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CHAPTER 1

INTRODUCTION

1.1 P roblem  S ta tem en t and Significance

Suppose that a signal 6 is transm itted over a noisy channel, where the observed 

signal y is a noise corrupted version of 6, and the channel transfer characteristics are gov­

erned by the transition density f(y ,9 ) .  The estimation problem is to estimate 6 given y. 

For example in emission tomography we are interested in estimating the image parameters 

or the pixel intensities. The channel model is specified by the system geometry. The set of 

observations are the number of detected 7 -rays.

Associated with every estimation problem is a cost function which an estimator 

attem pts to minimize. The cost is generally measured in terms of the error of estimation. 

The most common measure of error of an estimator is the mean square error (MSE). The 

MSE is simply expectation of the square of the difference between the actual parameter value 

6 and the estimated parameter value 6. The MSE can be directly related to the estimator 

bias and variance. While the estimator bias measures a mismatch between 6 and the mean 

of 6, the variance determines the spread of the error around the mean of 0. An estimator is 

called unbiased if 0 and the mean of 0 are identical. Clearly unbiasedness and low variance 

are desirable properties of an estimator. Unfortunately in most estimation problems, there 

is a trade-off between the estimator bias and variance, i.e. lower variance can only be 

bought at the price of increased bias. In this thesis we provide a framework to  quantify 

the bias-variance trade-offs for an estimator, and to compare the performance of different 

estimators on the bias-variance trade-off plane. The principal tool for our methodology is 

a lower bound on the estimator error variance.

A bound on variance as a function of the estimator bias provides us with a

1
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benchmark against which different estimators can be compared in terms of their closeness 

to the bound on variance, subject to the constraint that they do not exceed some preset 

threshold on allowable bias. If the bound is attained by a given estimator, then the designer 

can be confident that no other estimator exists with improved bias-variance performance. 

Furthermore, the variance bound can be used for channel/system optimization since it is 

expressed in terms of the channel/system parameters.

The conventional unbiased Cramer-Rao (CR) bound is our starting point. It 

determines a lower bound on the variance of any unbiased estimator. This CR bound 

has been widely applied in several different fields as a performance measure against which 

different estimation algorithms can be compared. The applications include the fields of 

array processing, parametric spectrum estimation, image processing, medical imaging, and 

numerous others [1, 2, 3, 4, 5, 6 , 7, 8 , 9].

Although the unbiased CR bound is known to be asymptotically achievable for 

large numbers of independent observations, many estimators are biased and their variance 

is not bounded by the unbiased CR bound. A performance comparison of estimation algo­

rithms based on the unbiased CR bound is therefore meaningless unless the estimator bias 

is taken into consideration. A biased form of the CR bound is available, e.g. van Trees 

[33], but it only applies to a very restricted class of estimators with a fixed bias gradient 

function and it can not be used to  simultaneously bound a pair of estimators which have 

different, but perhaps acceptable, bias gradients.

In [14] Hero presents a uniform CR bound that is applicable to all biased esti­

mators whose bias gradient length is less than a small pre-specified threshold. The uniform 

CR bound specifies a curve over the bias-gradient-length/variance trade-off plane, denoted 

6—(t, which separates the plane into achievable and unachievable regions of variance and bias 

gradient lengths. Different biased estimators can be placed on this trade-off plane and thus 

we can compare them with the same yardstick. However, the application of the uniform 

CR bound is limited due to the following factors:

• The uniform CR bound requires computing elements of the inverse of an n x  n 

Fisher information matrix (FIM), where n is the length of the unknown parameter
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vector. Since matrix inversion requires 0 ( n 3) floating point operations (flops), the 

computation can become intractable if n is large. An example is image reconstruction 

where for a moderate size image of dimension 128 x 128, the FIM is of dimensions 

1282 x 1282 requiring 0(1O12) flops. Even on a state of the art workstation, currently 

we require over 12 hours of computation time for calculating such a matrix inverse.

• The uniform CR bound requires computation of the bias gradient length of the esti­

mator. For most cases, the computation of the bias gradient is analytically intractable 

and has to be empirically estimated. The standard method of moments could be used 

to estimate the bias gradient, but it is computationally inefficient for a large n.

• The uniform CR bound as presented in [14] is only applicable to well-posed estima­

tion problems with well-conditioned FIM. Since many large dimensional estimation 

problems may be ill-posed, the uniform CR bound of [14] must be extended to allow 

singular, ill-conditioned, and rank deficient FIMs.

1.2 O verview  o f T hesis

Often only a few primary estimator components of the n-dimensional estimator 

are of direct interest. For example, in image reconstruction one is usually interested in a 

small image region-of-interest (ROI) corresponding to a tumor or a lesion. While, most of 

the results are easily extended to a larger region of interest, in this thesis we concentrate 

on the case when the region of interest consists only of one estimator component.

In [10] Hero and Fessler presents a recursive, monotone convergent algorithm, 

based on a geometric series argument, which computes a single column of the inverse of the 

FIM. The algorithm, called the geometric series (GS) algorithm in this thesis, is a special 

case of the more general inversion algorithms known as basic iterative methods in the liter­

ature [31, 22, 29]. The GS algorithm requires only 0 ( n 2) flops per iteration and can result 

in considerable computational savings if it converges in significantly less than n iterations. 

An advantage of this algorithm is its monotone convergence, which guarantees a valid lower 

bound at the end of each iteration. However, the GS algorithm requires specification of a 

full rank sparse matrix F, called a splitting matrix, whose inverse is easy to compute and
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is greater than the FIM in the sense of matrix inequality. In [10] a method of selecting an 

appropriate F  was introduced based purely on statistical considerations. In this thesis we 

present methods for acceleration of the recursive GS algorithm based on purely algebraic 

considerations. This approach is motivated by optimizing the average and asymptotic rates 

of convergence for the GS algorithm over a class of structured splitting matrices. We also 

present a conjugate gradient (CG) type of algorithm tailored for the inversion of a positive 

definite and symmetric FIM, which has a significantly faster convergence rate, but has the 

disadvantage of non-monotone convergence.

For the case of singular FIM, the ROI CR bound requires a column of the pseudo­

inverse of the FIM. Direct methods of pseudo-inversion are generally based on singular value 

decomposition of the FIM, which requires 0 ( n 3) flops to compute [29,22,18,19]. We present 

two recursive algorithms to approximate a column of the Moore-Penrose pseudo-inverse of 

the FIM with 0 ( n 2) flops per iteration. These algorithms generalize our recursive algorithms 

to the case of singular FIMs. The first algorithm, a perturbation method, converges mono- 

tonically when implemented using the GS. The second algorithm, a differencing method, 

is non-monotonic for both the GS and the CG implementations, but is more accurate for 

most cases.

For an estimator to be placed on the bias gradient-variance trade-off plane, its 

variance and bias gradient length must be calculated. For most estimators, bias, bias 

gradient, and variance are analytically intractable and must be estimated. While bias and 

variance can be easily estimated using the standard method of moments approach, the 

standard approach to the estimation of the estimator bias gradient requires n — 1 times 

more computations as compared to  the estimation of bias and variance. We present a more 

efficient and accurate method for experimentally determining the estimator bias gradient 

using a weighted sample average of the estimator bias. This method requires a single 

simulation of the same type as tha t commonly used to experimentally determine estimator 

bias and variance.

For ill-posed problems, such as super resolution in image restoration, where the 

number of parameters to be estimated are fewer than the number of independent observa­

tions, the FIM is singular. We extend the uniform CR bound of [14] to the case of singular
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FIM via the pseudo-inverse.

The methods developed in this thesis have wide application. In this thesis we 

consider the following applications.

1. T w o-d im ensional single p h o to n  em ission  co m p u ted  to m o g rap h y  (S P E C T ) 

im aging.

The SPECT system used in most of the examples considered in this thesis is a 

ring tomograph called SPRINT [40]. The system was designed specifically for brain 

imaging and consists of a ring of detectors and a ring of collimators. During imaging 

time, the collimator ring is rotated through small steps about the source. A detailed 

description of the SPRINT II system is given in chapter 4.

• C o m p ariso n  o f  th e  convergence ra te s  for th e  GS an d  th e  C G  recu rs iv e  

a lg o rith m s (chapter 2 ).

The rate of the convergence of the GS algorithm increases with the complexity 

of the splitting matrix. In particular, for a 32 x 32 image reconstruction, a 

splitting matrix with 50 off-diagonals achieves convergence in a similar number 

of iterations as the CG algorithm. However, the CG algorithm requires half as 

many flops.

• C o m p ariso n  o f  penalized  m ax im um -likelihood  an d  w eigh ted  least- 

sq u a res  re c o n s tru c tio n  a lg o rith m s (chapter 4).

The penalized maximum-likelihood (PML) and the weighted least-squares es­

timators (WLSE) were found to have similar bias gradient-variance trade-off 

curves in the 6-a  plane and followed the uniform CR bound closely. In partic­

ular the WLSE with optimal weights is shown to exactly achieve the uniform 

CR bound for all biases.

• S tu d y  o f  th e  effect o f  a n g u la r  sam pling  using th e  un ifo rm  C R  bou n d

(chapter 4).

The uniform CR bound decreases as the number of collimator rotations of the 

ring increases. For a 32 x 32 image, the uniform CR bound tends to saturate
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after 8 rotations, i.e. increasing the number of rotations does not decrease the 

uniform CR bound significantly. This indicates tha t the image is adequately 

sampled by 8 collimator rotations.

• Design o f optimal apertures using the uniform CR bound (chapter 4). 

For a count normalized case, the uniform CR bound shows a sharp minimum 

for an aperture opening corresponding to a ray width of one pixel at all bias 

gradient lengths. Hence, this aperture opening is universally optimal for the 

pixel of interest for any biased or unbiased estimator.

• Performance gain analysis o f adding a vertex view  anger camera to 

a standard SPRINT ring using the uniform CR bound (chapter 4). 

We performed several experiments to analyze the gain in performance by adding 

an orthogonal vertex view to a SPRINT ring. The gain in performance was 

measured in terms of reduction in the uniform CR bound. The vertex view 

with the SPRINT ring shows a gain of at least 50% over the SPRINT ring 

alone in the absence of any background noise.

2. One-dimensional discrete deconvolution.

• Comparison o f the error o f approximation of the two recursive meth­

ods to estim ate the pseudo-inverse o f the FIM (chapter 2) .

The GS and the CG algorithms are compared in these analyses. For all the cases 

considered the differencing method gives a lower error of approximation when 

compared to the perturbation method. However, the GS implementation of the 

perturbation method converges monotonically, while the differencing method 

displays non-monotonic convergence both for the GS and the CG implementa­

tions.

• Performance evaluation o f a WLSE for an ill-posed Gaussian kernel 

resulting in a singular F IM  (chapter 3).

Even with the ideal weights, the WLSE fails to achieve the uniform CR bound. 

This is due to the fact that for singular problems uniform CR bound may not 

be achievable.
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3. One-dimensional discrete edge localization in the presence o f Gaussian 

noise (chapter 3).

A Canny operator [39], which is similar to a Laplacian in one-dimension, was used 

for edge localization. The localization algorithm shows an optimum Canny filter 

bandwidth in terms of achieving minium MSE. The minimum MSE corresponds to 

the minimum bias and variance.

1.3 C ontributions o f T his T hesis

This thesis makes the following specific contributions:

1. Specification of new banded diagonal splitting matrices to improve the average and 

the asymptotic rates of convergence of the geometric series algorithm (chapter 2 ).

2. Modification of the non-monotone convergent conjugate gradient algorithm, tailored 

for the inversion of positive-definite and symmetric FIM (chapter 2).

3. Specification of two new recursive algorithms to compute an approximation to the 

pseudo-inverse of the FIM requiring only 0 ( n 2) flops per iteration. The recursive 

algorithms are based on the GS and the CG algorithms (chapter 2).

4. Extension of the uniform CR bound of [14] to singular FIM (chapter 3).

5. Specification of an efficient empirical approximation to the bias gradient, which has 

zero bias and low variance. The length of this bias gradient approximation can be 

used to compute the uniform CR bound (chapter 3).

6 . A study of the SPECT imaging system performance evaluation and optimization 

via several examples. Comparison of image reconstruction algorithms, namely, the 

penalized maximum-likelihood and the weighted least squares, via the application of 

the uniform CR bound.

1.4 O utline o f C hapters

This thesis is arranged in five chapters.

Chapter 1 is the introduction which you are currently reading.
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Chapter 2 presents different methods to compute a column of the inverse and the 

pseudo-inverse of the FIM. First we specify a class of banded diagonal matrices to improve 

the rate of convergence of the GS algorithm (Section 2.3). We also modify CG algorithm to 

compute the columns of the inverse of the FIM (Section 2.5). Based on the GS and the CG 

algorithms we present two recursive algorithms to approximate the columns of the pseudo­

inverse of the FIM (Section 2.6). The methods developed in this chapter are demonstrated 

through applications in two-dimensional image reconstruction and one-dimensional discrete 

deconvolution (Section 2.7).

Chapter 3 extends the uniform CR bound to allow for rank deficient FIM (Section 

3.3). An efficient method to estimate the bias gradient is then given (Section 3.4). Using 

the methods developed in Chapter 2 we give a recipe to compute efficiently the uniform 

CR bound for non-singular FIM (Section 3.5). Applications to one-dimensional discrete 

deconvolution and one-dimensional edge localization are considered (Section 3.6).

Chapter 4 contains several application to SPECT for a single photon ring tomo­

graph (SPRINT) system design, optimization, and performance analysis via the uniform 

CR bound.

Chapter 5 summarizes the thesis and indicates future directions of research.



CHAPTER 2

RECURSIVE ALGORITHMS FOR COMPUTING THE
CRAMER-RAO BOUND

In this chapter we present recursive algorithms to compute columns of the inverse 

and the pseudo-inverse of a FIM required for the determination of the CR bound. The 

methods developed in this chapter will be used in Chapter 3 to efficiently compute the 

uniform CR bound.

2.1 Introdu ction

The Cramer-Rao (CR) bound determines a lower bound on the covariance of any 

estimator with a given bias gradient. For an n-dimensional parameter vector, and when 

the FIM F y  is non-singular, calculation of the CR bound involves inversion of F y .  Direct 

matrix inversion, requiring 0 ( n 3) flops (floating point operations), is generally computa­

tionally intractable if the number of unknown parameters is large. For example, in image 

reconstruction where the pixel intensities are the parameters to be estimated, a moderate 

size image of 128 x 128 pixels has a FIM of dimension (128)2 x (128)2 and will require 

0(1O12) flops to compute its inverse. On a 100 MIPS workstation this would require over 

12 hours of computation time for each object distribution to be considered.

Often only a few components of the n-dimensional estimator are of interest. For 

example in image reconstruction one may be primarily interested in a small image region of 

interest (ROI) corresponding to a tumor or a lesion. The method of sequential partitioning 

can be used in this case to calculate the bound on cov«(0 ), where 0 is an estimator of 

q parameters 0RO1 of interest [16]. This still requires 0 ( n 3) flops. Hero et al. [10, 13] present 

a recursive method, based on a linearly convergent geometric series decomposition of the

9
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inverse, for calculating a small q x q sub-matrix of the matrix Fy 1 required for computing 

the CR bound on covj(0 ). The geometric series algorithm requires only <9(n2) flops 

per iteration so that if the convergence rate is fast, a significant computational saving is 

achieved. Furthermore, if the FIM is of the form FY = ATVA, where T is an m x m diagonal, 

A is ra x n ,  and n < m o r  when A is sparse, the geometric series algorithm has much reduced 

storage requirement as compared to the direct inversion methods. As presented in [10], the 

geometric series algorithm stipulates that we find a n x  n matrix F, called the splitting 

matrix, such that F -1 is easy to compute (0 ( n 2) or less) and such tha t F dominates Fy 

in the sense that F -  Fy > 0. In [10, 13] a method for selecting an appropriate matrix 

F was introduced based on purely statistical arguments; F is chosen as the FIM of any 

more informative data set such as a complete-data set used in the EM algorithm [12]. The 

main advantage of the algorithm of [10, 13] is its monotone convergence which generates a 

valid and improving lower bound on estimator covariance at each iteration of the algorithm. 

However, the price paid for monotone convergence is slow linear convergence rate, and its 

high sensitivity to the condition number of Fy. For applications where a strict lower bound 

is not required at each iteration, a non-monotone algorithm may be acceptable. While 

the statistical approach of [10, 13] provides powerful guiding principle for finding splitting 

matrices which guarantee monotonic convergence, the approach requires finding a suitable 

reformulation of the estimation problem. Furthermore, unless the complete-incomplete 

data space is defined cleverly, the approach of [10, 13] does not guarantee rapid rate of 

convergence.

In this chapter we present methods for acceleration of the recursive algorithm 

of [10, 13] which are based on purely algebraic considerations. First an expression for an 

Fy-dominating splitting matrix is given which optimizes the average convergence rates for 

regularly circulant FIM and gives a monotonically convergent series. When applied to a 

non-circulant FIM, our numerical results indicate that this splitting matrix provides very 

close to optimal average convergence rates. Second, we present an over-relaxed version 

of the geometric series which can greatly accelerate the convergence rate at the expense 

of non-monotonic convergence. Third, we present a conjugate gradient type of algorithm 

tailored for the inversion of positive-definite, symmetric FIM, which has a significantly faster
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convergence rate and is less sensitive to the condition number of Fy.

In many signal processing application, e.g. signal deconvolution, the parametric 

estimation problem is ill-posed which results in a singular FIM. The covariance of the 

estimates in this case are lower bounded by a function of the Moore-Penrose pseudo-inverse1 

of the FIM [11]. Direct calculation of the pseudo-inverse usually requires a singular value 

decomposition (SVD) of the FIM, which is an 0 ( n 3) operation. We present two recursive 

algorithms to approximate columns of the Moore-Penrose pseudo-inverse of the FIM with 

0 ( n 2) flops per iteration. These algorithms generalize our recursive algorithms to the case 

of singular FIM. The first algorithm, a perturbation method, converges monotonically to 

the pseudo-inverse of Fy when implemented using the geometric series approach. The other 

algorithm, a differencing method, is non-monotonic for both the geometric series and the 

conjugate gradient implementations.

We apply the methods developed in this chapter to: 1) Single Photon Emission 

Computed Tomography (SPECT) image reconstruction, and 2) one dimensional discrete 

deconvolution. In both these applications the FIM Fy is of the factored form permitting a 

significant reduction in memory requirements.

2.2 U nbiased C ram er-R ao B ound

Given a measurement Y  that is a vector of random variables and has probability 

distribution /y (jf; 0 ) dependent on an unknown parameter vector 0 , it is desired to estimate 

a real parameter vector 0 = [0X, ..., 0„]T. A vector function 0 =  0(y) is a parameter estimator 

based on the observation Y_ = y. The performance of 0 can be measured by its bias vector 

6(0 ) = [biasi (01),...,bias*(0n)]T:

6(0) = bias,(0 ) = F ,( 0 ) -  0, 

and by its covariance matrix S(0):

S(0) = covff(0) = E ,  [(0 -  F ,( 0))(0  -  F ,( 0 ))t ] ,

’ in this thesis we will use Moore-Penrose pseudo-inverse and pseudo-inverse interchangeably.
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where Et denotes statistical expectation with respect to the pdf f y ( y } i ) -  The CR lower 

bound on the covariance of any unbiased (bias#(<?) = 0 ) parameter estimator, called the 

unbiased CR bound, is given by the Moore-Penrose pseudo-inverse F y ( 0 )  of the estimator- 

independent Fisher information matrix (FIM) [11]:

S ( 9 )  > F+(0), (2 .1)

where F y  = F y ( 0 )  is the n x n FIM:

Fy = - F £[V[ In / y (Y;0)  v .  In fy_(Y-0)},

and V* denotes the (row) gradient vector ..., ̂ - ] . The matrix inequality (2.1) is

simply an assertion that S ( 0 )  — F y ( 0 )  is positive semi-definite.

