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Abstract

Gene regulation is a complex process involving the role of several genomic elements which work

in concert to drive spatio-temporal expression. The experimental characterization of gene regulatory

elements is a very complex and resource-intensive process.One of the major goals in computational

biology is thein-silico annotation of previously uncharacterized elements using results from the subset

of known, previously annotated, regulatory elements.

The recent results of the ENCODE project (http://encode.nih.gov) presented in-depth analysis of

such functional (regulatory) non-coding elements for1% of the human genome. It is hoped that the

results obtained on this subset can be scaled to the rest of the genome. This is an extremely important

effort which will enable faster dissection of other functional elements in key biological processes such

as disease progression and organ development ([20],[25]. The computational annotation of these hitherto

uncharacterized regions would require an identification offeatures that have good predictive value.

Gene regulation in higher eukaryotes involves a complex interplay between the gene proximal

promoter and distal elements (such as enhancers). Though the exact mechanism of gene regulation is

not completely known, several data-driven models have beenhypothesized to understand transcription,

pointing to sequence, expression, transcription factor (TF) and their interactome level attributes, at the
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biochemical level. This has largely been possible due to theadvent of new techniques in functional

genomics, such as TF chromatin immunoprecipitation (ChIP), RNA interference, microarray yeast-2-

hybrid (Y2H) screens. However, these features are yet to be meaningfully integrated for understanding

transcriptional regulatory mechanisms. It is believed that such data-driven computational models can be

extremely useful to the discovery of new regulatory elements of desired function.

In this work, we study transcriptional regulation as a problem in heterogeneous data integration,

across sequence, expression and interactome level attributes. Using the example of theGata2 gene

and its recently discovered urogenital enhancers [19] as a case study, we examine the predictive value

of various high throughput functional genomic assays (fromprojects like ENCODE and SymAtlas)

in characterizing these enhancers and their regulatory role. Observing results from the application of

modern statistical learning methodologies for each of these data modalities, we propose a set of features

that are most discriminatory to find these enhancers.

Index Terms

Nephrogenesis, Random Forests, Transcriptional regulation, Transcription factor binding sites (TFBS),

GATA genes, comparative genomics, functional genomics, tissue-specific genes, heterogeneous data

integration.

I. INTRODUCTION

Understanding the mechanisms underlying regulation of tissue-specific gene expression re-

mains a challenging question. While all mature cells in the body have a complete copy of the

human genome, each cell type only expresses those genes it needs to carry out its assigned task.

This includes genes required for basic cellular maintenance (often called ”house-keeping genes”)

and those genes whose function is specific to the particular tissue type the cell belongs to. Gene

expression by way of transcription is the process of generation of messenger RNA (mRNA)

from the DNA template representing the gene. It is the intermediate step before the generation

of functional protein from messenger RNA. During gene expression, transcription factor (TF)

proteins are recruited at the proximal promoter of the gene as well as at sequence elements

(enhancers/silencers) which can lie several hundreds of kilobases from the gene’s transcriptional

start site (Fig. 1).

It is hypothesized that the collective set of transcriptionfactors that drive (regulate) expression

of a target gene are cell, context and tissue dependent ([32],[41]). Some of these TFs are recruited

at proximal regions such as the promoter of the gene, while others are recruited at more distal
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Fig. 1. Schematic of Transcriptional Regulation. Sequencemotifs at the promoter and the distal regulatory elements together

confer specificity of gene expression via TF binding.

regions, such as enhancers. There are several (hypothesized) mechanisms for promoter-enhancer

interaction via TF-complex recruitment [31], by which TFs binding at these regulatory elements

could interact during formation of the transcriptional-complex.

To understand the role of various genomic elements in governing gene regulation, functional

genomics has played an enabling role in providing heterogeneous data sources and experimental

approaches to discern interactions at the transcriptional, post-transcriptional and translational

level. Each of these experiments have aimed to resolve different aspects (features) of transcrip-

tional regulation focussing on TF binding, promoter modeling and epigenetic preferences for

tissue-specific expression in some genomic regulatory elements ([10], [15], [21], [37]). Addition-

ally, some studies have demonstrated that these data sets along with principled statistical metrics

can be used to understand such features computationally, with a view to asking biologically

relevant questions ([15],[37]).

There have been several principled yet scattered studies characterizing the role of regulatory

elements such as enhancers for certain genes (such asMecp2, Shh, Gata2, Gata3) in various

organisms ([26],[24]) . These are indicative of the inherent spatio-temporal context of gene

expression and regulation. However, there is a need for a unified set of principles underlying

the behavior of these enhancers. Several models for enhancer-promoter interaction have been

published, but it is not really clear what makes a specific genomic element function as a gene-

specific enhancer in a certain cellular context. We note thatthere are promoter-independent

enhancers too, and their computational study has been far more principled ([32],[33]). Several

questions arise in this setting - are there any specific sequence properties of such elements, do
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they harbor/recruit TFs that are expressed highly in that tissue or have a regulatory influence

on the target gene discernable at the expression level. Is itpossible to determine which TFs are

actually recruited from the vast sea that exists at any giventime in the cell? - such information

along with protein-protein interaction between promoter and enhancer, can yield valuable insight

into the behavior of such regulatory elements.

The results of the ENCODE project (http://encode.nih.gov/, ([10],[21]) on 1% of the human

genome has established some very interesting results aboutthe nature of transcriptional regulation

at the genome scale. Particularly, they report the use of several experimental techniques (Histone

ChIP on chip, DNASE1 hypersensitive assays) etc analyzing transcribed regions as well as their

regulatory regions genome-wide. There is now a large scale computational effort developing

alongside to “learn” features of such regulatory elements and use these features for predicting

other control elements for genes outside the ENCODE regions, thereby accomplishing a genome-

wide annotation. Considering that over98% of the genome is non-coding, this annotation

effort is going to parallel the previous project in gene-annotation at the genome scale in effort

and importance. Adding to this complexity is the fact that the same non-coding element can

potentially regulate the expression of genes in a spatio-temporal manner, activating different genes

at different times in different tissues, and from arbitrarily large distances from the gene. Thus

there is a need for the principled “reverse-engineering” ofthe architectures of these regulatory

elements, using features at the sequence, expression and interactome level.

