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Understanding Transcriptional Regulation
Using De-novo Sequence Motif Discovery,

Network Inference and Interactome Data
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Abstract

Gene regulation is a complex process involving the role gésd genomic elements which work
in concert to drive spatio-temporal expression. The expenial characterization of gene regulatory
elements is a very complex and resource-intensive pro€xss.of the major goals in computational
biology is thein-silico annotation of previously uncharacterized elements usésglts from the subset
of known, previously annotated, regulatory elements.

The recent results of the ENCODE projetttp://encode.nih.ggvpresented in-depth analysis of
such functional (regulatory) non-coding elements & of the human genome. It is hoped that the
results obtained on this subset can be scaled to the resé afethome. This is an extremely important
effort which will enable faster dissection of other funct& elements in key biological processes such
as disease progression and organ development ([20],[B8] cdmputational annotation of these hitherto
uncharacterized regions would require an identificatiofieatures that have good predictive value.

Gene regulation in higher eukaryotes involves a complegrjiidy between the gene proximal
promoter and distal elements (such as enhancers). Thoagaxdct mechanism of gene regulation is
not completely known, several data-driven models have bgpothesized to understand transcription,

pointing to sequence, expression, transcription facté?) @nd their interactome level attributes, at the
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biochemical level. This has largely been possible due toaiivent of new techniques in functional
genomics, such as TF chromatin immunoprecipitation (ChRNA interference, microarray yeast-2-
hybrid (Y2H) screens. However, these features are yet to émningfully integrated for understanding
transcriptional regulatory mechanisms. It is believed thech data-driven computational models can be
extremely useful to the discovery of new regulatory elemearitdesired function.

In this work, we study transcriptional regulation as a peoblin heterogeneous data integration,
across sequence, expression and interactome level &Bibusing the example of th&ata2 gene
and its recently discovered urogenital enhancers [19] a&gsa study, we examine the predictive value
of various high throughput functional genomic assays (fnemjects like ENCODE and SymAtlas)
in characterizing these enhancers and their regulatos; @bserving results from the application of
modern statistical learning methodologies for each ofdldzta modalities, we propose a set of features

that are most discriminatory to find these enhancers.

Index Terms

Nephrogenesis, Random Forests, Transcriptional regualafranscription factor binding sites (TFBS),
GATA genes, comparative genomics, functional genomics, tispeeific genes, heterogeneous data

integration.

. INTRODUCTION

Understanding the mechanisms underlying regulation sluésspecific gene expression re-
mains a challenging question. While all mature cells in tbdybhave a complete copy of the
human genome, each cell type only expresses those genesid teecarry out its assigned task.
This includes genes required for basic cellular mainteedatten called "house-keeping genes”)
and those genes whose function is specific to the particislsue type the cell belongs to. Gene
expression by way of transcription is the process of geimeradtf messenger RNA (MRNA)
from the DNA template representing the gene. It is the intgtiate step before the generation
of functional protein from messenger RNA. During gene egpi@n, transcription factor (TF)
proteins are recruited at the proximal promoter of the genevall as at sequence elements
(enhancers/silencers) which can lie several hundreddatbdses from the gene’s transcriptional
start site (Fig[lL).

It is hypothesized that the collective set of transcripfiactors that drive (regulate) expression
of a target gene are cell, context and tissue dependent[¢f2P] Some of these TFs are recruited

at proximal regions such as the promoter of the gene, whilerstare recruited at more distal
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Fig. 1. Schematic of Transcriptional Regulation. Sequenoéfs at the promoter and the distal regulatory elemengstteer

confer specificity of gene expression via TF binding.

regions, such as enhancers. There are several (hypotthesieehanisms for promoter-enhancer
interaction via TF-complex recruitment [31], by which THading at these regulatory elements
could interact during formation of the transcriptionakgaex.

To understand the role of various genomic elements in gavgrgene regulation, functional
genomics has played an enabling role in providing hetereges data sources and experimental
approaches to discern interactions at the transcriptiquadt-transcriptional and translational
level. Each of these experiments have aimed to resolvereliffeaspects (features) of transcrip-
tional regulation focussing on TF binding, promoter moagland epigenetic preferences for
tissue-specific expression in some genomic regulatoryenés([10], [15], [21], [37]). Addition-
ally, some studies have demonstrated that these data setswith principled statistical metrics
can be used to understand such features computationatly,avwiew to asking biologically
relevant questions ([15],[37]).

There have been several principled yet scattered studasatierizing the role of regulatory
elements such as enhancers for certain genes (subtteeg?2 Shh Gata2 Gata3d in various
organisms ([26],[24]) . These are indicative of the inhérspatio-temporal context of gene
expression and regulation. However, there is a need for feedrset of principles underlying
the behavior of these enhancers. Several models for enhpraraoter interaction have been
published, but it is not really clear what makes a specificogé@n element function as a gene-
specific enhancer in a certain cellular context. We note thate are promoter-independent
enhancers too, and their computational study has been feg proncipled ([32],[33]). Several

guestions arise in this setting - are there any specific seguproperties of such elements, do



they harbor/recruit TFs that are expressed highly in trsesug or have a regulatory influence
on the target gene discernable at the expression levelpissiible to determine which TFs are
actually recruited from the vast sea that exists at any giiea in the cell? - such information
along with protein-protein interaction between promotsi anhancer, can yield valuable insight
into the behavior of such regulatory elements.

