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ABSTRACT 

Inference of network internal link characteristics has be- 
come an increasingly important issue for operating and eval- 
uating large telecommunication networks. Since it is usu- 
ally impractical to directly monitor each link along a spe- 
cific path, end-to-end probes are sometimes used to col- 
lect link characteristic information at edge nodes of the net- 
work. This paper deals with unicast probing methods for 
estimation of link delay characteristics. Unicast traffic is 
easy to generate and is supported by almost every network 
currently in operation. Under the assumptions that link de- 
lays are spatially and temporally independent, we propose a 
bias corrected estimator for the intemal link delay cumulant 
generating function (CGF) based on unicast probe end-to- 
end delay measurements. Through simulation we show that 
the proposed estimator attains a level of mean squared er- 
ror comparable to link delay CGF estimates obtained from 
directly measured link delay statistics. We can use these 
CGF estimates to estimate delay mean, variance and level 
exceedance probabilities for each link. 

1. INTRODUCTION 

Network monitoring, prediction and diagnosis are very im- 
portant issues for network operators and designers. How- 
ever, these are challenging problems due to several factors: 
(1) direct measurement of packet transport statistics are usu- 
ally impossible - intemal nodes may not support such di- 
agnostics or these diagnostics may be disabled to minimize 
overhead; (2) the internal parameters of ISP controlled links 
are usually inaccessible to outsiders. Network monitoring 
algorithms can be categorized into two different groups: pas- 
sive and active methods. Active methods send special pack- 
ets, called probes, over known routes through the network 
to measure end-to-end delay, packet error rates, and packet 
loss probabilities. Vardi [ 11 proposed a network tomogra- 
phy method to estimate source-destination traffic intensities 
by monitoring the link count data. This problem was fur- 

ther investigated by Cao, et al [2] for the case of time vary- 
ing network transport characteristics. The methods of [ 11 
and [2] are passive as no probes are used. Active prob- 
ing methods are an alternative way to collect internal link 
statistics. Despite the fact that active probes may perturb the 
network traffic, these methods can give more reliable infor- 
mation about link behavior than passive methods. There are 
two kinds of active probing schemes: unicast and multicast 
probing. Several papers on link bandwidth measurement 
propose unicast probes (e.g., Jacobson [3], Downey [4], Lai 
& Baker [ 5 ] ) .  Multicast probes are also widely used to per- 
form inference of link delay distributions, internal loss char- 
acteristics, and network connectivity. (e.g., see [6] [7], [8], 

In this paper, we focus on estimating the internal link de- 
lay cumulant generating function (CGF). Packet delays are 
due to three factors: (1) queueing delays, which depend on 
service times and buffer occupancy; (2) transmission delays, 
which depend on packet size and link data rate; (3) propaga- 
tion delays, which depend on the transmission medium. The 
sum of these delays over a route can be measured by end- 
to-end delays of unicast probes sent over the route. After 
collecting a sufficient number of these probes, an overde- 
termined system of equations is constructed for the delay 
CGFs. Based on a least-square approximation, we propose 
a bias corrected estimator for each internal link delay CGF. 
We evaluate performance of the algorithm using the ns  net- 
work simulation program [lo]. Several measures of per- 
formance are investigated, including overall mean-square 
goodness of fit of the estimated CGF to the empirical CGF 
and correct bottleneck detection probability and bottleneck 
localization. 

The paper is organized as follows. In section 2, we 
describe the network delay model. Section 3 presents the 
bias corrected internal link delay CGF estimator. Section 
4 presents the result of computer simulations comparing the 
bias corrected to the sample mean link delay CGF estimates. 
In section 5, we present several applications and extensions 
of our technique. 
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2. NETWORK DELAY MODEL 