When F y  is non-singular the unbiased CR lower bound (2.1) is given by the 

inverse of FIM:

S ( 0 )  >  F y l { 0 ) .  ( 2 . 2 )

The unbiased CR bound on the variance of a single component 0 \ ,  corresponds to the top 

left entry of F y , denoted [Fy]n:

vars(^i) >  e f  F^(<?)ej,

where ej =  [1, 0 , . . . ,0]T is the n-dimensional unit vector. Throughout this thesis a bound 

on varj(^i) will be of interest. A bound on var£(<?t ), k  /  1 can be obtained by permuting 

the rows and columns of F y . The results to be presented are easily extended to q-elements: 

q < n.

2.3 R ecursive C R  B ound A lgorithm s

2.3.1 M onoton e C onvergent A lgorithm : G eom etric  Series

For more details and proof of convergence of this method see [10]. Assume that 

Fy is non-singular and that there exists an invertible n x n  matrix F such tha t F dominates 

Fy: F > Fy > 0. It can be easily shown that all the eigenvalues of /  — F_1Fy lie in the

interval [0,1). We can therefore apply the matrix form of the geometric series to F y 1 , also
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known as the ‘Neumann expansion’ [32]:

F y l =  [ F - ( F - F y ) ] - 1 

=  [ I  -  ( I  -  f ~ 1f y ) ] ~ 1 f -1

^ ( / - F ^ F y ) *
L t = o

An approximation B ^  to F y 1 can be obtained by truncating the infinite series:

B (m) = Y , { I - F ~ ' F y ) h
L/t=0

F ~ l .

Using induction on k  it is straightforward to establish the following recursive relation:

& k+l) =  [ I - F - 1F y ] B w  -  F ~ l . (2.3)

The above expression converges monotonically to the CR bound in the sense that B ^  — 

g(k+\) _  [/ _  / 1- i / r y ]l+1 p - i  is positive semi-definite for all k  and F y 1 — B W  converges to 

a matrix of zeros as k  —► oo. Note that the recursion (2.3) updates each column of B  

independently.

Let be the first column of the matrix B^k\  Then a recursive algorithm for 

computing the CR bound [Fy on c o v * ^ ), which we call the geometric series (GS)

algorithm, is given as follows:

GS A lg o rith m

IN IT IA L IZ E : /?(0) = 0 an n x 1 vector of zeroes.

R E C U R S IO N :

&( * + l )  _  /a(*)=  P ( K ) - F - 1( F Y 0 (k) + e1 ) (2.4)

The recursion yields a sequence of vectors which converges to the first column of F y  1 . 

The first element of 0W  is simply = e f  0 ^  = e f B (k)el . monotonically converges 

to [ F y  as k  -* oo. This monotone convergence property guarantees that the scalar

( tk) will be a valid lower bound for all k  > 0 and that this bound improves at each iteration 

[10].
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The matrix recursion (2.3) is a special case of the ‘matrix splitting method’ [22, 

28] for iteratively approximating a matrix inverse. When F is taken as the scaled identity 

7/ ,  where 7 is the Frobenius norm of Fy, (2.3) reduces to the Frobenius normalization 

method for inversion of sparse matrices. When F is taken as the diagonal component of 

Fy then (2.3) reduces to the Jacobi method, which however is generally non-monotone 

convergent as F — Fy may not be positive definite.

Since recursion (2.4) is a vector update, it requires only 0 ( n 2) flops per iteration. 

Therefore if the algorithm is stopped for k <  n, we obtain a bound on covj(0j) with 

significantly fewer flops than required for direct calculation of the (1,1) element of F y F o r  

this algorithm (2.4) to have computational advantage over direct inversion and also deliver 

a tight bound we require F -1 to be easy to compute and convergence to be fast.

In [10, 13] Hero et. al. exploited the properties of Fisher information matrices 

to specify an appropriate splitting matrix F. In this estimation theoretic approach one 

identifies a complete-incomplete data setting for /y (y,0). Assume that we can find a hy­

pothetical set of measurements X  ~  fx (x ;0 )  which is larger and more informative than 

Y  in the sense that the conditional density f y / x ( y / x ',(L) is independent of 0. Let Fx  and 

Fy be the FIM for the ‘complete data’ X  and ‘incomplete da ta’ Y ,  respectively, the data 

processing theorem asserts that Fx -  Fy > 0  [10]. This implies that Fx  can be used as 

a splitting matrix. If X  is chosen intelligently such that Fx  is easily invertible, then GS 

can be implemented efficiently. In contrast to this estimation theoretic approach, in this 

chapter we will utilize purely algebraic approaches to specifying a splitting matrix F in or­

der to improve the convergence rate of the GS. In section 2.7 we will compare the algebraic 

approach presented in this chapter to the estimation theoretic approach of [10, 13].

In the next section we show that the average rate of convergence of the GS 

algorithm increases as the distance between F and Fy decreases. The objective will then 

be to select a simple sparse matrix F which satisfies F -  Fy > 0  and makes the distance 

small. It can be easily shown that the splitting matrix F can be viewed as a pre-conditioning 

matrix for the gradient search algorithm.
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2.4 C onvergence R ates for GS A lgorithm s

Two types of convergence criteria are commonly used in evaluating direct iterative 

methods: the average rate of convergence and the asymptotic rate of convergence. These 

are discussed below.

Defining A 0 W  = FY lex -  f l k\  from (2.4) it is easily shown that

A /?(k+1) = M k A/?(0),

where M  = I  — F ~ l FY and A/?^0  ̂ = FY lex. The Euclidean norm ||A /?(t+1)||2 of the vector 

A fl(k+l) Can be related to the matrix-2 and Frobenius norms || |M |||2  and || |M |||^  of the 

matrix M  and the Euclidean norm of A ^ 0  ̂ by [21]:

||A(J<‘«> ||, < I I I M 'U W A ^ I h

< |||M * |||,||A r> l|„  (2.5)

where for any real vector z , ||z | |2 is the Euclidean norm:

W h =

and for any real matrix A = ((a,/)), |||/1 | | |2 is the matrix-2 norm and:

r  =  \/trace (A M ) = ^ £ £ K I 2-

From (2.5), |||M * |||^  bounds the relative improvement in the approximation error A/3 î+1  ̂

as compared to the initial approximation error A/?(0): < |||A^*|||jr. In general

the Frobenius norm is preferable to the matrix-2 norm in applications since computation of 

11| M 111jr requires no expensive singular value decomposition of M .

We specify an absolute convergence criterion in terms of a threshold 7  G [0,1], 

D efin ition  The GS algorithm is said to have converged after N  iterations (to within a 

factor 1)  if

||A/3(°)||2 7 ’

The minimum integer N  = N ( 7 ) such that this inequality is satisfied is called ‘the required 

number of iterations’ for convergence.
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Note that unless A/3^0) = 0, N (y )  increases as 7 decreases to zero. Relation (2.5)

and the convergence criterion (2 .6 ) provide the following recipe for specifying an upper 

bound on the required number of iterations for convergence: An upper bound on N ( 7 ) is 

any N  such that

(2.7)

For specified 7 the average rate o f convergence is defined as [31]:

( 2 .8 )

In terms of R ave(7 ) an upper bound N  or N(~f) is given by (2.7) :

log ( 7 ) 
N  = ----- (2.9)

Unfortunately R„ve(7 ) is typically difficult to compute and (2.9) is not implementable. On

inequality HIM^IH^ < |||Af|||*-N. Using this inequality in (2.8) and (2.9) we obtain the 

following upper bound N  on N ( 7 ):

Therefore, reducing the Frobenius norm |||M |||^  reduces the upper bound on the required

given by (2 .10), then convergence to within a factor 7  is guaranteed.

Another measure of convergence rate is the asymptotic rate of convergence equal

associated with the ‘worst case’ rate of convergence of the matrix splitting methods [22 , 31]. 

The root convergence factor is equal to the maximum singular value, i.e. the maximum 

magnitude eigenvalue |AM|max of Af, which is called the spectral radius p(M).

Since p(M )  = lim * ..^  fZ0ve(7 ), in view of relation (2.9), the spectral radius is 

sometimes used to approximate the required number of iterations N ( 7 ):

the other hand, we can obtain a simpler upper bound on ^ ( 7 ) by using the matrix norm

(2 .10)

number of iterations N (7 ). If the GS algorithm is stopped after N  iterations, where N  is

to the root convergence factor (|||A /^W ^)^  [21]. The root convergence factor is

( 2 .1 1 )
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However, p{M)  can be significantly less than R ave(7 ), and therefore, unless 7 is very small, 

use of the expression (2 .11) can result in severely underestimating the required number of 

iterations. Therefore, as seen from the bound (2.10), and as pointed out in [31], while the 

spectral radius is a good predictor of the asymptotic convergence rate of the GS algorithm, 

the Frobenius norm |||M |||^  is more reliable as a predictor of the actual number of iterations 

required for convergence. This will be quantitatively illustrated in Section 2.7.

2 .4 .1  D e s ig n  o f  S p l i t t in g  M a tr ix

To ensure monotone convergence and optimize the convergence rates, two worth­

while objectives would be to select the splitting matrix F  such that F  is simple to invert, 

F  -  Fy is non-negative definite and such that either: i) p(M )  is small; or ii) |||M |||^- is 

small, where as before M  = I  -  F ~ l F y■ For large dimension n, computation of p(M )  is 

intractable since it requires performing an SVD or power iterations on M to find the maxi­

mum eigenvalue [21]. Optimization of the Frobenius norm |||Af|||^- is easier, we consider an 

even simpler but related objective: find a symmetric p-diagonal n x n matrix Fp which is 

simply inverted, satisfies Fp — Fy > 0, and makes | | |F  -  F y |||^  small. A p-diagonal matrix 

Fp is defined as any banded matrix of the form

dn di2 ••• dip ••• 0

d21 d22 '• :

*n—p tn

d n . n —p
d n _ l , n  

d f i . n  —1 d n n

( 2 .12)

Making | | | F -  F y |||^  small is a reasonable objective since the following inequalities relate 

the minimization of | | | F -  F y |||^  to minimization of p(M )  =  limw-.oo | | | ( 7 -  F _1F y)N|||^  

and of |||M |||jr , where |||. ||| is any matrix norm.

| | | ( / - F - ' F y m i *  <  | | | ( 7 - F - ' F y ) N \\\

<  I I I F - 1 !!! W \ F - F y \ \ \

<  I I I T ^ I I I I I I F - F y l l l

<  \ \ \ F y l \ \ \r \ \ \ F - F y \ \ \ r C ,
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for some constant C  depending upon the |||. |||.  For the spectral norm |||. ||| =  | | |. | | |2  the 

constant C  is equal to 1. The first inequality is well known [21], the second is the Cauchy- 

Schwartz inequality for matrix norms, and the third inequality follows from the restriction 

F — Fy > 0 .

Consider the following ^diagonal matrix, Dp, constructed from the elements 

of the matrix A:

Dp =

r £i°*d
j*2 , . . . ,p

®21

0 12

£ l ° J > l
j * l , 3 , . . . , p + l

f l ip

£ i°*,i
 fc-i

 * + p - i

o

0

^ n  —p,n

an , n - l  j ^ n - p  n - 1

. (2.13)

In particular Di and D2 are diagonal and tridiagonal matrices:

E " «lj 0

£ ; . ,  i-«i
(2.14)

Do =

E i- u-i
2

a2i

a 12

£ la3il 
JY1,3

£ i ° ‘d

0

flf> — l ,n

a i n,n— i _

The following lemma is proven in Appendix A. The lemma could be alternatively 

proven by using Gershgorin circle theorem [22].

L em m a 1 Assume that A is an n x n  symmetric matrix. Then Dp — A is PSD. Furthermore, 

if  A has only non-negative entries then Dp -  A has rank at most n - 1 .

One can show that a necessary condition for optimality of Fp is tha t Fp -  A is 

singular, i.e. the minimum of Fp -  A over {Fp : Fp -  A > 0} occurs at the boundary. Note
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tha t while this condition is not sufficient for optimality, Lemma 1 asserts that Dp satisfies 

this necessary condition.

An n x n matrix A is regular circulant [21] if it has the form:

a 0 a, ••• an- i

a„_i '• :

; * .  * .  * .  * i

: ai
f l l  • • •  ® n —1 O0

and is symmetric regular circulant if it is regular circulant and it is symmetric about the 

diagonal, i.e. an_t = a*, k = 1 , . . . ,n — 1. For a symmetric regular circulant matrix the 

vector ^ I + is an eigenvector, and a% >s the corresponding eigenvalue.

The following lemma is proven in Appendix B.

Lemma 2 When A = ((a,; )) is a regular symmetric circulant matrix and aij > 0, Vt, j ,  the 

diagonal matrix minimizes the Frobenius norm | | |F  — A|||^- over all diagonal F  which 

satisfy F  — A > 0.

While Dp may not always be optimal for non-circulant matrices A for p > 1, we 

can easily show that if m > n, then |||Z?m -  A\\\r  = |||D ? -  A |||jr-2E 7= «+ i E t= i ( aM+»)2> 

so that 1 1 1 — ^  lll^« ~ Thus use of Dp for p > 1 should have as good or

better average convergence rate than the diagonal matrix D\.

Geometric Series with Over-Relaxation

The speed of convergence of the GS algorithm can be improved significantly 

by introducing an over-relaxation parameter xp [31]. Assume tha t the splitting matrix F  

satisfies F  — A > 0. The GS algorithm with over-relaxation (GSOR) is specified by:

A £ l o *  + b )  (2-15>

The parameter xp € (0,2] can be chosen to optimize the asymptotic convergence rate by 

minimizing p ( I —xpF~lA).  The optimal choice of xp tha t results in the fastest asymptotic rate
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of convergence depends on the maximum magnitude eigenvalue |AM|max of M  = I  — F  1A :

2
tyatympioiic ry _  I \  Af I ‘ (2.16)

^  |max

Note that ipai y  G [1,2) so tha t the eigenvalues of I  — i p F ~ * A  are spread over the interval 

(-1,1) resulting in a non-monotonic convergent GS algorithm. Since |AM|max is expensive to 

compute, an alternative strategy for optimizing the GSOR (2.15) is to optimize the average 

convergence rate by minimizing | | |F  — This results in the easily computed value of

1>aver',e = , (2‘17)
_ E.,j f i j aij 

E i j M * ’
where and a tJ denote elements of the matrices F  and A .

Computational Issues

The most expensive computations within the GS algorithm are the two matrix- 

vector multiplications in (2.4). We can rewrite (2.4) as where w =

F ~ l ( F y  -f ej). While computing t  =  F y +  ej requires 2n2 +  n flops, computing 

w  =  F ~ l t  requires only n flops if F  is a diagonal splitting matrix. The use of banded 

diagonal splitting matrices F  = Dp does not result in a significant overhead in flops per 

iteration if we use the Cholesky LU decomposition [22, 29] for Dp:

DP = LPL J ,

where Lp denotes a lower triangular matrix. Since Dp is a banded diagonal, Lp has only 

p non-zero lower diagonals. In particular for p <  n the Cholesky decomposition requires 

only 0 ( p2n) flops [29]. If we let t =  Fy(^k) +  ex in (2.4), and w = Dp l t, then w can be 

computed in 0 (p2n) flops by solving

LPLp w = t

using back-substitution.

When F y  is of the factored form F y  =  A T Y A  with T  an m  x m  diagonal, and 

A  is an m x n matrix, implementation of the recursion (2.4) requires 0 ( n  x m) bytes of 

storage as compared to 0 ( n 2) required for general F y .  When n •< m or when A  is sparse 

this corresponds to a significant memory savings.
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2.5 C onjugate G radient

The often slow convergence of the GS algorithm led us to consider using over- 

relaxation, which improves the convergence rate at the expense of monotonicity. Having 

sacrificed monotonicity, it is natural to ask whether there arc other iterative methods with 

still faster convergence. The conjugate gradient (CG) method can be used to solve the 

linear system of equations:

A u  = b, (2.18)

for a non-singular matrix A. The CG algorithm is an iterative method, but for solving 

linear equations it converges to the exact solution in a finite number of iterations when run 

with infinite precision.

If we substitute FY = A,  and 6 =  e, = [1 ,0 ,0 ,..., 0]r  in (2.18), then the solution 

to the system of equations (2.18) will be the first column of the inverse of FY 1. The following 

CG algorithm is only tailored to symmetric, positive definite matrices FY [29].

C G  A lg o rith m

IN IT IA L IZ E : u<°> = 0; r<°) = e, 

R E C U R S IO N :

... f 0
a  =  \

( <r(,T~ , r ( ,_i)>
p{>) _  r (<) + a ( 0  g ( . ' - l )

. . .  < r (») r (») > 
A(,) = L ^

<  p b ) ,  / > p b )  >

„(•'+1) _  „«) + *(i) p(i)

jXi+D -  L(i) _  ^ ( 0  p Y p b )

1 =  0 

t > 0

B O U N D  A P P R O X IM A T IO N :

V{i) = §1 «(<)- (2.19)

The iterations are terminated when the residual error ||rb ) ||2 = ||6 — Fyub ) ||2 is less than a 

user specified tolerance.
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In the CG algorithm the direction vectors {p^}"=i are updated in such a way 

that r* form an orthogonal basis for M n. With infinite precision arithmetic, this condition 

guarantees tha t Fy uf") = fc, where is obtained at the n-th and final iteration in the CG 

algorithm. Each iteration of the algorithm involves a matrix-vector multiplication Fy p(,\  

requiring 0 {n2) flops and therefore if the algorithm is stopped well before n iterations, 

an 0 ( n 2) approximation to the CR bound is obtained. The convergence rate of the CG 

algorithm depends on the condition number of Fy and its eigenvalue spread [22]. The speed 

of convergence of the CG algorithm can be further increased by pre-conditioning [29].

While the CG algorithm is guaranteed to give exact solution in a maximum of n 

iterations, the quantity r/b) (2.19) does not converge monotonically to the bound [Fy *]n. 

This means that if stopped at some iteration k < n then the quantity r)^ calculated by the 

CG algorithm might not be a valid lower bound on the variance of an unbiased estimator

0i.