The results of the ENCODE projedht{p://encode.nih.goy{[10],[21]) on 1% of the human
genome has established some very interesting results tiwonature of transcriptional regulation
at the genome scale. Particularly, they report the use @rakexperimental techniques (Histone
ChIP on chip, DNASE1 hypersensitive assays) etc analyzangstribed regions as well as their
regulatory regions genome-wide. There is now a large saaepatational effort developing
alongside to “learn” features of such regulatory elements ase these features for predicting
other control elements for genes outside the ENCODE regtbeseby accomplishing a genome-
wide annotation. Considering that oveg% of the genome is non-coding, this annotation
effort is going to parallel the previous project in gene-@ation at the genome scale in effort
and importance. Adding to this complexity is the fact thag game non-coding element can
potentially regulate the expression of genes in a spatigteal manner, activating different genes
at different times in different tissues, and from arbitsatarge distances from the gene. Thus
there is a need for the principled “reverse-engineeringthef architectures of these regulatory
elements, using features at the sequence, expression t@naciome level.

Understanding the mechanism of transcriptional regutatinus entails several aspects:

« Do regulatory regions like promoters and enhancers havéenestingsequence properties
depending on the tissues that the corresponding genes@aessegd in? These properties are
examined based on their individual sequences or their eptgepreferences. A common
technique of analysis is the identification of tissue-sfpeanotif-signatures ([27], [22]) for
such elements.

« Which TFs are recruited at these control elements (prormated enhancers)? More particu-
larly, is there a correspondence between the motifs reptasee of the signatures identified
from item 1 and the corresponding TF. Furthermore, is there a methoth&principled
identification of such TF effectors using modalities suclgasome-wide expression data.

« Transcriptional regulation is a complex interplay of TF riegnent at sequence motifs

on DNA, and their interactions across various regulatogmants (promoters, enhancers,



silencers etc.). Given the diversity of the various datarses examining each of these

modalities, is there a principled methodology for the in&ign of these diverse data sources

to understand the biology of gene expression?

As a case study to ask some of these questions, we examinggthlation ofGata2regulation

in the developing kidneyGata2 is a gene belonging to the GATA family of transcription
factors GATAL-§, and has the consensus -WGATAR- motif on DNA [30]. It is lschon
chromosomes, and plays an important role in mammalian hematopoiesighnogenesis and
CNS development, with important phenotypic consequenides.study of long-range regulatory
elements that effedgata2expression has been on for a couple of years now. The most oamm
strategy for identifying possible regulatory elements hidlserto been inter-species conservation
studies. Using this approach, all elements flanking the d¢leaeare conserved more than some
threshold and are longer than some limit are retained fahéurexperimental characterization.
Given the technical complexity of associated transgenpegrents, this turns out to be a fairly
inefficient strategy, especially since the number of cas#idegulatory elements increases as
the region of comparison, flanking the gene, is expanded ¢toumt for distal regulation).
Recently, [19] reported the characterization of two enkaretements , conferring urogenital-
specific expression dbata2 between80 — 120kb away from the gene locus, on chromosome
6. In this work, we examine, if additional features, at theusawe, expression or interactome
level are predictive of the location of these elements, tafpam simple sequence comparison.
We will also attempt to motivate the utility of these approes (metrics and data sources) as
well as their biological relevance alongside (how they fibithe biophysics of transcriptional
regulation). It must be pointed out that there is large pguici data availability, in that data
specific to the developing kidney is hard to come by. Undes tbnstraint, we have made some
biologically plausible assumptions so as to obtain maxinmformation from currently available

data sources.

[I. DATA SOURCES
To understand enhancer regulation@éta2 in kidney (based on sequence, expression and
interactome perspectives), we utilize data from severt daurces:

1) To build motif signatures underlying kidney-specific anber activity, it would be best to

have a database of previously characterized urogenita) @Bancers. However, due to



the unavailability of such data, we utilize kidney-specffiomoter sequences and histone-
sequences of enhancers to find motif-signatures of regylatements that are potentially

UG enhancers.

« Promoters of kidney-specific gene8 catalog of kidney-specific mouse promoters

is available from the GNF Symatlaht{p://symatlas.gnf.org/ This database con-
tains list of annotated genes and their expression in Sevisgle types, includ-
ing the kidney. Since the proximal promoter of such kidnpgesfic gens harbors
the transcriptional machinery for gene regulation, thequences putatively have
motifs that are associated with kidney-specific expresshxiditionally, promoters
that are spatio-temporally expressed during kidney deweémnt can also be screened
(http://www.informatics.jax.org/

We set up the motif discovery as a feature extraction prolitem these tissue-specific
promoter sequences and then build a random forest (RF)if@ad®e classify new
promoters into specific and non-specific categories basetthemdentified sequence
features (motifs). Using the RF classifier algorithm we dryke @0 accurately classify
more than98% of tissue specific genes based upon their upstream promegenr
sequences alone.

