situations where bootstrap and hence BLB
cannot be applied.

Progress 8: Quantifying VoI for networked resources (Cochran ASU): In the area of
quantifying the value of information sharing among networked resources, we have drawn on an
example from multiple-channel signal detection. In this setting, detection performance in classical
terms (e.g., probability of correct detection obtainable given a particular probability of false alarm)
is precisely known as a function of signal-to-noise rations on the channels. But these performance
figures are based on the assumption that all the sensor data is accumulated in a single location
for processing. In a network of sensors where only pairs of sensors sharing an edge in the network
graph can exchange data directly, performance loss relative to a fully connected network can be
assessed by using maximum-entropy values in place of inter-node data for sensors that cannot
directly share data. In initial work [2] we have been able to empirically ascertain the equivalent
increase in signal strength (i.e., in dB) corresponding to adding links in the network graph. We are
proceeding to study the relative value of various links in the network topology, with the objective
of being able to determine precisely which information links are most valuable in terms of overall
detection performance.

5.2 Distributed information fusion

Depending on the fusion algorithm implemented, fusion of information across a network of sensors
can either enhance or degrade the value of information collected at each sensor. Furthermore,
centralized fusion at a fusion center is often not possible due to the limited communications band-
width and throughput of the network. Thus the study of effective distributed information fusion
methods is a key part of the MURI grant’s activities. Our progress in distributed fusion falls in
three areas: information gathering and graphical models; non-commutative information theory for
dimensionality reduction; and distributed inference in sensor networks.

5.2.1 Information gathering and graphical models

Contributors: Hero UM, Fisher MIT
Publications: [8], [15]

Graphical models provide a very natural mathematical framework for developing distributed fusion
algorithms and studying their performance.
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Progress 9: Directed graphical models for distributed PCA in a sensor network
(Hero UM): We have applied directed graphical models to accelerate distributed inference in
sensor networks [8]. Our previous approaches to graphical modeling for distributed PCA (DPCA)
exploited sparsity in the inverse covariance (Wiesel et al2010). Under this MURI we have taken a
significantly different approach in [8], called directed distributed PCA (DDPCA) that improves on
the performance of DPCA. By assuming that the sparsity structure exists in the Cholesky factors of
the inverse covariance, which is more natural for generative models of high dimensional time series,
we show significant performance and computation/communication gains. The algorithm performs
message passing to tie together the locally estimated principal components (PC) of the sensor
network. We show that the local estimates converge to the global estimates, i.e., the one that one
would find by a centralized PCA. The message passing algorithm is applied to detecting anomalies
in networks. Our work establishes that directed graphical models can be used to extract better
information from distributed networks for the purposes of anomaly detection and dimensionality
reduction.

Progress 10: Submodularity for penalized information measures (Fisher MIT): In
the area of information gathering and graphical models we are developing new lower information
theoretic bounds on performance based on Ali-Silvey measures. These bounds exploit submodular-
ity and adaptive submodularity and use the intrinsic partial order structure of graphical models.
These bounds specify in objective measures that can be used to drive sensor planning algorithms.
Submodularity ensures close-to-optimality of single stage planning and therefore avoids the high
complexity of multistage optimal policy search. We are also developing a taxonomy of information
measures to establish desirable properties of any such a measure in terms of its utility in fusion and
plan-ahead sensing. Prior work exploiting the submodular property of conditional mutual informa-
tion resulted in theoretical performance guarantees and a variety of both off-line and on-line bounds
when comparing tractable greedy measurement selection to combinatorial (i.e. intractable) opti-
mal measurement selection in the context of inference in graphical models. These results implicitly
assume a homogenous cost structure over the set of all measurement choices. We have extended
these bounds to include heterogeneous penalties to measurements so as to better capture real-world
information gathering systems. We have established conditions under which submodularity holds
for penalized information measures. Consequently, this work extends the use of such bounds to the
resource-constrained sensor planning. This work has been published in [15].

5.2.2 Noncommutative information theory

Contributors: Nadakuditi UM, Jordan UCB
Publications: [14], [13], [7]

A major focus of our work is on applying the theory of random matrices to information fusion.
We have made progress on developing new spectral measures and large deviation bounds for these
non-commutative matrix measurement problems.

