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Training in Multiple-Antenna
Rician Fading Wireless Channels with

Deterministic Specular Component
Mahesh Godavarti, Member, IEEE, and Alfred O. Hero-III, Fellow, IEEE

Abstract— We determine the optimum training strategy for a
multiple-antenna wireless link in a Rician fading channel using
a training based lower bound on capacity. We consider the stan-
dard Rician block fading channel where the channel coefficients
are modeled as independent circular Gaussian random variables
with non-zero means (the specular component). The specular
component is known to both the transmitter and receiver. The
channel coefficients of this model are constant over a block of
T symbol periods but, independent over different blocks. For
such a model, it is shown that the training based capacity,
the optimum training signals, the training period, transmit and
training energy are dependent on the Rician factor r along with
SNR ρ, the number of transmit antennas M , the number of
receive antennas N and the coherence interval T . Also, unlike in
the case of Rayleigh fading channels, it can be shown using the
lower bound for Rician fading channels that for low SNR Rician
fading channels behave like a purely AWGN channel and the
optimum strategy is to spend no effort in learning the channel.
When SNR is not low and training is required then the optimum
training period is as many symbol intervals as there are transmit
antennas.

Index Terms— Capacity, asymptotic capacity, training, infor-
mation theory, Rician fading, multiple antennas.

I. INTRODUCTION

DEPLOYING multiple antennas at the transmitter and
receiver has been demonstrated to be a viable solution to

the demand for high data rate in wireless communications [6],
[7], [16], [20], [22]. A straightforward way for the transmitter
and the receiver to transmit data would be for the receiver
to first learn the channel and then use the channel estimate
to decode the transmitted symbols. Such training methods
are prevalent in wireless communication systems like IS-95
CDMA and GSM and have been investigated in [13], [14],
[17], [22].

It is important to know whether training based signal
schemes are practical and if they are how much time can be
spent in learning the channel and what the optimum training
signal is like. Hassibi and Hochwald [14] have addressed these
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issues for the popular case of Rayleigh block fading channels.
They used a capacity lower bound based on MMSE channel
estimate to find the optimum training strategy by maximizing
the lower bound. They showed that 1) pilot symbol training
based communication schemes are highly suboptimum for low
SNR but practically optimum for high SNR; 2) when practical
the optimum amount of time1 devoted to training is equal to
M symbol intervals, where M is the number of transmitters,
when the fraction of power devoted to training is allowed to
vary and 3) the orthonormal signal is the optimum signal for
training.

In [13], the authors investigated the same problem for
a more general fading model and a more general training
strategy using a generalized mutual information lower bound
based on Gaussian codebooks with modified nearest neighbor
decoding. Also, unlike in [14], they relaxed the assumption
of identity transmit signal covariance matrix and included the
covariance matrix to be one of the parameters to be optimized.
The authors showed that for the special case of piecewise
block fading channels with Gaussian fading and additive
Gaussian noise the training based scheme as in [14] with
minimum mean-squared error channel estimator is optimum in
the sense that it maximizes the generalized mutual information
lower bound. They showed that for low SNR the transmit
signal covariance matrix has only one non-zero eigenvalue.
For high SNR, the results agree with the assumption on
transmit signal covariance matrix made in [14]. In this case, as
expected, for Rayleigh block fading the optimum lower bound
based on generalized mutual information is equal to the lower
bound derived in [14].

However, Rayleigh fading models are not sufficient to
describe many channels found in the real world. It is important
to consider other models and investigate their performance
as well. Rician fading is one such model [1], [4], [5], [18],
[19]. Rician fading model is applicable when the wireless link
between the transmitter and the receiver has a direct path
component in addition to the diffused Rayleigh component.

In this paper, we investigate how much training is necessary
for a wireless link operating in a Rician fading channel under
the average energy constraint on the input signal. We use
the standard Rician fading channel throughout the paper, that
is, we assume that the specular component is deterministic,

1Note: time is always measured in terms of number of symbol intervals.
This is tied to the initial assumption that channel coherence interval (the
amount of time channel coefficients remain constant) is itself measured in
terms of number of symbol intervals.
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of general rank and known to both the transmitter and the
receiver. The Rayleigh component is never known to the
transmitter. The capacity when the receiver has complete
knowledge about the channel will be referred to as coherent
capacity and the capacity when the receiver has no knowledge
about the Rayleigh component will be referred to as non-
coherent capacity.

Keeping in mind the results obtained in [13], we use the
same training signal based approach as that of [14]. However,
we relax the assumption of identity transmit signal covariance
matrix and we leave the matrix to be one of the parameters
to be optimized. We draw similar conclusions about training
for non-coherent communications as in [14] with one big
difference in the regime of low SNR. For Rayleigh fading
channels the optimum training period is not zero for all values
of SNR. However, for Rician fading channels there exists a
threshold dependent on the Rician factor r such that for all
SNRs below the threshold the optimum strategy is to have
no training at all. An interesting find regarding the optimum
transmit strategy, in this paper, is that the optimum strategy
for low SNR is to concentrate all the available energy in
the direction of strongest specular component whereas for
high SNR it is to spread the energy equally in all directions.
Note that this finding, for high SNR, is the same as that of
[13] and [14] because the transmit signal covariance matrix
in this region is an identity matrix. However, for low SNR
eventhough the optimum transmit covariance matrix consists
of a single non-zero eigenvalue as in [13] the eigenvector
corresponding to this eigenvalue can not be arbitrary. The
eigenvector should point in the same direction as the strongest
specular component.