Let a communication network consist of m internal links. 
Identical probe packets are sent through n paths across the 
network. Suppose we know the routing of each of the probes 
which specifies the nxm probe routing matrix A. A has ele- 
ments aij equal to 1 when probe path i intersects link j ,  and 
equal to 0 otherwise. Let M,  denote the set of link indices 
which compose the ith probe path, i = 1, . . . , n. Then Yi = 
CjEMi Xij is the measured end-to-end delay of a probe 
transmitted along the ith path where Xi j  is the delay en- 
countered by probe i across link j and i = 1, . . . , n. Define 
the end-to-end probe delay CGF KK ( t )  = log E[etyi]  and 

j E Mi, with CGF parameter t ,  t E (--oo,oo). We make 
the following spatial independence and stationary assump- 
tions, respectively: 

the link delay CGF of the j th link K x i j  ( t )  = log E[e tXij], 

A l )  The link delays Xij are mutually independent, j E 
M i , i  = 1 , .- .  ,n. 

A2) If paths of probe i and probe k both contain a com- 
mon link j ,  then Xij and xkj have identical CGF 
denoted K x j .  

The CGF of Y can therefore be expressed as 

Kyi ( t )  = log E [etYi] 

= log { E [ e t x i j ] }  
j€Mi 

= logE [etxij]  
j E M i  

C aij . Kxj  ( t )  
j=1 

m 
= 

= A(i) . K x ( t )  (1) 

where A(i) denotes the ith row of the routing matrix A 
and K X  ( t )  = [Kx,  ( t ) ,  . . . , K x ,  (t)lT ( denotes trans- 
pose). Thus we can express the vector of end-to-end CGF's 
K y ( t )  = [Ky, ( t ) ,  . . . , Ky,, (t)lT by the linear relation 

K y ( t )  = A . K x ( t ) .  (2) 

When n 2 m and A is full rank, the relation (2) is in- 
vertible and thus K x ( t )  can be determined from K y ( t )  
by the formula K x ( t )  = (ATA)- lATKy( t ) .  Let B = 
(ATA)-'AT, then we have 

n 

K x j  ( t )  = bj i  . Kyi (t) .  ( 3 )  
i=l 

A full rank matrix A can be ensured by making n 2 m, and 
selecting distinct probe paths which cover the network, i.e., 
every link is contained in some path. When A is not full 
rank, only linear combinations of link CGF's lying outside 
of the null space of A can be determined from (2). 

3. ESTIMATION OF CGF 

Let Ni be the number of probes collected for a given path i, 
i = 1,. . . ,n. Define 

(4) 

where x k  is the measured end-to-end delay of the kth re- 
ceived probe alongApath i. We 9btain estimates of the vec- 
tor K x ( t )  from M y ( t )  = [My, (t)  . . . My,, (t)lT by the 
method of least-squares (LS). Note that as Myi (t) is an un- 
biased estimate of the moment generating function M K  ( t )  = 
eKyi ( t ) ,  a plausible estimator for Kx, ( t )  in ( 3 )  would be the 
method-of-moments estimate (MOM): 

Unfortunately, this estimator is biased due to non-linearity 
of the log. In order to obtain a bias corrected estimator for 
K x j ( t ) ,  we apply a technique similar to that of Gibbens 
[ 1 I]. In [ 1 I ]  linearization was used to derive bias corrected 
estimators for effective bandwidth, which is of similar math- 
ematical form as the cumulant generating function. Observe 
that as log(1 + U )  = U - $ + H.O.T. 

a reasonable way to correct the bias is to use (3) with an 
estimate of wj: 
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where E[. ]  denotes empirical average for which we use MOM 
estimates 

Mx, ( t )  is an estimate of the moment generating function 
of link delay at link j ,  which can be obtained from 

bj; 
Mx, ( t )  = fi (MYi  ( t ) )  . (10) 

We obtain the empirical average E 1 ( Myi ( t ) )  ' J i ]  by im- 

i= 1 

L J 

plementing a sliding window method with window size W 
and step size S. Define the number N,  = 1-J of win- 
dow increments 

2bj;  
We obtain the empirical average [ ( Myi ( t ) )  ] in a 

similar manner. 