Progress 11: Spectral measures and subspace detection from random matrices (Nadaku-
diti UM): In the area of non-commutative information theory the effort is to establish the funda-
mental limits on the information that can be extracted from non-commutative observations such as
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random matrices and tensors. For symmetric matrices these limits are governed by the asymptotic
behavior of eigenvalues and eigenvectors of the matrix and specify phase transition thresholds of
SNR and matrix dimension for which these eigen-quantities cannot be reliably estimated empiri-
cally. Such phase transition thresholds are the key to developing the non-commutative information
theory of dimensionality reduction, which is relevant, for example, to variable selection in sensor
fusion. To that end, we have developed numerical algorithms for accurately computing the ’free’
convolutions of various spectral measures. Since the accuracy of empirical subspace estimates de-
pends on the analytic functions associated with these convolutions (analogous to the role of the
Fourier transform/characteristic function in scalar probability theory), the developed algorithms
will facilitate performance prediction for algorithms that utilize these subspace estimates. We have
established universality of the square-root decay at the edge for free convolutions of compactly sup-
ported measures - this will form the basis of universal schemes for signal detection that exploit this
characterization of the spectrum [14]. We have also analytically characterized the spectra of graphs
with arbitrary expected degree distributions - this facilitates anomaly detection in graph-valued
data sets and in spectral clustering for machine learning [13].

Progress 12: Large deviation theory for random matrices and matrix-valued time
series (Jordan UCB): Random matrices arise in many statistical applications. The theory of
random matrices is developing rapidly, but is still very limited in terms of its applications to
statistics. In particular, the theoretical analysis of many learning algorithms requires tail bounds
for statistical estimators and there are few such results available for random matrices. Indeed, the
non-commutativity of matrices poses significant problems for classical large deviation theory and
concentration of measure. In [7] we have shown how to use Stein’s method of exchangeable pairs
to obtain large deviation results for random matrices. For sums of independent random matrices
our theory generalizes classic theory due to Hoeffding, Bernstein, Khintchine and Rosenthal to
analogous matrix inequalities. We can also apply this theory to sums of dependent random matrices,
thus making it more suitable to analyzing matrix-valued time-series.

5.2.3 Distributed inference in sensor networks

Contributors: Moses OSU, Ertin OSU, How MIT
Publications: [23], [11]

We are developing inference algorithms that can be implemented in a distributed manner over a
network of sensors. Inference tasks of interest include detection and tracking. Our progress in these
areas is reported below.

Progress 13: Aggregating local information for decision-level fusion (Moses OSU): In
the area of distributed inference in sensor networks we are analyzing the interplay between local
decision, global inference, performance, and communication. As an initial problem, we consider the
case where each sensor makes a binary decision on the presence of a signal source and the fusion
node combines these to make a more accurate decision [23]. We consider a lossy medium in which
signals undergo a range-dependent propagation loss leading to a heterogeneous sensor network
model. We analyze how the performance of the system scales with the density of sensor nodes in a
random sensor network. Such a scaling analysis has to take into account the increased load on the
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communications network. Therefore, we analyze the detection performance as a function of sensor
density subject to a constant network bandwidth constraint. As the number of sensors per unit area
is increased, the average number of messages per sensor has to be scaled down to satisfy the network
constraint. We consider two alternative methods of limiting bandwidth of individual nodes: random
duty-cycling and increasing the local thresholds. First we consider a simple fusion rule of counting
the number of detections in the sensor network. For this global fusion rule and modeling the sensor
network as a stationary Poisson Point Process, the test statistic is also Poisson distributed. Thus,
the system performance, in terms of Type I and Type II errors, is completely characterized by
the conditional means of the count statistic. We showed that the policy of desensitizing sensors
(i.e., increasing their thresholds) outperforms random duty-cycling sensor nodes while increasing
density to maintain a desired false alarm probability at the fusion node. Next, we extend our results
to show that desensitizing the sensors is also beneficial when optimal fusion rules (in contrast to
counting rule) are utilized at the fusion center. For the asymptotic regime we also derived the
relation between the average information provided by an individual sensor node and the global
information available to the fusion center under network constraints.