The training based lower bound derived in [14] and adapted
here for Rician fading channels is suboptimum for low SNR as
the capacity for low SNR for block fading channels is a linear
function of SNR [21]. The training based lower bound for
Rayleigh fading channels turns out to be a quadratic function
of SNR [14]. From this paper we find that for Rician fading
channels it is a linear function of SNR. However, the bound
is still suboptimum since the constant multiplying SNR in
the capacity expression is purely a function of the specular
component instead of the whole channel. That is, if ρ denotes
SNR, λmax(A) the largest eigenvalue of matrix A, H the
Rician fading channel and Hm the specular component of
H then for low SNR the capacity of block fading Rician
channel behaves as ρλmax(E[HH†]) [12] whereas the training
based lower bound on capacity of block fading Rician channel
behaves as ρλmax(E[HmH†

m]) = ρλmax(HmH†
m). For high

SNRs and large coherent periods, the ratio of the training
bound and the actual capacity tends to one and indicates that
training based schemes can achieve rates close to capacity.

This paper is organized as follows. First, in Section II
the model used in the paper is established and a simple
training based lower bound is discussed. Then in Section
III, a more general training based lower bound on capacity
is established and its optimization is performed over various
parameters (choosing the parameters that maximize the lower
bound). More precisely, in Sub-section III-A, optimization is
performed for training over the transmitting signal, energy
distribution and the training period. This is followed by

optimization over the same parameters under the constraint
of equal training and transmit signal powers in Sub-section
III-B. Additional insights into the optimization problem are
obtained from numerical simulation in Section IV. Then in
Section V, optimization is performed in the regimes of low
and high SNR followed finally by Section VI in which the
results of this paper are summarized.

II. SIGNAL MODEL AND A

SIMPLE TRAINING BASED LOWER BOUND

We adopt the following model, which is the same as the
one used in [12], for the Rician fading channel:

X = SH + W (1)

where X is the T×N matrix of received signals, H is the M×
N matrix of propagation coefficients, S is the T ×M matrix
of transmitted signals, W is the T×N matrix of additive noise
components. Note that T denotes the coherence interval, M
denotes the number of transmit antennas and N the number
of receive antennas. The Rician fading channel H is defined
as

H =
√

rHm +
√

1 − rG

where Hm is the deterministic specular component of H
and G denotes the Rayleigh component. G and W consist
of Gaussian circular independent random variables and the
covariance matrices of G and W are given by IMN and
σ2ITN , respectively. Hm is a deterministic matrix satisfying
tr{HmH†

m} = MN . G satisfies E[tr{GG†}] = MN and r is
the Rician parameter between 0 and 1 so that E[tr{HH†}] =
MN . We assume that both the transmitter and receiver have
complete knowledge of the probability density function of H .
This means that Hm and the probability density function of G
are known to both the transmitter and receiver. We also assume
that communication is taking place under the average energy
constraint on the input signal given by E[tr{SS†}] ≤ MT .
The SNR of the channel, given by the ratio of the energy of
the elements of SH to the energy of the elements of W , is
therefore ρ = M

σ2 when the constraint is satisfied with equality.

A. A Simple Training Based Lower Bound

In [22] the authors demonstrated a very simple training
method that achieves the optimum rate of increase with SNR.
The same training method can also be easily applied to the
Rician fading model with deterministic specular component.
The training signal is the M × M diagonal matrix dIM . d is
chosen such that the same power is used in the training and the
communication phase. Therefore, d =

√
M . Using S = dIM ,

the output of the MIMO channel in the training phase is given
by

X =
√

M
√

rHm +
√

M
√

1 − rG + W.

The Rayleigh channel coefficients G can be estimated in-
dependently2 using scalar minimum mean squared error

2It might be useful to remind the readers at this point that Hm is already
known to both the transmitter and receiver
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(MMSE) estimates since the elements of W and G are i.i.d.
Gaussian random variables

Ĝ =
√

1 − r
√

M

(1 − r)M + σ2
[X −

√
M

√
rHm],

where we recall that σ2 is the variance of the components of
W . The elements of the estimate Ĝ are i.i.d. Gaussian with
variance (1−r)M

(1−r)M+σ2 . Similarly, the estimation error matrix

G− Ĝ has i.i.d Gaussian distributed elements with zero mean
and variance σ2

(1−r)M+σ2 .
The output of the channel in the communication phase is

given by

X = SH + W

=
√

rSHm +
√

1 − rSĜ +
√

1 − rS(G − Ĝ) + W,

where S consists of zero mean i.i.d circular Gaussian random
variables with zero mean and unit variance. This choice of
S is suboptimum as this might not be the capacity achieving
signal, but this choice gives us a lower bound on capacity.
Let Ŵ =

√
1 − rS(G − Ĝ) + W . For the choice of S given

above the entries of Ŵ are uncorrelated with each other and
also with S(

√
rHm +

√
1 − rĜ). The variance of each of the

entries of Ŵ is given by σ2 + (1 − r)M σ2

(1−r)M+σ2 . If Ŵ is
replaced with a white Gaussian noise with the same covariance
matrix then the resulting mutual information is a lower bound
on the actual mutual information [2, p. 263], [14, Theorem 1].
In this section we deal with normalized capacity C/T instead
of capacity C. The lower bound on the normalized capacity
is given by

C/T ≥ T − Tt

T
E log det

(
IM +

ρeff

M
H1H

†
1

)
(2)

where Tt is number of symbol intervals devoted to training
and ρeff in the expression above is the effective SNR at the
output (explained at the end of the next paragraph) given as
follows:

ρeff =
ρ[r + r(1 − r)ρ + (1 − r)2ρ]

[1 + 2(1 − r)ρ]
(3)

where ρ = M
σ2 is the actual SNR. H1 in (2) is a Rician channel

with a new Rician parameter reff where

reff =
r

r + (1 − r) (1−r)M
(1−r)M+σ2

. (4)

Note that reff > r in the effective channel because part of
the energy from the unknown Rayleigh component has been
diverted to the additive noise in the new effective channel
model.