« Chromatin marks in known regulatory elemendsing the recently released ENCODE

data, a catalog of sequences that undergo histone modifisasiuch as methylation
and acetylation is available for analysis. Reports sugtiest mono-methylation of
the lysine residue of Histoné/3 is associated with enhancer activity [15] whereas
tri-methylation of H3K4 and H3 acetylation are associated with promoter activity.
Together, these chromatin marks are indicative of the egitiebasis of gene transcrip-
tion. Using the set oH{3K4mel, H3K4me3 and H3ac sequences on chromosorthe
as training data, we aim to find motifs that are indicativewaftsepigenetic preferences
based only on sequence. We only considertcimrorder to reduce sequence bias across
other chromosomes. Though data is available for five diffecell lines, we choose
the HelLa cell line data because of its widespread use as al sygtem to understand
transcriptional regulatiom-vitro in the laboratory. With the increasing availability of
DNAsel HS sites [6] for different cell typesttp://research.nhgri.nih.gov/DNaseHS/



and nucleosome occupancy [37] data, such analysis is patentseful for the identi-
fication of regulatory controls such as enhancers and prensothis dataset is referred
to as “histone-modified sequences” in this paper. We notethigdata isnot kidney-
specific, since such data is yet to become available. Howthesgoal in using this data
is to find epigenetic preferences from sequence, the idewyhieiobtain a combined
prediction of regulatory elements from data sourtemd 2.

2) Expression data for the developing mouse kidney: thelenised expression data for the
developing mouse kidney, mainly due to technical reasomgarming small tissue yield
at such early time points. For this study, we use microarrgyession data from a public
repository of kidney microarray datat{p://genet.chmcc.ordnttp://spring.imb.uq.edu.ay/
Each of these sources contain expression data profilingelidievelopment from about
day 10.5 dpc to the neonate stage. Some of these studies also exarpresson in
the developing ureteric bud (UB), metanephric mesenchyvid)(apart from the whole
kidney. This expression data is mined for potential infleebhetween TF genes a&hta2
suggesting regulation (SelcstXI and IXIl).

3) A database of known protein-protein interactions(PEig:STRING databasétfp://string.embl.dp
integrates various experimental modalities (genomicexdntigh-throughput experiments
such as co-immunoprecipitation, co-expression and titeex to maintain a current list of
organism-specific functional protein-association neksoiThis enables us to explore the

interactome-level characteristics of distal enhancermater interaction (SecXIIl).

[Il. RATIONALE

For the purpose of defining enhancer activity in the develgpirogenital system from the

various data sources (Séc: 1), our approach is outlineddn[Z;

« Feature selectionin a machine learning context, the identification of seqaemotifs that
can discriminate between tissue-specific and non-spedédioents (promoters or variably
methylated histone sequences), is a feature selectiorlepnoliHere, the features are the
counts of sequence-motifs in these training sequencesiowlitoss of generality, we use
six-nucleotide motifs (hexamers) as the motifs. This isebdasn the observation that most
transcription factor binding motifs haveia— 6 nucleotide core sequence with degeneracy

at the ends of the motif.



A similar setup has been introduced in ([5], [16]). We findtth& possibilities (from hex-
amer sequences) yields good performance without beinglyrdmputationally complex.
The presented approach, however, does not depend on mogthlend can be scaled
depending on biological knowledge. Here, to understandéugience properties of kidney-
specific regulatory elements, we use random forest (RF)kifilas to obtain a sequence
of discriminating hexamer motifs between kidney-specifionpoters and housekeeping
promoters. Additionally, we build a RF classifier to disdrigte monomethlyated/3 K4
sequences from trimethylatéd3 K 4/acetylatedd 3 sequences. This yields motifs associated
with epigenetic properties of promoters and enhancersgiwéie potentially predictive of
regulatory potential for novel sequences.

« TF Influence determinatiomfter discovering key discriminating motifs using the abo
RF step, we examine the discovered motifs for matches withwkntranscription factor
binding site profiles at th&ata2 promoter. For those that match known TFBS, we look
for computational evidence of a directed influence from thHe énhcoding gene to the
gene of interest (hereézata?d based on microarray expression data [35]. This seeks to
integrate sequence and expression data into the deteromradttranscription factor-target
relationships.

« Examining promoter-enhancer TF interactions using PPéiattome:The identification of
phylogenetically conserved effector TFs at the promotgritified via DTI) can lead to the
exploration of interactions between these TFs and thogeategphylogenetically conserved
at the UG enhancers, borrowing from their expected intemaanhodes during long range
regulation [31].

In this work, all these questions will be integratively aesed for training data as well as
in the context of the urogenital enhancers identified in [ME aim to show that each of
these ‘features’ has a predictive value for the identifaratof enhancers and the integration
of these heterogeneous data can lead to potential reduatifaise positive rate during large-
scale enhancer discovery, genome-wide. To date, there d&xs o comprehensive study for
summarizing various heterogeneous data sources to uadérsanscriptional regulation.