2.6 R ecursive M eth od s to  A pproxim ate th e  P seudo-In verse o f a M atrix

A square non-negative definite symmetric matrix Fy of rank r < n has an eigen- 

decomposition:
r

Fy = ' (2.20)
i=l

where a i > a2, ..., > aT > 0 are the positive eigenvalues of Fy arranged in decreasing order, 

and {«, }[_! is an orthonormal set of eigenvectors of Fy. The Moore-Penrose pseudo-inverse, 

denoted by Fy, is given by [22, 29]:

*v = Y,^rUiUf-  (2 .21)

The Moore-Penrose pseudo-inverse provides an unbiased CR bound for the case of singular 

FIM Fy [11]. Direct methods for calculation of the pseudo-inverse require performing 

an eigen-decomposition of Fy. Recursive techniques for the calculation of the pseudo­

inverse [17, 18, 19, 20] are computationally expensive: 0 ( n 3) flops. In this section we give 

two iterative methods of approximation to the Moore-Penrose pseudo-inverse for use in 

approximating a 1 x 1 sub-block of Fy requiring only 0 ( n 2) flops per iteration.
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2.6.1 M eth od  1: P erturbation

This method is based on adding a full rank matrix perturbation to F y  to make it 

invertible. The objective is to keep the perturbation parameter e as small as possible so that 

the approximation does not deviate too much from the actual solution. The approximation 

is based on the standard relation (2 .22) below, given in [22]:

T h eo re m  1 Let F y  be an n x  n, non-negative definite symmetric matrix with rank r < n. 

Then the pseudo-inverse of F y  given in ( 2 . 2 1 ) ,  has the representation:

Fy = lim <ji(c),Y e - o +  '  '

where

G ^ e ) ^  (F?FY + eI)~lF?,  (2.22)

c > 0 is a scalar, and I  is the n x  n identity matrix [ 2 2 ] .  Furthermore for all e > 0,

F$ > Giie). (2.23)

Proof: We have,

F f - G M  = ±  ia a T  -  ±  (2-24)

=  (225) 
> 0.

Clearly, lime_ 0 Gi(c) = F y ,  and the theorem follows.

From Theorem 1, Gi(e) can be viewed as an approximation to the pseudo-inverse 

of F y  based on Tikhonov regularization which has the property (2.23) tha t Gi(c) is a valid 

lower bound on cov»(£) for all e > 0 .

The choice of c in Theorem 1 affects the error of approximation Fy -  G t(c). For 

example if the trace norm |||Fy -  G 1(c)|||7- = trace(Fy —Gi(e)) is small the approximation 

error will be small due to non-negative definiteness of Fy —G i(f). In the following discussion
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we will study the choice of e in terms of the trade-off between the error of approximation, 

and the condition number of F y  F y  + el.

We want c to be as small as possible for best approximation error F y  -  G i(c).

On the other hand for singular F y ,  we can not make e too small, or else the matrix inversion

(F y F y F  el)~l in (2.22) becomes ill-conditioned. Therefore, the choice of e, and hence the 

error of approximation, must be driven by the maximum tolerable condition number c of 

Fy Fy +  c/, where the condition number of a symmetric positive semi-definite matrix A is 

defined as the ratio of the maximum and minimum eigenvalues of A. The condition number 

of FyFY + el  must satisfy:

£ ± ± « d < c. (2.26)

3
One can find Oi using the power method [22, 29]. Thus choosing e > ^  guarantees that 

the condition number of F y  Fy +  el  lies below the maximum tolerable condition number c, 

and that the matrix can be inverted without running into precision problems.

Since in many cases the maximum eigenvalue is not available, e can be chosen 

more conservatively as:

e > S k f L  = t r a c e l i f f y ) .  (2.27)
c c

The above choice of e satisfies (2.26).
a7

For e = -£■, the trace error of approximation, denoted 6P, can be easily computed.

fp  " J  | | | f ?  -  G . M H I r
r

= E

-  £<=i <7.(0-,2 +  - f )

We can upper bound Sp by ^ ax:

SP < 6™  = r --------
<rr(ar» +  V )

2.6 .2  R ecursive A lgorithm  for P erturbation  M ethod

Both the GS and the CG algorithms can be readily adapted to the perturbation 

method by the following steps:
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1. Compute the column £ = (Fy Fy + el)  using either the GS or the CG method 

of Section 2.3 or Section 2.5 respectively.

2. Approximate the 1-1 element of the pseudo-inverse of F y : [Gi(e)]n = e f F y ^ .

If GS is to be used in step 1, a splitting matrix F  can be chosen such that

F  >  ( F y  F y  +  e I).  The resultant un-relaxed GS algorithm has monotonic convergence 

since = § f  ([^ -  F ~ l ( F $ F y  + c/)]* +1 F _1) ex > 0. Therefore, the algorithm

generates a sequence of approximations which monotonically converge to e fG  i(e)ex < 

e f  F y ' e l as k —* oo.

The GS recursions for the perturbation method are given by:

£ ( *  +  1) =  £ ( k )  _  F - l (  F T F y  p { k )  +  £g (fc )  +  ^  y

If we denote t = Fy ft-k\  then we have an additional matrix-vector multiplication (2n2 

flops), F y t , when compared with (2.4) for the computation of F y 1 . Similarly, the CG 

algorithm has an additional 2n2 flops per iteration when applied to matrix perturbations 

via computation of the solutions £ = Ci. t°  ( f y F y  + e/)C = ej.

The choice of e directly affects the asymptotic rate of convergence of the GS

and the CG algorithms. For the GS algorithm the rate of convergence depends on the 

matrix M  = M* = [I — F~*(FyFy  + el)]. Since Fy is rank deficient the spectral radius 

p(M")  is equal to 1 — 0(e),  which is close to unity for small e resulting in slow asymptotic 

rate of convergence. Thus we see that there is a trade-off between the asymptotic error 

of approximation |||Fy — G i( t) || |7- and the asymptotic rate of convergence determined by 

p(M*). In particular we want e to be small for good error of approximation, while e 

should be large for fast asymptotic rate of convergence. Ideally, we would like the rate of 

convergence to be rapid for small e. The following method reduces the effect of perturbation 

by differencing.

2.6 .3  M eth od  2: D ifferencing M eth od

T h eo rem  2 Let Fy be an n x n, non-negative definite symmetric matrix with rank r < n. 

Then the pseudo-inverse of Fy given in (2.21), has the representation:

f y =
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where,

G2(e) =' ( F y  +  a e l)-1 -  ~ \ ( F y  + b e l ) ~ \  (2.28)
a — b a — b

t > 0 is a scalar, a,b G (0 ,oo), a ^  b, and I  is the n x n identity matrix. Furthermore for 

all e > 0 ,

F+ > G2(e). (2.29)

Note that due to (2.29) the CR bound approximated using Theorem 2 will be a 

valid lower bound.

P roo f: Similar to the proof of Theorem 1, one can show:

F y  — G2(e) =  ~------7------TTT-------- 7---------------------- TT7------TT
<r, (« “  6)(°ri +  a 0  (a  ~  6)(<7< +  b e )

^  e (a  <7, +  6 cr, +  a  6 e) _ T

TUiUi

= y ; r  ( 2 30)
<7, (<T, +  a  c) (<r, +  6 e)

> 0. (2.31)

Clearly limf^ 0 <J2(f) = F y ,  and the theorem follows.

Following the approach outlined for the perturbation method in section 2.6.1, we 

want to choose e such that the condition numbers of ( F y  + ael) and ( F y  + bel) are less 

than the maximum tolerable condition number c. The condition numbers of ( F y  + el)  and 

( F y  +  bel) must satisfy:
(Ti + ae oi + be <rx
--------- , ----------«  — < c,

e e e

for a,b, a situation satisfied in most practical applications. Hence by choosing e>  

the matrix inversions ( F y  + ae l )-1 and ( F y  + bel)_1 will be well conditioned. For e = 

the asymptotic error of approximation 64 associated with the differencing method is:

6d = \ m - G 2(e)\\\T
_  £ ((a +  b) (Ti -f* a b c)

“  (a i  +  a e )  (cr,- + 6 e ) ’

and since Sd is monotone in e,

g , < f n . x _ r  ° j - ( (a  + b )a r + a b ^ )
6 i - h  - r oA „r + a V ( , r + l , !u y  <2’32>
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Since in many cases <7! is not available e can be chosen conservatively as:

£ > trace(Fy) _  £ ,r=i °i (2.33)
c c

Recursive Algorithm for Differencing M ethod

Using the GS or the CG algorithms, the approximation [G2(e)]n to [Fy ]n can 

be computed by the following steps.

1. Approximate columns 7  = (Fy +  a t l )~ lex and 7^ = (Fy + bel)~xex using either the 

GS or the CG algorithms of Section 2.3 or Section 2.5 respectively.

2. Use approximation [G2(e)]n «  e f  ( jz jT j -  T ijT j) to approximate [Fy ]n-

If a monotonic GS algorithm is to be used in step 1, two splitting matrices Fi and F2 must 

be chosen such that F t > (Fy + <zc/), and F2 > (Fy +bcl)  in step 1. The asymptotic rate of 

convergence depends on the choice of e in M{ = I —F f ^ F y  + e /) , and = I —F2- 1(F y+ e/).

2.6 .4  C om parison o f P erturbation  and D ifferencing M eth od s

In particular this will hold when the maximum tolerable condition number c >• 1 and the 

ratio of the largest to smallest non-zero eigenvalues of Fy satisfy »  1.

convergent algorithm, the GS implementation of the differencing method does not converge 

monotonically due to the differencing of the two monotone series. Thus unlike the other

If for a fixed condition number c we choose ed = ^  for the differencing method,
a
^  for the perturbation method, then the difference between the error bounds 6™ax

max

r<J\ (Ti a  1

From which it follows that if (a + b ) ^  +  ^  < 1 then the asymptotic error of approximation 

of the differencing method is expected to be better than tha t of the perturbation method.

While the GS implementation of the perturbation method gives a monotonically
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D etector and  collim ator are 
rotated through 180 degree*

C ollim ator reduces the uncertainty 
about the origin  o f  gam m a-ray 'I ;tector

\
R adioactive Source C ollim ator

Figure 2.1: A SPECT system

recursive algorithms, the GS implementation of the perturbation method can be terminated 

at any iteration to obtain a valid lower bound on estimator variance.

2 .7  A p p lic a t io n s

In this section we apply the recursive algorithms described in the previous section 

to: 1) Single Photon Emission Computed Tomography (SPECT), and 2) one-dimensional 

discrete deconvolution. For more details on the SPECT system see chapter 4.

2 .7 .1  S in g le  P h o to n  E m is s io n  C o m p u te d  T o m o g ra p h y

A SPECT system consists of three basic components: 1) a source of 7 -ray pho­

tons, 2) a photon sensitive 7 -ray detector and, 3) a 7 -ray collimator. The function of the 

collimator is to reduce the uncertainty associated with the emission location of a detected 

7 -ray to a line or a strip in the field of view (Figure 2.1). During the image scan, the 7 -ray 

detector is rotated through small steps 180° around the source. A 7 -ray photon passing 

through one of the collimator slits at one of the rotation angles is counted as an event 

acquired in one ‘detector bin’. For reconstruction the source domain is divided into n small 

regions, called pixels. The detection process is governed by Poisson statistics:

where 0, is the average 7 -ray intensity at the t-th pixel; i =  l ,. . .n , and /z, is the average 

7 -ray intensity at the j- th  detector bin; j  = 1, . . . ,d :

(2.34)

[±= A  0, (2.35)

where A is the d x n matrix that depends on the tomographic system [35].
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Figure 2.2: Objects used for numerical comparisons. The pixels of interest are the center 
pixel denoted by 1 and a neighboring pixel denoted by 2 in the brain image. The intensity 
ranges from 0 (black) to 2 (white). Objects are: Left: uniform, Middle: Checker board and, 
Right: Brain image.

The objective is to estimate the object intensity at each pixel 9 = [#!,...,0n]T 

given the set of observations Y.  We make the standard assumption tha t 0, > 0 and /i; > 

0, i = l , . . . ,n ,  j  = l , . . . ,d .  From (2.34) it can be easily shown that the FIM is of the 

factored form:

Fy (9) = A t [diag(/i,) ]_1 A,  (2.36)

which ensures that the recursive CR bound algorithm requires only 0 ( n  x d) 

units of storage. Furthermore, since A is generally sparse we obtain additional significant 

memory savings.

The FIM, denoted Fe m , for the complete-data set in emission tomography sat­

isfies Fem -  Fy > 0 and has the form [10]:

Fem = diag(lT A) [diag(0 ) ] - \  (2.37)

where diag(^) denotes a diagonal n x n  matrix with the elements of the n-vector z_ along the 

diagonal. Note that since Fem is a diagonal matrix, it is well suited for use as a splitting 

matrix in the GS algorithm.

2.7 .2  N um erical C om parisons

All the simulations were done using MATLAB version 4.1 on an HP-755 computer 

running under the H P  — U X  operating system.

GS Implemented with p-Diagonal Matrices Compared to CG



30

80>
0.8

oo
EM

O 0 4

CO•02

400 20 00 00 100 120 
N um ter of to n O o n s

140 100

Figure 2.3: Effect of changing the number of diagonals for GS implemented with p-diagonal 
F  for the low intensity pixel 1 for the brain phantom Figure 2.2. Numbers labeling each 
curve indicate the number of diagonals utilized in the splitting matrix Dp.
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Figure 2.4: Same as Figure 2.3, except the pixel of interest was the high intensity pixel 2.
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Several two-dimensional objects were investigated (Figure 2.2). The high inten­

sity pixels have a normalized intensity value of 2 , the dark grey and the light grey pixels 

have normalized intensity 1 and 0.5 respectively. The black pixels are of zero intensity. 

The object lies in a field of view that is a disk of diameter 32 pixels. The total number of 

unknown parameters 0, is n = 716 pixels.

Figure 2.3 and 2.4 display the effect of increasing the number of diagonals in 

the splitting matrix for the GS algorithm, and a comparison to CG. Figure 2.3 and 2.4 

correspond to the brain image with two different pixels of interest, labeled 1 and 2 in 

Figure 2.2. In Table 2.1 the total number of iterations to converge, the Frobenius norm 

|||A |||^  = | | |F  -  Fy |||jr between the splitting matrix F  and the FIM FY , the spectral norm 

p(M)  = A()fax of M  = I  — F ~1 F y , and the total number of Mflops to converge are given 

for the three image intensities and five different choices of the splitting matrices F  for the 

GS algorithm. The splitting matrix D\  is a diagonal matrix determined by numerically 

minimizing the spectral norm p(M)  = |AM|max = A„ax for each Fy corresponding to each 

image. Also shown is the convergence behavior of the CG algorithm. In all cases, the 

algorithms were initialized by the all zero vector corresponding to a zero image. For the 

results shown in Table 2.1 we used the convergence criterion (2.6) with a threshold 7 = 10-3 , 

i.e. the algorithm was declared to have converged in N  iterations when:

! ! £ L Z r ! i i ! ! 2 < 7 - 10-3

for more than 5 consecutive iterations k = N,  N + 1,..., A -̂i-4, where (3 ^  is the approximation 

to F y lex at the A:-th iteration of either the GS or the CG algorithm. For the GS algorithm 

the total number of Mflops, shown in Table 2.1, was calculated taking account of a Cholesky 

LU decomposition of the corresponding splitting matrix F.  The following comments on 

Table 2.1 are of interest:

• In each case the Frobenius norm |||A |||^  is a much better predictor of the actual 

number of iterations required for GS convergence than is the root convergence factor 

which only predicts the asymptotic convergence rate. In particular, observe 

that while the use of F  = D \  minimizes each A"M for each of the three objects, our



Algorithm Object
Uniform Checker Board Brain Image

IIIAHU max No. of 
iter.

Mflops \ \ m \ r A™max No. of 
iter.

Mflops m w w A"max No. of 
iter.

Mflops

F  = Fem 119.0 .9857 281 50.8 259.9 .9905 455 82.3 18634 .9999 583 105.4

*<II 137.8 .9828 366 65.9 173.9 .9829 327 58.9 665.5 .9971 245 44.2
F = Dl 119.0 .9857 281 50.8 159.0 .9857 269 48.6 665.5 .9971 245 44.2
F  = D2 111.1 .9840 264 48.8 148.9 .9841 258 47.7 489.3 .9934 226 41.8
f  = d 50 33.9 .9453 56 15.5 45.32 .9452 53 14.7 73.6 .9499 47 13.0

Conjugate
Gradient

22 4.1 22 4.1 35 6.58

Table 2.1: Summary of convergence properties. |||A|||^- = |||F -  Fy|||^, M  = /  — F-1Fy.
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choice of diagonal matrix F  = D\ introduced in (2.14) converges in fewer iterations 

and has smaller Frobenius error norm.

• For the complicated brain image the diagonal matrices D\ and D\  were found to be 

identical within the machine precision. On the other hand, for the simple uniform 

image, the diagonal matrices Dy and FEm are analytically identical, while D\ and 

D\  are quite different. For these cases Fem and D\  are not competitive with Di in 

terms of average convergence rate.

• As expected, since Dp gives smaller Frobenius norm |||Z?P -  FV |||^, for increasing p 

number of non-zero diagonals the number of iterations to converge decreases as p is 

increased. Unexpectedly, increasing p also decreases the root convergence factor A£fax 

resulting in more rapid asymptotic convergence rate. The use of 50 diagonals in the 

splitting matrix brings the required number of iterations of GS to within a factor of 

approximately 2 of the CG.

• The CG algorithm converges most rapidly, in under 35 iterations for all cases, and 

is approximately 2 to 3 times less computationally costly to implement as compared 

to the most rapid GS algorithm, indicated by F = D 60.

• The CG algorithm can have significant overshoots. In Figures 2.3 and 2.4 only 5% 

overshoot was observed. The magnitude of the overshoot was observed to depend on 

the initial condition. Thus if a monotone algorithm is desired, guaranteeing a valid 

bound at each iteration, the GS algorithm with F  = D50 is preferable to the CG 

algorithm.

2 .7 .3  C om parison o f C G , GS and GS w ith  O ver-R elaxation

Figure 2.5 shows a comparison of the CG, the GS and the GSOR algorithms, the 

latter two implemented with the diagonal splitting matrix D\ of (2.14), for pixel 1 in the 

brain phantom. To establish a benchmark for GSOR the over-relaxation parameter ip = 1.99 

was chosen using (2.16) for fastest asymptotic convergence. Since in general the use of (2.16) 

requires the impractical computation of the maximum eigenvalue of M,  the asymptotic 

convergence of the implementable GSOR algorithm using (2.17) may be somewhat slower.



34

The GSOR exhibits a much faster initial rate of convergence when compared to the GS, 

however it oscillates around the point of convergence and fails to meet our convergence 

criterion of 7  =  10-3  even after the GS achieves convergence.

CG

08

06

10.4

0.2

60 400 120
N um ter of Iteraton*

20

Figure 2.5: GS with over-relaxation, denoted GSOR, shows oscillatory effect.

2.7 .4  O ne-D im en sion al D iscrete  D econ volu tion

We illustrate the ill-conditioned CR bound algorithms described in Section 2.6 

for the problem of discrete deconvolution, specified by the model:

Y.= A0 + q, (2.38)

where Y is the blurred data, A corresponds to a convolution kernel, 0 is the parameter we 

want to deconvolve or estimate and q is additive white Gaussian noise with covariance matrix 

E. The blurring in the data can be due to several factors, e.g. imperfect measuring devices. 

We chose a discrete Gaussian kernel ay = a-* in these simulations. Philip [30] has

remarked that for the discrete deconvolution problem the most ill-conditioned kernels have 

the form of discrete Gaussian kernels. The FIM Fy is given by:

Fy = A t c o v ( Y ) " M  = At T,~1A.

By choosing the width of the Gaussian kernel A we can vary the condition number of the 

FIM Fy.
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Figure 2.6: One dimensional sources used in discrete deconvolution problem.