Progress 14: Adaptive VOI based Algorithms for Efficient Distributed Information Fu-
sion (How MIT): Many distributed information fusion algorithms have recently investigated the
notion of consensus for state/parameter estimation, e.g. work by Olfati et aland Boyd et al. How-
ever, due reaching consensus using these algorithms can be communication intensive. In particular,
it is often the case that not all agents have valuable information to contribute at all times (e.g., the
updated state estimate after new measurements are collected may not be sufficiently different than
the preceding estimate).

Figure 2: Performance Comparison of different hy-
perparameter estimation algorithms for estimating av-
erage room temperature at a given time of the day from
the Intel dataset. The total communication cost in-
curred is on the X-axis and KL-divergence to central-
ized (ideal) posterior is plotted on the Y axis. Adaptive
distributed fusion algorithm which adaptively adjusts
the VOI threshold V ∗ outperforms HPC both on ac-
counts of accuracy and cost.

To address the inefficiency of these communi-
cation intensive algorithms, we have focused on
efficient and adaptive techniques for distributed
data fusion that reduces network communica-
tion cost by restricting communications to those
that have high information value. In [11] we
showed that this framework can be used for
distributed estimation of hyperparameters of a
conjugate prior distribution by taking into ac-
count the Value-Of-Information (VOI) as de-
termined by an appropriate metric. Agents
that have a VOI that exceeds a threshold are
termed as informative agents, and only infor-
mative agents communicate their information.
A significant contribution of the work in [11]
is an online adaptive VOI based distributed hy-
perparameter estimation algorithm that adjusts
the threshold adaptively to strike a balance be-
tween communication required and accuracy of
the posterior estimate. Communication cost
analysis indicates that the proposed algorithm
significantly outperforms the Hyperparameter
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Consensus (HPC) algorithm (Fraser et al2010).
Over a period of time [0, T ], the communication
cost of the HPC algorithm is directly proportional to T

∑N
i=1Ci, where N is the number of agents

in the network, and Ci is the cost of sending one message. For a network with a fixed number of
agents, the communication cost with HPC increases linearly with time. The communication cost
of the new VOI based algorithm is proportional to

∑T
t=1 |ν[t]|

∑N
i=1Ci, where |ν[t]| is the number

of informative agents that send out messages at time t. For a fixed VOI threshold, it can be shown
that |ν[t]| → 0 over time when estimating the hyperparameters of a static distribution. Therefore,
the number of informative agents drops to zero over time, leading to a drop in the rate of growth of
communication cost. However, the long term estimation performance of the algorithm may suffer if
the VOI threshold is too high. Therefore, a time-dependent trade-off exists between the desirable
amount of communication and the accuracy of the estimates. Numerical simulations indicate that
the adaptive VOI based distributed hyperparameter estimation algorithm incurred approximately
1/8th the communication cost of HPC, while arriving at a very close estimate of the hyperparame-
ters (the difference between KL divergence error to centralized posterior of HPC and adaptive was
0.0325 nats). The algorithm was also tested on experimental data by using the Intel temperature
dataset (Guestrin 2005), where it resulted in an estimate within 0.06% of the centralized average
room temperature at a given time of the day while incurring only 1/10th the communication cost.

Figure 2 compares the performance of different hyperparameter estimation algorithms for esti-
mating average room temperature at a given time of the day from the Intel dataset. The total
communication cost incurred is on the X axis and KL-divergence to centralized (ideal) posterior is
plotted on the Y axis. The blue circles show the performance of VOI based distributed informa-
tion fusion algorithms for different VOI thresholds V ∗. The tradeoff between cost and accuracy is
evident from the spread of the points for different values of V ∗. The adaptive distributed fusion
algorithm dynamically adjusts V ∗ based on the instantaneous communication load and can be seen
to outperform non-adaptive VOI base algorithms and HPC both on accounts of accuracy and cost.

