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ABSTRACT

Multimodal Image Fusion and Its Applications

by

Yu-Hui Chen

Chair: Alfred O. Hero III

Image fusion integrates different modality images to provide comprehensive in-

formation of the image content, increasing interpretation capabilities and producing

more reliable results. There are several advantages of combining multi-modal im-

ages, including improving geometric corrections, complementing data for improved

classification, and enhancing features for analysis...etc.

This thesis develops the image fusion idea in the context of two domains: material

microscopy and biomedical imaging. The proposed methods include image modeling,

image indexing, image segmentation, and image registration. The common theme be-

hind all proposed methods is the use of complementary information from multi-modal

images to achieve better registration, feature extraction, and detection performances.

Specifically, this thesis makes the following contributions:

Material Microscopy:

(1) In Chapter III, we propose a statistical model to describe and analyze

the crystal orientations which possess certain symmetry properties associ-

xvii



ated with the materials particular polycrystalline structure. The proposed

model forms the basis of the following image indexing and segmentation.

The experimental results demonstrate that the proposed model and the

EM algorithm is able to provide accuracy parameters estimation in the

presence of symmetry invariance.

(2) In Chapter IV, we propose a novel dictionary-based indexing method for

Electron Backscatter Diffraction (EBSD) data. The proposed dictionary

matching approach permits segmentation, anomaly detection, and index-

ing to be performed in a unified manner with the additional benefit of

uncertainty quantification.

(3) In Chapter V, an anomaly-driven registration algorithm based on the sta-

tistical model is developed to address the correspondence problem between

different modalities. This approach allows the registration to be done at

the region level to facilitate data fusion while avoiding the need for in-

terpolation. We demonstrate that our approach has significantly better

registration and segmentation accuracy than the state-of-the-art registra-

tion and segmentation methods on microscopy images.

Biomedical Imaging:

(1) In Chapter VI, we develop a registration-based method which utilizes the

information from different modalities to estimate and compensate the head

movement during functional MRI scan. The proposed method possesses

both the bias reduction properties of the slice-to-volume registration ap-

proach and the variance reduction properties of the volume-to-volume

registration approach. The proposed approach show significant better

head motion estimation accuracy as compared to previous registration-

only methods.

xviii



CHAPTER I

Introduction

1.1 Motivation

In recent years, the development of imaging sensors and the improvement of com-

putational power allow us to use different sensing modalities and process them to-

gether, giving us the ability to study the world from the smallest microparticles to the

largest universe. The main advantage of combining multiple sensor modalities is that

the complementary information carried by each modality together provide a better

and more complete view of the image content. The task of intelligently combining

multi-modal images to enhance the view of an object with extended information is

referred to as Image Fusion (Smith and Heather , 2005). Image fusion has been

widely applied and proven its powerfulness in different research areas, such as, com-

puter vision (Han et al., 2013), multimedia analysis (Atrey et al., 2010), biomedical

research (Sui et al., 2012), material sciences (Wortmann, 2009).

One of the most challenging and necessary tasks in image fusion is image registra-

tion. The images in different modalities are acquired through different sensors, imag-

ing mechanisms, or optical paths, resulting in images that have different resolutions,

disparities and distortions. For example, in imaging microstructures of materials,

Scanning Electron (SE) imaging have spatial resolution of 0.5nm per pixel while En-

ergy Dispersive X-ray Spectroscopy (EDS) image only has spatial resolution of 2µm
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but carries information about the chemistry of the material for each pixel (Bertin,

1978). For such images to be accurately fused and analyzed simultaneously, it is im-

portant that they be properly aligned with each other spatially. This thesis introduces

new methods for fusion of single and multimodality images, including multi-modal

image registration, image classification, image parameter estimation, and image seg-

mentation. These are developed in the context of two domains: material microscopy

and biomedical imaging as described in the following sections.