The main approaches to finding motifs relevant to certaissea with respect to examining
common motifs driving gene regulation are summarized i2]([27]). The most common ap-
proach is to look for TFBS motifs (TRANSFAC / JASPAR) that atatistically over-represented
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Fig. 2. Overall schematic of the proposed methodology.

based. This assumes a parametric form (Binomial/Poissonhe probability density of motifs
in the population of promoters of co-expressed genes.

We set-up the problem of discriminative motif discovery aw@d-document classification
problem. Having constructed two groups of genes for amnglyisisue specificté’) and non-tissue
specific (nts’) - we seek to find hexamer motifs which are most discriminatm®tween these
two classes. Our goal would be to make this set of motifs adl tegossible - i.e. to achieve
maximal class partitioning with the smallest feature sub%ewards this goal, we explore the
use of random forests (RF) for finding such a discriminatiggamer subset.

As can be expected, the input to such an approach would beegpgemoter - motif frequency
table (Tablell). The genes relevant to each class are idahfifom tissue microarray analysis,

and the frequency table is built by parsing the gene proradterthe presence of each of the
4% = 4096 possible hexamers.
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V. VALIDATION /BIOLOGICAL APPLICATION

As suggested in Se€t I, we use the recently identifBada2 urogenital (UG) enhancers to
validate our approaches. All the data sources (and its sisalis therefore going to be centered
around the kidney.

To find these elements experimentally, the following sggtevas adopted. Based on BAC
transgenic [19] studies, the approximate location of theganital enhancer(s) dbata2 were
localized to &00 kilobase region on chromosonmeUsing inter-species conservation plots, four
elements were selected for transgenic analysis in the mdhese were designated U@3,3 and
4. After a lengthy and resource-intensive experimentalreftbe UG enhancers were found to be
two out of these four non-coding element&;z2 and UG4. Our problem takes motivation from
this setting - we ask if presently available functional gamodata at the sequence, expression
and interactome level could enable the principled disgpeéthese elements, computationally?

It is easy to see the utility of such a methodology, becaush snethods can be scaled
up contextually for other genes of interest. Given the caxipt of 1% of the genome, made
possible by the ENCODE project, the search for functionahgnts genome-wide is going
to be an important and challenging exercise. Thus our gotd find predictive “features” at
the sequence, expression and interactome level based babdalata sources and ask if they
predict thatyU G2 andU G4 are indeed functional in the kidney, wherda&'l andUG3 are not.

V. ORGANIZATION

With a view to understanding the elements of transcriplioegulation, the first part of this
paper (Sections_VI-X) addresses the problem of identifyimgfif signatures representative of
transcriptional control from kidney-specific promotersi@apigenetically marked sequences. The
second part of this work (Sections]XI-XIl) integrates plgdoy and expression data to find
regulatory TFs at the proximal promoter Gfata2 Using these two pieces, we examine if
sequence, expression and protein-interaction datal(SBcxn offer supporting evidence for the
observedn-vivo behavior of four putativé&ata2regulatory elements. At each step, a validation

of the obtained features withG1 — 4 will be done.
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VI. SEQUENCE DATA EXTRACTION AND PRE-PROCESSING

The Novartis foundation tissue-specificity atldmtp://symatlas.gnf.org/ has a compendium
of genes and their corresponding tissues of expressiores3wve been profiled for expression in
about twenty-five tissues, including adrenal gland, bradmsal root ganglion, spinal chord, testis,
pancreas, liver etc. If a gene is expressed in less than tiz®ee types, it is annotated tissue-
specific (ts’), and if it is expressed in more thaa tissue types, it is annotated to be non-specific
(‘nts’). Based on this assignment, we find a list86f genes that are tissue-specific as well as
have kidney expression (M@ittp://www.informatics.jax.org/ For these kidney-specific genes,
we extract their promoter sequences from the ENSEMBL datbtp://www.ensembl.ordy
using sequenc€000bp upstream and000bp downstream up to the first exon relative to the
transcriptional start site reported in ENSEMBL (releasg 37

Before proceeding to motif selection, a matrix of motif-ymater correspondences is created.
In this matrix, the counts of hexamer (six-nucleotide) moticurrence in théts’ and ‘nts’
promoters is obtained using sequence parsing. The motitheof six is not overly restrictive,
since it corresponds to the consensus binding site sizevefaleannotated transcription factor
motifs in the TRANSFAC/JASPAR databases. A Welch t-testhisnt performed between the
relative counts of each hexamer in the two expression cagsyfis’ and‘nts’) and the topl000
hexamers withp — value < 10~ are selected. This set of discriminating hexamers is dasigh
(ﬁ = Hy, Hs, ..., Higp). This procedure resulted in two hexamer-gene co-occoerematrices,

- one for the‘ts’ (or +1) class of dimensiomV,, i, +1 x 1000 and the other for thénts’ (or —1)
class - dimensiomVy,q;, —1 x 1000. Here N4, +1 1S the matrix of the86 kidney-specific genes.
Niain.—1 1S the set ofnts’ that do not have kidney-specific expression.