2.7.5 D ep en d en ce o f th e  R ate  o f C onvergence on th e  C ondition  N um ber

First we consider a uniform source as shown in Figure 2.6 a). We used the same 

convergence criterion (2 .6 ) as in the tomography example, i.e. 7  = 10-3 , to terminate the 

iterations. The matrix A in (2.38) had dimension 300 x 300. Figure 2.7 indicates that

1M0
1600

OS1400

1200

100

600

400
OQ

200

2.S I S 4.5

Figure 2.7: Effect of the condition number on the convergence rate for the GS and the CG 
algorithms for the uniform source. Matrices of dimension 300 x 300 were used.

the number of iterations required for convergence is more sensitive to the condition number 

for GS than for CG.
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2 .7 .6  Perform ance o f P seudo-inverse A lgorithm

In this section we consider the problem of super-resolution with an up-sampling 

factor of 2. This refers to a situation when the number of available independent observations 

are only a half the number of parameters we want to estimate. The A matrix has dimension 

150 x 300. This problem is obviously under-determined. The width, w, of the Gaussian 

convolution kernel was varied from 5 to 32. The region of interest was the center pixel 015O for 

the point source displayed in Figure 2.6. The value of c was chosen using (2.27) and (2.33). 

The maximum allowable condition number used was c = 1012. For the differencing method 

we chose a = l and b=2 in (2.28). Figure 2.8 clearly indicates tha t differencing method

0.7

oe

0.4

0.2

0.1

Figure 2.8: Accuracy of the perturbation method and differencing method for a singular 
FIM Fy for the point source.

is more accurate for all resolutions as measured by the normalized error of approximation 

~~̂ 7are(~i^ )~~"’ where G(e) = G i ( e) f°r 4he perturbation method and G(c) = G 2(e) for the 

differencing method. The accuracy for both the methods degrades for wide convolution 

kernels, but the degradation is more pronounced in the perturbation method. Thus for ill- 

conditioned problems corresponding to wider convolution kernels and resulting in large but 

finite condition numbers, the differencing method is more accurate than the perturbation 

method.

To study the effect of e on the normalized error of approximation ^ ^ ra c e tf  

of the differencing and the perturbation method we fixed the width of the Gaussian kernel 

to 20 points. The accuracy of both the algorithms degrades gracefully over a wide range
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of f. In both cases the value of c chosen using (2.27) and (2.33), indicated by vertical bars 

in Figure 2.9, is close to the knee of the curves. The differencing method is clearly more 

accurate than the perturbation method over the whole range of e. The perturbation

method fails to achieve the desired value of «  0 for all values of c.

Non-monotone Convergence o f Differencing M ethod

Figure 2.10 shows the non-monotone convergence curves of the differencing method. 

The width of the Gaussian kernel was 3 points.
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Figure 2.9: Performance comparison of the perturbation method and differencing method 
for varying e for the point source. Vertical bar on both the plots corresponds to the choice 
of c using (2.27) and (2.33).
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Figure 2.10: Differencing method has non-monotone convergence for both the GS and the 
CG.



CHAPTER 3

BIAS-VARIANCE TRADE-OFFS FOR PARAMETRIC 
ESTIMATION PROBLEMS USING THE UNIFORM CR

BOUND

The computational algorithms for the unbiased CR bound presented in Chapter 

2 are applicable to unbiased estimation studies. In this chapter we extend these algorithms 

to the uniform CR bound [14] which is applicable to biased estimators. It is then shown 

how to use the uniform CR bound to trace a curve separating the regions of achievable and 

unachievable performance in the bias-variance trade-off plane.

3.1 Introduction

As before we consider the problem of estimation of an n-dimensional parameter 

6 = [^i, ...,^n]7’ given an observation of a vector of random variables Y_ with probability 

density function (pdf) /y (j/;0 ) . When an estimator 0 is biased, the mean-square error 

(MSE) is an important measure of precision of a scalar component 0\. It is well known 

that the MSE is a function of both the bias, denoted b ia s* ^ )  and the variance, denoted 

varj(0!) of the scalar estimator:

MSEj(0]) = var^fl]) + biasj(0i).

Obviously increases in MSE can be due to increases in either the bias or variance of 0l . 

Bias and variance are complementary in nature. While bias is due to ‘mismatch’ between 

the average value of the estimator and the true parameter, variance is due to statistical 

fluctuations in the estimator. There usually exists a tradeoff between bias and variance 

of the estimated parameter. For example in image reconstruction, implementation of the 

maximum likelihood algorithm with a smoothness penalty reduces the variance only at the

39
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expense of introducing bias. Likewise for edge localization in image processing, spatial 

smoothing can reduce variance only at the price of increased localization bias. Different 

estimators can be effectively compared by plotting their performance on a bias-variance 

trade-off plane. This chapter provides a means for specifying achievable and unachievable 

regions in the bias-variance trade-off plane via an extension of the Cramer-Rao (CR) lower 

bound to biased estimators recently obtained in [14].

As explained in chapter 2, the conventional unbiased CR bound determines a 

lower bound on the variance of an unbiased estimator. Although this CR bound is known 

to be asymptotically achievable for a large number of independent observations, in practice, 

many parameter estimation algorithms are biased. In [14] a ‘uniform’ CR bound was ob­

tained which is applicable to all biased estimators whose bias gradient length is less than a 

pre-specified threshold ‘6’. The uniform CR bound is more useful than the standard exten­

sion of the CR bound [33] in that the standard extension only applies to estimators with 

the same bias gradient function Vjbias#(£) = Vjft, where Vgb is a fixed function. Since the 

uniform CR bound on the estimator variance a 2 is indexed by the gradient length threshold 

6, this bound specifies a curve over the 6-a plane which separates the plane into achievable 

and unachievable regions of variance and bias gradient length. This plane is called the 

bias-gradient-length/variance trade-off plane. If a maximum tolerable bias gradient length 

is known or can be specified, e.g. based on estimation subsystem accuracy requirements, 

the uniform CR bound provides information about the minimum theoretically achievable 

variance of any estimator satisfying the constraint on the maximum tolerable bias gradient 

length. Alternatively a candidate estimator can be placed in the achievable region of the 

6—a plane where its closeness to the uniform CR bound curve provides an indication of 

the degree of optimality of the bias-variance trade-off characteristics of this estimator. Of 

course for an estimator to be placed on the 6—a  plane its variance and bias gradient length 

must be calculated or accurately estimated.

For most estimators computation of estimator variance, bias, and bias gradient 

are analytically intractable. For fixed 0, the standard method of moments technique for es­

timating bias and variance requires L repeated experiments, each generating a realization of 

Y_ from /y (y ;0 ) . However, the direct application of this method of bias gradient estimation
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requires performing n sequences of L repeated experiments, each sequence being realiza­

tions of F  generated for one of n perturbations of different components of 9. This direct 

approach would be inefficient and impractical for a parameter space of large dimension n. 

We present a more efficient and accurate method for experimentally determining the bias 

gradient using a weighted sample average of the observed estimator bias, where the weights 

are equal to the score function V * ln /y (]/;0 ). The method only requires a single sequence 

of L experiments and can be the same one used to determine bias and variance of 9X.

We demonstrate the methods developed in this chapter for the following ap­

plications: 1) one-dimensional image restoration with a Gaussian convolution kernel, 2 ) 

one-dimensional edge localization in images.

3.2 B iased  C R  B ound

In Section 2.2 the unbiased CR bound on the variance 9i was discussed. Under 

broad conditions the unbiased CR bound for non-singular FIM (2.2) is known to be asymp­

totically achievable for an increasing number of independent identically distributed obser­

vations F , [35]. Therefore the unbiased CR bound can provide useful information about 

the asymptotically achievable mean-square-error performance. However, the unbiased CR 

bound is not very useful for a small number of observations for which many estimation 

algorithms are biased and apparent bound violations may occur.

M o tiv a tin g  E xam ple:

In Figure 3.1 the unbiased CR bound is plotted as a function of the collimator 

rotations for the single photon emission computed tomography (SPECT) tomograph de­

scribed in Section 4.1.1. Also plotted is the variance of the weighted least-squares estimator 

(WLSE) [48, 43]. The variance of the WLSE is clearly less than the CR lower bound at all 

points. This is due to the fact tha t the weighted least-square estimator is biased. A biased 

version of the CR bound is needed to ensure that no apparent bound violation occurs in 

examples such as this.

For an estimator 9x with mean function m x(9) = Es[9x) and bias function bx(Q) -  

m x(9) -  91, the following form of the so-called biased CR bound is available [11]:

var,(0i) > [Vs_mx(6)} F+(6) [V ^ m ^ )]7,
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Figure 3.1: The regularized weighted least-squares estimator shows lower variance than the 
unbiased CR bound.

= [ g  + Vt 6,(2)] F+ [ef + V e_b1(0)]T . (3.1)

The biased CR bound (3.1) only applies to the class of estimators 6i which have

a particular bias gradient function V» fq. For example it can not be used to simultaneously 

bound the variance of a pair of estimators, which have different but perhaps acceptable 

biases. Thus the biased CR bound only applies to an unnatural class of estimators since 

seldom do two different estimators have the same bias gradient. A more natural class is the 

set of estimators whose bias gradient length is smaller than a specified threshold.

3 .3  U n ifo rm  C R  B o u n d

In [14] Hero presents a ‘uniform’ CR bound on the variance of 6i for non-singular 

FIM Fy. This bound is applicable to all biased estimators whose bias gradient length 

HVj&iH is less than a pre-specified threshold,

IIVAH < 6  < 1, (3.2)

where ||zj| = £"=i zf  f°r an n-element real vector z. The following theorem extends the 

results of [14] by allowing both singular and non-singular FIM Fy.

T h eo re m  3 Let the pdf fy iV}  0  hove an associated FIM Fy =  Fy(6) and let 6\ be any 

estimator of  Oi with bias bj (0) whose n-element bias gradient vector V#&i =  V«&i(£) satisfies

(3.2). Let the symmetric n x n projection VpY be the matrix which orthogonally projects
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vectors in M n onto the column space of the FIM F y , and define the n-element unit vector 

ey = [1,0, ...,0]T. Then the variance of 9X satisfies:

vart_(9x) >  B°(0,6),  (3.3)

where B°(9,6) is equal to:

R°{0 i5 1 - /  ||7V y£lll<^
u  ’ 1  l £ i  +  < L i n ]T F t  [ e ,  +  , | | P f v £ l || >  6,  ^  >

or equivalently,

jjo/Q fj) — f  II^Fyilll < ^ 13 51

In (3.4)

^ t„ = -[A /  + F + ]-1Fy+e1, (3.6)

where A > 0 is given by non-negative solution of the following equation involving the mono­

tone non-increasing, convex function g( A) G [0,1):

g ( \ )  = e T l F + ( \ I + F y ) - 2F+]el = £ lindmin = 6> , A > 0. (3.7)

I f  91 is a parameter with finite non-zero Fisher information [Fy]llf then g ( \ )  is a monotone

decreasing and strictly convex function over A > 0.

P ro o f: Our objective is to find a bound on the variance of 0X under the constraint || ||2 <

P  < 1. We start with the bound (3.1) and minimize over the class of bias gradients (3.2).

var.te ,) > [e1 + V [ 61]TF+[e1 +  V [ 61]

> min \ex + V l b x]TF j[ex +  V j’fcj]
* i ;ll V « i i | | < 4

= ,mjn  k i  + d\TF f[ex +  d]

= ,min Q(d),
&\\ds\<6

where d G Mn and,

Qid) = [§.i + d\TF$[ei +  d] .

An equivalent expression for the constrained minimization m i n ^ .^ ^  Q(d) is obtained by 

performing an unconstrained minimization via introduction of an undetermined multiplier
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A >  0 :

min Q(d) = m in[Q(d) +  A ( « f d - 62) l .  (3.8)
d:||d||</s d 1 J

First consider the class of solutions d to (3.8) for A = 0, i.e. the case of inactive constraint 

for which n u n ^ n ^ ^  Q(d) is obviously zero. Since VFy projects onto the column space of 

Fy, Fy = V FyF + F fv and hence:

Q(d) =  min [PFYe x + V Fyd\T F$[VFycx +  V Fyd] , 
d

which is zero iff d = - V FYex +  <£, where <£ is an arbitrary vector such tha t VFy<$>_ = 0. But 

for d to be the solution to the constrained minimization we must satisfy ||d|| < 6 so that, 

by orthogonality of P fy§. i and <f>:

t f> ||d || = I|7Vv£,II + ||£|| > 11̂ 11.

Therefore m i n ^ ^  Q(d) =  0 iff ||F fv£iII < S.

Next consider the class of solutions d to (3.8) for A > 0, in which case the 

constraint ||V«6i|| < 6 < 1 is active, min^.||^||<4 Q(d) > 0, and ||F/yfLi|| > Since A/ +  Fy 

is positive definite, the completion of the square in (3.8) yields:

min [Q(d) + X(dTd - 6 2)\

=  [ d + ( A /  +  F 1t ) - 1e 1] T ( A / + F + ) [ d  +  ( A / + F + ) - 1e 1]

+ c f F + e x -  e f  [ F + ( A /  + F + ) " 1F + ]  e, -  XS2. ( 3 . 9 )

It is clear from (3.9) that

d  =  d min =  - ( X I  +  F + ) - * F + e i

minimizes Q(d), and the minimum is given by:

min Q(d) = [& +  
d:||d||<4

= § f F $ e x -  e f  [F}(XI  +  F ^ ) - 1F^] ex -  X62 

=  B°(0; 0) -  e f  [Fy(A / + F } ) ~ lF?] e, -  A6 \

as stated in (3.4) and (3.5). Now, since m in ^ n ^ ^  Q(d) is monotone decreasing in 6, the 

minimum must occur at the boundary of the set {d : ||d|| < 6). Therefore for A > 0, A is
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determined by the equality constraint:

S2 = [Fy+(A /+  F + ) - 2F+] e, = «/(A). (3.10)

Now the first and the second derivatives of p(A) are:

5 '(A) = -2 e [F + (A /- f  F y P ’ F+e, 

g"( A) = OerF+CAZ + F v r V + e , .

Since Fy (AJ +  F y )-3  Fy is positive semi-definite for A > 0, g'(X) < 0 so that 5 (A) a is 

monotone non-increasing function over A > 0. Also since <7"(A) > 0, g(A) is a convex 

cap function. Clearly, if ej £ Af(FY ), where Af(A)  denotes the null space of matrix A, 

then <7'(A) < 0, g"(A) > 0 and g(A) is strictly monotone decreasing and strictly convex. 

Since Fy et is the first column of Fy this is satisfied whenever has finite non-zero Fisher 

information.

I

Comments:

• The orthogonal projection V fy can be obtained either as V Fy = Fy Fy , or directly 

via the SVD of Fy , as V Fy = XlLi *£«■«?'» where r is the rank of Fy and {u,}^_i are 

the orthonormal singular vectors associated with the non-zero singular values of Fy.

• When Fy is non-singular, Fjt = F y 1, ||F rvej|| = ||ej|| =  1 > 6 and Theorem 1 

reduces to the result derived in [14]:

B(9,6) = [e, + £ niB]TF y 1[e1 (3.11)

where,

dmin =  ~ [ I  + AFy]-1elt

and A > 0 is given by the unique non-negative solution of the following equation 

involving the monotone decreasing, strictly convex function g(A) e  [0,1] over A > 0:

5 (A) = = e j  (I + AFY]-2ex = 6 \
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• A bias sensitivity index for the CR bound can be derived by studying the limit 77 = 

lim ^ o  |  *'or non-singular Fy, it is shown in [14] tha t rj = 2 \J \ + cTFg'c,  

where c is the first column of Fy and Fs is the principal minor of [Fy]n.

• When Fy is non-singular but has an ill-conditioned inverse, direct implementation of 

the bound B(9,6)  in (3.11) is numerically unstable. A simple algebraic manipulation 

in (3.11) yields the equivalent form for B(0;6):

B ( 9 J )  = \ ' c J [ I  + \ F Y] -1Fy[I  + \ F y ) - l el . (3.12)

As contrasted with (3.11), whose computation requires inversion of the possibly ill- 

conditioned Fy, the form (3.12) requires inversion of the matrix I  +  AFy. Since 

A > 0 and Fy > 0, the inversion [/ + AFy]-1 is well conditioned and (3.12) gives a 

numerically stable implementation of B(0\6).

• In Theorem 1, <£„,■„ defined in (3.6) is an optimal bias gradient in the sense that 

it minimizes the biased CR bound (3.1) over all vectors V«6j under the constraint 

6 < 1. Since the bound is specified in terms of the length of the bias gradient, it 

is independent of the particular estimator bias as long as the bias gradient length 

constraint is satisfied. From the proof of Theorem 1 we see that if 1 1 e j  11 < 6, then

can be taken as = - V fy <L\ + fa where 0  is any vector satisfying Fy(£ = 0 , 

and ||<£|| < 6 — | | F f y £ i l l -  Thus for the singular case there exist a large number of 

optimal bias gradients for which the uniform CR bound is equal to the trivial bound 

v a r « ( ^ i )  >  0 .

• By setting the bias gradient constraint HVjijH = 6 = 0 we obtain the unbiased CR 

bound B°(9 ,0) = e jFy  el .

• Hero [14] has shown that if Fy is non-singular, and the unbiased CR bound is achiev- 

able by an unbiased estimator 0 , then one can construct an estimator tha t locally 

achieves the uniform bound by introducing a small amount of bias in 0 . However, 

since unbiased estimators may not exist for singular Fy, the uniform CR bound for 

singular Fy may not be achievable.
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• The range 6 (E [0,1) contains all the estimator bias gradient lengths of interest. In 

particular 62 = 1 corresponds to V#&i = [—1, 0 , identifiable as the bias gradient 

of the trivial estimator 0\ = constant, which has zero variance. On the other hand 

62 = 0 corresponds to an unbiased estimator.

• In most cases computation of the uniform CR bound requires numerical methods to 

find the root of the equation (3.7). Although the uniform bound is specified in terms 

of 6, it is usually simpler to sweep out the bound in terms of A. Note tha t <z(A) = 62 

specifies a one-to-one map from A € [0 , oo) to 6 € [0,1] since g(X) is monotone over 

A > 0. For each A > 0 one can easily determine the corresponding 6 by using the 

relation (3.7).

• For non-singular FIM, when an exact bound on the variance of 0\ is not necessary, 

a weaker bound can be derived on varj(fli), that requires only 0 ( q 2n) flops for each 

value of A, where 1 < q < n. Larger q gives a tighter bound in general. When the 

FIM is nearly block diagonal then, with little loss in tightness, q can be taken as 

the block dimension. In this case q < n and this bound can result in significant 

computational savings. The 0 ( q 2n) uniform CR bound is derived in Appendix F.

a *

D 0 .*

i°-7
g 0.* 
I  a s

Achievable region

0.4

Unachievable region
0.1

0.1 0.2 0 4  0.4 0 4  0.0 0.7 0.0 O.t
Length o• th e  M as gradient: 6

Figure 3.2: The Normalized Uniform CR bound on the 6-a  trade-off plane.

Figure 3.2 shows a typical bias-variance trade-off curve in terms of the bias gradient length
/V2f /d \

and the normalized standard deviation a =  d  reg*on above and including the

curve is the so-called ‘achievable’ region where all the realizable estimators must lie. Note
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tha t if an estimator lies on the curve then lower variance can only be bought at the price 

of increased bias and vice versa.

As explained in Section 3.5, the curve in Figure 3.2 in the 6-a trade-off plane can 

be used as a mapping to obtain a corresponding curve in the bias-variance trade-off plane. 