The lower bound in (2) can be easily calculated because
the lower bound is essentially the coherent capacity with H
replaced by

√
reffHm +

√
1 − reff Ĝ. The signal covariance

structure was chosen to be an identity matrix as this is the
optimum covariance matrix for high SNR (refer to Result 2
in the following section). The effective SNR is now given
by the ratio of the energy of the elements of S(

√
rHm +√

1 − rĜ) to the energy of the elements of Ŵ . The energy
in the elements of S(

√
rHm +

√
1 − rĜ) is given by M(r +

(1− r)2 M
(1−r)M+σ2 ) and the energy in the elements of Ŵ are
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Fig. 1. Asymptotic capacity, capacity upper and lower bounds for different
values of SNR.

given by σ2 + (1−r)Mσ2

(1−r)M+σ2 . Therefore, the effective SNR, ρeff

is given as in (3). Note, for r = 1 no training is required since
the channel is completely known.

This simple scheme achieves the optimum increase of
capacity with SNR and uses only M of the T symbols for
training. The performance of this scheme is plotted with
respect to different SNR values for comparison with the
following asymptotic upper bound on non-coherent capacity
as ρ → ∞ [12]

C ≤ log |G(T,M)| + (T − M)E[log detH†H] (5)

+M(T − M) log
Tρ

Mπe
− M2 log(1 − r).

where |G(T,M)| is the volume of the Grassmann manifold
[22] and is equal to ∏T

i=T−M+1
2πi

(i−1)!∏M
i=1

2πi

(i−1)!

.

As can be seen the lower bound and the asymptotic upper
bound agree well with each other for large SNR values. Figure
1 demonstrates this for M = N = 5, r = 0.9 and T = 50.
The specular component in Figure 1 is a rank-one specular
component given by

Hm =

⎡
⎢⎢⎢⎣

1
0
...
0

⎤
⎥⎥⎥⎦ [1 0 . . . 0].

III. TRAINING BASED LOWER BOUND AND OPTIMIZATION

In this section, instead of fixing the training signal and the
amount of training as done in the previous section we optimize
over these parameters using the techniques in [14]. In [14], the
authors use the optimization of the lower bound on capacity
to find the optimum allocation of training as compared to
communication. Let Tt denote the amount of time, in terms
of number of symbol intervals, devoted to training and Tc the
amount of time devoted to actual communication. Let St be
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the Tt ×M signal used for training and Sc the Tc ×M signal
used for communication.

Let the “energy allocation factor” κ denote the fraction of
the energy used for communication. Then T = Tt + Tc and
tr{StS

†
t } = (1 − κ)TM and tr{ScS

†
c} = κTM .

Xt = St(
√

rHm +
√

1 − rG) + Wt

Xc = Sc(
√

rHm +
√

1 − rG) + Wc

where Xt is Tt × N and Xc is Tc × N . G is estimated from
the training phase. For that we need Tt ≥ M . Since G and
Wt are Gaussian the MMSE estimate of G is also the linear
MMSE estimate conditioned on S. The optimum estimate in
the MSE sense is given by

Ĝ =
√

1 − r(σ2IM + (1 − r)S†
t St)−1S†

t (Xt −
√

rStHm).

Let Ḡ = G − Ĝ then

Xc = Sc(
√

rHm +
√

1 − rĜ) +
√

1 − rScḠ + Wc.

Let Ŵc =
√

1 − rStḠ + W . Note that elements of Ŵc are
uncorrelated with each other and have the same marginal
densities when the elements of Sc are chosen to be i.i.d
Gaussian. If we replace Ŵc with Gaussian noise that is zero-
mean and spatially and temporally independent the elements
of which have the same variance as the elements of Ŵc then
the resulting mutual information is a lower bound to the actual
mutual information in the above channel [14, Theorem 1].

The variance of the elements of Ŵc is given by

σ2
ŵc

= σ2 +
1 − r

NTc
tr{E[ḠḠ†]κTIM} (6)

= σ2 +
(1 − r)κTM

Tc

1
NM

tr{E[ḠḠ†]}

= σ2 +
(1 − r)κTM

Tc
σ2

Ḡ

where σ2
Ḡ

is given in (33) and the lower bound is

Ct/T ≥ T − Tt

T
E log det

(
IM +

ρeff

M
H1ΛH†

1

)
, (7)

where the “post training SNR” ρeff , is the ratio of the energies
in the elements of ScĤ and energies in the elements of Ŵc and
H1 = √

reffHm+
√

1 − reff Ĝ where reff = r
r+(1−r)σ2

Ĝ

. To

calculate ρeff , the energy in the elements of ScĤ is given by

σ2
ScĤ

=
1

NTc
[rtr{HmH†

mκTIM} +

(1 − r)tr{ĜĜ†κTIM}]
=

κTM

Tc

1
NM

[rNM + (1 − r)tr{ĜĜ†}]

=
κTM

Tc
[r + (1 − r)σ2

Ĝ
],

which gives us

ρeff =
κTρ[r + (1 − r)σ2

Ĝ
]

Tc + (1 − r)κTρσ2
Ḡ

. (8)

Λ in (7) is the optimum signal covariance matrix the
structure of which is determined from the following results
obtained from [12].