1.2 Anomaly-driven Image Fusion in Materials

One important objective of materials data analysis is to discover anomalies. We

define anomalous events in materials as unusual material properties having exceed-

ingly low probability relative to some nominal distribution. For instance, unusually

small or large grain size/shape distributions, unusual crystal orientation distribution

over a grain, unusual carbide particle distribution. Detection of anomalies is the first

step towards identifying defects that could possibly weaken the strength of the mate-

rials or cause fatigue failure while in operation. Accurate detection and identification

of anomalies can lead to better safety and reliability of materials and can lower the

cost of production. Image fusion enhances the power of anomaly detection since the

anomalies may be noticeable only when the information across modalities is suitably

combined.

The first topic developed in this thesis is anomaly-driven fusion in materials sci-

ence. Specifically, we propose an anomaly-driven image fusion framework to per-

form the task of material microscopy image analysis and anomaly detection. This

framework is based on a probabilistic model that enables us to index, process and

characterize the data with systematic and well-developed statistical tools. We briefly

introduce each of these chapters below.
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1.2.1 Statistical Estimation and Clustering of Group-invariant Orienta-

tion Parameters

Estimation of crystal orientation is one of the fundamental objectives of polycrys-

talline materials science. We show in Chapter III how this problem can be cast as a

parametric statistical estimation problem where the observed random variable (mea-

sured crystal orientation) has a distribution that is invariant to the actions of a finite

spherical point symmetry group. In Chapter III, we first show that any such distribu-

tion must satisfy a restricted finite mixture representation and then specialize the case

of distributions over the sphere that are invariant to the actions of a finite spherical

symmetry group to obtain a representation of the class of group-invariant spherical

distributions. One class of group-invariant distributions is the group invariance ex-

tension of the Von-Mises Fisher (VMF) or Watson distributions (Mardia and Jupp,

1999). These distributions are finite mixtures of VMF or Watson distributions that

are parameterized by location and scale parameters that specify the distribution’s

mean orientation and its concentration about the mean, respectively. These parame-

ters can be estimated using an Expectation Maximization (EM) maximum likelihood

(ML) estimation algorithm. The EM-ML algorithm can be further used to cluster

samples which come from mixtures of multiple group-invariant distributions having

different parameters. It is shown that the proposed model is useful to model crystal

orientations under the spherical point symmetry group associated with the crystal

form, e.g., cubic or octahedral or hexahedral. We establish the advantages of this

model through simulations and experiments for data acquired by EBSD microscopy

of a polycrystalline Nickel alloy sample.

1.2.2 A Dictionary Approach to EBSD Indexing

Next, we propose a framework for indexing of grain and sub-grain structures

in EBSD images of polycrystalline materials. In Chapter IV, we describe a novel
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approach that is based on a previously introduced physics-based forward model

by (Callahan and De Graef , 2013) relating measured patterns to grain orientations

(Euler angle). The forward model is tuned to the microscope and to the crystal sym-

metry group. We discretize the domain of the forward model onto a dense grid of

Euler angles and for each measured pattern we identify the most similar patterns in

the dictionary. These patterns are used to identify boundaries, detect anomalies, and

index crystal orientations. The statistical distribution of these closest matches is used

in an unsupervised binary decision tree (DT) classifier to identify grain boundaries

and anomalous regions. Indexing is accomplished by computing the mean orien-

tation of the closest dictionary matches to each pattern. The mean orientation is

estimated using our proposed group-invariant model of Chapter III with a maximum

likelihood approach. The proposed dictionary matching approach permits segmen-

tation, anomaly detection, and indexing to be performed in a unified manner with

the additional benefit of uncertainty quantification. We demonstrate the proposed

dictionary-based approach on a Ni-base IN100 alloy.

1.2.3 Coercive Region-level Registration for Multi-modal Images

After the microscopy images are indexed and segmented, the misalignment prob-

lem between modalities needs to be addressed before fusing their information. In

Chapter V, we propose a coercive approach to simultaneously register and segment

multi-modal images that share similar spatial structure. This novel approach allows

the registration to be done at the region level to facilitate data fusion while avoiding

the need for interpolation. The algorithm performs alternating minimization of an ob-

jective function defined by the statistical model specific to each modality. Hypothesis

tests are developed to determine whether to refine segmentations by splitting regions.