To accomplish this, we will require accurate estimation of the estimator bias gradient.

3.4 E stim ation  o f th e  B ias G radient

In order to be able to  compare the performance of an estimator against the 

uniform CR bound of Theorem 3, we need to determine the estimator variance and the bias 

gradient length. In most cases the bias gradient can not be determined analytically and 

it is therefore important to have a computationally efficient method to estimate it either 

experimentally or via simulations.

The method of moment estimators for the variance, bias, and bias gradient are 

as follows. Assume L i.i.d. realizations of the estimator {0(VI,-)}^=1 are available from a 

sequence of i.i.d. realizations {F,}f=1 generated from the density /y (y ;0 ) . Consistent and 

unbiased estimates of bias 6(0) and covariance S(0) of the estimator 0 = [0i, ...,0„]T are 

given by:

m  =
L  i = 1

where m = [m,, ...,fn„]r  is the estimator of the n-element vector of means m = m (0 ) = 

[m1(0 ) ,... ,m n(0 )]7’ of 0 .

The direct application of the method of moments to estimating the bias gradient 

would require performing n additional sequences of L repeated experiments, each for a 

different perturbation: 9 + A e x, . . . , 0  + Ae„, of 0; the n sequences are generated from 

densities /y (y ;0  +  A e j) ,.. . , / y ( y ;0  +  Ae„), respectively, where e; is the j- th  unit vector, 

and A is a small but non-zero scalar. An estimator of the bias gradient could then be 

obtained using the finite difference approximation:

V2> = ^  [5(0 +  A e J  -  6(0), ...,6(0 + A e J  -  6(0)]
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This provides a consistent and unbiased estimate of the finite difference approximation to 

V»6. However, the generation of nL  realizations of Y_ is not practical when the dimension 

n of 0 is large. For example in image reconstruction a 32 x 32 image would require 1023 

times additional simulations when compared to the computation of bias and variance.

Here we present a method for experimentally determining the bias gradient of 

an estimator 0 which does not require generating n — 1 additional sequences of L repeated 

experiments nor does it require finite difference approximation. This method allows the 

variance, bias, and bias gradient to  be determined from a set of simulations gener­

ated from the density f y (y . ] 0 )  f°r a single 0 value. The method is based on the fact that 

for any random variable Z :

din f z (z;0),din f z (Z;0)]
O0j -  I / - ^ ^ d z  

=  ! / - W -

= w l L z M z ' - )dz

(3.13)

Thus in particular we have the following relation:

V ,m  = E,  [0(F )V ,ln  f y ( Y ; 0 ) \  ,

or extracting the first row,

V£m» = Et  [0 i(£)V £ln f y (Y ;0 ) }  ,

where V£ ln /y (y .;£ )  is called the ‘score function’ [23]. Since Eg_ [V£ I n / y ( T ;£)] = 0, an 

equivalent relation is:

V .m j =  El [(01(H) -  0 )V £ln /y (y ;g ) ]  , (3.14)

where Q is an arbitrary random variable independent of Y_. As explained in the following 

discussion, the quantity £,• is introduced in (3.14) to control the covariance of the bias 

gradient estimate.
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In view of (3.14) the matrix of gradients of the mean vector can be consis­

tently estimated using the unbiased sample mean estimate:

\  E  ( t o )  -  <*) v *ln / y  (£ ;£ ) •
1=1

(3.15)

The estimate V#6j =  Vgjny — e f  of the bias gradient vector directly follows from (3.15), 

and since we are only interested in 0 y , we need only to generate the consistent and unbiased 

estimate 0y  of the bias gradient vector:

i=i

The estimate Vgfti converges to V#6i with probability one as L —* oo. One can show that 

the expression for the covariance matrix of V«6i is:

where F Y  = ([V jln  /y (y ,-;0 )]T[V» In f y  (F«; £)]) is the single trial FIM. Assuming Cl­

are i.i.d. for which I2j=i Fe[(m y ~  G ) 2] = i ^ » [ ( ^ i  -  C ; ) 2] Fy both terms on RHS of

(3.17) decreases to zero at rate f .  However, unless Ci is chosen appropriately, the second 

term on the RHS of (3.17) can be unbounded as a function of 0  in many cases since for a 

reasonably close to unbiased estimator mi should be approximately linear in 0 .  In particular 

we show unboundedness for the weighted least-squares estimator discussed in Appendix C. 

Thus it is critical to select Ci to control S'(Vj6i).

A significant reduction in S(Vgby) can be obtained by choosing Ci = my = 

constant for all i. This choice of C, minimizes the covariance of the bias gradient estimator by 

eliminating the possibly unbounded term in (3.17). However, since this optimal Ci = E e ( 0 y )  

is unknown, we must approximate it with sample mean statistics even at the expense of 

introducing increased variance. The most obvious approximation of the optimal Ci is the 

sample mean estimate:

( ( t o )  -  m ,)V £ln / £ ( & ; « )  + ^  £  E t  [(m, -  C , ) 2] F y ,  (3.17)

(3.18)

However, since Ci is not statistically independent of T ,, E e |Ci V* In £)] /  0 and this

choice of Ci introduces bias in the bias gradient estimator, which is very undesirable. In
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order not to introduce such bias, Ci should be chosen such tha t [c, V # ln /y (T ,;0 )]  = 0. 

Since by relation (3.13) this implies that = 0 under the pdf f y { y i \S)i Ci should

be an unbiased estimate of a ^-independent constant e.g. an unbiased estimate of zero. 

Such a random variable Ci is called an ancillary statistic under f y ( ^ ; 9 )  [38]. The following 

statistic is easily shown to be ancillary under fy(y . ' ,0 )  and also unbiased and a consistent 

estimator of ni! under flf=i / y ( V-\S) f°r L > 1.

- / 0  1 = 1
W  £ = 2 ,3 , . . .  (3<19)

Substitution of Ci defined in (3.16) into (3.15) gives the unbiased and consistent sample 

mean estimate:

/  , \
t o ) - £ 2(£ ;)

\  f t  /
V ^ l n / y Q ^ - e f

L i=i

= Y Z T j E  ^ ( & ) - E t o j  V»ln (3.20)

Since Ci is statistically independent of y,-, formula (3.17) holds for the covariance of (3.20).

A simple calculation shows that the covariance of the resultant bias gradient estimator is 

given by:

S (V ? ,)  = |c o v ,  ( ( * ,( £ )  -  n n )V , In f y  ( £ ;* ) )  + ■ *_ v a r ^ r , - ) ) ^ -  (3-21)

Note that now the second term in (3.21) decreases to zero at a much faster rate of as 

compared to the rate £ in (3.17). Therefore, asymptotically the ancillary statistic Ci achieves 

nearly identical reduction in the bias gradient estimator covariance that is attained by the 

optimal Ci-

In Appendix C we specialize (3.17) and (3.21) to the case where the observations 

7 , are assumed to be a set of i.i.d. Gaussian random variables with mean A8 and covariance 

K ,  and 0 is a weighted least-squares estimator of the form: 6{Y) = (ATK ~ lA + a I ) ~ 1ATK ~ 1Y_, 

where a  is a regularization parameter. The covariance of Vgpi improves as the regulariza­

tion parameter is increased. This is to be expected since more regularization implies less 

influence of the other parameters on the estimate 0X.
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3.5 P ractica l Im plem entation  o f th e  U niform  C R  B ound

The estimate ( | | |  of the bias gradient length ||V*6i||, obtained using the 

expression (3.20), permits one to place an estimator 6\ of 9i on the 6—a trade-off plane in 

Figure 3.2. Using the fact ||V j6i|| < 6 we have an infinite number of choices for 6, namely 

using B(9,6)  with any 6 > ||Vji>i|| provides a valid lower bound on the variance a 2 of 9X. 

However, it is most natural to choose the smallest value 6 = ||Vj£>i||, corresponding to the 

minimum acceptable bias gradient length for tha t particular estimator 0j. This choice of 

6 provides the tightest uniform CR bound for given ||V»6i|| and enables us to effectively 

compare 9X to all other estimators 9\ of 9j whose bias gradient length is less than or equal 

to that of 9\ . At this point a few comments about the bias gradient are in order.

3.5 .1  B ias G radient

The bias gradient Vgb\ is a measure of the influence of each component parameter 

0 i,...,0 n on the mean mi(0) of the estimator 9\. Ideally, to be close to unbiased, one 

would like m\{6) «  0lt i.e. m i(0 ) should be sensitive to the variations in 0 ! but should be 

insensitive to the variations in the other parameters 02,...,0„. Alternatively, since &i(0) = 

m \(d) ~ 9\, is desirable that the components gf^hi(0) be of small magnitude, k = 2 ,..., n. 

The bias gradient therefore provides important information about the parameter coupling 

to the estimator mean. However, the bias gradient is in general only indirectly related to 

the estimator bias, with the exception tha t V«6i = 0 implies £>i(0) = constant. An estimator 

that has a constant bias independent of any estimator parameter is removable since it is 

independent of 0. On the other hand, Vjhi ^  0 implies that there exists non-removable 

estimator bias that is dependent on the unknown parameters. A large bias gradient implies 

an abrupt change in the bias due a small perturbation about a nominal parameter 0 , even 

though the actual bias at the nominal 0 could be very small. Therefore the bias gradient 

must be supplemented with information about the estimator bias in order to provide a more 

complete picture of the average estimator behavior.
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3 .5 .2  B ias-V ariance Trade-O ff P lane

When accurate estimates 6^  Vjiq and a 2 of the estimator bias, bias gradient, 

and variance are available for a given estimator 6\ of 0i, the uniform CR bound lying in 

the 6- a  plane can be easily mapped into the b-a  plane of variance and biases. This is 

accomplished by using the ordered triplet (6lt V*hi,<72) as a mapping between the b-a and 

the b-a  planes. The CR bound on the variance as a function of bias is simply the ordered

pair: bu <Li + F+ §.\ + i a curve denoted B(0; b) in the sequel.

3.5 .3  R ecip e  for C om p u tin g  th e  U niform  B ound for N on-sin gu lar Fy

Often we want to compute the bound at several different values of 6, equivalently 

A, and therefore it is important to have a computationally efficient algorithm to compute 

(3.6). Furthermore, since we are mainly concerned with problems which have a large number 

of unknown parameters, it may not be practical to compute Fy 1 or Fy explicitly both due 

to large computation time as well as large memory storage requirements. We use the 

method of conjugate gradient as presented in Section 2.5 for this purpose and give a recipe 

for efficiently calculating the uniform CR bound (3.11) with non-singular Fy. Additional 

computational savings can be obtained by exploiting any sparseness of F y .

Recipe

Suppose we want to compute the uniform CR bound on the A:-th estimator com­

ponent 0i of an n x 1 estimator vector 0 = [0i,. . .  ,0„]T. Then the numerically stable form 

of the uniform CR bound (3.12) for non-singular Fy can be computed as follows.

1. Interchange 1-st and fc-th row and column of Fy.

2. Choose A € [0, oo).

3. Compute t = [I + AFy]-1 e t by applying the CG algorithm to solve: [ / +  AFy] t =  ex.

4. Compute the bound (3.12): B(0,6)  = A2tr Fyt.

For each A the above algorithm requires only one application of the conjugate gradient 

algorithm. Applying this algorithm for several values of A allows one to trace the curve
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B(0,6)  in the 6-a  trade-off plane of Figure 3.2.

3.6 A pp lications

In this section we apply the uniform CR bound to: 1) one-dimensional discrete 

deconvolution, and 2 ) one-dimensional edge localization.

3.6.1 O ne-D im en sion al D iscrete  D econ volu tion

The problem of one-dimensional discrete deconvolution is described in Section

2.7.4. It is included here for convenience. We have the model:

Y  = A0 + q,

where Y_ is the blurred data, A  corresponds to a convolution kernel, 0 is the parameter we 

want to deconvolve or estimate and g is additive white Gaussian noise with covariance matrix 

E. We chose a discrete Gaussian kernel a tJ = in these simulations. Philip [30]

has remarked tha t for the discrete deconvolution problem the most ill-conditioned kernels 

have the form of discrete Gaussian kernels. The FIM F y  is given by:

F y  = ATc.ov{Y_)~lA  = At £ -M .

By choosing the width of the Gaussian kernel A we can vary the condition number of the 

FIM F y .

The unconstrained weighted least squares estimator (WLSE) is:

0 (T ) = (AT X - 1 A + a I ) - 1 At V - 1 Y ,  (3.22)

where a  is a regularization parameter. The regularization parameter a  > 0 improves the 

numerical stability of the (AT E -1 A +  a l ) ~ x by lowering its condition number at the price 

of introducing bias, which may reduce the estimator variance. Note that when E -1 =  / ,
- W L S E
0 is an unweighted least squares estimator. Since the WLSE is linear it is easy to 

analytically derive the expressions for the bias of the estimator:

b(0) = ((A T Z - ' A  + a I ) - 1 A t  E " 1 A - 1 )0 ,



55

the bias gradient:

V ,6  = {AT E -1 A + a / ) -1 AT E -1 A -  I  

= - ( l + i . A TK - lA ) - 1, (3.23)

and the covariance:

S(dWLSB) = {AT Z~'  A + a l ) - 1 A t X - ' A ( A T Z - ' A  + a I ) - l

t) UnHomt to u ro * 300 <

300 'b) Point to u rc *

Figure 3.3: One dimensional sources used in discrete deconvolution problem.

Note tha t all these quantities are indexed by a.  Using the above expressions we 

can analytically compute the uniform CR bound (3.11) for the case when A is 300 x 300 

matrix of Gaussian kernels of width w = 5 so that the FIM FY is non-singular.

Both a uniform and a point source intensity were studied. As indicated in Figure

3.4, the WLSE with known ideal weights, E =  cov(y), achieves the uniform CR bound 

for all biases, since Fy = ATE ~ M and from expression (3.23) for A = K

Regularization of the form (3.22) introduces bias into the estimator in an optimal manner,

i.e. the bias gradient achieves the most variance reduction for its allowed amount of bias.

The uniform CR bound may not be achievable when the FIM is singular. We 

next consider the problem of super resolution with an up-sampling factor of 2. This refers 

to a situation when the number of available independent observations are only a half the 

number of parameters we want to  estimate. The A  matrix is now of dimension 150 x 300. 

This problem is under-determined due to up-sampling. The region of interest is the intensity 

Oiso for the uniform source (Figure 3.3a). The resulting FIM FY was singular. Since we do 

not have a recipe for computing the uniform CR bound B°(0,6),  based on the GS or the
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Figure 3.4: Unconstrained WLSE with ideal weights exactly achieves the uniform bound.

CG algorithms for singular F y , the uniform CR bound was computed using the singular 

value decomposition. The bound B ° ( 9 ; 6 )  is equal to zero for 6  > 0.81, for this particular 

A ,  since ||7Vye,|| < 6 in that region. Note that the estimator (3.22) now fails to achieve 

the bound for any value of a.

One can show that when e, lies in the range space of F y  then the uniform CR 

bound can be achieved even for case of the singular F y . To see this consider the estimator:

'■■WLSE2
0 = (I + a F f y ' F j A T X - ' Y , (3.24)

~  W L S E 2
where as before a  is a non-negative constant. The bias gradient for 9 1 can easily be

shown to be equal to the row vector:

V A  = _ e f ( I / + F + )  F + - e f  { I  + a F * ) ' 1 ( I  -  F+Fy)  (3.25)

=  - e f ( i / + F + )  ' F + - e U l  +  « F + y l ( I - V F Y )

We can recognize that the first term on the RHS of (3.25) is the optimal bias gradient dmin, 

given by (3.6) for A = which by Theorem 3 achieves the uniform CR bound. The second

term on the RHS of (3.25) is equal to zero under the condition tha t ex is in the range space

of Fy.  One case for which this condition holds is for Fy a block diagonal system of the 

form:
'  A  0

F y  = 0 B
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where A (p X p; n > p > 1) and B  ((n — p) X (n — p)) are sub-matrices of Fy such tha t A 

is non-singular and B  is any arbitrary singular matrix.

It has been verified tha t for deconvolution example of this subsection ex does
~ WLSE2

not lie in the range space of Fy and therefore the bound is not achieved by 9t . We 

doubt that any estimator can achieve the lower bound on the variance var«(0i) for a single 

parameter 0X for all biases. However, it should be possible to identify linear combinations 

u = a? 9 of 6i, . . . ,9n for which the bound on var(u) is achievable and the optimal estimator 

u is identifiable.

o  0.8-

?  0.6 -

B(0,b)
Z 0.4-

20 25 30 35 40 45 50 55 60
Bias

B(0,8)0.8

0.6 -

|  0.4 
o
z  0.2-

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Length of the bias gradient: 5

Figure 3.5: Super resolution problem: WLSE fails to achieve the uniform bound at all 
points. The unbiased CR bound B (9 ,0) is approximately 50% of the 6ame in Figure 3.4

3.6 .2  O ne-D im ensional E dge L ocalization

In many imaging applications it is important to determine the location / of an 

edge along an oriented line segment. In [39] the unbiased CR bound is derived on the 

localization accuracy of an edge estimator. As in [39] we define an edge by the following 3 

parameters (Figure 3.6): 1) Intensity I ,  2) location I, and 3) width a,. The edge is modelled
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Figure 3.6: A typical edge profile: Intensity 7=15, width a, = 6 , and location /=0.

as the following function of position x along the oriented line segment:

R(x) = 7$  +«(*)»

where q(x) is additive white Gaussian noise of variance n„, and $  is the cumulative distri­

bution function of an W (0 ,1) Gaussian random variable. We assume that the width

Tto Cmm,

Figure 3.7: The optimal Canny operator in our example. The edge profde is shown here for 
clarity.

a, of the edge is known.

The FIM Fr (0) for the parameter vector 6 =  [l,I]T based on the noisy edge 

observation R  is given by [39]:

[ I* ( V W )  -  * Hr [** (% *) -  * ! (-% “ )]
* £ . # > ( * ) *

where Tx is the extent of the observation window.

An estimator of I of the edge location was constructed using the Canny operator.

F r ( 9 )  =

hc(x) = 4>'„c{x) =  ^  W (X)’
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-{!0 otherwise.

where <f> is a Gaussian function with scale oc, and W (x) is a window function:

W{x)

The precess R(x)  is filtered by the Canny operator to produce an output f e{x):

f c(x) = R(x)  * hc(x),

where * denotes discrete convolution. The minimum value of f c( x ) determines the location 

of the edge.

It is shown in [39] that the optimal choice of the Canny width ae, determined by 

minimizing the unbiased CR bound, is y/5a, for an unbiased edge localization algorithm.

0.%-

•1J
4M

■

Figure 3.8: Observed output due to the application of the Canny operator. ac = 4. The 
minimum f c(x)  determines the edge location.

The length of the data R(x)  containing the edge was 1000 points. The edge 

parameters used were: I  = 15, a, = 6 , and / =  501. We used a window Tt  of 50 data points, 

nl  = 8 . We varied ae from 3 corresponding to a difference operator, to 31 corresponding to 

a ramp filter. For each value of a c investigated we generated 100 independent realizations 

of noisy edge profile R(x).  The bias, bias gradient and variance were estimated using the 

methods of Section 3.4 and 3.5.

The results are shown in Figure 3.9. The 95% confidence intervals are smaller 

than the size of the plotting symbol *.