Result 1: [12, Proposition 1] Let H be Rician (1) and
let the receiver have complete knowledge of the Rayleigh
component G. For low SNR, the coherent capacity CH , is
attained by the same signal covariance matrix that attains
capacity when r = 1 and

CH = Tρ[rλmax(HmH†
m) + (1 − r)N ] + O(ρ2).

Result 2: [12, Theorem 2] Let H be Rician (1) then as
ρ → ∞, the coherent capacity CH , is attained by an identity
signal covariance matrix and

CH

T · E log det[ ρ
M HH†]

→ 1.

Therefore, For low SNR, Λ has only one non-zero eigenvalue
such that all energy is concentrated in the direction of the
largest eigenvalue of Hm and for high SNR Λ is an identity
matrix.

A. Optimization of St, κ and Tt

We will optimize St, κ and Tt to maximize the lower bound
(7).

Optimization of the lower bound over St is difficult as St

effects the distribution of Ĥ , the form of Λ as well as ρeff .
To make the problem simpler we will just find the value of
St that maximizes ρeff .

Proposition 1: The signal St that maximizes ρeff satisfies
the following condition

S†
t St = (1 − κ)TIM (9)

and the corresponding ρeff is

ρ∗eff=
κTρ[Mr + ρ(1 − r)(1 − κ)T ]

Tc(M + ρ(1 − r)(1 − κ)T ) + (1 − r)κTρM
. (10)

Proof: Refer to Appendix I.
The optimum signal derived above is the same as the

optimum signal derived in [14] and the corresponding capacity
lower bound using the St obtained above is given by (7) but
where ρeff is as given below

ρeff=
κTρ[Mr + ρ(1 − r)(1 − κ)T ]

Tc(M + ρ(1 − r)(1 − κ)T ) + (1 − r)κTρM
(11)

and H1 = √
reffHm +

√
1 − reffG where reff =

r
1+(1−r)(1−κ) ρ

M T

r+(1−r)(1−κ) ρ
M T

and as before G is a matrix consisting of
i.i.d. Gaussian circular random variables with mean zero and
unit variance. Now, Λ is the covariance matrix of the source
Sc when the channel is Rician and known to the receiver.
Therefore from Results 1 and 2, Λ is an identity matrix for
ρeff → ∞ and is a diagonal matrix with only one non-zero
diagonal element for ρeff → 0.

Optimization of (7) over the energy allocation factor κ, is
straightforward as κ affects the lower bound only through the
post training SNR ρeff , and can be stated as the following
proposition.

Proposition 2: For given Tt and Tc the optimum power
allocation κ in a training based scheme is given by

κ =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

min{γ −√
γ(γ − 1 − η), 1}

for Tc > (1 − r)M
min{ 1

2 + rM
2Tρ , 1}

for Tc = (1 − r)M
min{γ +

√
γ(γ − 1 − η), 1}

for Tc < (1 − r)M

(12)
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where γ = MTc+TρTc

Tρ[Tc−(1−r)M ] and η = rM
Tρ . The corresponding

lower bound is given by

Ct/T ≥ T − Tt

T
E log det

(
IM +

ρeff

M
H1ΛH†

1

)
(13)

where for Tc > (1 − r)M :

ρeff =

⎧⎪⎨
⎪⎩

Tρ
Tc−(1−r)M (

√
γ −√

γ − 1 − η)2

when κ = γ −√
γ(γ − 1 − η)

rρ
1+(1−r)ρ when κ = 1

(14)

for Tc = (1 − r)M :

ρeff =

⎧⎪⎨
⎪⎩

T 2ρ2

4(1−r)M(M+Tρ) (1 + rM
Tρ )2

when κ = 1
2 + rM

2Tρ
rTρ

(1−r)(M+Tρ) when κ = 1
(15)

and for Tc < (1 − r)M :

ρeff =

⎧⎪⎨
⎪⎩

Tρ
(1−r)M−Tc

(
√−γ −√−γ + 1 + η)2

when κ = γ +
√

γ(γ − 1 − η)
rρ

1+(1−r)ρ when κ = 1
(16)

and reff is given by substituting the appropriate value of κ
in the expression

r
1 + (1 − r)(1 − κ) ρ

M T

r + (1 − r)(1 − κ) ρ
M T

.

Proof: Refer to Appendix II.
We see from Proposition 2 that for ρ < rM

T the optimum
setting for κ is κ = 1. That is, rM

T is the threshold such
that for all SNRs below it the optimum strategy is to have no
training at all. Note that eventhough the threshold increases
with r it is not tight as can be gauged from the case r = 1.
For r = 1, the threshold should actually be ∞ as it is obvious
that κ = 1 for all ρ whereas the threshold turns out to be only
M
T .

For optimization over Tt we draw similar conclusions as
in [14]. In [14] the optimum setting for Tt was shown to
be Tt = M for all values of SNR. However, in this paper
for ρ < rM

T the optimum setting is Tt = 0. The argument
follows from the fact that for these values of ρ we have
κ = 1 i.e., all energy is allocated to communications. It is
clear that optimization of Tt makes sense only when κ is
strictly less than 1. When κ = 1 no power is devoted to
training and Tt can be made as small as possible which is zero.
When training is required, the intuition is that increasing Tt

linearly decreases the capacity through the term (T − Tt)/T ,
but only logarithmically increases the capacity through the
higher effective SNR ρeff [14]. Therefore, it makes sense to
make Tt as small as possible. Therefore, when κ < 1 the
smallest value Tt can be is M since it takes at least that many
intervals to completely determine the unknowns.