We demonstrate that our approach has significantly better registration and segmen-

tation accuracy than the state-of-the-art registration and segmentation methods for
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microstructure imaging in materials science.

1.3 Multi-modal Registration for Biomedical Images

The second part of the thesis focuses on the multi-modality biomedical image reg-

istration problem. Medical imaging has been an important component for biomedical

research, clinical diagnosis, and surgical procedures planning and evaluating. Many

different technologies have been developed for biomedical imaging, such as X-ray,

Computed Tomography (CT), Magnetic Resonance Imaging (MRI), and Ultrasound

(US). It has been proven that integrating over multi-modal images is valuable for

disease characterization (Maintz and Viergever , 1998; Hill et al., 2001; Oliveira and

Tavares , 2014). In this thesis we focus on the multi-modal registration problem for

functional MRI (fMRI) brain images which helps us to analyze different modality

images for the brain activation detection task.

1.3.1 Multimodality Motion Compensated fMRI Using Slice-to-Volume

Registration

Head movement during fMRI image acquisition introduces artificial signal changes

and misalignment between images that impedes activation detection and localization

in brain studies. Previous work (Park et al., 2004) registers the observed Echo Planar

Imaging (EPI) slices onto an anatomical volume to estimate and compensate the head

motion. Due to the fact that the objective function, commonly defined as Mutual

Information (Maes et al., 1997), used in the registration process is usually not convex

and has many local maxima, incorporation of information concerning continuous head

motion can improve the registration result. We explore the challenging case where

the head motion is estimated from the fMRI data and an anatomical pre-scan MRI

image taken prior to the activation study. In Chapter VI, we develop a Gaussian

particle filter based head motion tracking algorithm, which uses a state space model
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to enforce the smooth motion constraint. This results an algorithm that has im-

proved registration and activation detection accuracy as compared to state-of-the-art

approaches.

1.4 Outline of the Thesis

The thesis is composed of two main topics: I. Anomaly-driven Image Fu-

sion in Material Microscopy Images and II. Multi-modal Registration

for Biomedical Images. In Chapter II, we review background of image fusion in

these two domains and discuss different types of frameworks to fuse the images. The

first topic consists of Chapter III, IV and V. In Chapter III. we propose a statistical

model to describe and analyze the crystal orientations which posses certain sym-

metry properties associated with the materials particular polycrystalline structure;

In Chapter IV, we propose a novel dictionary-based indexing method for Electron

Backscatter Diffraction (EBSD) data; In Chapter V, an anomaly-driven registration

algorithm based on the statistical model is developed to address the correspondence

problem between different modalities. The second topic is discussed in Chapter VI,

in which we develop a registration-based method which utilizes the information from

different modalities to estimate and compensate the head movement during fMRI

scan. In Chapter VII, we conclude this thesis and give possible directions for future

works.

1.5 Publications

The publications that have come out of research presented in this thesis are listed

as follows:

[1] Chen, Y.-H., D. Wei, G. Newstadt, M. De Graef, J. Simmons, and A. O. Hero III

(2015c), Parameter Estimation in Spherical Symmetry Groups, in International
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Conference on Acoustic Speech and Signal Processing (ICASSP) Oral Presen-

tation

[2] Chen, Y.-H., D. Wei, G. Newstadt, M. De Graef, J. Simmons, and A. O. Hero III

(2015d), Parameter Estimation in Spherical Symmetry Groups, Signal Process-

ing Letters, IEEE, 22 (8), 1152–1155, doi: 10.1109/LSP.2014.2387206

[3] Chen, Y.-H., D. Wei, G. Newstadt, M. De Graef, J. Simmons, and A. O. Hero III

(2015e), Statistical Estimation and Clustering of Group-invariant Orientation

Parameters, in 18-th International Conference on Information Fusion (Fusion)

Oral Presentation

[4] Chen, Y.-H., S. U. Park, D. Wei, G. Newstadt, M. A. Jackson, J. P. Simmons,

M. De Graef, and A. O. Hero (2015a), A Dictionary Approach to Electron

Backscatter Diffraction Indexing, Microscopy and Microanalysis, 21 (03), 739–

752

[5] Chen, Y.-H., D. Wei, G. Newstadt, M. De Graef, J. Simmons, and A. O. Hero III