Understanding the mechanism of transcriptional regulation thus entails several aspects:

• Do regulatory regions like promoters and enhancers have anyinterestingsequence properties

depending on the tissues that the corresponding genes are expressed in? These properties are

examined based on their individual sequences or their epigenetic preferences. A common

technique of analysis is the identification of tissue-specific motif-signatures ([27], [22]) for

such elements.

• Which TFs are recruited at these control elements (promoters and enhancers)? More particu-

larly, is there a correspondence between the motifs representative of the signatures identified

from item 1 and the corresponding TF. Furthermore, is there a method forthe principled

identification of such TF effectors using modalities such asgenome-wide expression data.

• Transcriptional regulation is a complex interplay of TF recruitment at sequence motifs

on DNA, and their interactions across various regulatory elements (promoters, enhancers,
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silencers etc.). Given the diversity of the various data sources examining each of these

modalities, is there a principled methodology for the integration of these diverse data sources

to understand the biology of gene expression?

As a case study to ask some of these questions, we examine the regulation ofGata2regulation

in the developing kidney.Gata2 is a gene belonging to the GATA family of transcription

factors (GATA1-6), and has the consensus -WGATAR- motif on DNA [30]. It is located on

chromosome6, and plays an important role in mammalian hematopoiesis, nephrogenesis and

CNS development, with important phenotypic consequences.The study of long-range regulatory

elements that effectGata2expression has been on for a couple of years now. The most common

strategy for identifying possible regulatory elements hashitherto been inter-species conservation

studies. Using this approach, all elements flanking the genethat are conserved more than some

threshold and are longer than some limit are retained for further experimental characterization.

Given the technical complexity of associated transgenic experiments, this turns out to be a fairly

inefficient strategy, especially since the number of candidate regulatory elements increases as

the region of comparison, flanking the gene, is expanded (to account for distal regulation).

Recently, [19] reported the characterization of two enhancer elements , conferring urogenital-

specific expression ofGata2, between80 − 120kb away from the gene locus, on chromosome

6. In this work, we examine, if additional features, at the sequence, expression or interactome

level are predictive of the location of these elements, apart from simple sequence comparison.

We will also attempt to motivate the utility of these approaches (metrics and data sources) as

well as their biological relevance alongside (how they fit into the biophysics of transcriptional

regulation). It must be pointed out that there is large paucity in data availability, in that data

specific to the developing kidney is hard to come by. Under this constraint, we have made some

biologically plausible assumptions so as to obtain maximuminformation from currently available

data sources.

II. DATA SOURCES:

To understand enhancer regulation ofGata2 in kidney (based on sequence, expression and

interactome perspectives), we utilize data from several data sources:

1) To build motif signatures underlying kidney-specific enhancer activity, it would be best to

have a database of previously characterized urogenital (UG) enhancers. However, due to
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the unavailability of such data, we utilize kidney-specificpromoter sequences and histone-

sequences of enhancers to find motif-signatures of regulatory elements that are potentially

UG enhancers.

• Promoters of kidney-specific genes: A catalog of kidney-specific mouse promoters

is available from the GNF Symatlas (http://symatlas.gnf.org/). This database con-

tains list of annotated genes and their expression in several tissue types, includ-

ing the kidney. Since the proximal promoter of such kidney-specific gens harbors

the transcriptional machinery for gene regulation, their sequences putatively have

motifs that are associated with kidney-specific expression. Additionally, promoters

that are spatio-temporally expressed during kidney development can also be screened

(http://www.informatics.jax.org/).

We set up the motif discovery as a feature extraction problemfrom these tissue-specific

promoter sequences and then build a random forest (RF) classifier to classify new

promoters into specific and non-specific categories based onthe identified sequence

features (motifs). Using the RF classifier algorithm we are able to accurately classify

more than98% of tissue specific genes based upon their upstream promoter region

sequences alone.

• Chromatin marks in known regulatory elements: Using the recently released ENCODE

data, a catalog of sequences that undergo histone modifications such as methylation

and acetylation is available for analysis. Reports suggestthat mono-methylation of

the lysine residue of HistoneH3 is associated with enhancer activity [15] whereas

tri-methylation ofH3K4 and H3 acetylation are associated with promoter activity.

Together, these chromatin marks are indicative of the epigenetic basis of gene transcrip-

tion. Using the set ofH3K4me1, H3K4me3 andH3ac sequences on chromosome6

as training data, we aim to find motifs that are indicative of such epigenetic preferences

based only on sequence. We only consider chr:6 in order to reduce sequence bias across

other chromosomes. Though data is available for five different cell lines, we choose

the HeLa cell line data because of its widespread use as a model system to understand

transcriptional regulationin-vitro in the laboratory. With the increasing availability of

DNAse1 HS sites [6] for different cell types (http://research.nhgri.nih.gov/DNaseHS/)
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and nucleosome occupancy [37] data, such analysis is potentially useful for the identi-

fication of regulatory controls such as enhancers and promoters. This dataset is referred

to as “histone-modified sequences” in this paper. We note that this data isnot kidney-

specific, since such data is yet to become available. However, the goal in using this data

is to find epigenetic preferences from sequence, the idea being to obtain a combined

prediction of regulatory elements from data sources1 and2.

2) Expression data for the developing mouse kidney: there islimited expression data for the

developing mouse kidney, mainly due to technical reasons concerning small tissue yield

at such early time points. For this study, we use microarray expression data from a public

repository of kidney microarray data (http://genet.chmcc.org, http://spring.imb.uq.edu.au/).

Each of these sources contain expression data profiling kidney development from about

day 10.5 dpc to the neonate stage. Some of these studies also examine expression in

the developing ureteric bud (UB), metanephric mesenchyme (MM) apart from the whole

kidney. This expression data is mined for potential influence between TF genes andGata2,

suggesting regulation (Secs:XI and XII).

3) A database of known protein-protein interactions(PPI) :the STRING database (http://string.embl.de)

integrates various experimental modalities (genomic context, high-throughput experiments

such as co-immunoprecipitation, co-expression and literature) to maintain a current list of

organism-specific functional protein-association networks. This enables us to explore the

interactome-level characteristics of distal enhancer-promoter interaction (Sec:XIII).

III. RATIONALE

For the purpose of defining enhancer activity in the developing urogenital system from the

various data sources (Sec: II), our approach is outlined in Fig. 2,

• Feature selection: In a machine learning context, the identification of sequence-motifs that

can discriminate between tissue-specific and non-specific elements (promoters or variably

methylated histone sequences), is a feature selection problem. Here, the features are the

counts of sequence-motifs in these training sequences. Without loss of generality, we use

six-nucleotide motifs (hexamers) as the motifs. This is based on the observation that most

transcription factor binding motifs have a5 − 6 nucleotide core sequence with degeneracy

at the ends of the motif.
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A similar setup has been introduced in ([5], [16]). We find that 46 possibilities (from hex-

amer sequences) yields good performance without being unduly computationally complex.