4. EXPERIMENTAL RESULTS 

We used the n s  network simulator program to perform a 
TCPNDP simulation of the network in Fig. 1. Probes 
were sent through 5 different paths in order to estimate de- 
lay CGF for 4 links. The topology is shown in Fig. l ,  and 
the corresponding routing matrix A is 

0 1 0 0  

We set up a similar test environment to that reported in 
Presti and Duffield [9]. All the links to be estimated had 
bandwidth 4Mb/sec with latency 50ms. Each link was mod- 
eled as a Drop-Tail queue (FIFO queue with finite buffer). 
The queue buffer sizes were 50 packets. We generated probes 

P& 1 
P& 1 
P&3 

Link I d - ' ,  

Fig. 1. Probe routing paths for the experiment described in 
Section 4 

Fig. 2. Link delay CGF at link 4 in the ns simulation de- 
scribed in Section 4 

as 40 byte UDP packets. The probe transmissions were 
generated independently at each source node according to 
a Poisson process with mean interarrival time being 16ms 
and rate 20Kb/sec. The background traffic consisted of both 
Exponential on-off UDP traffic and FTP traffic. 

N probes were collected for each path for a total of 
5 x N  probes. We estimated each probe queueing delay by 
substracting the minimum probe delay over the N trials. 
This provides a biased estimate of queueing delay across 
the probe path since the minimum probe delay is a biased 
estimator of transmission delay plus latency. However, the 
bias decreases as 1/N. In order to estimate the expected 
values in (8) and (9), we set the window size W to be 2/3 
of N ,  and the window shift step size S to be 10 probe delay 
samples. 

We compared the proposed bias corrected estimator to 
the biased estimator (5) for KX ( t ) .  We evaluated the CGFs 
over the range t = -200 to t = 200. Comparing the esti- 
mates of CGF of sampled link delays with and without bias 
correction in Table 1, we can see that the proposed estima- 
tor achieves lower MSE. The corresponding estimated CGF 
for Link 4 is shown in Fig. 2. These results were obtained 
by using N = 1500 probes per route. 
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7. REFERENCES 

Link 
MSE of Kxj 
MSE of I?&. 

Table 1. MSE of k x j  (bias corrected) and k;; (no bias 

1 2 3 4 
0.0086 0.0247 0.0483 0.0096 
0.0060 0.0326 0.0644 0.0325 

pj 

P(Xj  2 6) 

5. APPLICATIONS AND EXTENSIONS 

0.7517 0.4030 0.9620 0.9012 
0.2504 0.1921 0.3447 0.2790 

Each link delay CGF preserves all the statistical information 
of the delay since it is the log of the Fourier transform of the 
link delay probability density function. We can accurately 
estimate many features of the delay distribution from the 
delay CGF. Here we give results for Bottleneck link detec- 
tion We define a bottleneck as the event that the probability 
of a link delay exceeding some delay threshold 6 exceeds a 
prespecified threshold P. By the Chernoff bound, 

By appropriately selecting the threshold 6 and a threshold P 
close to 1, we can detect a bottleneck link by testing whether 
maq,l,... ,n Pi > P In Table 2, we show the Chernoff 
bounds for P(Xj  2 6 = 0.02s) which were estimated from 
the computer simulation in Section 4. By setting threshold 
P to be 0.95, we can identify link 3 as the bottleneck link. 

Table 2. Chernoff bound and empirical estimate of P(Xj  2 
0.02) for each link delay in Section 4 

I Link I 1 1  2 1  3 1  4 1  

6. CONCLUSION AND FUTURE WORK 

In this paper we proposed a unicast method to perform infer- 
ence on internal link delay characteristics. We derived a bias 
corrected estimator for internal link delay cumulant gener- 
ating functions based on LS approximation. The proposed 
estimator was evaluated by n s  simulations with TCPIUDP 
background traffic and FIFO finite buffer link queues. The 
MSE of the proposed estimator is lower than that of the di- 
rect biased sample mean estimator. 

In the future, we will look into the following issues. 
First, our proposed estimator assumes stationarity of the 
network over the probing period (Assumption A2), which 
may be violated in real applications. Some adaptive estima- 
tion must be done in order to track the true link delay dis- 
tributions. Besides, if the internal link delays are spatially 
dependent, a more sophisticated model must be used. 
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