(2015b), Coercive Region-level Registration for Multi-modal Images, in Inter-

national Conference on Image Processing (ICIP) Top 10% paper

[6] Chen, Y.-H., R. Mittelman, B. Kim, C. Meyer, and A. O. Hero III (2016b), Par-

ticle Filtering for Slice-to-volume Motion Correction in EPI Based Functional

MRI, in International Conference on Acoustic Speech and Signal Processing

(ICASSP), p. submitted

[7] Chen, Y.-H., R. Mittelman, B. Kim, C. Meyer, and A. O. Hero III (2016a),

Multimodal MRI Neuroimaging with Motion Compensation Based on Particle

Filtering, IEEE Transaction on Medical Image, p. submitted
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CHAPTER II

Overview of Image Fusion

2.1 Concepts of Image Fusion

A general description of image fusion is to “intelligently combine two or more dif-

ferent image modalities by using a certain algorithm to achieve refined or improved

information for decision making” (Van Genderen and Pohl , 1994; Hall and McMullen,

2004). The integration of different modalities provides more information than one can

derive from each of the single modality image alone, increasing interpretation capa-

bilities and more reliable results. The idea of image fusion has been widely applied

in different research areas including, biology, computer vision, remote sensing...etc.

In materials science, due to the fact that the material’s response and behavior in-

volve a bunch of physical phenomena with no single overarching modeling approach,

integrating signals over different modalities gives us comprehensive information for

characterizing the materials (Fish, 2006). In biomedical imaging, fusion over multi-

modal images has been proposed and proven that the unified, integrated information

is valuable for disease characterization (Segal et al., 2007; Viswanath et al., 2012;

Gevaert et al., 2012; Rusu et al., 2013).

Image fusion is capable of leading to more accurate data, increased confidence, re-

duced ambiguity, improved reliability, and improved classification (Keys et al., 1990;

Rogers and Wood , 1990). There are several objectives of image fusion as pointed out
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in (Pohl and Van Genderen, 1998). For example, image fusion can be used as a tool to

increase the spatial resolution (Franklin and Blodgett , 1993; Pellemans et al., 1993).

Also, fusion of modalities can enhance certain features or substitute missing informa-

tion not visible in either of the single modality (Leckie and others , 1990; Aschbacher

and Lichtenegger , 1990). The goal of the first topic of this thesis (Anomaly-driven

Image Fusion in Material Microscopy Images) is to utilize complementary

information from different microscopy imaging modalities to detect anomaly/defect

in materials. Besides, it can be used to improve geometric corrections and regis-

tration accuracy (Strobl et al., 1990; Ehlers , 1991). The second topic of this thesis

(Multi-modal Image Registration in Biomedical Images) is to take advan-

tage of multi-modal functional MR images to improve the registration for head motion

estimation and perform better motion compensated images reconstruction for brain

activity analysis.

According to the stage at which the fusion takes place, image fusion can be catego-

rized into three different types: Pixel-level fusion, Feature-level fusion and Decision-

level fusion (Pohl and Van Genderen, 1998; Mitchell , 2007), described as follows:

Pixel-level fusion

Image fusion at pixel level means fusion at the lowest processing level referring

to the merging of measured physical parameters as illustrated in Fig 2.1(a). The

alignment and geocoding of different modality data plays an important role because

the image misalign may introduce artificial noise and falsify the interpretation af-

ter fusion. Therefore, pixel-level methods fuse two images by transforming one of

the images in such a way to make it the most similar to the other with respect to

some objective measure of similarity. Specifically, a parameterized class of transfor-

mations is specified, e.g., rotation, affine linear, rigid body transform (Hill et al.,

2001), or smooth non-linear (Meyer et al., 1997; Rueckert et al., 1999; Rohr et al.,
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(a) Pixel-level fusion (b) Feature-level fusion (c) Decision-level fusion

Figure 2.1: Three types of image fusion: (a) Pixel-level fusion merges the measured
physical parameters at the lowest processing level. (b) Feature-level fusion extracts
objects of interest in the various image modalities and then fuses the objects for
further assessment using statistical approaches. (c) Decision-level fusion uses the
annotated/labeled data where the input images are processed individually for infor-
mation extraction and applies decision rules to combine the information to reinforce
common interpretation and provide a better understanding of the observed objects.