The presented approach, however, does not depend on motif length and can be scaled

depending on biological knowledge. Here, to understand thesequence properties of kidney-

specific regulatory elements, we use random forest (RF) classifiers to obtain a sequence

of discriminating hexamer motifs between kidney-specific promoters and housekeeping

promoters. Additionally, we build a RF classifier to discriminate monomethlyatedH3K4

sequences from trimethylatedH3K4/acetylatedH3 sequences. This yields motifs associated

with epigenetic properties of promoters and enhancers, which are potentially predictive of

regulatory potential for novel sequences.

• TF Influence determination: After discovering key discriminating motifs using the above

RF step, we examine the discovered motifs for matches with known transcription factor

binding site profiles at theGata2 promoter. For those that match known TFBS, we look

for computational evidence of a directed influence from the TF encoding gene to the

gene of interest (here,Gata2) based on microarray expression data [35]. This seeks to

integrate sequence and expression data into the determination of transcription factor-target

relationships.

• Examining promoter-enhancer TF interactions using PPI interactome:The identification of

phylogenetically conserved effector TFs at the promoter (identified via DTI) can lead to the

exploration of interactions between these TFs and those that are phylogenetically conserved

at the UG enhancers, borrowing from their expected interaction modes during long range

regulation [31].

In this work, all these questions will be integratively answered for training data as well as

in the context of the urogenital enhancers identified in [19]. We aim to show that each of

these ‘features’ has a predictive value for the identification of enhancers and the integration

of these heterogeneous data can lead to potential reductionin false positive rate during large-

scale enhancer discovery, genome-wide. To date, there has been no comprehensive study for

summarizing various heterogeneous data sources to understand transcriptional regulation.

The main approaches to finding motifs relevant to certain classes with respect to examining

common motifs driving gene regulation are summarized in ([22], [27]). The most common ap-

proach is to look for TFBS motifs (TRANSFAC / JASPAR) that arestatistically over-represented
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Fig. 2. Overall schematic of the proposed methodology.

based. This assumes a parametric form (Binomial/Poisson) on the probability density of motifs

in the population of promoters of co-expressed genes.

We set-up the problem of discriminative motif discovery as aword-document classification

problem. Having constructed two groups of genes for analysis, tissue specific (’ts’ ) and non-tissue

specific (’nts’) - we seek to find hexamer motifs which are most discriminatory between these

two classes. Our goal would be to make this set of motifs as small as possible - i.e. to achieve

maximal class partitioning with the smallest feature subset. Towards this goal, we explore the

use of random forests (RF) for finding such a discriminative hexamer subset.

As can be expected, the input to such an approach would be a gene promoter - motif frequency

table (Table I). The genes relevant to each class are identified from tissue microarray analysis,

and the frequency table is built by parsing the gene promoters for the presence of each of the

46 = 4096 possible hexamers.
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IV. VALIDATION /BIOLOGICAL APPLICATION

As suggested in Sec: I, we use the recently identifiedGata2 urogenital (UG) enhancers to

validate our approaches. All the data sources (and its analysis) is therefore going to be centered

around the kidney.

To find these elements experimentally, the following strategy was adopted. Based on BAC

transgenic [19] studies, the approximate location of the urogenital enhancer(s) ofGata2 were

localized to a200 kilobase region on chromosome6. Using inter-species conservation plots, four

elements were selected for transgenic analysis in the mouse. These were designated UG1,2,3 and

4. After a lengthy and resource-intensive experimental effort, the UG enhancers were found to be

two out of these four non-coding elements,UG2 andUG4. Our problem takes motivation from

this setting - we ask if presently available functional genomic data at the sequence, expression

and interactome level could enable the principled discovery of these elements, computationally?

It is easy to see the utility of such a methodology, because such methods can be scaled

up contextually for other genes of interest. Given the complexity of 1% of the genome, made

possible by the ENCODE project, the search for functional elements genome-wide is going

to be an important and challenging exercise. Thus our goal isto find predictive “features” at

the sequence, expression and interactome level based on available data sources and ask if they

predict thatUG2 andUG4 are indeed functional in the kidney, whereasUG1 andUG3 are not.

V. ORGANIZATION

With a view to understanding the elements of transcriptional regulation, the first part of this

paper (Sections VI-X) addresses the problem of identifyingmotif signatures representative of

transcriptional control from kidney-specific promoters and epigenetically marked sequences. The

second part of this work (Sections XI-XII) integrates phylogeny and expression data to find

regulatory TFs at the proximal promoter ofGata2. Using these two pieces, we examine if

sequence, expression and protein-interaction data (Sec: XIII) can offer supporting evidence for the

observedin-vivo behavior of four putativeGata2regulatory elements. At each step, a validation

of the obtained features withUG1 − 4 will be done.
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VI. SEQUENCE DATA EXTRACTION AND PRE-PROCESSING

The Novartis foundation tissue-specificity atlas [http://symatlas.gnf.org/], has a compendium

of genes and their corresponding tissues of expression. Genes have been profiled for expression in

about twenty-five tissues, including adrenal gland, brain,dorsal root ganglion, spinal chord, testis,

pancreas, liver etc. If a gene is expressed in less than threetissue types, it is annotated tissue-

specific (‘ts’ ), and if it is expressed in more than22 tissue types, it is annotated to be non-specific

(‘nts’). Based on this assignment, we find a list of86 genes that are tissue-specific as well as

have kidney expression (MGI:http://www.informatics.jax.org/). For these kidney-specific genes,

we extract their promoter sequences from the ENSEMBL database http://www.ensembl.org/],

using sequence2000bp upstream and1000bp downstream up to the first exon relative to the

transcriptional start site reported in ENSEMBL (release 37).

Before proceeding to motif selection, a matrix of motif-promoter correspondences is created.