The curve ‘B’ in Figure 3.9 shows a point of minimum variance at ae = 16, 

which also corresponds to minimum bias (curve ‘A’) on the b-a  plane, and hence a point 

of minimum MSE (Figure 3.10). Note that the minimum variance is achieved close to the 

optimal ac = \fho,  = 13.5 determined by minimizing the unbiased CR bound.
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Figure 3.9: The uniform CR bound and the sample variance for varying ac. The numbers 
associated with the curves ‘A’ and ‘B’ indicate ac.

An interesting point to note is that although the bias and the variance vary non- 

monotonically with increasing ac, the bias gradient length increases monotonically. For ac 

between 4.5 and 16 the estimator standard deviation tracks the uniform CR bound B(0,6),  

however with an offset of approximately 0 .2 .
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Figure 3.10: There is an optimal ae tha t gives the least MSE.



CHAPTER 4

APPLICATIONS OF UNIFORM CR BOUND FOR SPECT 
PERFORMANCE EVALUATION AND SYSTEM DESIGN

In this chapter we apply the methods developed in Chapters 2 and 3 to sev­

eral different applications in SPECT including system design, system optimization, and 

performance analysis.

4.1 Introduction

Independent of the imaging modality the goodness of the image is eventually 

decided by human operators and is therefore subjective. Although some measures such as 

Hotlling trace norm have proven useful, to make a designer’s job easier, different measures 

are defined to predict image quality. In single photon emission computed tomography 

(SPECT) image reconstruction, the following design measures are commonly used.

1. S p a tia l o r  G eo m etric  R eso lu tion : is a measure of the closest distance at which 

a projections geometry can distinguish between two point sources. It is usually 

measured at Full Width a t Half Maximum (FWHM) of the geometric point spread 

function (psf) of the system [52],

2. S ensitiv ity : is the average number of 7 -ray photons striking the detectors, per unit 

area, over a given period of time, for a given source.

3. M ean  S q u are  E r ro r  (M S E ): is the square of the difference between the actual 

intensity 0 of the image, and the estimated intensity 0. The MSE can be directly 

related to the estimator bias bias«(0 ):

bias«(0 ) = Eqid) -  0 ,

62
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and the estimator variance var£(0 ):

var»(0) = Et [ d -  Ee_(l)] [£ -  £ ,(0 )]T

by:

MSE*(0) = var»(0) + bias#(0)bias#(0)T, 

where E$(d) is the expected value of £.

In any imaging system there are inherent resolution-sensitivity and bias-variance trade-offs. 

For example in SPECT, a wider collimator opening results in increased sensitivity at the 

price of decreased spatial resolution. Similarly, in image reconstruction, lower variance can 

only be bought at the price of increased bias via image smoothing [48]. In this chapter we 

apply the uniform Cramer-Rao (CR) bound (3.12) to study the bias-variance and resolution- 

sensitivity trade-offs for several different examples.

The applications considered in this chapter are: i) effect of angular sampling on 

image reconstruction, ii) optimal aperture design for intensity estimation, iii) performance 

comparison of the biased weighted least-squares estimator (WLSE) and penalized maximum 

likelihood (PML) reconstruction algorithms, and iv) analysis of the image reconstruction 

performance gain by adding a vertex view Anger camera to a SPRINT (SPECT) system 

[40].

4.1.1 S P R IN T  S ystem  D escrip tion

The system investigated is shown in Figure 4.1 and is called an extended SPRINT 

system [40, 42]. It has two sets of detectors and collimators: ring and vertex. The system 

without the vertex detector is the standard SPRINT II system [40] which was designed 

specifically for brain imaging and consists of a ring of detectors and a rotating multi-slit 

collimator ring. The vertex view is obtained by placing an Anger camera perpendicular to 

the axis passing through the SPRINT ring.

The vertex detector has its own hexagonally shaped collimator. For increased 

resolution at a given collimator sensitivity, the vertex detector is placed as close to the ring 

opening as possible. The system parameters are given in Appendix E and unless

otherwise specified are those used in the simulations.



64

Vertex View Collimator 
has a Honeycomb Structure

Vertex View

Vertex View 
Collimator — -

Source

Ring Detector
Collimator Ring Collimator Opening

Figure 4.1: The Extended SPRINT system: Standard SPRINT with Vertex View. Not 
drawn to scale.

4.2 Im age R econ struction  in SP E C T

A radioactive source emits 7 -rays in all directions with equal probability at spa­

tial positions V = [Vi,..., Vn]T G V. The source emissions are governed by a spatial in­

tensity vector 9 = [0l t ..., 0n]T G 0 ,  defined as the average number of 7 -ray photons emit­

ted by a pixel during the imaging time. The 7 -rays photons are detected at positions

W  = [W i,..., Wd]T G W. The image reconstruction problem is stated as follows: given the 

projection data estimate the intensities 0 = [0!,...,0n]r  G 0 . The number of 7 -ray emitted 

from each pixel, denoted by the vector X_ = [X i,...,X n]T, and the number of detections in 

each detector bin, denoted by the vector V =  [y i,...,y j]T are Poisson distributed:

n  X -

/ * ( * : »  =  (4->)
— .=1

/y(y;fi) = I I  y T ^ ’ (4-2)
j  = l i '

where fij is the 7 -ray intensity a t detector j ,

! ± = A 0 ,  (4.3)

and A is the so-called weights or system matrix consisting of the transition pdfs f \ y / y j w / v )  and 

depends upon the system geometry.

Shao [41] has derived the weights matrix, A r, for the SPRINT ring. The weights 

matrix for the vertex view, A„, without the collimator, is derived in the Appendix D.
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The vertex view weights, used in the simulations in Section 2.7, incorporate the collimator 

response and attenuation (wherever specified).

4.3 U niform  C ram er-R ao B ound

In this chapter we will only consider non-singular FIM Fy, however, the FIMs 

studied may be ill-conditioned. The following theorem, given here for convenience, gives 

the uniform CR bound for non-singular Fy and is a special case of Theorem 3 of chapter 3 

when (3.12) is substituted for (3.5).

T h eo re m  4 Let Ox be an estimator with bias bx(0) whose n-element bias gradient vector 

Vgpi satisfies (3.2). Assume that the FIM Fy is non-singular. Then the variance of  Ox is 

given by:

varefOx) > B{0,6),  (4.4)

where B(0,6) is equal to:

B(0,6)  = + d mifl]TF f 1[e1 + d m<B], (4.5)

= A2ef [I +  AFy]-1 Fy [I +  AFy]-1 ej (4.6)

where = [1, 0 , ...,0]T is an n-element unit vector and:

dmin = “ [f + AFy]- lei, (4.7)

and A is given by the unique non-negative solution of the following equation involving the 

monotone decreasing, strictly convex function g(A) € [0 , 1]:

5(A) = d L n i L i n  = 62 A > 0 . (4.8)

Note that the use of the expression (4.6) does not suffer from any ill-conditioning of the 

FIM Fy.

4.4 A pp lications to  Standard S P R IN T

In all the following applications the uniform CR bound was efficiently computed 

using the recipe in Section 3.5.3.
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The object used in the first two applications consists of two point sources within 

a disk of uniform intensity of radius 16 pixels (Figure 4.2). The high intensity white pixels 

have a normalized intensity value of 2, while the low intensity black pixels are set to 1. For 

the uniform CR bound computation the pixel of interest was the high intensity pixel at the 

top of the image marked ‘1’. Noise due to scatter was neglected in these studies.

It can be shown that for SPECT, the Fisher information matrix has the form

[10]:

Fy = AT [diag(^t) ] - 1 A,

where A is a d X n, n > d, weight matrix, \i = A 0, and Fy is a n X n symmetric positive 

definite matrix. We will assume tha t A is full rank so that Fy > 0. The system used

1
\

Figure 4.2: The object used in the simulations. The pixel of interest is the pixel at the top 
of the object. The image dimensions are 32x32 pixels.

in this study is the SPRINT II system, without the vertex view, as described in Section 

4.1.1.

4.4.1 Spatial Sam pling S tu d y

The effect of attenuation was neglected in this experiment. In Figure 4.3 the bias- 

variance curves are displayed for varying amounts of spatial sampling. Spatial sampling was 

varied by rotating the SPRINT collimator ring through different numbers of equal angle 

increments over [0, x] radians. The time for each step was kept constant. Note the monotonic 

nature of the curves as a function of the number of rotation increments. The curves do not 

intersect each other due to the fact tha t the projections from the lower sampled image are 

a subset of those of the higher sampled image. Also it can be seen tha t beyond 8 rotation 

increments increasing sampling rate does not reduce the bound significantly. At this stage
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i gradient: 5

Figure 4.3: The effect of angular sampling on the unbiased CR bound. Curves denote lower 
bound for 2 ,3,5,8 and 10 rotation increments of the collimator.

it is not clear how this reduction in the uniform CR bound relates to the image quality.

S

S
2

0.6 
gradlant: 6

0.80.4
Langtti of tha blaa

Figure 4.4: The effect of angular sampling on the unbiased CR bound. Time normalized 
case.

An interesting point to note is tha t the unbiased CR bound (V«&i = 0) for 10 

rotations is greater than the bound at a bias gradient length of 0.5 for only 5 rotations. 

This means that if the bias gradient length 6 = 0.5 is acceptable, then a  biased algorithm 

with lower sampling can perform better than an unbiased algorithm with higher sampling.

For a time normalized case, when the total scan time for each curve is kept 

constant, the curves could intersect each other (Figure 4.4). They, however, display the
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same trend as above. Since in this case the total sensitivity of the system is constant, any 

reduction in the bound in Figure 4.4 is due to a higher resolution.

Note that in experimental setting, for a 64 x 64 image, 54 uniform steps did not 

produce a similar saturation behavior. Further increase in resolution was observed by using 

non-uniform angular rotations for the collimator ring.

4.4 .2  O ptim al S ystem  D esign

In this experiment we apply the uniform CR bound (4.5) to standard SPRINT in 

order to determine an aperture opening that optimizes the trade-off between resolution and 

sensitivity. The effect of attenuation was not included in the FIM FY. For these simulations 

the aperture opening was varied from narrow (ray width = 0.25 pixels) to wide (ray width 

= 30 pixels). The imaging time was adjusted so tha t the total number of detected counts 

are the same for all cases; hence smaller exposure time for wider openings. The

*  6
Width of the ray: pixel*

Figure 4.5: Optimal aperture design using the uniform CR bound. One pixel width shows 
minimum uniform bound.

bias-variance trade-offs are displayed in Figure 4.5. Remarkably the variance shows a sharp 

minimum over all 6 when the width of the ray is approximately one pixel a t the pixel 

of interest. Therefore for the object and the ROI studied, this one pixel aperture width is 

‘universally’ optimal for estimation, irrespective of the bias gradient length of the estimator.

For a time normalized case, where the total imaging time is kept constant, we 

expect the minimum to be shallower as compared to the count normalized case. This is
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due to normalization of the uniform CR bound with higher counts for wider collimator 

openings, which has an effect of reducing the uniform CR bound. Note that the variance is 

normalized by the reciprocal of the number of detected photons.

4 .4 .3  Perform ance C om parison B etw een  Im age R econ stru ction  A lgorithm s

We will apply the uniform CR bound to study the bias-variance trade-offs for a 

particular class of roughness penalized maximum-likelihood (PML) and penalized weighted 

least-squares (WLSE) image reconstruction algorithms. Since the penalty introduces bias 

in the estimator due to image smoothing, the standard unbiased CR bound is inapplicable 

in this study.

For the simulations in this section we used the standard SPRINT II ring geometry 

without the vertex view. The effect of attenuation was neglected. The total number of 

detected 7 -ray counts were 109. Noise due to scatter were 5% of the total counts. In all the 

following cases, the algorithm was initialized by a uniform disk of intensity 1 and radius 

16 pixels. Since both the algorithms considered in this section are non-linear, an analytic 

expression for the bias gradient is intractable, and therefore the bias gradient was estimated 

using (3.16). We used L = 400 realizations of the projection data T  to ensure the statistical 

accuracy of our estimator bias, bias gradient and variance.

The object is a disk of uniform intensity 1 with a high intensity region of 4 pixels 

in the center of uniform intensity 2, called the hot spot. The pixel of interest was the pixel 

at the upper edge of the hot spot, marked ‘1’. The diameter of the disk is 32 pixels.

Penalized Maximum Likelihood

1

Figure 4.6: The object used in the simulations. The object dimensions are 32 x 32. The 
black pixels are of intensity 1 while the white pixels are of intensity 2 .
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The penalized maximum-likelihood (PML) is penalized for roughness and has the 

same functional form as a maximum-a posteriori (MAP) estimator of the image intensities 

9. The general form of the PML is given by:

l { y )  =  7 ^  { i n  f y ( y ; &) -  < * P ( 9 ) } ,

where P(8) is a roughness penalty and a  is the smoothing parameter. We use a penalty 

function described in [36] which is imposed on the 8 neighboring pixels for each pixel of 

interest. Setting a  = 0 corresponds to no image smoothing while a large value of a  corre­

sponds to a significant amount of smoothing. We have implemented the recursive SAGE 

algorithm to maximize the PML objective function. SAGE, which stands for space alter­

nating generalized EM, involves an intelligent choice of a ‘complete data space’ such that 

the E and M steps are analytically tractable. A detailed description of the PML-SAGE 

algorithm is given in [36].

It is easy to show that for the Poisson model

V, In f y _ 8) = At  - 1  +  y 0  ,

where 0  is a vector operation denoting element-by-element division, and i  = [1, 1,..., 1]T.

For the first set of simulations the smoothing parameter a  was varied (Figure 4.7 

(a) ). Points on the curves in Figures 4.7 (a) and (b) are labeled by the exponent of a . The 

bias, bias gradient and variance were estimated and the uniform bound was plotted over the 

bias gradient length-variance trade-off plane, denoted 6-cr, and the bias-variance trade-off 

plane, denoted b-o. The PML-SAGE algorithms were terminated after 100 iterations for 

each of the L = 400 trials. The ellipsoidal confidence regions are not shown in the figure 

since they are smaller than the size of the plotting symbol V . Note that the uniform CR 

bound, denoted by B(9;6)  in Figure 4.7 (a), is achieved for large biases, i.e. large a. For a 

small, the curve lB ’ tends to deviate more from the lower bound and saturate, i.e. lower a  

does not decrease the bias gradient. On the other hand the bias decreases to an asymptote 

near zero.

At points close to the unbiased point, i.e. the leftmost corner of the horizontal 

axis, in curve ‘A’, maximal reduction in bias is achieved at the price of significant increase
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Figure 4.7: Comparison of the PML and WLSE
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in the variance. An interesting question to ask is: what is the best choice of a  in this case? 

Unfortunately there is not a simple answer to this question since it is application dependent. 

However, using the two plots in Figure 4.7 (a), the bound on the variance as a function 

of bias can be easily translated into a bound on the estimator MSE, denoted B(0 ,a )  + 

as a function of the smoothing parameter a. The bound, along with the estimator MSE 

is shown in Figure 4.7 (c). The point of least MSE is the point of maximum variance but 

least smoothing. This supports the widespread opinion tha t when taken in isolation the 

pixel intensity MSE is not suitable as an image quality metric. However, a suitable trade-off 

between the smoothing, which directly corresponds to the image bias, and the variance is 

to choose a point close to the knee of the MSE curve ‘A’ in Figure 4.7 (c), corresponding 

to a  = 23, or a  =  24. This choice of a  ensures that the reconstructed image is not overly 

smoothed, at the same time not having an unacceptably large variance.

Figures 4.8 and 4.9 show several graphs of reconstruction quantities for a  = 24, 

and a  = 210, respectively. For clarity in the figures, we down-sampled all the images by 

a factor of 2. For each image in Figures 4.8 and 4.9 the ordered pair at bottom indicates 

the minimum and maximum values for that image. In Figure 4.8, the mean reconstructed 

image is very close to the true image except around the edges. The correlation image, i.e. 

the column of F y 1 corresponding to the pixel of interest, Or o i , shows a strong correlation 

with the neighboring pixels. This implies that to estimate Or o i  we must also estimate the 

strongly correlated neighboring pixels accurately, while the influence of the far pixels can 

be ignored. Ideally, one would like the correlation between the pixels to be zero so that the 

estimate of a certain pixel, 0ROi,  is independent of the estimates of all other pixels. The 

plot for the theoretically optimal bias gradient shows a similar strong influence from 

the neighboring pixels.

The average bias gradient Vjhj for the reconstructed image is different from the 

theoretically optimal bias gradient dmin. Thus the penalized SAGE image reconstruction 

algorithm does not take best advantage of its bias allocation since it is only by using the 

optimal bias gradient d\min given by (4.7) that the minimum bias gradient length is achieved.

Figure 4.9 shows the same set of images as in Figure 4.8 but for a  = 210. Due to 

very high regularization, the hot spot is almost entirely smoothed out. Also, neither
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Average reconstructed Image Average bias of the Image Correlation Image

1 0  2 0  2 0(0, 1.84) 20

0.2

- 0.2

(-0 .1594,0.114) 20 20 (-0 .0034,0.0082) 20 20

Optimal bias gradient Ave. bias grad, for recon. Image Ave. st. deviation for ROI

Figure 4.8: PML-SAGE: different graphs of reconstruction quantities for log2(a ) =  4. An 
ordered pair with each curve indicate the (minimum, maximum) value associated with that 
image.

A verage reconstructed Image Average bias of the Image Correlation Image

1 0
( -0.0034,0 .0082)

Optimal bias gradient Ave. bias grad, for recon. Image Ave. st. deviation for ROI

(0 ,0 .005143)

Figure 4.9: PML-SAGE: different graphs of reconstruction quantities for log2(a ) = 10.
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nor the average bias gradient Vjfq for the reconstructed image show significant coupling 

between the pixel of interest and the neighboring pixels. This is to be expected since in 

the overly smoothed case the bias is principally determined by the smoothness penalty as 

opposed to the projection data.

Weighted Least-Squares Estimator

Similar to the PML, the WLSE is penalized for roughness, but minimized over a 

quadratic objective function. The WLSE is given by [35]:

t o  =  i eae ,T >  o { i  I®  -  - **>] +  - ' W } .

where E is a weight matrix, P(0) is a regularization penalty, and A is the system matrix. 

We use a penalty function described in [35] which is imposed on the 8 neighboring pixels 

for each pixel of interest. The weight matrix E is diagonal, consisting of the covariance 

estimate of the observations. It is shown in [48] that a WLSE with an identity penalty 

function and ideal weight matrix E = diag,(^, ) exactly achieves the uniform CR bound for 

all biases.

Figure 4.7 (b) shows the b-a and b-a plots for the WLSE. The WLSE estimator 

follows the uniform CR bound closely for high bias and low variance, but tends to deviate 

away from the bound for low biases. An interesting point to note is that the PML and 

the WLSE have similar bias-variance trade-off curves. However, the uniform bound on bias 

B(9,b)  is different for PML than that for WLSE since the bound on bias is indexed by 

algorithm bias gradient which is obviously algorithm dependent.