Proposition 3: The optimum length of the training interval
is Tt = M whenever κ < 1 for all values of ρ and T > M ,
and the capacity lower bound is

Ct/T ≥ T − M

T
E log det

(
IM +

ρeff

M
H1ΛH†

1

)
(17)

where

ρeff =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

Tρ
T−(2−r)M (

√
γ −√

γ − 1 − η)2

for T > (2 − r)M
T 2ρ2

4(1−r)M(M+Tρ) (1 + rM
Tρ )2

for T = (2 − r)M
Tρ

T−(2−r)M (
√−γ −√−γ + 1 + η)2

for T < (2 − r)M

The optimum power allocations are easily obtained from
Proposition 2 by simply setting Tc = T − M .

Proof: Refer to Appendix III.

B. Equal Training and Data Power

As stated in [14], sometimes it is difficult for the transmitter
to assign different powers for training and communication
phases. In this section, we will concentrate on setting the
training and communication powers equal to each other in
the following sense

(1 − κ)T
Tt

=
κT

Tc
=

κT

T − Tt
= 1

this means κ = 1 − Tt/T and that the power transmitted in
Tt and Tc are equal.

In this case,

ρeff =
ρ[r + ρTt

M ]
1 + ρ[Tt

M + (1 − r)]

and the capacity lower bound is

Ct/T ≥ T − Tt

T
E log det(IM +

ρeff

M
H1ΛH†

1) (18)

where ρeff is as given above and H1 = √
reffHm +√

1 − reffG where reff = r
1+(1−r) ρ

M Tt

r+(1−r) ρ
M Tt

.
We can derive the optimum training period using the same

procedure as in the proof of Proposition 3. Using the definition
of Cl in Proposition 3, consider the following

dCl

dTc
=

Q∑
i=1

{
1
T

E log(1 + ρeffλi) + (19)

Tc

T

dρeff

dTc
E

[
λi

1 + ρeffλi

]}
.

However, since

ρeff =
ρ
(
r + ρT−Tc

M

)
1 + ρ

[
T−Tc

M + (1 − r)
]

we have

dρeff

dTc
= −

ρ2

M (1 − r)(1 + ρ)[
1 + ρ

(
T−Tc

M + (1 − r)
)]2 . (20)

Therefore,

dCl

dTc
=

1
T

Q∑
i=1

E

[
log(1 + ρeffλi) −

{
ρeffλi

1 + ρeffλi
× (21)

(1 + ρ) ρ
M (1 − r)(

r + ρT−Tc

M

) [
1 + ρ

(
T−Tc

M + (1 − r)
)]
}]

.
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Fig. 2. Plot of reff as a function of Rician parameter r.

Note that for large ρ,

(1 + ρ) ρ
M (1 − r)(

r + ρT−Tc

M

) [
1 + ρ

(
T−Tc

M + (1 − r)
)] < 1 (22)

if T −Tc ≥ M . This means that dCl

dTc
> 0 and Cl is maximized

by choosing Tc = M . And if ρ is made small enough,

(1 + ρ) ρ
M (1 − r)(

r + ρT−Tc

M

) [
1 + ρ

(
T−Tc

M + (1 − r)
)] < 1 (23)

even for Tc = T . Therefore, for low SNR Cl is maximimized
by choosing Tc = T .

In this section we have seen that the optimum training
period for low SNR is zero. This can be contrasted against the
result for Rayleigh fading channels [14] where the optimum
training period is equal to T/2 for small ρ. But for large ρ
the optimum training period here is M like in [14].

IV. NUMERICAL COMPARISONS

Throughout the section we have chosen the number of
transmit antennas M, and receive antennas N, to be equal and
Hm = IM .

The Figures 2 and 3 show reff and κ respectively as a
function of r for different values of SNR. The plots have been
calculated for a block length given by T = 40 and the number
of transmit and receive antennas given by M = N = 5. Figure
2 shows that for low SNR values the channel behaves like a
purely AWGN channel given by

√
rHm and for high SNR

values the channel behaves exactly like the original Rician
fading channel. Figure 3 shows that as the SNR goes to zero
less and less power is allocated for training. This agrees with
the plot in Figure 2.

In Figure 4 we show the trend followed by the training and
communication powers, in terms of the corresponding SNRs
given by (1−κ)ρT

Tt
and κρT

Tc
respectively, as a function of block

length T . The plots were generated for different values of r
with fixed Tt = M , M = N = 10 and ρ = 18dB. The
dependence of the SNRs on T is essentially driven by the
dependence of κ on Tc as derived in Proposition 2. Therefore,
the minimum for the amount of power devoted to training
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Fig. 3. Plot of optimum energy allocation κ as a function of Rician parameter
r.
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Fig. 4. Plot of SNRs in training and communication phases as a function
of T for fixed Tt = M .

occurs at T = Tt + Tc = M + (1 − r)M = (2 − r)M . We
decided to plot the SNRs instead of the actual powers because
we wanted to contrast the behavior of Rician channels for
different values of r against that of Rayleigh channel (r = 0)
as shown in Figure 4 of [14]. We see that as r goes to 1 less
and less power is allocated to the training phase. This makes
sense because as the proportion of signal energy transmitted
through the specular component increases there is a lesser need
for the system to estimate the unknown Rayleigh component.