In this matrix, the counts of hexamer (six-nucleotide) motif occurrence in the‘ts’ and ‘nts’

promoters is obtained using sequence parsing. The motif length of six is not overly restrictive,

since it corresponds to the consensus binding site size of several annotated transcription factor

motifs in the TRANSFAC/JASPAR databases. A Welch t-test is then performed between the

relative counts of each hexamer in the two expression categories (‘ts’ and‘nts’) and the top1000

hexamers withp− value ≤ 10−6 are selected. This set of discriminating hexamers is designated

(
−→
H = H1, H2, . . . , H1000). This procedure resulted in two hexamer-gene co-occurrence matrices,

- one for the‘ts’ (or +1) class of dimensionNtrain,+1 ×1000 and the other for the‘nts’ (or −1)

class - dimensionNtrain,−1 × 1000. HereNtrain,+1 is the matrix of the86 kidney-specific genes.

Ntrain,−1 is the set of‘nts’ that do not have kidney-specific expression.

As an illustration, we show a representative matrix (Table1).

All the above steps, from promoter sequence extraction, parsing and quantization to ob-

tain hexamer-promoter counts that are done for the kidney-specific genes can be repeated for

the histone-modified sequences. This dataset is obtained from the Sanger ENCODE database

(http://www.sanger.ac.uk/PostGenomics/encode/data-access.shtml), and contains681 sequences

that undergo modification (m1/me3/ac) in histone ChIP assays.337 of these correspond to

H3K4me1 (enhancers), and344 correspond toH3K4me3/H3ac marks (promoters). Here, the

1000 hexamers discriminatingH3K4me1-sequences (+1 set) and a(H3K4me3/H3ac) (−1),
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Ensembl Gene ID AAAAAA AAATAG Class

ENSG00000155366 1 1 +1

ENSG000001780892 4 3 +1

ENSG00000189171 1 2 -1

ENSG00000168664 4 3 -1

ENSG00000160917 2 1 -1

ENSG00000176749 1 1 -1

ENSG00000006451 3 2 +1

TABLE I

THE ’ MOTIF FREQUENCY MATRIX’ FOR A SET OF GENE-PROMOTERS. THE FIRST COLUMN IS THEIRENSEMBL GENE

IDENTIFIERS, THE NEXT 2 COLUMNS ARE HEXAMER QUANTILE LABELS, AND THE LAST COLUMN IS THE CORRESPONDING

GENE’ S CLASS LABEL (+1/ − 1).

are designated
−→
H’ = H ′

1, H
′
2, . . . , H

′
1000.

Sequence AAAATA AAACTG Class

chr6:41410492-41411867 2 1 +1

chr6:41654502-41654782 4 2 +1

chr6:41406971-41408059 1 1 -1

chr6:41665970-41667002 2 3 +1

chr6:41476956-41478365 1 2 -1

chr6:41530471-41531046 2 2 -1

chr6:41783327-41784532 1 2 +1

TABLE II

THE ’ MOTIF FREQUENCY MATRIX’ FOR A SET OF HISTONE-MODIFIED SEQUENCES. THE FIRST COLUMN IS THEIR GENOMIC

LOCATIONS ALONG CHR6, THE NEXT 2 COLUMNS ARE HEXAMER QUANTILE LABELS, AND THE LAST COLUMN IS THE

CORRESPONDING SEQUENCE CLASS LABEL(+1/ − 1).

VII. M OTIF-CLASS CORRESPONDENCEMATRICES

From the above,Ntrain,+1×1000 andNtrain,−1×1000 dimensional co-occurrence matrices are

available for the tissue-specific and non-specific data, both for the promoter and histone-modified
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sequences. Before proceeding to the feature (hexamer motif) selection step, the counts of the

M = 1000 hexamers in each training sample need to be normalized to account for variable

sequence lengths. In the co-occurrence matrix, letgci,k represent the absolute count of thekth

hexamer,k ∈ 1, 2, . . . , M in the ith gene. Then, for each genegi, the quantile labeled matrix

hasXi,k = l if gci,[ l−1

K
M ] ≤ gci,k < gci,[ l

K
M ], K = 4. Matrices of dimensionNtrain,+1 × 1001,

Ntrain,−1×1001 for the specific and non-specific training samples are now obtained. Each matrix

contains the quantile label assignments for the1000 hexamers(Xi, i ∈ (1, 2, . . . , 1000)), as stated

above, and the last column would have the corresponding class label (Y = −1/ + 1).

VIII. R ANDOM FOREST CLASSIFIERS

A random forest (RF) is an ensemble of tree classifiers obtained by aggregating (bagging)

several classifiers, mostly classification trees. Such classifiers have provably low bias and variance

characteristics and are extremely amenable to random data subset selection via bootstrapping.

In a RF approach, an ensemble of classification trees is builton a training set and validated

on an out of bag (OOB) testing set. As compared to ordinary decision tree classifiers where

only one variable is used to split the node optimally, randomforests allow the use of a variable

subset that optimally split each node leading to a much cleaner class discrimination at every

node. The variables selected for optimal partitioning overclass labels can be examined from a

variable importance plot which indicates which variables are most discriminatory between these

two classes [2]. It is also to be noted that unlike most classifiers, which require a separate cross-

validation procedure, random forests afford the dual advantage of training and cross-validation

(through the OOB data) during the training procedure. Thus each tree is multiply cross-validated

before being incorporated into the classifier ensemble.

Several interesting insights into the data are available using random forests. The variable

importance plot yields the variables that are most discriminatory for classification under the

‘ensemble of trees’ classifier. This importance is based on two measures- ‘Gini index’ and

‘decrease in accuracy’. The Gini index is an entropy based criterion which measures the purity

of a node in the tree, while the other metric simply looks at the relative contribution of each

variable to the accuracy of the classifier. The performance of the classifier is visualized with

receiver operating characteristic (ROC) curves, by plotting the true positive rate against the false

positive rate. The best classifier has the co-ordinates(0, 1) on the ROC plot. For our studies,
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we use the ‘randomForest’ package for R [2]. The classifier performance on the individual data

and the related diagnostics are mentioned under each head (Secs: IX and X).

IX. RANDOM FORESTS ONK IDNEY-SPECIFIC PROMOTERS

In this section, we aim to find discriminating sequence motifs between a set of kidney-specific

promoters and housekeeping promoters with a goal to find sequence motifs underlying kidney-

specific regulation. The kidney enriched dataset has86 genes that are assigned to a tissue specific

class and have higher than mean expression in the kidney. Forthe purpose of training and testing,

we consider another set of genes that are not tissue-specificin the kidney. Using this approach,

we obtain a classification accuracy of> 95% on the kidney enriched tissue specificity data set.