These results indicate the feasibility and suitability of VOI based distributed parameter More
recent work has concentrated on the theoretical properties of the proposed distributed hyperpa-
rameter estimation algorithm. In particular we have established strong results concerning almost
sure convergence of the communication cost and the estimation error to zero for distributions in
the exponential family [12]. This work contributes significantly to the goal of this MURI because
it uses VOI concepts to provide a more efficient framework for performing distributed parameter
estimation than existing consensus or particle filter based approaches, e.g., Hall et al, Berg et al,
Durrant Whyte et al, and others. Furthermore, it is significant to the distributed estimation lit-
erature because it extends the notion of censoring marginally useful information in a centralized
estimation framework, e.g., Giannakis et al, Willsky et al, and others. to VOI based self-censoring in
an distributed estimation framework. It is also a significant contribution to the study of distributed
hyperparameter estimation as the developed algorithms have been shown to greatly reduce commu-
nication cost without compromising the accuracy of hyperparameter estimates for distribution in
the exponential family. The algorithms discussed here, and their possible variants, would translate
to significant resource savings in real-world distributed sensing applications by preventing irrele-
vant and marginally useful information from cluttering the network. This work therefore makes
progress towards the objective of developing the next generation efficient and accurate information
extraction systems.
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5.3 Active information exploitation for resource management

The flow of information through a controllable sensor system affects decisions on control actions
that can enhance target detection or tracking performance. The active information exploitation
thrust lies at the interface of estimation and control and we have made progress in three subareas:
information-driven sensing; robust adaptive planning of sensing actions; and active learning in
Bayes nets.

5.3.1 Information-driven sensing

Contributors: Ertin OSU, Cochran ASU
Publications: [4], [10]

Information can be used as a metric for sensing in situations where there are non-classical informa-
tion flows. Non-classical information flow occurs when there is an adversary who tries to hinder the
system’s attempts to maximize the flow of information from the target to the decision maker. In-
formation flow is also non-classical when control actions are introduced into the process of sensing,
processing and decision making. In the latter case, we think that differential geometry of the statis-
tical manifold can capture the effect of these control actions on the value of information. We report
two areas of progress: adversarial information structures and information geometric planning.

Progress 15: Adversarial information structures (Ertin OSU): In the area of adversarial
information structures we are investigating the degree to which an intelligent target can reduce
information collection efficiency of the sensor system. We are developing information-theoretic
uncertainty measures, such as generalized entropy, to provide a foundation for quantifying value of
information in adversarial situations. This quantification will translate into a bound on guaranteed
detection/estimation performance and may allow adversarial modeling to be gainfully incorporated
into information-driven planning algorithms. We consider the problem of sensor selection for a
binary hypothesis testing problem when the conditional density of the sensor readings can be
affected by an adversary [4]. A typical application of the proposed setup is surveillance with
spatially distributed sensors, where the adversary is changing locations to evade detection. We
model the sensor selection problem as a game between two players with opposing objectives. The
observer is choosing an open loop randomized strategy to choose sensor observations that maximizes
probability of detection, whereas the target is using an open loop randomized control strategy over
the available evading actions to minimize the probability of being detected. The payoffs are specified
by the asymptotic detection probability under a false alarm constraint. We prove the existence of
the Nash equilibrium of this surveillance game. The Nash equilbrium of this zero-sum game provides
optimal strategies for surveillance and evasion and the value of the game quantifies the guaranteed
performance of the surveillance system. We characterize the optimal min-max strategies and the
value of the game. We derive robust sensor selection strategies which provide max-min performance
guarantees for detection probability.

Progress 16: Value of information on statistical manifolds (Cochran ASU): In the area
of information-geometric trajectory planning we are applying methods of differential geometry to
better capture the flow of information over the planning horizon [10]. The enabling observation in
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this approach is that a parameter estimation problem based on sensor data imposes a Riemannian
structure on the parameter manifold via the Fisher information. Managing sensors thus entails
navigation on the space of all Riemannian metrics on the parameter manifold, which is itself a
Riemannian manifold. A particular sensor scheduling or navigation policy specifies a time evolving
curve on a physically feasible submanifold of this manifold of sensor configurations, which captures
the intrinsic geometry of the information collected. Through this formalism, the Fisher-Riemann
metric, which is equal to the incremental Kullback-Leibler distance at two successive time points,
enables specification of geodesic curves of minimal “information distance” over the manifold feasible
sensor configurations. We are proceeding to study the quantification of information corresponding
to differential-geometric properties of trajectories in this manifold.

An operator-theoretic framework for design of waveforms for adaptive radar applications, initially
described in [1], is anticipated to provide a suitable framework for instantiating the information-
geometric resource scheduling theory being developed under this thrust.