Figure 5 shows capacity as a function of the number of
transmit antennas in low-SNR regime (ρ ≈ 0dB) for a fixed
block length T = 40 and fixed number of receive antennas
N = 40. We can easily estimate the optimum number of
transmit antennas from the figure. In this case, we see that for
a fixed T the optimum number of transmit antennas increases
as r increases. This shows that as r goes to 1, for a fixed T ,
we can tolerate larger uncertainty in the Rayleigh component.
In other words, fewer resources can be devoted to estimate
the unknown Rayleigh part of the channel because as pointed



GODAVARTI and HERO: TRAINING IN MULTIPLE-ANTENNA RICIAN FADING WIRELESS CHANNELS WITH DETERMINISTIC SPECULAR COMPONENT 7

0 5 10 15 20 25 30 35 40
0

5

10

15

20

25

Number of Transmit Antennas M

C
ap

ac
ity

 (
bi

ts
/T

)

r = 0 

r = 0.5 

r = 0.7 

Max M = 6 

Max M = 11

Max M = 15 

Fig. 5. Plot of capacity as a function of number of transmit antennas for a
fixed T .

out in the previous paragraph in regards to Figure 4 there is
less need to estimate the unknown Rayleigh part.

V. OPTIMIZATION IN THE LOW SNR AND

HIGH SNR REGIMES

Let’s consider the effect of low SNR on the optimization of
κ in (12) when r �= 0. For Tc > (1−r)M , as ρ → 0 it is easy
to see that γ−√

γ(γ − 1 − η) → ∞. Therefore, we conclude
that for small ρ we have κ = 1. Similarly, for Tc = (1− r)M
and Tc < (1 − r)M . Therefore, the lower bound tells us that
no energy need be spent on training for small ρ. Also, the
form of Λ is that of a diagonal matrix with only one non-zero
diagonal element.

Evaluating the case where the training and transmission
powers are equal we come to a similar conclusion. For small
ρ, ρeff ≈ rρ which is independent of Tt. Therefore, the best
value of Tt is Tt = 0. Which also means that we spend
absolutely no time on training. This is in stark contrast to
the case when r = 0. In this case, for low SNR Tt = T/2
[14] and ρeff behaves as O(ρ2).

Note that in both cases of equal and unequal power
distribution between training and communication phases the
signal distribution during data transmission phase is Gaussian.
Therefore, the lower bound behaves as rρλmax{HmH†

m}.
Also, reff = 1 for small ρ showing that the channel behaves
as a purely Gaussian channel.

These conclusions mimic those of Proposition 3 in Section
3.1 of [12] for non-coherent capacity results with Gaussian
input. The low SNR non-coherent capacity results in Section
3.1 of [12] for the case of a Gaussian input signal tell us
that the capacity behaves as rρλmax for Rician fading and
behaves as ρ2 for Rayleigh fading which is what the lower
bound results in [14] also show. We would expect the general
behavior of the results obtained here to agree with those
of [12] as both sets of results are obtained under the same
assumption of Gaussian probability distribution on the input
signal.

Next consider the case of high SNR. Now, γ becomes
Tc

Tc−(1−r)M and the optimum power allocation κ becomes

κ =
√

Tc√
Tc +

√
(1 − r)M

(24)

and

ρeff =
T

(
√

Tc +
√

(1 − r)M)2
ρ. (25)

In the case of equal training and transmit powers, we have
for high ρ

ρeff = ρ
Tt

Tt + M(1 − r)
. (26)

For high SNR, the channel behaves as if it is completely
known to the receiver. Note that in this case reff = r and Λ is
an identity matrix for the case M ≤ N . From the expressions
for ρeff given above we conclude that unlike the case of low
SNR the value of r does affect the amount of time and power
devoted for training.

Next consider the capacity lower bound for high SNR. The
optimizing signal covariance matrix Λ, in this regime is an
identity matrix. We know that at high SNR the optimum
training period is M . Therefore, the resulting lower bound
is given by

Ct/T ≥ f(M). (27)

where f(M) denotes a function dependent on M and is given
by

f(M) =
T − M

T
E log det

(
IM + ρ′(M)

HH†

M

)
.

with ρ′(M) another function of M given by

ρ′(M) =
ρ(√

1 − M
T +

√
(1−r)M

T

)2 .

Note that the lower bound has H appearing in it instead of
H1. That is so because for high SNR, reff = r. This lower
bound can be optimized over the number of transmit antennas
used in which case the lower bound can be rewritten as

Ct/T ≥ max
M ′≤M

max

n≤
(

M
M ′

) f2(M ′, n), (28)

where now

f2(M ′, n) =
T − M ′

T
E log det

(
IM ′ + ρ′(M ′)

H(n)H(n)†

M ′

)

with ρ′(·) as defined earlier. H(n) denotes the nth matrix out
of a possible M choose M ′ (the number of ways to choose M ′

transmit elements out of a maximum M elements) matrices of
size M ′×N . Let Q = min{M ′, N} and λi(n) be an arbitrary
nonzero eigenvalue of 1(√

1−M′
T +

√
(1−r)M′

T

)2
H(n)H(n)†

M ′ then

we have

Ct/T ≥ max
M ′≤M

max

n≤
(

M
M ′

) f3(M ′, n) (29)
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where now

f3(M ′, n) =
T − M ′

T

Q∑
i=1

E log(1 + ρλi(n)).

At high SNR, the leading term involving ρ in
∑Q

i=1 E log(1+
ρλi(n)) is Q log ρ which is independent of n. Therefore,

Ct/T ≥ max
M ′≤M

{
(1 − M ′

T )M ′ log ρ ifM ′ ≤ N

(1 − M ′
T )N log ρ ifM > N.