Before proceeding to motif identification, it is necessary to check for possible sequence bias

(GC composition) between the two classes of promoters (kidney-specific vs. housekeeping). If

there is a significant bias, then the motifs turn out to be justGC rich sequences that are not very

biologically informative [39] for regulatory potential. The GC composition of these two classes

of sequences is represented in Fig.??. As can be seen, the average GC composition is the same.

The ROC and variable importance plot for the overall classification is indicated below (Fig. 6

and 3).

Fig. 3. Top hexamers which can discriminate between kidney-specific and house-keeping genes.
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To address a related question, we examine if the top ranked hexamers in the kidney dataset cor-

relate sequence-wise with known transcription factor binding sites. Using the publicly available

Opossum tool (http://www.cisreg.ca/cgi-bin/oPOSSUM/opossum/) or MAPPER (http://bio.chip.org/mapper),

we found several interesting transcription factors to map to these motifs, such asNkx, ARNT,

c-ETS, FREAC4, NFAT, CREBP, E2F, HNF4A, Pax2, MSX1, SP1several of which are kidney-

specific. Though this is highly consistent with the dataset,the functional relevance of these sites

remains to be experimentally validated.

X. RFS ON CHROMATIN-MODIFIED SEQUENCES

We train a RF classifier on a set of681 sequences from chromosome6 that have varying

histone modifications associated with them (namely,H3K4me1/me3, andH3ac ), as mentioned

in Section: II. These are derived from the HeLa cell line and are not necessarily context-specific

for kidney development. However, given the widespread use of this cell line for transcriptional

studies, we aim to find if the motifs associated with regulatory elements are indeed predictive

of enhancer activity.

Here too, we examine the GC-composition bias of these two sequence classes (Fig. 4) and

confirm that there is no such sequence bias that would skew thediscovery and subsequent

interpretation of these epigenetic motifs.

The ROC plots for the two random forest classifiers is given inFig. 6. As can be seen, the

kidney-promoter based classifier has a much superior performance than the histone modification-

based classifier. However these are two complementary data sources and can be effectively

combined to improve detection reliability.

The motifs obtained from the random forest analysis indicate the sequence preferences of

regulatory elements that are kidney-specific or nucleosome-free. We analyze the performance

of these classifiers on the4 UG enhancers, mentioned previously. In both casesUG2 − 4

are classified as kidney-specific enhancers, whereasUG1 is correctly classified as not being

regulatory. Additionally, a control set of enhancers derived from the Mouse Enhancer database

was also classified as enhancers based on these chromatin signatures. This high prediction

accuracy inspite of non-specificity of cell context is very interesting and has potentially high

predictive value. However, the higher false positive rate (indicated in the ROC plot) can be

explained based on the fact that these sequences were derived from a cell population that was



16

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

Histogram of GC.class0

GC.class0

Fr
eq

ue
nc

y

0.2 0.3 0.4 0.5 0.6 0.7 0.8

0
10

20
30

40
50

Histogram of GC.class1

GC.class1

Fr
eq

ue
nc

y

0.3 0.4 0.5 0.6 0.7 0.8

0
10

30
50

70
Fig. 4. GC plots for sequence bias inH3K4me1 histone sequences vs.H3K4me3 andH3ac sequences.

cgattc
tagatc
cggtga
ctccgt
aatccg
cacgcg
tcggtc
cgggcg
cggaac
cgtcgc
gccgcc
cgacgc
gccgcg
cgcgag
cgccgc
tcgcaa
acggtg
accgac
cggact
tccgat
cgccgg
gcgccc
tccgtc
tctgcg
ccgccg
acggta
acggcg
gacgta
actccg
cggcga

0.05 0.10 0.15 0.20
MeanDecreaseAccuracy

ctcccc
gagaca
caaaga
gggaca
acagag
agccat
cgcgcc
cacaga
caaaca
agagag
aagagc
atgggg
gagagt
gcagga
agagca
ttctga
gacagg
ctccct
cctcaa
agcaag
attcac
agtgtt
cataac
cagcaa
gggcgg
ggaatg
ctgcca
cctgcc
caggga
caagga

0.0 0.5 1.0 1.5 2.0
MeanDecreaseGini

histone.rf

Fig. 5. Top hexamers which can discriminate betweenH3K4me1 histone sequences vs.H3K4me3 andH3ac sequences.

not kidney-specific.



17

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False Positive Rate

Tr
ue

 P
os

itiv
e 

Ra
te

ROC plots for the RF classifiers

 

 
Promoter RF
Histone RF

Fig. 6. ROC plots for the two RF classifiers (RF-promoter in solid, and RF-histone in dashed line). The diagonal line is the

classification by random chance.

XI. DTI FORMULATION

Since our goal is to understand the nature of long-range transcriptional regulation, we can

examine the role of these discovered motifs using expression and interactome data. The first

question that arises in this context is if any of these discovered sequence motifs (from kidney-

specific or histone modification sequences) are related toGata2 transcription at the expression

level. Additionally, this can help resolve which TFs bind atthese regulatory elements as well as

if there is an interaction between them that underlies tissue specific regulation/gene expression.

Recently, we introduced the directed information (DTI) as ametric to infer expression-level

influence between any putative transcription factor (TF) gene and a target gene (such asGata2)

[35]. We will briefly summarize the utility of DTI for TF effector identification in these sections

(Sec. XI and XII).

Using inter-species conservation and TFBS matching databases (TRANSFAC/JASPAR) we

can find the transcription factors that putatively bind to the Gata2 promoter. Using publicly

available expression data for the developing kidney ([4], [38]), we can find TF effectors from

this conserved set as well as from TFs corresponding to top ranking classifier motifs.

The DTI is a directed dependence metric that quantifies the influence between a putative TF

effector (X) andGata2 (Y ), based on mRNA expression data. Briefly, the DTI (for a lag of1)

between twoN-length random processesX andY is given by [29] :

I(XN → Y N) =
N

∑

n=1

I(Xn; Yn|Y n−1) (1)

Here, Y n denotes(Y1, Y2, .., Yn), i.e. a segment of the realization of a random sequenceY n
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andI(Xn; Y n) is the Shannon mutual information . As already known,I(Xn; Y n) = H(Xn)−
H(Xn|Y n), with H(Xn) andH(Xn|Y n) being the Shannon entropy ofXn and the conditional

entropy ofXn givenY n, respectively. Using this definition of mutual information, the Directed

Information simplifies to,

I(XN → Y N) =

N
∑

n=1

[H(Xn|Y n−1) − H(Xn|Y n)]

=

N
∑

n=1

{[H(Xn, Y n−1) − H(Y n−1)] − [H(Xn, Y n) − H(Y n)]} (2)

To infer the notion of influence between two time series (mRNAexpression data) we find the

mutual information between the entire evolution of geneX (up to the current instantn) and the

current instant ofY (Yn), given the evolution of geneY up to the previous instantn − 1 (i.e.