As an illustration, we show a representative matrix (Table

All the above steps, from promoter sequence extractionsipgrand quantization to ob-
tain hexamer-promoter counts that are done for the kidpegiic genes can be repeated for
the histone-modified sequences. This dataset is obtaioaa fihe Sanger ENCODE database
(http://www.sanger.ac.uk/PostGenomics/encode/datasscshtm) and containg81 sequences
that undergo modificationn{l/me3/ac) in histone ChlP assays$37 of these correspond to
H3K4mel (enhancers), andd4 correspond tad3K4me3/H3ac marks (promoters). Here, the
1000 hexamers discriminating/ 3K 4mel-sequences+1 set) and a H3K4me3/H3ac) (—1),
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Ensembl Gene ID AAAAAA AAATAG Class

ENSG00000155366 1 1 +1
ENSG000001780892 4 3 +1
ENSG00000189171 1 2 -1
ENSG00000168664 4 3 -1
ENSG00000160917 2 1 -1
ENSG00000176749 1 1 -1
ENSG00000006451 3 2 +1
TABLE |

THE 'MOTIF FREQUENCY MATRIX FOR A SET OF GENEPROMOTERS THE FIRST COLUMN IS THEIRENSEMBL GENE
IDENTIFIERS, THE NEXT 2 COLUMNS ARE HEXAMER QUANTILE LABELS, AND THE LAST COLUMN IS THE CORRESPONDING

GENE'S CLASS LABEL(+1/ —1).

are designate&? =H{, H), ..., Hiypo-

Sequence AAAATA AAACTG Class
chr6:41410492-41411867 2 1 +1
chr6:41654502-41654782 4 2 +1
chr6:41406971-41408059 1 1 -1
chr6:41665970-41667002 2 3 +1
chr6:41476956-41478365 1 2 -1
chr6:41530471-41531046 2 2 -1
chr6:41783327-41784532 1 2 +1

TABLE I
THE 'MOTIF FREQUENCY MATRIX' FOR A SET OF HISTONEMODIFIED SEQUENCES THE FIRST COLUMN IS THEIR GENOMIC
LOCATIONS ALONG CHR6, THE NEXT 2 COLUMNS ARE HEXAMER QUANTILE LABELS, AND THE LAST COLUMN IS THE

CORRESPONDING SEQUENCE CLASS LABE(+1/ — 1).

VIlI. M OTIF-CLASS CORRESPONDENCHEVIATRICES

From the aboveN;,q;p, +1 x 1000 and N4, —1 x 1000 dimensional co-occurrence matrices are

available for the tissue-specific and non-specific datdy fitthe promoter and histone-modified
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sequences. Before proceeding to the feature (hexamer)rsetdction step, the counts of the
M = 1000 hexamers in each training sample need to be normalized tuatdor variable
sequence lengths. In the co-occurrence matrixgdet represent the absolute count of thé
hexamerk € 1,2,..., M in the " gene. Then, for each geng, the quantile labeled matrix
has X, = [ if 9Ci [ < gcip < ch%M],K = 4. Matrices of dimensionVy, ., +1 x 1001,
Nirain,—1 x 1001 for the specific and non-specific training samples are noaioet. Each matrix
contains the quantile label assignments fortb@) hexamergX;,i € (1,2,...,1000)), as stated

above, and the last column would have the corresponding &l § = —1/ + 1).

VIIl. RANDOM FORESTCLASSIFIERS

A random forest (RF) is an ensemble of tree classifiers obthlyy aggregating (bagging)
several classifiers, mostly classification trees. Suctsifiass have provably low bias and variance
characteristics and are extremely amenable to random datesselection via bootstrapping.
In a RF approach, an ensemble of classification trees is buaila training set and validated
on an out of bag (OOB) testing set. As compared to ordinarysaettree classifiers where
only one variable is used to split the node optimally, randorests allow the use of a variable
subset that optimally split each node leading to a much elealass discrimination at every
node. The variables selected for optimal partitioning aslass labels can be examined from a
variable importance plot which indicates which variables most discriminatory between these
two classes [2]. It is also to be noted that unlike most cteessi which require a separate cross-
validation procedure, random forests afford the dual athgmn of training and cross-validation
(through the OOB data) during the training procedure. Tlachedree is multiply cross-validated
before being incorporated into the classifier ensemble.

Several interesting insights into the data are availablagusandom forests. The variable
importance plot yields the variables that are most diseratary for classification under the
‘ensemble of trees’ classifier. This importance is basedvem theasures- ‘Gini index’ and
‘decrease in accuracy’. The Gini index is an entropy basgdriim which measures the purity
of a node in the tree, while the other metric simply looks & talative contribution of each
variable to the accuracy of the classifier. The performarfcthe classifier is visualized with
receiver operating characteristic (ROC) curves, by pigtthe true positive rate against the false

positive rate. The best classifier has the co-ordin&le$) on the ROC plot. For our studies,
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we use the ‘randomForest’ package for R [2]. The classifiefopmance on the individual data

and the related diagnostics are mentioned under each head:[([& and X).