Figures 4.10 and 4.11 show several graphs of reconstruction quantities using the 

WLSE for a  =  24 and a  = 210. The comments for Figures 4.8 and 4.9 are valid here. The 

only exception being that the WLSE falls to accurately estimate the edges for small a.  This 

is due to the fact that the estimates of covariance involving the projections tha t graze the 

image edges

The PML and the WLSE have very similar bias gradient-variance and bias- 

variance trade-offs, and based on these simulations one can not prefer one algorithm over 

the other. However, the PML takes longer to converge when compares to the WLSE.
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Figure 4.10: WLSE: different graphs of reconstruction quantities for log2(a) = 4.
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Figure 4.11: WLSE: different graphs of reconstruction quantities for log2(a) = 10.
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4.5 V ertex  V iew

The aim of the following experiments is to determine a realistic estimate of the 

gain in performance, measured in terms of a reduction in the uniform CR bound, achievable 

by adding vertex view to a standard SPRINT ring. For these experiments we have used a 

cylindrical object 10 cms high with a radius of 11 cms. The object is divided into 6 slices, 

each 1.66 cms high. Each slice consists of 812 pixels (Figure 4.12). The slice diameter is 32 

pixels and contains a pair of hot spots of normalized intensity 2 , superimposed on a uniform 

disk of normalized intensity 1. The top slice is at a distance of 2.33 cms from the vertex 

view collimator.

All the following results are normalized for a total detected 7 -ray count of 1 

million ( 1M) for the SPRINT ring, unless otherwise stated. The vertex view spatially

1 2
A v t

A v 2

* < 1
a v « :

Av6C

A v «

'

1 0  c m *

Figure 4.12: The object used in the experiments consists of six slices. Top left: slice 1; 
bottom right: slice 6 .

varying solid angle resolution was taken into account in all of the following experiments.

4.5.1 E xperim en t 1: Effect o f Increasing N u m b er o f Param eters

The resolution of the vertex view collimator decreases with distance, however, 

since the purpose is to study only the effect of increasing the number of parameters, we 

kept the vertex view collimator resolution constant. The collimator resolution is taken to 

be equal to the resolution associated with slice 3, which is close to the average resolution 

for our object. The number of unknown parameters were increased by successively adding 

identical slices, chosen to be slice 1, hence the object in this experiment is variable. The 

effect of attenuation was neglected. The total time of the experiment was kept constant for
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Object Experiment 1 Experiment 2 Experiment 3
Number 1,2,...,6 2 6
of slices (identical slices) Top: fixed 

Bottom moved: 2 ,...,6
(non-identical

slices)
Slices 

containing ROI
Top Top and bottom 1,3, and 6

Attenuation (ring) Off Off Off
Attenuation (vertex) Off Off On

Vertex view 
resolution

Constant 
(slice 3)

Variable Variable

Vertex collimator 
thickness

2 cms 2 and 4 cms 2 cms

Table 4.1: Objects used in the vertex view simulations.

each case, therefore, the most number of counts are detected when the object consists of 

all 6 slices including the vertex view. The pixels of interest Oroi were a low intensity pixel 

close to the top-left edge of slice 1, marked ‘1’, and a high intensity pixel in slice 1 marked 

‘2 ’.

The results are shown in Figure 4.13. The uniform bound for the ring alone 

remains the same for all objects since the ring projections for slices 2,...,6  are independent 

of the projections for slice 1 and do not effect the bound. When the object consists of only 

the top slice, addition of the vertex view shows an enormous gain. This is to be expected, 

since in the absence of any background noise, the vertex view directly estimate the object 

pixels with no need for image reconstruction. However, with the addition of another slice 

there is a sharp increase in the bound indicating poorer estimation performance. With all 6 

slices present the gain due to adding the vertex view is significant with a  variance reduction 

of approximately 80%. The edge pixel shows similar behavior, except tha t the bound for 

the edge pixel is lower than the center pixel since the SPRINT ring has higher resolution 

and increased sensitivity closer to the edge. Both of these factors, as we saw above, reduce 

the uniform CR bound.

The results from this experiment suggest that any performance gain offered by 

adding the vertex view is very sensitive to the increasing number of parameters to be 

estimated. Since the effect of distance of the slice from the vertex view is neglected in
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Experiment 1: center pixel
4.5

Ring3.5

2.5

cn

0.5

0.4 0.5 0.6
Diet gradient length:

0.1 0.3 0.7 0.6 0.9

Experiment 1: edge pixel

.Ring

0.6

0.6

0.4

0.1 0.3 0.4 0.5 0.6
Bias gradient length:

0.7 0.6 0.9

Figure 4.13: Experiment 1: the effect of increasing the number of parameters on the vertex 
view gain. The numbers on the curves indicate the number of slices used in the object. 
Ring denotes the SPRINT ring without the vertex view. Top: center pixel; bottom: edge 
pixel.
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this experiment, due to a constant resolution vertex view collimator, we expect similar 

bias-variance trade-off curves for pixels chosen in slices other than slice 1.

4.5 .2  E xp erim en t 2: R eso lu tio n -S en sitiv ity  Trade-offs

Slice number High resolution Low resolution
(4 cms) (2 cms)

1 3.2 mm 4.4 mm
3 5.0 mm 7.8 mm
4 5.8 mm 9.6 mm
6 7.5 mm 13 mm

Table 4.2: Vertex collimator resolution.

This experiment studies the inherent resolution-sensitivity trade-offs due to the 

choice of different collimators. In this experiment we used two different vertex view collima­

tors: 1) high resolution (4 cms thickness) and 2) moderate resolution (2 cms thickness). The 

resolution of the 4 cms collimator is roughly twice the resolution of the 2 cms collimator, 

at the expense of a factor 4 decrease in sensitivity. The effect of attenuation was turned 

off to isolate the effect of resolution. The scan time was kept constant. We used two slices, 

one slice was fixed at the top position, while the position of the other slice, chosen to be 

slice 2, was moved from position 2 to 6 . The pixels of interest for slice 1 were the same as 

in experiment 1. We also chose 2 pixels in the moving slice corresponding to the positions 

of the pixels of interest in slice 1. Figures 4.14 and 4.15 shows the results. The numbers on 

the curves indicate the position of the second slice.

For slice 1 (Figure 4.14) the uniform bound for the 2 cms collimator is lower than 

that for the high resolution 4 cms collimator. This means that the gain in resolution by 

using the 4 cms collimator failed to compensate for the loss in sensitivity. This is to be 

expected since for slice 1 the low resolution (2 cms) collimator has better resolution than the 

pixel size (6.9 mm x 6.9 mm), as shown in Table 4.2. Therefore, there is no additional gain 

in resolution by using a high resolution collimator for slice 1. For the moving slice (Figure 

4.15) the uniform CR bound for both the collimators are similar, which implies tha t at 

greater distance, the increase in the bound due to decreased resolution is compensated by 

increased sensitivity. Based on the results of this experiment alone, for a 32 x 32 image,
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the 2 cms collimator is to be preferred since it gives a better performance for slice 1 when 

compared to the 4 cms collimator. Since for slice 1, the resolution of both the 2 cms and 

the 4 cms collimator is sub-pixel size, a lower uniform CR bound for the 23 cms collimator 

implies a better image quality. However, it is difficult to predict image quality for other 

cases.

In Figure 4.14 the uniform bound for slice 1 with the moving slice at position 2 

is higher than that at position 6 . This is due to the fact that a slice at position 2 offers a 

stronger background for the top slice, and therefore makes estimation more difficult. Similar 

reasoning explains the order of the curves in Figure 4.15.

Center pixel, 2 cm collimator

■2 0.06

Edge pixel, 2 cm collimator

"0 0.5 1
Bias gradient length: 5

Center pixel, 4 cm collimator

0 0.5 1
Bias gradient length: 5

Edge pixel, 4 cm collimator

c
o

0.1 0.1

0.5 0.5
Bias gradient length: S Bias gradient length: 5

Figure 4.14: Experiment 2: Resolution-sensitivity trade-offs for the vertex view, slice 1. 
The numbers on the curves indicate the position of slice 2. Top left: 2 cms collimator 
thickness, center pixel; top right: 2 cms collimator thickness, edge pixel; bottom left: 4 cms 
collimator thickness, center pixel; bottom right: 4 cms collimator thickness, edge pixel.

4 .5 .3  E xp erim en t 3: Source o f th e  V ertex  V iew  G ain

Possible sources of gain are increased resolution, increased sensitivity, and orthog­

onality of the vertex view data set to the SPRINT data. The purpose of this experiment
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0.4

O 0.3

|  0.2 

* 0.1

0,

Center pixel, 2 cm collimator Edge pixel, 2 cm collimator
0.3 vS

\ 6 8
f  0.2 \ \

1 2 N \
£ 0.1

0 0.5 1
Bias gradient length: 5

Center pixel, 4 cm collimator

o  0.3

l 0.5 1
Bias gradient length: 5

Edge pixel, 4 cm collimator

"0 0.5 1
Bias gradient length: 5

0.5 1
Bias gradient length: 8

Figure 4.15: Experiment 2: Same as Figure 4.14 except the pixels of interest are in the 
moving slice 2 .

is to determine the source of this gain. For this experiment the effect of attenuation in the 

vertex view was considered. All six slices were included, hence the object is fixed. Due 

to the results in the last experiment, we used 2 cm (moderate resolution) collimator. The 

object of interest was the center pixel in each of the slices 1, 3, and 6 . The effect of increased 

sensitivity by adding the vertex view was neutralized by normalizing the total number of 

detected counts to 1M with and without the vertex view. Therefore, any gain observed in 

this case can only be attributed to the increased resolution due to the addition of the vertex 

view or the orthogonality of the vertex view data.

An interesting point to note is that due to the data-processing theorem, addition 

of vertex view necessarily means a better, or at the very least an equivalent performance 

when compared to the SPRINT ring. However , the count normalized case can result in a 

worse overall performance since it is possible that the increased resolution due to the vertex 

view or the orthogonal vertex view data is not able to compensate for the decreased ring 

sensitivity.
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The results are shown in Figure 4.16. The curve marked ‘Count normalized’ 

refers to the total counts including the vertex view equal to 1M, while the curve marked 

‘Time normalized’ refer to the system including the vertex view, and the total 7 -ray counts 

for the whole system are «  1.6M. The bound on the center pixel in the top plane is less than 

10% near zero bias gradient length. This applies to both the count and time normalized 

cases. However, the gain decreases for the 3rd and the 6 th slice. In particular, for the 6th 

slice, close to zero bias gradient length, the count normalized bound is 60% of the ring 

bound, which refers to the bound reduction due to orthogonality of the vertex view data 

only, since for slice 6 the vertex view resolution is approximately equal to the SPRINT 

ring resolution. Therefore the gain in performance can not be due to increased resolution. 

The time normalized bound, i.e. the combined reduction in variance due to increase in 

resolution, sensitivity as well as the orthogonal data set, is less than 50% of the SPRINT 

ring bound.

The very high gain for the top slice, even in the presence of all the other five 

slices, can be explained by the high detector count of the vertex view (73 x 73) compared 

to the image size (32 x 32). In the top slice the vertex view sees each pixel individually, 

even when the detector resolution is taken into account. Despite decreased resolution and 

sensitivity, the gain for the 6th slice is significant. This result implies that the ‘information’ 

contained in one vertex view detected photon is worth approximately 4 detected photons 

in the ring, even at a distance of 10.33 cms from the vertex view. As mentioned above, this 

gain is only due to the orthogonal vertex view data  set. For slice 3, the vertex view photon 

contains close to 16 times more information than the SPRINT ring. However, this is due 

to a combined effect of increased resolution and orthogonal vertex view data  set. In view of 

the fact that the SPRINT data does not include attenuation, and the results of experiment 

1, this gain seems very optimistic and further experiments are needed to confirm it.

Based on the above 3 experiments we can conclude tha t the use of the vertex view 

will definitely improve the quality of the reconstructed image for the slices tha t are closest 

to the vertex view. Furthermore, the vertex view not only increases the overall sensitivity 

of the system, but it also adds to the resolution. In particular, the vertex view can improve 

the localization of the pixels tha t are farthest from the SPRINT ring detector, i.e. in the
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1st slice: center pixel

Count normalized

ie normalized Bias gradient Length: 5

3rd slice: center pixel

Ring

Count normalized

Time norm !

Bias gradient length: 5

6th slice: center pixel

Ring

Count nonhalized

Time normal):

Bias gradient length:S

Figure 4.16: Experiment 3: The source of the vertex view gain. Top: top slice; middle: 3rd 
slice; bottom: 6 th slice.
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center of the object. Furthermore, even if we neglect the effect of increased resolution and 

sensitivity, the orthogonal data set appears to give significant gain when compared to the 

SPRINT ring only.



CHAPTER 5

SUMMARY AND FUTURE RESEARCH

A uniform CR bound applicable to biased estimators was presented in [14]. How­

ever the computation of the uniform CR bound required inversion of an FIM. Direct in­

version algorithms require 0 (n 3) flops, where n is the length of the parameter vector. A 

geometric series based recursive and monotonically convergent algorithm, called the GS, 

was proposed in [10, 13] to compute the columns of the inverse of the FIM tha t requires 

only 0 ( n 2) flops per iteration. The GS also requires specification of a splitting matrix 

which should be easy to invert. The choice of splitting matrix affects the rate of conver­

gence and therefore a proper choice of these splitting matrices is crucial. Using purely 

algebraic techniques, we specified a class of banded diagonal matrices that result in much 

faster convergence rate of the GS when compared to a previous statistical approach (Section 

2.3). We also presented a modified conjugate gradient (CG) algorithm which converges non- 

monotonically, but has a faster convergence rate than the GS (Section 2.5). The algorithms 

described here are only applicable to symmetric and positive definite matrices. Based on 

these algorithms we provided a ‘recipe’ to compute the uniform CR bound for full-rank 

FIMs (Section 3.5).

As presented in [14], the uniform CR bound is only applicable to full-rank FIM. 

For problems where the number of independent observations are less than the number of 

unknown, the FIM is rank-deficient. We extended the uniform CR bound to allow the rank- 

deficient FIM (Section 3.3). The uniform CR bound for the rank-deficient FIM requires 

pseudo-inverse of the FIM. We derived two recursive algorithms to approximate columns 

of the pseudo-inverse of the FIM (Section 2.6). These algorithms are based on the GS and 

the CG. The first method, called the perturbation method, is based on the well known

85
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Tikhonov regularization [27], while the second method, called the differencing method, is 

new. In the examples considered in Chapter 2 , the differencing method gives a significantly 

lower error of approximation when compared to the perturbation method.

The computation of the uniform CR bound requires the bias gradient length to 

be known at the parameter value of interest. In most cases the bias gradient of the estimator 

is analytically intractable and must be estimated. The method of moments approach to the 

estimation of the bias gradient, generally used to approximate the bias and the variance of 

an estimator [51], is computationally inefficient. We presented a computationally efficient 

method, based on sample averaging the score function, which has zero bias and low variance 

(Section 3.4).

The methods developed in this thesis were demonstrated for several different 

examples including two-dimensional SPECT image reconstruction, one-dimensional discrete 

deconvolution, and one-dimensional edge localization. A major contribution of this thesis is 

a better understanding of the SPECT system and image reconstruction algorithms through 

these examples. We have studied several SPECT system design and optimization examples, 

including the gain in performance in terms of the reduction in the uniform CR bound by 

adding a vertex view to a SPECT ring geometry. We also compared two popular image 

reconstruction algorithms, namely, penalized maximum likelihood and penalized weighted 

least-squares.

5.1 Future R esearch

5.1.1 M odified CG A lgorithm

For our application, monotone convergence of the CS algorithm is an important 

feature since a valid approximation to the CR bound is obtained at the end of each iteration. 

However, the non-monotone convergent CG algorithm gives a faster rate of convergence 

when compared to the GS algorithm. One solution to this rate of convergence-monotonicity 

trade-off would be to design a hybrid algorithm which is controlled by a single parameter 

that controls this trade-off. We feel that the CG algorithm could be modified in this 

direction.
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5 .1 .2  R e c ip e  fo r  C o m p u t in g  th e  U n ifo rm  C R  B o u n d  fo r  S in g u la r  F y

In Section 3.3 we gave a recipe for computing the uniform CR bound for non­

singular Fy based on the GS and the CG algorithms. However, we do not have a similar 

recipe for the case of singular FIM F y -  At present we compute the uniform CR bound 

for singular F y  by performing SVD on F y .  A  recipe to compute the uniform CR bound 

for singular FIM F y  based on the perturbation or the differencing method can help to 

significantly reduce the computation time.

5 .1 .3  Is  T h e r e  a  B e t t e r  B o u n d  fo r  U n d e r - d e te r m in e d  P ro b le m s

We saw that even with the ideal weights, the WLSE fails to achieve the uniform 

CR bound at all bias gradient lengths. The question is: Is the CR bound given by the 

pseudo-inverse the best possible lower bound for the under-determined problems, or can we 

do better?

5 .1 .4  E x te n s io n  o f  th e  U n ifo rm  B o u n d  to  M u lt ip le  E s t im a to r  C o m p o ­
n e n ts

The unbiased CR bound determines the lower bound on a single estimator com­

ponent. A natural next step would be to extend the bound to multi-parameters.

5 .1 .5  F u r th e r  In c re a s e  in  t h e  R a te  o f  C o n v e rg e n c e  u s in g  D p  v ia  S id e  I n ­
f o rm a t io n

At present, if we want increased rate of convergence of the GS algorithm, we 

increase the number of diagonals of the D p matrices. A more intelligent way of choosing the 

additional diagonals would be to exploit the structure of the FIM, i.e. introducing diagonals 

where the information contents are high. We expect that by using this information we can 

achieve faster convergence rates for less number of diagonals.

5 .1 .6  0 ( q 2n) A p p ro x im a t io n  o f  t h e  U n ifo rm  B o u n d : H o w  ( W h a t )  G o o d  
is i t?

We present a computationally efficient 0{q2n ) approximation to the uniform 

CR bound in Appendix F. We expect the approximation to be ‘good’ if there is little
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correlation among different estimator components. However, we need to derive a bound on 

the approximation error.



APPENDIX A

PROOF OF LEMMA 1

The matrix Dp — A has the form:

; * 2 ,  ...,p 

0 £ 1^1

— «ln

& n - p - l , n

0

- f l p + 1 ,1

~ a n l

 fc-i

0
0

0 £ l a»il
j ? n - p , . . . , n - 1 J@n, n— p — 1

Since Dp -  A is a special case of D\ -  A for a,; = 0, |t — j | > p, it suffices to prove that the 

following matrix is Positive Semi-Definite (PSD):

Di — A =

i I a i j  I ~ a l2  

~ a 2l  £ , * 2  I - a 2j  I

~ a l n  

~  02n

-am

Define:

where,

Af(,) =

~ a n2

N  b 
bT a

I anj |

(A .l)

h. — [ a ji, o.q2i •••> a?i?_j] ,

a =
i=i

JV =  -f diag,(|6,|).

89
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Since D\ — A is symmetric Af(?) is the q x q upper left hand block of the n x n  matrix D\ — A. 

We proceed by induction. Assume that is positive semi-definite. Since a = 0 implies

6 =  0, when a = 0, is obviously positive semi-definite. We therefore assume a > 0, in 

which case 6 is not identically zero. Consider the following factorization of M

=
I  16rr «-

0T 1
N  -  166t  Q 

0^ a
I  0

-bT 1

We only need to show that the (q -  1) x (q -  1) matrix,

N  -  -bbT = M y_1 +  diag<( |6,|) -  -bbT 
a a

is PSD. Since the sum of PSD matrices is PSD, it is sufficient to show that

diag,(|6,|) -  -bbT > 0 . 
a

Consider for any x  = [xi,ar2,

x T (d iag ,(|6,|) -  i bbT)  * = |6(| -  ^  ^  *<6,-j

fq-1 hi
n w  1, 1,

(«-l /»-1 \
£ p < w a -  (X Jp .k .i

?-l /  «-l \

(A.2)

> 0.