Y n−1). This is done for every instantn ∈ (1, 2, . . . , N) in theN - length expression time series.

Thus, we find the influence relationship between genesX and Y for every instant during the

evolution of their individual time series.

As can be seen, this computation requires the estimation of joint and marginal entropies,

which are done via data-dependent partitioning of the observation space ([12], [11]). Replicate

(biological, technical and probe-level) gene expression data is very useful for this purpose and

enables entropy estimation from moderate sample size. Additionally, several methods exist for

entropy estimation from moderate sample sizes. One of the most prominent is the Voronoi

tessellation approach outlined in [11]. In this approach, an adaptive partitioning of the observation

space is used to estimate the probability densities as well as the entropies of the random variables.

From the definition of DTI, we know that0 ≤ I(XN
i → Y N) ≤ I(XN

i ; Y N) < ∞ .For

easy comparison with other metrics, we use a normalized DTI metric [18] given by,ρDI =
√

1 − e−2I(XN→Y N ) =
√

1 − e−2
P

N

i=1
I(Xi;Yi|Y i−1). This maps the large range of DI, ([0,∞])

to lie in [0, 1]. Another point of consideration is to estimate the significance of the DTI value

compared to a null distribution on the DTI value (i.e. what isthe chance of finding the DTI value

by chance from the seriesXi andY ). This is done using confidence intervals after permutation

testing (Sec: XII). We use a thresholdp-value of0.05 to estimate the significance of the true DTI

value in conjunction with the the density estimation of a random data permutation, as outlined

below. These aspects are explained in [35], and are only mentioned below for completeness.
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XII. B OOTSTRAPPEDCONFIDENCE INTERVALS

In the absence of knowledge of the true distribution of the DTI estimate, an approximate

confidence interval for the DTI estimate (Î(XN → Y N)), is found using bootstrapping [9].

Density estimation is based on kernel smoothing over the bootstrapped samples [34].

The kernel density estimate for the bootstrapped DTI (withn = 1000 samples),Z , ÎB(XN →
Y N ) becomes,

f̂h(Z) = 1
nh

∑n

i=1
3
4
[1 − ( zi−z

h
)2]I(

∣

∣

zi−z

h

∣

∣ ≤ 1) with h ≈ 2.67σ̂z andn = 1000. ÎB(XN → Y N)

is obtained by finding the DTI for each random permutation of theX, Y series, and performing

this permutationB times. As is the clear from the above expression, the Epanechnikov kernel is

used for density estimation from the bootstrapped samples.The choice of the kernel is based on

its excellent characteristics - a compact region of support, the lowest AMISE (asymptotic mean

squared error) and favorable bias-variance tradeoff [34].

We denote the cumulative distribution function (over the bootstrap samples) of̂I(XN →
Y N ) by FÎB(XN→Y N )(ÎB(XN → Y N )). Let the mean of the bootstrapped null distribution be

I∗
B(XN → Y N). We denote byt1−α, the (1 − α)th quantile of this distribution i.e.{t1−α :

P ([
ÎB(XN→Y N )−I∗

B
(XN→Y N )

σ̂
] ≤ t1−α) = 1 − α}. Since we need the truêI(XN → Y N) to be

significant and close to 1, we need̂I(XN → Y N) ≥ [I∗
B(XN → Y N) + t1−α × σ̂], with σ̂ being

the standard error of the bootstrapped distribution,

σ̂ =

√

[ΣB

b=1
Îb(XN→Y N )−I∗

B
(XN→Y N )]2

B−1
; B is the number of bootstrap samples.

As an example, we indicate the significance and strength of the DTI between thePax2 TF

and Gata2. The high strength of influence and its significance coupled with the phylogenetic

conservation of thePax2 motif indicates expression evidence for the role ofPax2 in Gata2

regulation ([4],[8]).

Such analysis can be extended to all TFs that are phylogenetically conserved or those that

correspond to top-ranking classifier motifs. ForGata2UG regulation, one such network is Fig.

8,

XIII. PROTEIN-PROTEIN INTERACTIONS

The discovery of putative TF effectors that are involved inGata2expression (identified from

a combination of motif signatures and expression DTI) can lead to interesting insights into

transcriptional regulatory mechanisms. From [31] previous literature on the nature of long-range
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Fig. 8. Putative upstream TFs using DTI for theGata3gene.

transcriptional regulation, we can examine the evidence ofinteraction between such TFs at the

Gata2promoter with those at the UG enhancers, and subsequently use such interaction models

as predictors of new regulatory elements.

Using a notion of protein-protein interaction to mediate long-distance interactions between

promoters and enhancers, we explore the interactome to lookfor network linkage between the

TFs at the promoter (regulatory TFs found from motif search and DTI) and those phylogenetically

conserved TFs at the enhancer(s). These interactions are summarized below,

The above figure indicates a very interesting property of thereal enhancers vis-a-vis the other

conserved elements. We see that the TF effectors forGata2such asSP1, POU3F2(identified in

the TF effector network above, Fig. 8), are involved in cross-element interactions at the protein

level, between the promoter and true enhancer (UG2/4). However, the network linkage in the

elements that showed no enhancer activity is very sparse suggesting low cross-talk between

promoter and enhancer. Also, the TFs at the enhancer nodes (dark circles), therefore, have

more hubs in the functional elementsUG2/4 as compared to the non-functional ones. Thus,
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From http://string.embl.de/

the extent of cross-talk is a potential discriminator of possible enhancer function. This shows

that superimposing PPI information along with sequence andexpression data helps reduce the

number of false positives while integrating various aspects of distal regulation. A quantitative

metric that summarizes this extent of cross-talk would greatly facilitate in-depth analysis of

long-range interaction.

XIV. SUMMARY OF ALGORITHM

Based on the presented data from ENCODE, Enhancer Browser, and SymAtlas sources, we

believe that the following features are predictive of regulatory element location:

• Motif signatures are predictive of regulatory element location. These comprise signatures

derived from tissue-specific gene promoter sequences as well as sequences with various

chromatin marks or modifications.