IX. RANDOM FORESTS ONKIDNEY-SPECIFIC PROMOTERS

In this section, we aim to find discriminating sequence rsdigtween a set of kidney-specific
promoters and housekeeping promoters with a goal to findesmgumotifs underlying kidney-
specific regulation. The kidney enriched datasetdtagenes that are assigned to a tissue specific
class and have higher than mean expression in the kidneyh&qurpose of training and testing,
we consider another set of genes that are not tissue-spiectfie kidney. Using this approach,
we obtain a classification accuracy ©f95% on the kidney enriched tissue specificity data set.

Before proceeding to motif identification, it is necessarycheck for possible sequence bias
(GC composition) between the two classes of promoters @gicapecific vs. housekeeping). If
there is a significant bias, then the motifs turn out to be @Gtrich sequences that are not very
biologically informative [39] for regulatory potential. iE GC composition of these two classes
of sequences is represented in 8. As can be seen, the average GC composition is the same.
The ROC and variable importance plot for the overall clasaifon is indicated below (Fid.] 6
and[3).

ATATCT CAGAGA
CASAGA a ATATCT
SaTTEE ATARAA
CECCAT : CTCCCT
AGGCGT : GATTGG
cTeceT - AGGCET
CTTAAA AAMATA
ATAAAA o CTTCAA
cTTCAA CCOAGT
caccaa - coTaeT
GETTEC ] GETTEC
TCOATS = TeTCEC
CCTGGT AAAACT
AATTCO TATTCT
TAGTAA : CTTAAA
TTATCT t caccAT
AGAAGT = TTATET
CTGTAT > AATTGG
AnsACT : AGAAGC
TCTCCG CECCAD
ACATCT = CATGCA
TGTTCT TCCTAA
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TACAAT AGATCT
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Fig. 3. Top hexamers which can discriminate between kidsm®gific and house-keeping genes.
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To address a related question, we examine if the top rankeahier's in the kidney dataset cor-
relate sequence-wise with known transcription factor imgdaites. Using the publicly available
Opossum toollfttp://www.cisreg.ca/cgi-bin/oPOSSUM/oposspuar/MAPPER {ttp://bio.chip.org/mapper
we found several interesting transcription factors to maphese motifs, such askx ARNT,
c-ETS FREAC4 NFAT, CREBR E2F, HNF4A Pax2 MSX1 SP1several of which are kidney-
specific. Though this is highly consistent with the datatet,functional relevance of these sites

remains to be experimentally validated.

X. RFS ON CHROMATIN-MODIFIED SEQUENCES

We train a RF classifier on a set 681 sequences from chromosomniethat have varying
histone modifications associated with them (namA&ly/4mel /me3, and H3ac ), as mentioned
in Section{]l. These are derived from the HelLa cell line arelreot necessarily context-specific
for kidney development. However, given the widespread dghis cell line for transcriptional
studies, we aim to find if the motifs associated with regulatlements are indeed predictive
of enhancer activity.

Here too, we examine the GC-composition bias of these twoesem classes (Figl 4) and
confirm that there is no such sequence bias that would skewdido®very and subsequent
interpretation of these epigenetic motifs.

The ROC plots for the two random forest classifiers is givefrion [6. As can be seen, the
kidney-promoter based classifier has a much superior pegioce than the histone modification-
based classifier. However these are two complementary daseces and can be effectively
combined to improve detection reliability.

The motifs obtained from the random forest analysis indidhe sequence preferences of
regulatory elements that are kidney-specific or nucleosfreee We analyze the performance
of these classifiers on thé UG enhancers, mentioned previously. In both caSés2 — 4
are classified as kidney-specific enhancers, whet&as is correctly classified as not being
regulatory. Additionally, a control set of enhancers dedifrom the Mouse Enhancer database
was also classified as enhancers based on these chromatatuses. This high prediction
accuracy inspite of non-specificity of cell context is vengeresting and has potentially high
predictive value. However, the higher false positive rateliCated in the ROC plot) can be

explained based on the fact that these sequences wereddé&ove a cell population that was



Fig. 4. GC plots for sequence bias Fi3K4mel histone sequences VE.3K4me3 and H3ac sequences.
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Fig. 5. Top hexamers which can discriminate betw&gK 4mel histone sequences VA 3K4me3 and H3ac sequences.

not kidney-specific.
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True Posive Rate

False Positive Rate

Fig. 6. ROC plots for the two RF classifiers (RF-promoter itidsand RF-histone in dashed line). The diagonal line is the

classification by random chance.