(30)

The expression (1 − M ′
T )M ′, is maximized by choosing

M ′ = T/2 when min{M,N} ≥ T/2 and by choosing M ′ =
min{M,N} when min{M,N} ≤ T/2. This means that the
expression is maximized when M ′ = min{M,N, T/2}. This
is a similar conclusion drawn in [14] and [22]. Also, the
leading term in ρ for high SNR in the lower bound is given
by

Ct/T ≥ (1 − K

T
)K log ρ (31)

where K = min{M,N, T/2}. This result suggests that the
number of degrees of freedom available for communication is
limited by the minimum of the number of transmit antennas,
receive antennas and half the length of the coherence interval.
Moreover, the results obtained in Section 3.4 of [12] for the
case when M ≤ N and large T show that the asymptotic
capacity behaves as M(T −M) log ρ from which we see that
the lower bound is tight in the sense that the leading term
involving ρ in the lower bound is the same as the one in the
expression for capacity.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we investigated the utility of training based
communication schemes in non-coherent communications
over Rician fading channels with deteriministic specular com-
ponent. The findings in this paper can be compared with the
findings on Rayleigh fading channels from [13] and [14]. The
similarities and differences are summarized below:

• Our study showed that for Rician fading channels, similar
to Rayleigh fading, at low SNR training based schemes
are suboptimum whereas for high SNRs training can
attain capacity.

• For high SNR and large coherence interval Rayleigh
and Rician channels behave in a similar manner both in
terms of the parameters maximizing the training based
lower bound and the lower bound itself. This means that
the number of degrees of freedom of a training based
scheme over a Rician fading channel (Section V) is the
same as that of a Rayleigh fading channel which is
min{M,N, T/2} [14], [22].

• The differences between Rayleigh fading and Rician fad-
ing show up at low SNR. For low SNR from the analysis
itself we conclude that for Rician fading channels no time
or energy should be spent in training the receiver to learn
the channel. More precisely, for Rician fading channels
there exists a threshold that is an increasing function of
the Rician factor r such that for all SNRs below the
threshold the best strategy is not to spend any effort in
learning the channel.

• Another difference between Rayleigh and Rician fading
channels is that the lower bound on training based capac-
ity for Rayleigh fading channels is a quadratic function
of SNR whereas for Rician fading it is a linear function.
This linear function of SNR is still suboptimum except
when r = 1 at which point the Rician fading channel is
simply an AWGN channel.

• Finally, there exists a difference between Rician and
Rayleigh fading in the optimum transmit signal covari-
ance matrix structure for low SNR. Eventhough, for
low SNR the optimum transmit signal covariance matrix
consists of a single non-zero eigenvalue in both cases; for
the case of Rician fading the eigenvector corresponding to
the non-zero eigenvalue has to point in the same direction
as the specular component of maximum strength.

In the future, it would be very useful to obtain a solution
to the problem of finding maximum achievable rates on non-
coherent block fading Rician channels without explicit channel
estimation along the lines of [15]. Some progress in this
regard was made in [10], [11]. In addition, the assumption of
deterministic specular component was relaxed and the specular
component was treated as unknown. However, research along
these lines is challenging and a breakthrough would require
considerable efforts from the communications research com-
munity.

APPENDIX I
PROOF OF PROPOSITION 1

First we note that σ2
Ĝ

= 1 − σ2
Ḡ

. This means that

ρeff =
κTρ + Tc

(1 − r)κTρσ2
Ḡ

+ Tc
− 1. (32)

Therefore, to maximize ρeff we just need to minimize σ2
Ḡ

.
Now,

σ2
Ḡ =

1
NM

tr{E[vec(Ḡ)vec(Ḡ)†]}
where vec(Ḡ) is a column vector obtained by stacking the
columns of Ḡ one on top of the other. Therefore,

σ2
Ḡ =

1
NM

tr
{
E[vec(Ḡ)vec(Ḡ)†]

}
(33)

=
1

NM
tr
{

(IM + (1 − r)
ρ

M
S†

t St)−1 ⊗ IN )
}

where ρ = M
σ2 . Therefore, the problem is the following

min
St:tr{S†

t St}≤(1−κ)TM

1
M

tr
{(

IM + (1 − r)
ρ

M
S†

t St

)−1
}

.

The problem above can be restated as

min
λ1,...,λM :

∑
λm≤(1−κ)TM

1
M

M∑
m=1

1
1 + (1 − r) ρ

M λm
(34)

where λm, m = 1, . . . , M are the eigenvalues of S†
t St. The

solution to the above problem is λ1 = . . . = λM = (1− κ)T .
Therefore, the optimum St satisfies S†

t St = (1 − κ)TIM .
This gives σ2

Ḡ
= 1

1+(1−r) ρ
M (1−κ)T

. Also, for this choice of

St we obtain the elements of Ĝ to be zero mean independent
with Gaussian distribution. This gives (11) as the expression
for ρeff .
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APPENDIX II
PROOF OF PROPOSITION 2

First, from Proposition 1

ρeff =
κTρ[Mr + ρ(1 − κ)T ]

Tc(M + ρ(1 − κ)T ) + (1 − r)κTρM

=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Tρ
Tc−(1−r)M

(1−κ)κ+κ rM
T ρ

MTc+T ρTc
T ρ[Tc−(1−r)M]−κ

when Tc �= (1 − r)M

T 2ρ2

Tc(M+Tρ) [(1 − κ)κ + κ rM
Tρ ]

when Tc = (1 − r)M.

Consider the following three cases for the maximization of
ρeff over 0 ≤ κ ≤ 1.
Case 1. Tc = (1 − r)M :

We need to maximize (1 − κ)κ + κ rM
Tρ over 0 ≤ κ < 1.