5.3.2 Robust adaptive planning of sensing actions

Contributors: Hero UM, Moses OSU, Ertin OSU
Publications: [22], [23]

By closing the loop between sensing, processing and decisions one can exploit measurements and
models to significantly enhance performance under resource constraints. Planning ahead using
predictive models results in sensor actions that are informed by previous measurements and that
use all available resources most efficiently. We have made progress in two areas of robust adaptive
sensor planning described below.

Progress 17: Multistage adaptive estimation of sparse signals under energy constraints
(Hero UM): We have developed a new method for robust scheduling over a large number of sensor
actions under constraints on effort (time, energy, resources). The method uses sequential adaptive
processing and a sparsity assumption: only a small number of sensor actions will provide information
gain. This problem arises in wide area search and tracking, sensor selection, waveform selection,
and other relevant scheduling problems. A simple surrogate cost function is proposed that trades
off false positives, false negatives and energy in a manner similar to our previous approaches to
adaptive resource allocation policies, i.e., ARAP by Bashan et al. However, these previous methods
did not come with theoretical guarantees on the task-related value of information of these policies.
In our recent paper [22] we adopt a framework of open-loop feedback control (OLFC) and show
that optimal multistage scheduling can be accomplished using dynamic programming under broad
conditions. Furthermore, we show that this policy results in information gains that monotonically
increase at each stage of the multistage planning algorithm. For the problem of estimating the
amplitude of a signal with unknown but sparse support, implementation of the multistage policy
has significant performance gains as compared to the state-of-the-art distilled sensing algorithm of
Nowak et al. Furthermore, these gains approach the optimal oracle bound as the SNR increases.

Progress 18: Information-based sensor selection for target-tracking networks (Ertin
OSU): We are developing information-based sensor selection strategies that retain past sensor
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measurements for target tracking. Sensor selection strategies for distributed tracking typically
estimate the expected information gain of sensor observations to be made at the next time step
and interrogate sensor nodes with the highest expected information gain to maximize tracking
performance. In contrast, we study a distributed sensor network where nodes maintain a finite
buffer of their past sensor observations. As a result, the fusion center can interrogate nodes for
current as well as past measurements. Using the information form of the Kalman Filter we quantify
the expected information gain of past and future measurements which have not yet been integrated
into the state estimate of the tracker. We show that when the sensor coverage is sparse, past
measurements can provide higher expected information gain than current measurements at times
when the track uncertainty is large compared to single node coverage. Using the derived expected
information gain metrics we design a novel sensor management strategy that can optimize sensor
interrogations over the available history of measurements existing in the network.

5.3.3 Active learning in Bayes nets

Contributors: Jordan UCB, Soatto UCLA
Publications: [21], [9], [20]

In the area of active learning in Bayes nets we are investigating two avenues. Navigation and sensor
planning in ground-air control architectures must provide optimal coordination of heterogeneous
cooperating platforms in the presence of uncertainty. We are developing robust task allocation
policies which will be tested on the MIT testbed in How’s lab. We are also investigating ways to
tractably quantify how well a candidate measurement will reduce uncertainty in a given subset of
Bayes net variables. We plan on investigating this in the context of the MIT testbed to establish
that we can improve inference, guidance and control performance in autonomous coupled sensing
systems.

Progress 19: Bayesian active learning in sensor networks (Jordan UCB): One major area
of research on active learning involves the use of crowdsourcing platforms like Amazon Mechanical
Turk to provide actively sampled data. A major difficulty with crowdsourcing data is bias in worker
responses. We have developed a Bayesian framework for coping with such bias [21]. Traditionally
the effect of worker bias is mitigated using simple data curation techniques; e.g., taking majority
votes of workers to decide on a label for an object. The implicit assumption used here is that
all labels are being randomly generated from one latent true distribution. We instead model bias
as a result of shared random effects. This allows us to analyze complex bias patterns arising in
situations where the labeling task is hard or ambiguous. Also instead of going through the steps of
data curation and learning, this model lets us combine the two into one single step. We intend to use
this for data acquisition in large and noisy sensor networks, where data collected from neighboring
sensors can be thought of as workers (sharing a number of random effects) providing labels for the
same object.