• TFs that are putatively active in gene (Gata2) regulation can be identified using a combi-

nation of expression data, and tissue-specificity data.

• Effector TFs (via DTI) at the gene proximal promoter have high network linkage with

enhancer TFs in case of functional enhancers. Several enhancer TFs are hubs that mediate

formation of the transcription factor complex.

It is to be noted that this model is data driven and may not directly correspond to the biology

of transcription. However, much like markov models for genesequence annotation, we believe

that such data-driven models are useful for genome-wide study.
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XV. CONCLUSIONS

In this work, we have examined the problem of regulatory element identification. Such an effort

has implications to understand the genomic basis of key biological processes such as development

and disease. Using the biophysics of transcription, this can be modeled as a problem in data

integration over various experimental modalities such as sequence, expression, transcription factor

binding and interactome-data. Using the case study of enhancers corresponding to theGata2

gene, we examine the utility of these heterogeneous data sources for predictive feature selection,

using principled methodologies and metrics.

Based on motif signatures, we find that they predict the true enhancers (UG2, UG4), and the

false enhancerUG1, but mispredictUG3 to be an enhancer. However, superimposing TF effector

discovery and protein-protein interaction data yields some heuristics for enhancer discovery based

on long range interaction between promoter and enhancer, thereby improving on prediction

accuracy.

XVI. FUTURE WORK

Some key elements directly emerge for guiding future research. As already alluded to in the

motif-signature procedure, specific expression data corresponding to stages and tissues of interest

would greatly improve the specificity of regulatory elementprediction. Furthermore, as histone

modification maps for different cell lines are generated, the false positive rate of prediction would

decrease, thereby improving accuracy. Several other learning paradigms can be introduced into

this setting, since we are learning from structured data. Conditional random fields have proved

to invaluable in such analysis. Also, methods in joint classifier and feature optimization might

likely improve the accuracy of predictions.

At the expression level, methods for supervised network inference would have a great impact

on the discovery of TF effectors. Rapid advances have been made in this area and their relevance

to the biological context of the problem has become very principled. At the interactome level, a

metric to quantify the degree of “connectedness” of the TFs between the enhancer and promoter

would be very useful for the construction of a “interactome-classifier”. Other methods that can

account for different types of long-range interactions would be extremely useful too.
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The source code of the analysis tools (in R2.0 and MATLAB 6.1) is available on request. Sup-
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REFERENCES

[1] Aerts S, Van Loo P, Thijs G, Mayer H, de Martin R, Moreau Y, De Moor B., ”TOUCAN 2: the all-inclusive open source

workbench for regulatory sequence analysis”,Nucleic Acids Res. 2005 Jul 1;33(Web Server issue):W393-6.

[2] L. Breiman., ”Random forests”.,Machine Learning, 45(1): 5.32, 2001.

[3] Burge C, Karlin S, ”Prediction of complete gene structures in human genomic DNA”.J Mol Biol 1997, 268:78-94.

[4] Challen G, Gardiner B, Caruana G, Kostoulias X, MartinezG, Crowe M, Taylor DF, Bertram J, Little M, Grim-

mond SM.,”Temporal and spatial transcriptional programs in murine kidney development”.,Physiol Genomics. 2005 Oct

17;23(2):159-71.

[5] Chan BY, Kibler D., ”Using hexamers to predict cis-regulatory motifs in Drosophila”,BMC Bioinformatics, 2005 Oct

27;6:262.

[6] Crawford GE, Holt IE, Whittle J, Webb BD, Tai D, Davis S, Margulies EH, Chen Y, Bernat JA, Ginsburg D, Zhou D, Luo

S, Vasicek TJ, Daly MJ, Wolfsberg TG, Collins FS.,”Genome-wide mapping of DNase hypersensitive sites using massively

parallel signature sequencing (MPSS)”,.Genome Res. 2006 Jan;16(1):123-31.

[7] Dressler, G.R. and Douglas, E.C. (1992)., ”Pax-2 is a DNA-binding protein expressed in embryonic kidney and Wilms

tumor”., Proc. Natl. Acad. Sci. USA89: 1179-1183.

[8] Drummond IA.,”The zebrafish pronephros: a genetic system for studies of kidney development”.,Pediatr Nephrol. 2000

May;14(5):428-35.

[9] Effron B, Tibshirani R.J, An Introduction to the Bootstrap (Monographs on Statistics and Applied Probability), Chapman

& Hall/CRC, 1994.

[10] ENCODE Project Consortium, ”Identification and analysis of functional elements in 1% of the human genome by the

ENCODE pilot project”.,Nature. 2007 Jun 14;447(7146):799-816.

[11] Erik Miller., ”A new class of entropy estimators for multi-dimensional densities”,.International Conference on Acoustics,

Speech, and Signal Processing (ICASSP), 2003.

[12] G. A. Darbellay and I. Vajda, ”Estimation of the information by an adaptive partitioning of the observation space,”IEEE

Trans. on Information Theory, vol. 45, pp. 1315–1321, May 1999.

[13] Geweke J., ”The Measurement of Linear Dependence and Feedback Between Multiple Time Series,”Journal of the

American Statistical Association, 1982, 77, 304-324. (With comments by E. Parzen, D. A. Pierce, W. Wei, and A. Zellner,

and rejoinder)



24

[14] Hastie T, Tibshirani R, The Elements of Statistical Learning , Springer 2002.

[15] Heintzman ND, Stuart RK, Hon G, Fu Y, Ching CW, Hawkins RD, Barrera LO, Van Calcar S, Qu C, Ching KA, Wang

W, Weng Z, Green RD, Crawford GE, Ren B.,”Distinct and predictive chromatin signatures of transcriptional promoters and

enhancers in the human genome”.,Nat Genet. 2007Mar;39(3):311-8.

[16] Hutchinson GB., ”The prediction of vertebrate promoter regions using differential hexamer frequency analysis”.,Comput

Appl Biosci. 1996 Oct;12(5):391-8.

[17] Hudson, J.E., ”Signal Processing Using Mutual Information”, Signal Processing Magazine,Volume: 23,no: 6 pp:50-54,

Nov. 2006.

[18] H. Joe., “Relative entropy measures of multivariate dependence”.J. Am. Statist. Assoc., 84:157164, 1989.