2001; Zitova and Flusser , 2003), and the parameters are varied to give the highest

similarity between the images. For example, in material microscopy images, Latham

et al. use the correlation coefficient as the similarity metric to register a BSE image

to a X-ray micro-CT images (Latham et al., 2008); Cao et al. take mutual informa-

tion as the metric to register between BSE, SEM and TEM images for correlative

microscopy analysis (Cao et al., 2014). In biomedical images, image registration has

been applied to many different modalities, e.g., X-ray, ultrasound, magnetic resonance

imaging (MRI), computed tomography (CT), positron emission tomography (PET)

images...etc (Maintz and Viergever , 1998; Hill et al., 2001; Oliveira and Tavares ,

2014).

We propose a new pixel level fusion algorithm in Chapter VI where the similarity

measure is an empirical estimate of the mutual information and we utilize the com-

plimentary information between modalities to better estimate and compensate the

artificial noise introduced by head motion for brain MRI images.
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Feature-level fusion

Fusion at feature level first extracts objects of interest in the various image modal-

ities, e.g., using segmentation procedures. These similar objects (e.g., regions) from

different modality images are then fused for further assessment using statistical ap-

proaches as illustrated in Fig 2.1(b). The extracted features are more informative

than single pixel since they serve as meaningful units that describe the content. For

example, the grain regions in material microscopy images determine the material

mechanical properties (Rice, 2000). Many different segmentation algorithms have

been developed for materials microscopy and biomedical images. For example, the

watershed segmentation algorithm is proposed and applied on TEM and SEM im-

ages to find cleavage fractures in steel (Beucher and others , 1992); Voronoi-based

approach (Bachmann et al., 2011) has been widely used to segment the grains for

EBSD image; The stabilized inverse diffusion equations (SIDEs) algorithm has been

demonstrated to be effective on ion-induced secondary electrons (ISE) images to find

the grain regions in Ni samples (Huffman et al., 2008; Chuang et al., 2008); Kapur

et. al. (Kapur et al., 1996) combined adaptive segmentation, binary morphology, and

active contour methods to segment the brain tissues from MR images; An improved

watershed transform algorithm which utilizes the information from atlas registration

has been proposed to segment the knee cartilage and gray/white matter in MR im-

ages (Grau et al., 2004); Yong et. al. (Yong et al., 2010) fused the MR and CT images

through wavelet transform features and construct the fused image which is more ro-

bust to noise and provides more accurate clinical information. Image fusion after

feature extraction requires the correspondences of the features or regions between

modalities which is not easily obtained, especially when these extraction algorithms

produce inconsistent results in different modalities.
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Decision-level fusion

Decision-level fusion uses the annotated/labeled data where the input images are

processed individually for information extraction as illustrated in 2.1(c). Decision

rules are applied to combine the information to reinforce common interpretation and

provide a better understanding of the observed objects (Shen, 1990). The main ad-

vantage of this approach is that the higher level representations of the data summarize

the object’s characteristics (Moissinac et al., 1995; Groeber et al., 2008, 2009; Groeber ,

2011), making multi-modality fusion more robust and reliable. In many applications,

decision-level fusion is considered as the primary multi-modal data fusion algorithm.

For example, Movellan et al. applied this algorithm in automatic speech recogni-

tion to prevent catastrophic fusion (Movellan and Mineiro, 1998); An indirect tire

pressure monitoring system using decision-level fusion is proposed in (Persson et al.,

2002); Inza et al. adopted similar approach in the feature selection task in DNA mi-

croarray experiments (Inza et al., 2004). A diagnostic system which is composed of

self-organizing map classifiers, and combines techniques based on a confidence mea-

sure has been proposed to improve diagnostic accuracy (Christodoulou et al., 1999).