Progress 20: Value of information for safe exploration by maneuvering platforms (Jor-
dan UCB): In the area of path planning and platform maneuvering, we have developed a new
framework where the value of information depends both on the amount by which it could improve
and task performance and on the likelihood that the exploration agent be able to return to the
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start state. This type of exploration, which we call safe exploration [9], is instinctual to humans,
and we would like automated agents to replicate this behavior. Our method applies to Markov
Decision Processes, which can model a broad range of planning problems, and works by restricting
the space of allowed exploration policies to only those that preserve ergodicity with high probabil-
ity. To clarify, if either of these allowed exploration policies is interrupted at a random recall time,
the agent will be able to return to the start state by following a return policy that our method
also computes. In theory, our framework can extend any exploration method, since it does not
specify how to choose among the allowed exploration policies. In practice, we shave shown that the
ensuing constrained optimization problem can be solved efficiently for exploration methods that
rely on adding reward bonuses to insufficiently explored states. Our terrain mapping experiments
show the perhaps counter-intuitive fact that exploration becomes more efficient after adding our
safety constrain in environments where the agent might become stuck when exploring greedily.

Progress 21: Information-maximizing control with visibility phenomena (Soatto UCLA):
In [20] we have formalized the problem of information-maximizing control in the presence of topo-
logical uncertainty due to visibility phenomena (occlusions). We have shown that visibility can be
computed efficiently, and that the resulting info-max control results in an optimal control prob-
lem where the state-space is the (infinite-dimensional) visibility functional. We have shown that
this approach enables, in principle, a solution that is linear in the horizon (exploration length)
rather than exponential as it is in the discretized equivalent partially-observable Markov decision
process (POMDP). Unfortunately, however, the price to pay is an exponential memory complexity
that makes the solution of the problem impossible for all but the most trivial cases. Therefore, in
[20] we have proposed surrogate information measures for information gain due to visibility, and
proved an upper bound in the exploration length (that is, exploration is proved to terminate in a
finite number of steps, and the number of steps is bounded as a function of the complexity of the
environment).

6 Publications

The following is a list of papers, theses, and other publications of research supported in whole or
in part by this project.
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for radar in the presence of doppler,” in Proceedings of IEEE-AESS RadarCon, pp. 774–777,
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[2] D. Cochran, S. D. Howard, B. Moran, and H. A. Schmitt, “Maximum-entropy surrogation in
network signal detection,” in Proceedings of the IEEE Statistical Signal Processing Workshop,
August 2012.

[3] J. C. Duchi, L. Mackey, and M. I. Jordan, “The Asymptotics of Ranking Algorithms,” ArXiv
e-prints, 2012.

[4] E. Ertin, “Sensor selection in adversarial setting,” in IEEE Statistical Signal Processing Work-
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iv. Number who achieved a 3.5 GPA to 4.0 (4.0 max scale)

v. Number funded by a DoD funded Center of Excellence grant for Education, Research
and Engineering

vi. Number who intend to work for the Department of Defense

vii. Number who will receive scholarships or fellowships for further studies in science,
mathematics, engineering or technology fields

f. Masters Degrees Awarded (Name of each, Total #)

g. Ph.D.s Awarded (Name of each, Total #)

1. UCLA doctoral student Tai-Hee Lee

h. Other Research staff (Name of each, FTE)

3. Technology transfer (any specific interactions or developments which would constitute tech-
nology transfer of the research results). Examples include patents, initiation of a start-up
company based on research results, interactions with industry/Army R&D Laboratories or
transfer of information which might impact the development of products.

1. ASU doctoral student Utku Ilkturk spent six weeks at ARL during Summer 2012, sup-
ported by this award.

2. UM doctoral student Ted Tsiligkardis spent six weeks at ARL during Summer 2012,
supported by this award.

3. UM doctoral student Tian Pei Xie spent 3 months at ARL during Summer 2012, sup-
ported by this award.

4. co-PI Randolph Moses served on the Technical Advisory Board for the Computational
& Information Sciences Directorate of the U.S. Army Research Laboratory.
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5. co-PI Ertin and supported doctoral student Whipps visited ARL in March 2012, started
a research collaboration with N. Srour and L. Kaplan on anomaly detection in distributed
sensor networks.

6. co-PIs Cochran, Fisher and Hero visited ARL in January 2012 to initiate collaborations
with ARL researchers N. Nasrabadi, T. Moore, and B. Sadler.
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