[19] Khandekar M, Suzuki N, Lewton J, Yamamoto M, Engel JD., ”Multiple, distant Gata2 enhancers specify temporally and

tissue-specific patterning in the developing urogenital system”.,Mol Cell Biol. 2004 Dec;24(23):10263-76.

[20] Kleinjan DA, van Heyningen V., ”Long-range control of gene expression: emerging mechanisms and disruption in disease”.,

Am J Hum Genet. 2005 Jan;76(1):8-32.

[21] Koch CM, Andrews RM, Flicek P, Dillon SC, Karaz U, Clelland GK, Wilcox S, Beare DM, Fowler JC, Couttet P, James

KD, Lefebvre GC, Bruce AW, Dovey OM, Ellis PD, Dhami P, Langford CF, Weng Z, Birney E, Carter NP, Vetrie D, Dunham

I.,”The landscape of histone modifications across 1% of the human genome in five human cell lines”.,Genome Res. 2007

Jun;17(6):691-707.

[22] Kreiman G., ”Identification of sparsely distributed clusters of cis-regulatory elements in sets of co-expressed genes”.,Nucleic

Acids Res. 2004 May 20;32(9):2889-900.

[23] Lakshmanan, G., K. H. Lieuw, K. C. Lim, Y. Gu, F. Grosveld, J. D. Engel, and A. Karis. 1999. ”Localization of distant

urogenital system-, central nervous system-, and endocardium-specific transcriptional regulatory elements in the GATA-3

locus”. Mol. Cell. Biol. 19:1558-1568.

[24] Lettice LA, Heaney SJ, Purdie LA, Li L, de Beer P, Oostra BA, Goode D, Elgar G, Hill RE, de Graaff E., ”A long-range

Shh enhancer regulates expression in the developing limb and fin and is associated with preaxial polydactyly”.,Hum Mol

Genet. 2003 Jul 15;12(14):1725-35.

[25] Lieb JD, Beck S, Bulyk ML, Farnham P, Hattori N, HenikoffS, Liu XS, Okumura K, Shiota K, Ushijima T, Greally JM.,

”Applying whole-genome studies of epigenetic regulation to study human disease”.,Cytogenet Genome Res. 2006;114(1):1-15.

[26] Liu J, Francke U.,”Identification of cis-regulatory elements for MECP2 expression”.,Hum Mol Genet. 2006 Jun

1;15(11):1769-82.

[27] MacIsaac KD, Fraenkel E., ”Practical strategies for discovering regulatory DNA sequence motifs”.,PLoS Comput Biol.

2006 Apr;2(4):e36.

[28] H. Marko, ”The Bidirectional Communication Theory - A Generalization of Information Theory”,IEEE Transactions on

Communications, Vol. COM-21, pp. 1345-1351, 1973.

[29] J. Massey, ”Causality, feedback and directed information,” Proc. 1990 Symp. Information Theory and Its Applications

(ISITA-90), Waikiki, HI, Nov. 1990, pp. 303305.

[30] Minegishi N, Ohta J, Yamagiwa H, Suzuki N, Kawauchi S, Zhou Y, Takahashi S, Hayashi N, Engel JD, Yamamoto M.,

”The mouse GATA-2 gene is expressed in the para-aortic splanchnopleura and aorta-gonads and mesonephros region”.,Blood.

1999 Jun 15;93(12):4196-207.

[31] Petrascheck M, Escher D, Mahmoudi T, Verrijzer CP, Schaffner W, Barberis A.,”DNA looping induced by a transcriptional

enhancer in vivo”.,Nucleic Acids Res. 2005 Jul 7;33(12):3743-50.

[32] Pennacchio, L. A., Ahituv, N., Moses, A., Prabhakar, S., Nobrega, M., Shoukry, M., Minovitsky, A., Dubchak, I., Holt,

A., Lewis, K., Plazer-Frick, I., Akiyama, J., DeVal, S., Afzal, V., Black, B., Couronne, O., Eisen, M., Visel, A., and Rubin,

E.M. 2006., ”In vivo enhancer analysis of human conserved non-coding sequences”,Nature, 444(7118):499-502.

[33] L.A. Pennacchio, G.G. Loots, M.A. Nobrega, and I. Ovcharenko, ”Predicting tissue-specific enhancers in the human

genome”,Genome Research, 17(2), 201-11 (2007)



25

[34] J. Ramsay, B. W. Silverman, Functional Data Analysis (Springer Series in Statistics), Springer 1997.

[35] Rao A, Hero AO, States DJ, Engel JD, ”Using Directed Information to build Biologically Relevant Influence Networks”,

Proc. Computational Systems Bioinformatics (CSB), 2007.

[36] Schug J., Schuller W-P., Kappen C., Salbaum J.M., BucanM., Stoeckert C.J. Jr., ”Promoter Features Related to Tissue

Specificity as Measured by Shannon Entropy”.,Genome Biology6(4): R33, March 2005.

[37] Segal E, Fondufe-Mittendorf Y, Chen L, Thstrm A, Field Y, Moore IK, Wang JP, Widom J.,”A genomic code for nucleosome

positioning”.,Nature. 2006 Aug 17;442(7104):772-8.

[38] Stuart RO, Bush KT, Nigam SK, ”Changes in gene expression patterns in the ureteric bud and metanephric mesenchyme

in models of kidney development”,Kidney International,64(6),1997-2008,December 2003.

[39] Sumazin P, Chen G, Hata N , Smith A D., Zhang T, Zhang M Q., ”DWE: Discriminant Word Enumerator”,Bioinformatics,

21(1):31-38, 2005.

[40] Cover TM, Thomas JA, Elements of Information Theory,Wiley- Interscience, 1991.

[41] Visel A, Minovitsky S, Dubchak I, Pennacchio LA., ”VISTA Enhancer Browser–a database of tissue-specific human

enhancers”.,Nucleic Acids Res. 2007 Jan;35(Database issue):D88-92.


	Introduction
	Data Sources:
	Rationale
	Validation/Biological Application
	Organization
	Sequence Data Extraction and Pre-processing
	Motif-Class Correspondence Matrices
	Random Forest Classifiers
	Random Forests on Kidney-specific promoters
	RFs on chromatin-modified sequences
	DTI formulation
	Bootstrapped Confidence Intervals
	Protein-Protein Interactions
	Summary of Algorithm
	Conclusions
	Future Work
	Acknowledgements
	Availability
	References