XI. DTl FORMULATION

Since our goal is to understand the nature of long-rangesdrgtional regulation, we can
examine the role of these discovered motifs using expressia interactome data. The first
guestion that arises in this context is if any of these disoes sequence motifs (from kidney-
specific or histone modification sequences) are relate@ai@2 transcription at the expression
level. Additionally, this can help resolve which TFs bindtla¢se regulatory elements as well as
if there is an interaction between them that underlies éisspecific regulation/gene expression.
Recently, we introduced the directed information (DTI) asnatric to infer expression-level
influence between any putative transcription factor (TH)egand a target gene (such@ata?
[35]. We will briefly summarize the utility of DTI for TF effdor identification in these sections
(Sec[X] andXD).

Using inter-species conservation and TFBS matching da&sbérRANSFAC/JASPAR) we
can find the transcription factors that putatively bind te thata2 promoter. Using publicly
available expression data for the developing kidney ([88]), we can find TF effectors from
this conserved set as well as from TFs corresponding to toking classifier motifs.

The DTl is a directed dependence metric that quantifies ttheeimce between a putative TF
effector (X) and Gata2(Y’), based on mRNA expression data. Briefly, the DTI (for a lad )of
between twoN-length random processés andY is given by [29] :

N
(XN YNy =" I(X"Y, [y (1)

n=1

Here, Y™ denotes(Y7,Ys,..,Y,), i.e. a segment of the realization of a random sequérite
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and /(X™; Y™) is the Shannon mutual information . As already knowpX™; Y") = H(X™) —
H(X"Y™), with H(X™) and H(X"|Y™) being the Shannon entropy &f" and the conditional
entropy of X" given Y™, respectively. Using this definition of mutual informatjdhe Directed

Information simplifies to,

(XN = YY) = [H(X"Y") — HX"[Y™)]
=Y {[HX"Y" ) = HY" )] = [H(X",Y") = H(Y")]} (2)

To infer the notion of influence between two time series (MR&fression data) we find the
mutual information between the entire evolution of gendup to the current instant) and the
current instant ofY” (Y;,), given the evolution of gen& up to the previous instant — 1 (i.e.
Y™~1). This is done for every instant € (1,2,..., N) in the N - length expression time series.
Thus, we find the influence relationship between gekieand Y for every instant during the
evolution of their individual time series.

As can be seen, this computation requires the estimatiominf and marginal entropies,
which are done via data-dependent partitioning of the olasiein space ([12], [11]). Replicate
(biological, technical and probe-level) gene expressiata ds very useful for this purpose and
enables entropy estimation from moderate sample size.tidddlly, several methods exist for
entropy estimation from moderate sample sizes. One of thst mminent is the Voronoi
tessellation approach outlined in [11]. In this approachadaptive partitioning of the observation
space is used to estimate the probability densities as wéleaentropies of the random variables.

From the definition of DTI, we know that < (X" — YV) < I[(X¥;Y") < oo .For
easy comparison with other metrics, we use a normalized Datrion[18] given by,pp; =
V1= e ZET=YN) = (/1 — e 2Z5 I(XYiY'Y | This maps the large range of DIj0(cc])

to lie in [0, 1]. Another point of consideration is to estimate the signifa=of the DTI value
compared to a null distribution on the DTI value (i.e. whathis chance of finding the DTI value
by chance from the serie¥; andY’). This is done using confidence intervals after permutation
testing (Sed_XIll). We use a threshaglevalue of0.05 to estimate the significance of the true DTI
value in conjunction with the the density estimation of ad@m data permutation, as outlined

below. These aspects are explained in [35], and are onlyiomaat below for completeness.
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XIl. BOOTSTRAPPEDCONFIDENCE INTERVALS

In the absence of knowledge of the true distribution of thel B3timate, an approximate
confidence interval for the DTI estimate?(Q(N — Y™)), is found using bootstrapping [9].
Density estimation is based on kernel smoothing over thesbrapped samples [34].

The kernel density estimate for the bootstrapped DTI (with 1000 samples)Z = fB(XN —
Y™) becomes,
fn(Z) = 2300 31— (522)2)1(|%2] < 1) with h ~ 2.676, andn = 1000. [5(XY — YV)
is obtained by finding the DTI for each random permutationhefX’, Y series, and performing

this permutationB times. As is the clear from the above expression, the Epanlemhkernel is
used for density estimation from the bootstrapped samples.choice of the kernel is based on
its excellent characteristics - a compact region of supple lowest AMISE (asymptotic mean
squared error) and favorable bias-variance tradeoff [34].

We denote the cumulative distribution function (over theotstrap samples) of (XN —
YY) by FIE(XNHYN)(I};(XN — Y™)). Let the mean of the bootstrapped null distribution be
I3(XY — Y¥). We denote byt;, ,, the (1 — «)™ quantile of this distribution i.e{t; ,, :
P([I BTV IH(XT *YN)] < ti_q) = 1 — a}. Since we need the trug X" — YV) to be

significant and close to 1, we neddX”™ — YV) > [I5(X"N — YV) +¢,_, x 6], with & being

the standard error of the bootstrapped distribution,

\/[ L (XN oY N)— [ (XN Sy V)2
B-1

; B is the number of bootstrap samples.

As an example, we indicate the significance and strength efDhl between thdPax2 TF
and Gata2 The high strength of influence and its significance coupléth whe phylogenetic
conservation of thd?ax2 motif indicates expression evidence for the roleRaix2 in Gata2
regulation ([4],[8]).