Where in (A.2) we have defined p, = . , p, G [0,1], YSZiPi = !• Furthermore, for

i  = I ,  (Dp — A) 1 =  0, where 1 = [1,..., 1]T. This implies tha t Dp — A  has a t least one zero 

eigenvalue, therefore Dp — A  is rank deficient with rank at most n — 1.

I
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APPENDIX B 

PROOF OF LEMMA 2

Define 5(>1) to be a set of diagonal F  such that F  -  A > 0. Let us denote 

Fmjn € 5 (/l)  as the matrix F  tha t minimizes | | |F  — and Fmjn(x) as the matrix that

minimizes | | | F -  i4|||*- over the set of diagonal F  such that xT( F  — A )x  > 0. It can be 

easily shown using Lagrange multiplier theory that Fmjn(x) is given by:

r  (  \  a - t  a \  £ T ( d i a g ( i 4 ) - i 4 ) x  ,  T ,
F m ,„(*) = d,ag ( A )  -  - r -dj ^ t o T )  ^  <•»« ( s  ) •

Clearly «S(i4) C «Sx(.4), since the condition F -  A > 0 implies xT(F  -  A)x  > 0 for all x, so 

by the definition of Fmin:

| | |F mjn(x) -  i4|||jr < || |F min -  A\\\f , Vx.

For x = I  and A symmetric regular circulant with non-negative entries one can verify that 

Fmin(I) =  (an  + ... +  a ln) /  = D v. By Lemma 1, D , -  A > 0. Therefore, Fmin(I) e  S(A ). 

Thus by the definition of Fmjn we must also have,

ll|Fmin -  A\\\r < |||Fmin(i) -  A\\ \ ,

The above two inequalities together imply that

F m i n ( I )  =  F min =  D x.

I
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APPENDIX C 

COVARIANCE OF THE BIAS-GRADIENT ESTIMATOR 
FOR A WEIGHTED LEAST-SQUARES ESTIMATOR

T h eo re m  5 Assume: i) F , is a set of i.i.d. Gaussian random variables with mean A0 and 

covariance K , and £ is a weighted least-squares estimator o f the form:

9(Y ) = (ATK ~ 1A  + a I)~ l AT K ~ l Y_, where a  is a smoothing parameter, then a bias gradient 

estimator V»&i = V«mi + e f, where Vgm x is given in (3.15), has the covariance:

~ 1 J*
VjmiV*m.i +  v a r g f d x) F y  +  £ ,(m j -  ( ,)2Fy

1
5 ( V , 6 j )  =  -

where Fy = ATK ~ l A is the Fisher information matrix.

P ro o f: Since, Y , ~  A f(A 0 ,K ), V » ln /y (j/;£ ) = ( Y - A 9 ) T K ~ lA = (Y  -  Y f  K _1A, 

where Y_ = E(Y_) =  A0 is the mean of Y_. Since we are interested in the estimator component 

Oi:

Oi(Y) = eJ(A TK - 'A  +  a I ) - 1ATK ~ 1Y  = v j Y ,  

where e, = [1 ,0 ,0 ,...,0]T, and w, d— K ~ lA (A TK ~ lA + a l)~ lex. Now,

S (V ,4 .)  =cov,(v,6,) = c o v , [ ±  £ ( « , ( £ ) - ( , )  V . l n / y U ^ i S I - e f j

( I  B t e )  -  0 )  v «ln=  COVj

= -j^A TK ~ l cov* £ ( £  - u w £ ) - c < ) ’
L i ' = i

K - l A.

Consider the underlined term A:

L
cov# -£)(*»(£■)-c.-)3

Li =  l
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cov#

=  COVJ

=  COVo

£ ( &  -  Y)(V iTYi -  Ci)1 
.«=1

£ ( Y ,  -  Z )U ,r £  -  £it Z  +  v / Y  -  c , )7
L » = i

r i

1=1

+  COV,
L i ' = l

(C.l)

B C
Equality in (C .l) is due to the fact that Y -  Y is zero mean and the cross term is zero since

3rd moment of a zero mean Gaussian is zero. We will solve Expression B and Expression

C separately.

E xp ression  B:

Note that, cov, -  Z ^ ^ Y ,  -  E)] = L cov, [(Y -  Y ^ ^ Y  -  Y )]. Let

Z  = Y _ -¥ ,Z _ ~ A f{ 0 ,K ) .

c o v ^ Y - Y ^ Y - Y ) ]  = coveJZ v^Z ]

=  COVf |Z Z T v y ]

= Et  \{Z Z r )vlvxT{Z Z r )T\ -  Et  [z Z Tu,] Et  \ z Z Tv ^

= Et  [(ZZT)v1v1T(Z Z T)T] -  K (v l v lT)K
n

= K W K  + K 'E 'W hK h, (C.2)
•=i

where VY = v 1v1T . (C.2) is due to the following lemma.

L em m a 3 Given an n x 1 random vector Z = [ Z \ , Z n]T of zero mean i.i.d Gaussian 

random variables, such that Z ~  K ), and an n x  1 constant vector vlf then,

Ei (Z Z Tv1v1TZ Z T) = 2EL{Z Z T)v1v lTEl (Z Z T) + v1TEl {Z Z T)vl El (Z Z T).

Proof: We have,
Z \Z 2 • •• Z\ Zn

Z \Z 2 z\ Z2Zn
Z Z T =

Z \Z n Z2Zn • Zl
and VjUi = W  = ((io))tJ- : i = l , . . . , n , j  = l , . . . ,n .  From which,

E» ( E ?=11ViiZfZ*) 2E , {wn Z lZ D
2Et_{w ,2Z \Z \)  E t { t U  v u Z fZ l)

E 0_( Z Z T v l v 1T Z Z T ) =

2Ei (w lnZ*Z2n) 
2Et (w2nZ*Z*)

. 2Et {wXnZ lZ l)  2Et {w2nZ lZ l)  . . .  Et ( Z U  t»«Z?ZBa)
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Using the familiar expression for the 4-th moment of zero mean Gaussian random variables 

[22, 37]:

E $ ( Z \ Z 2 Z 3 Z 4 ) =  E t { Z XZ 7 ) E g ( Z 3 Z 4 ) -j- E g { Z i Z s ) E g { Z 2 Z ^ )  - f  E ^ ( Z i Z ^ E ^ Z i Z s ) ,  

we immediately get the required result.

Expression C:

cov#
L » = i

=  £  E ,  [ ( u ^ y  -  C . ) 2 ( I ,  -  Y ) ( Y ,  -  Y ) 1
1 = 1

L

» = l

K . (C.3)

Substituting (C .l) and (C.3) in (C .l) we get:

co v,(V»6i) = t At K ~1Ld

n  1 L
K W K  +  K  W i i K a  +  -  Y ,  E * W T  ~  Ci ? K

t=i 1=1
K ~ XA

\_
L

L

1 L _  
a t w a  + k J 2  w a py + 7 E  E* W ? - -  <<)2*V

i=i
1 L

F Y F y l e ^ F y l + ^ F y l F y F y l e ,  I + T J 2 E t ( e j F y la F y 0 - C i ) 2 I
»=i

F y ,

where F y  =  A T K  M  and F y l  = ( F y  + a l ) *. It directly follows that:

5 ( V £ 6 , )  =  c o v ^ V j h j )  =  -
1 L

VjrujV^mj + var£(0i)Ey + j  ̂ 2 £«(mi -  ( ,)2Fy
1=1

where V^mj = e j F y ' F y ,  var^tfj) = £ F y ' F y F y ' e ^  and mj =  e j F Y l F Y 0 .

C .0.7  B ias o f  th e  B ias-G radient E stim ator w ith  (;

The bias of the bias gradient estimator is given by,

b  (V»6) =  E e_  ( v , i )  +  V,h.

For WLSE it is easy to show tha t the bias gradient is;

( C . 4 )

V »6 =  - I  +  ( F y  4- a i y ' F y . (C.5)
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Now,

h  (v *̂ )

« =  1

=  ( F y + a i y ' A r K - ' ^ - j Y , { F Y  + <*I ) - lATK - lYj { Y j - Y f K - ' A }  -  I

= (Fy +  a I ) - 1A TK ~1 [ E fiX X i7 ) ~  ^ # ( i j)H T] F ~ 'A

-  ^ E D ^  +  a I ) ~ l A T K ~ *  [££( ^ r . - T) -  E e_(Yj )Y T] K ~ ' A  -  I
i= lj =1

=  ( F y  +  a I ) ~ 1F y  -  j ( F y  +  a l ) ' 1 F y  ~  I  

Substituting (C.6 ) and (C.5) in (C.4),

6 ( v T & )  =  - ± . ( F y  +  a I ) - ' F y .

For large L or for large a  the bias goes to zero.

C .0.8  Covariance o f th e  B ias-G radient w ith  i 0\(Y_j)
3*i

(C.6 )

T h eo re m  6  The bias gradient estimator given by:

l  .=i

achieves minimum covariance Sm-m(Vebi) for large L and the assumptions given in Theorem 

5.

P roof:

Clearly for L = 1,£ =  0 and we get the same result as (3.17). In the sequel we 

will calculate the covariance for L > 1. Substituting V£ln /y (H ;0 )  = (Y_ — Y_)T K ~ lA we 

obtain:

cov, ( V A ( 0)) = - ^ A TK ~ l covg1 covs <
L

E» = 1
(Z i -  Y ) T ►

L J '  -

K ~ lA

D

Consider the underlined term D:

L

i  =  l

( Y , - Y f
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cov#

cov,

=  COVg

COVfl

1 L
■ ------ -— Y ' Y

>8 1 >#•
(z -  -  r )5

a T E  
1 = 1

*iT E
» = i

b z - z h z - z z + « /  ^
i=i i=i

vtT p i , - zxr, - z r - f ^  EE(z, - 2xi. - z>

2 - ^ t E z ,
j ts lJ**

( Z  -  Z ) 7

1 = 1 i =  l i  = i jt*

= cov*■.{if E ( i , - m i , - i f } + c o v t . j & l  E E ( 2 , - a ( r , - r f  jc.7)
j;.

v V '
E

(C.7) is due to our assumption tha t different realizations of Y_ are i.i.d. and Y j -  Y_ is zero

mean. The first term is already computed in the proof of Theorem 5. We will concentrate

on the underlined term E.

t  l i

1

c°v. | fEr E Yfu - zxi. - y)

i f  E E ( z ,  - e x z . - E f
1=1 J=»J#'

EE(z,-zxz,-Efi,

17cov»

COVg

( L - i y

i

( L - i y

(L — i y E-  

2 L ( L -  1)

( £ - l )2
2 L ( L -  1) 
( L - i y

i=i j=i

L L L L

E E E E(z - ̂  - z)T», ̂ (z  - zxz - z)7
i = l  j = i  ik =  l  i = i ̂ j# i iftii

{ ( Z  - Z X Z  -  Z )Ti>,tf,T( Z  -  Z X Z  -  Z )T} (C.8)
n

A'WA' +  K  J 2  Wiik'u I -  K  diag(W ) K  (C.9)
i=i

(C.8 ) is due to the assumption tha t Z  are i.i.d. and (C.9) is due to a  similar derivation
already given in the proof of Theorem 5. Substituting (C.9) in (C.7), we get:

vi (v 7T1) = j j A TK~l | i  ^K W K  + K ^ W u K ^

+  2 “ [  ^ K W K + k ' $ 2 w , , K , , I - K d i i g ( W ) K  j t f - U

cov$  1
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= J  [ F y F y U i & I F Y i F y  +  £ F y i F r F y U r  F y ]

+ L{1 _  ,) [ FyFyU^ IFy l Fy  + (elF?aFyF?aS.t ) Fy

-  >4r diag ( K - l A F y U , s I F y ' a A T K ~ ' )  A ]  ,

where diag(VT) = diag(wn, w22i •••■, »„„) is an n x n diagonal matrix. Therefore, we obtain:

cove(Vefci)

r  [ F r F y ^ c J F y ' a +  e f F ? a F y F f U i  * +  (fi?F y ^ F y i ) 2 1

T [ F Y F ? a el g F ? a F Y + g F ? a F y F ? a ei  f y ]
+ Ẑ TT [FyFyU.ejFyiFy + (efF^FyFyU,)  Fy 
-  ,4r diag ( K - 1A F ^ c 1c l F ; 1a A T K - 1) A ]  .

F y  1 = 1

L  >  1

Clearly for large L\

S (V l b1) = cove_(VfLbl ) = j  [ F y F y ^ e l F y ^ + e jF y ^ F y F y ^  I) Fy

= 2  (V£ m iV£m i + var£(0 ,))  Fy

= •S'Imn(V£&1)
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APPENDIX D 

DERIVATION OF TRANSITION DENSITY FOR THE 
VERTEX VIEW

In this section we derive the transition density f \ y jy { w /v )  for the vertex view.

Consider the geometry in Figure D .l. R  denotes the distance between the source plane

and the vertex view. A 7 -ray photon is emitted at A and detected at P. The path of the

emitted 7 -rays is completely determined by angles (  and ip. We assume tha t the 7 -rays are

emitted in all directions with equal probability: i.e.

fU /v )  = i  C€[0,27r]
;iW 3y 1 0 Otherwise

f( ip /v )  = i  'JKV/v)  j  o Otherwise.

We also assume independence of £ and ip. From the geometry in Figure D .l, we have,

A C =
tan (ip)

Also,

w 1 -  t>j =  ACcos(C) 

w2 — v2 =  AC  sin(C)

From which we get,

^  tan ( \/(w i -  t>i)2 +  (w2 ~  V2)2)

C = ta  n - i ( 2 l Z * )
\ w 1 - v x)

We use the Jacobians to make the transformation from C and ip in the source plane V, to 

the detector plane W.

fW jV ( —/- )  = /(C /n) /(V’/lO 5^7^  -  (D .l)
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w2
(0,0)

Detector Planewl

v2

Source Plane
vl B(0,0)

Figure D .l: System geometry

It is straightforward to show that:

-  Vj)2 +  (w2 -  v2)2] - 112 (w, -  Vi)
R 2 +  (tUi -  Uj)2 + (102 -  U2)2

-  V\  ) 2 +  ( t 0 2 -  U2 ) 2] " 1 /2  (lt>2 -  « 2 )

dip _
dw  i

dip _
dtvo R 2 +  (Wi -  Uj)2 + (w2 -  v2)2 

~ (w 2 -  v2)J i-  = —

dWl ( W l  -  V r ) 2 + {w2 -  v2)2
_ ~ (w i ~  ”i)

d { W i - V i ) 2 + {w2 - v 2)2'

Substituting the above differential in (D .l), after some algebraic manipulations, we obtain:

1 R  1

^?r2 \J(w i — Ui)2 +  (iv2 — v2)2 ^ 2 + ( ^ i - « i )2 +  ( ^ 2 - V 2)2 '

Which is the desired pdf. It can be easily verified that the integral of this density

/ °° r°° l
/  fW jV ( y J z )  dwi dw2 = - .

•OO j  — OO
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APPENDIX E 

SYSTEM SPECIFICATIONS

Ring D etector

Radius of the detector ring 25 cms
Number of detectors 512
Radius of the collimator ring 17 cms
Number of collimator slits 10 (uniformly spaced)
Slit Width 2.4 mm

Table E .l: SPRINT ring parameters.

The SPRINT ring parameters are given in Table E .l. The SPRINT ring has a 

resolution of 13 mm at the center of the ring.

Vertex View Detector

Detector Dimensions 22 cms x 22 cms
Number of detectors 5476
Collimator thickness 2 cms and 4 cms
Number of collimator openings 31420
Distance between opposite faces 0.19 cms

Table E.2: Vertex view parameters.

The vertex view parameters are given in Table E.2. The 2 cms collimator has a 

resolution of 13 mm and detection probability of 5.25 x 10~4 a t 10 cms from the vertex view 

collimator, while the same for the 4 cms collimator are 6.5 mm and 1.31 x 10~4, respectively.



102

APPENDIX F 

UNIFORM CR BOUND REQUIRING ONLY 0 ( Q 2N)  
FLOPS

(3-1):

Define,

Our aim is to derive a bound on 9 \  by using only q columns of F y 1 , Rewriting

F J 1 =
D CT 
C G

Vm(0) — M  = M u M n  
M21 A/ 22

where D and M n  are q x q matrices, C  and A/ 21 are (n -  q) x  q matrices and G  and A/ 22 

are (n -  q) X (n -  q) matrices. Then the biased bound using only q pixels of F y 1 is:

'HO/, ' D C T '

1

C G 1

cov»(<? ) > [M n, Af 12]
^  u  J L ' “ 12,

=  (A /u +  M n  C D~ l ) D (A /„ +  A/i2 C D ~1)t  +  A/,2 {G -  C D ' 1 C T) M?2.

Since G - C  D~ l C T is positive semi-definite, we have a weaker but valid bound if we neglect 

the second term.

J
cov,(0 ) > (A /u +  A/i2 C  Z?-1 ) D  (A /u +  A/i2 C D ~1)t  

=  [Mn M 12] J T D J  [A/,i A/,2]t ,

where J d= [/9 , D~ l C T] is a constant q x  n matrix, and / ,  is a q x  q identity matrix. 

Therefore a weaker biased CR bound on the variance of 6 1  tha t involves only the first q 

columns [D,CTY  of F y 1 is given by:

v a x 0 ( 0 i )  =  e j  covl(0RO1) e f
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> ef [M „M 12] J t D J  [Mu M 12]t ef 

= (f.i + d )T D (ej +  <T),

Where d* = e f Vj&(0). Following the method outlined in Section 3.3 we need to perform

the following minimization.

v a r ^ , )  > B*(0,6)

= min (ej + d ')T J T D J  (ej -f d*). 
d'\\d'r<t>

After a little algebra we get,

=  _ (  j t  D J  +  x  / n ) - i  { J t  D  ( F i l )

where In is an n x n identity matrix. The form of (F .l)  is not useful since it requires

inversion of an n x n matrix. We use the following matrix inversion equality:

( JT D J  + A I n)~l J T D = J T (J  J T +  A D -1)-1 . (F.2)

The above equality can be easily proven by multiplying on the left by (J T D J  -f A /„) and

on the right by (J  J T + A D ~l). Using (F.2) we can write equation (F .l)  as,

C in  = - J T ( J J T + ^ D - l ) - l J e 1.

We state the result in the form of the following theorem.

T h eo re m  7 Let 0X be an estimator with bias bx(0J whose n-element bias gradient vector

Vepi — gT satisfies d 'T d' < P . Then the variance of 6X satisfies:

v a r e f^ ) ^  B '(0 ,6 ), (F.3)

where B*(0,6) is equal to:

«) =  fei +  < C „]T J T D J  (e, (F .4 )

Here ex = [1,0, ...,0]T is an n-element unit vector and:

£min = ~ J T ( J r  + X D - ' y ' J e ,  (F.5)

where A is given by the unique non-negative solution of the following equation involving the 

monotone decreasing, convex function g(A) 6 [0 , 1];

S(A) = A > 0 .
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Obviously if the first column of Fy has only diagonal entries then the above theorem yields 

exact bound for q = 1. The main load of computing B*(0,6) is the matrix-matrix multipli­

cation J J T, requiring 2q2n flops.
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