The maximum occurs at κ = κ0 = min{ 1
2 + rM

2Tρ , 1}. In this
case

ρeff =
T 2ρ2

(1 − r)M(M + Tρ)
[κ0

rM

Tρ
+ κ0(1 − κ0)]. (35)

Case 2. Tc > (1 − r)M :
In this case,

ρeff =
Tρ

Tc − (1 − r)M
(1 − κ)κ + κη

γ − κ
(36)

where η = rM
Tρ and γ = MTc+TρTc

Tρ[Tc−(1−r)M ] > 1. We need to

maximize (1−κ)κ+κη
γ−κ over 0 ≤ κ ≤ 1 which occurs at κ =

min{γ −
√

γ2 − γ − ηγ, 1}. Therefore,

ρeff =
Tρ

Tc − (1 − r)M
(
√

γ −
√

γ − 1 − η)2 (37)

when κ < 1. When κ = 1 we obtain Tc = T . Substituting
κ = 1 in the expression for ρeff

ρeff =
κTρ[Mr + ρ(1 − κ)T ]

Tc(M + ρ(1 − κ)T ) + (1 − r)κTρM
(38)

we obtain ρeff = rTρ
T+(1−r)Tρ .

Case 3. Tc < (1 − r)M :
In this case,

ρeff =
Tρ

(1 − r)M − Tc

(1 − κ)κ + κη

κ − γ
(39)

where γ = MTc+TρTc

Tρ[Tc−(1−r)M ] < 0. Maximizing (1−κ)κ+κη
γ−κ over

0 ≤ κ ≤ 1 we obtain κ = min{γ +
√

γ2 − γ − γη, 1}.
Therefore, when κ < 1

ρeff =
Tρ

Tc − (1 − r)M
(
√−γ −

√
−γ + 1 + η)2 (40)

Similar to the case Tc < (1 − r)M , when κ = 1 we obtain
Tc = T and ρeff = rTρ

T+(1−r)Tρ .

APPENDIX III
PROOF OF PROPOSITION 3

Note that optimization over Tc makes sense only when κ <
1. If κ = 1 then Tc obviously has to be set equal to T . First,
we examine the case Tc > (1 − r)M . The other two cases
are similar. Let Q = min{M,N} and let λi denote the ith

non-zero eigenvalue of H1H†
1

M , i = 1, . . . , Q. Then we have

Ct ≥
Q∑

i=1

Tc

T
E log(1 + ρeffλi).

Let Cl denote the RHS in the expression above. The idea is
to maximize Cl as a function of Tc. We have

dCl

dTc
=

Q∑
i=1

{
1
T

E log(1 + ρeffλi) + (41)

Tc

T

dρeff

dTc
E

[
λi

1 + ρeffλi

]}
.

Now, ρeff for Tc > (1 − r)M is given by

ρeff =
Tρ

Tc − (1 − r)M
(
√

γ −
√

γ − 1 − η)2

where γ = MTc+TρTc

Tρ[Tc−(1−r)M ] and η = rM
Tρ . It can be easily

verified that

dρeff

dTc
=

Tρ(
√

γ −√
γ − 1 − η)2

[Tc − (1 − r)M ]2
×[√

(1 − r)M(M + Tρ)
Tc(Tc + Tρ + rM)

− 1

]
.

Therefore,

dCl

dTc
=

1
T

Q∑
i=1

E

[
log(1 + ρeffλi) − (42)

{
ρeffλi

1 + ρeffλi

Tc

Tc − (1 − r)M
×(

1 −
√

(1 − r)M(M + Tρ)
Tc(Tc + Tρ + rM)

)}]
.

Since, Tc

Tc−(1−r)M

[
1 −

√
(1−r)M(M+Tρ)
Tc(Tc+Tρ+rM)

]
< 1 and log(1 +

x)−x/(1+x) ≥ 0 for all x ≥ 0 we have dCl

dTc
> 0. Therefore,

we need to increase Tc as much as possible to maximize Cl

or Tc = T − M .
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[21] S. Verdú, “Spectral efficiency in the wideband regime,” IEEE Trans. Inf.
Theory. vol. 48, no. 6, pp. 1319–1343, June 2002.

[22] L. Zheng and D. N. C. Tse, “Packing spheres in the Grassmann
manifold: a geometric approach to the non-coherent multi-antenna
channel,” IEEE Trans. Inf. Theory, vol. 48, no. 2, pp. 359–383, Feb.
2002.

Mahesh Godavarti was born in Jaipur, India in
1972. He received the B.Tech degree in Electrical
and Electronics Engineering from the Indian Insti-
tute of Technology, Madras, India in 1993 and the
M.S. degree in Electrical and Computer Engineering
from the University of Arizona, Tucson, AZ in
1995. He was at the University of Michigan from
1997 to 2001 where he received the M.S. degree
in Applied Mathematics and the Ph.D. degree in
Electrical Engineering. Currently, he is employed
as DSP Algorithm Manager with Ditech Networks,

Mountain View, CA, where he is researching new algorithms for speech
enhancement. His research interests include topics in speech and signal
processing, communications and information theory.

Alfred O. Hero, III was born in Boston, MA,
in 1955. He received the B.S. degree in electri-
cal engineering (summa cum laude) from Boston
University in 1980 and the Ph.D. from Princeton
University, Princeton, NJ, in 1984, both in electrical
engineering. While at Princeton, he held the G.V.N.
Lothrop Fellowship in Engineering. Since 1984 he
has been with the University of Michigan, Ann
Arbor, where he is a Professor in the Department
of Electrical Engineering and Computer Science
and, by courtesy, in the Department of Biomedical

Engineering and the Department of Statistics. He has held visiting positions
at Massachusettes Institute of Technology (2006), I3S University of Nice,
Sophia-Antipolis, France (2001), Ecole Normale Supérieure de Lyon (1999),
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