Such analysis can be extended to all TFs that are phylogafigtconserved or those that
correspond to top-ranking classifier motifs. Féata2 UG regulation, one such network is Fig.
o]

XIIl. PROTEIN-PROTEIN INTERACTIONS

The discovery of putative TF effectors that are involvedsata2 expression (identified from
a combination of motif signatures and expression DTI) caad lé0 interesting insights into

transcriptional regulatory mechanisms. From [31] presibierature on the nature of long-range
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Empirical CDF of Null Distribution

Fig. 7. Cumulative Distribution Function for bootstrapp&@Pax2— Gata2) interaction. Truel (Pax2— Gata2 = 0.9818.

Fig. 8. Putative upstream TFs using DTI for tBata3 gene.

transcriptional regulation, we can examine the evidencmtefaction between such TFs at the
Gata2 promoter with those at the UG enhancers, and subsequemlguch interaction models
as predictors of new regulatory elements.

Using a notion of protein-protein interaction to mediatadedistance interactions between
promoters and enhancers, we explore the interactome toftooketwork linkage between the
TFs at the promoter (regulatory TFs found from motif searoth @TI) and those phylogenetically
conserved TFs at the enhancer(s). These interactions ammatzed below,

The above figure indicates a very interesting property ofréla¢ enhancers vis-a-vis the other
conserved elements. We see that the TF effector&&ia2such asSP1 POU3F2 (identified in
the TF effector network above, Figl 8), are involved in crelmment interactions at the protein
level, between the promoter and true enhan¢&=%/4). However, the network linkage in the
elements that showed no enhancer activity is very sparsgestigg low cross-talk between
promoter and enhancer. Also, the TFs at the enhancer nodek ¢ifcles), therefore, have

more hubs in the functional element8>2/4 as compared to the non-functional ones. Thus,
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Fig. 9. Protein-protein interaction between putativata2 TFs (hollow circles) and putative UG element TFs (filled lag).

From http://string.embl.de/

the extent of cross-talk is a potential discriminator of gbke enhancer function. This shows
that superimposing PPI information along with sequence expdession data helps reduce the
number of false positives while integrating various aspeaxtdistal regulation. A quantitative
metric that summarizes this extent of cross-talk would tyefacilitate in-depth analysis of

long-range interaction.

X1V. SUMMARY OF ALGORITHM

Based on the presented data from ENCODE, Enhancer Brows#SymAtlas sources, we

believe that the following features are predictive of reqoity element location:

« Motif signatures are predictive of regulatory element tmra These comprise signatures
derived from tissue-specific gene promoter sequences dsawedequences with various
chromatin marks or modifications.

« TFs that are putatively active in genédta? regulation can be identified using a combi-
nation of expression data, and tissue-specificity data.

» Effector TFs (via DTI) at the gene proximal promoter havehhigetwork linkage with
enhancer TFs in case of functional enhancers. Several eahafs are hubs that mediate
formation of the transcription factor complex.

It is to be noted that this model is data driven and may notctireeorrespond to the biology

of transcription. However, much like markov models for geseguence annotation, we believe

that such data-driven models are useful for genome-widdystu
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XV. CONCLUSIONS

In this work, we have examined the problem of regulatory elehidentification. Such an effort
has implications to understand the genomic basis of keypbichl processes such as development
and disease. Using the biophysics of transcription, this lma modeled as a problem in data
integration over various experimental modalities suclegsience, expression, transcription factor
binding and interactome-data. Using the case study of emharcorresponding to th&ata2
gene, we examine the utility of these heterogeneous dataesotor predictive feature selection,
using principled methodologies and metrics.

Based on motif signatures, we find that they predict the tnfearcers (G2, UG4), and the
false enhancal/ G1, but mispredicUU/G3 to be an enhancer. However, superimposing TF effector
discovery and protein-protein interaction data yields edmuristics for enhancer discovery based
on long range interaction between promoter and enhancerglifi improving on prediction

accuracy.

XVI. FUTURE WORK

Some key elements directly emerge for guiding future reseaks already alluded to in the
motif-signature procedure, specific expression data spaeding to stages and tissues of interest
would greatly improve the specificity of regulatory elemengdiction. Furthermore, as histone
modification maps for different cell lines are generated,ftise positive rate of prediction would
decrease, thereby improving accuracy. Several otheritgpparadigms can be introduced into
this setting, since we are learning from structured datand@imnal random fields have proved
to invaluable in such analysis. Also, methods in joint dieessand feature optimization might
likely improve the accuracy of predictions.

At the expression level, methods for supervised networérerfice would have a great impact
on the discovery of TF effectors. Rapid advances have beeéle inahis area and their relevance
to the biological context of the problem has become verygipied. At the interactome level, a
metric to quantify the degree of “connectedness” of the Tétsvben the enhancer and promoter
would be very useful for the construction of a “interactootassifier”. Other methods that can

account for different types of long-range interactions lsdoe extremely useful too.
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