Decision-level fusion can also be fed back to the segmentation and annotation

stages in an iterative manner in order to improve these up-stream operations, re-

sulting in improved fusion. We propose the anomaly-driven image fusion which is a

type of decision-level fusion with feedback. Our approach utilizes the decision-level

annotation as feedback to the feature extraction/segmentation stage, significantly

improving the segmentation result.

In Section 2.2, we introduce multi-modal image fusion in materials and our new

anomaly-driven image fusion framework. In Section 2.3, we present multi-modal

image fusion in biomedical images and our proposed multi-modal registration for

head motion compensation approach.
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2.2 Multi-modal Image Fusion in Materials

The applications of advanced materials in national security, human health and

clean energy are important to human well-being and to achieving global competitive-

ness. President Obama launched the Materials Genome Project (MGI) in 2011 to

replicate the successes of Human Genome Project (HGP) in computational biology

onto computational materials science, aiming to “discover, develop, manufacture, and

deploy advanced materials at least twice as fast as possible today, at a fraction of the

cost.” To achieve the goal, MGI proposed to develop new integrated computational,

experimental, and data informatics tools as an open source platform, which allow re-

searchers to share their knowledge and collaborate conveniently. The developed tool

could be used to predict materials behavior and construct the taxonomy of materials

properties as well as engineering principles. In order to identify fundamental mech-

anisms and define the models that describe materials behavior, gathering different

signals of the materials and analyzing the integrated data is an essential step.

One of the important purposes of material characterization is anomaly detec-

tion. Detecting the anomalies help us understand whether the produced material

has enough strength, tensility or other physical properties permitting it to be safely

operated under the situation for which it is designed. Early-stage anomaly detec-

tion further enables us to discover possible failures in production time that we could

change or adjust the process, achieving higher product yield and lower production

cost. In the detection process, two types of events are of prime interest: rare event

and anomalous events. Rare events occur naturally in tails of nominal feature distri-

bution and may presage anomalies. For example, crack formation of a sample may

start as a rare event that it would be very helpful if we are able to identify potential

crack before it develops. Anomalous events are the observations with exceedingly low

probability in nominal distribution, indicating incipient failures. Fusion over multi-

modal data is able to provide more comprehensive information, resulting in higher
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detection power. For example, large-scale carbides exist along the grain boundary can

impair the material strength. This type of anomaly requires the detection of large

carbide which is only obvious in Scanning Electron image and the detection of grain

boundary which is distinct in Electron Backscatter Diffraction image.

2.2.1 Description of SEM modalities
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Figure 2.2: (a) Backscattered Electron (BSE) image in gray scale. There are lots of
surface textures (dots and lines) revealed by BSE. (b) Electron Backscatter Diffraction
(EBSD) image in Inverse Pole Figure (IPF) coloring scheme. Notice that there are
less textures as in BSE but the grain regions and boundaries are much clearer in
EBSD. (c) Spectral unmixing result of Energy-Dispersive X-Ray (EDS) data. It has
very little grain structure or precipitates information as BSE or EBSD but it has
higher contrast for the region of the sample with different chemical composition (two
black dots on the top left corner).

Scanning Electron Microscope produces microscopy images of a material by cap-

turing the signals coming from the interaction between the focused electron beam

and the atoms in the sample. By controlling the energy of the electron beam and

detecting the electrons interacted with the material in different ways, the signals are

able to reveal information of the sample in different aspects: Backscattered Electron

(BSE) imaging is more sensitive to the atomic mass of the nuclei but suffers lower sur-

face topographical characteristics resolution. As shown in Fig.2.2(a), the BSE image

shows clear textures of the sample which corresponds to the precipitates; Electron

Backscatter Diffraction (EBSD) is capable of determining the crystal orientation by
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capturing the diffracted electrons from atomic layers in crystalline materials. Figure

2.2(b) is the Inverse Pole Figure (IPF) coloring scheme of the EBSD crystal orien-

tation. We can see that it has less power to detect those precipitates but provides

very clear grain regions and grain boundaries; Energy-Dispersive X-Ray Spectroscopy

(EDS) records the energy spectrum of the sample, providing the information of the

chemical composition of the materials. Figure 2.2(c) shows the robust spectral un-

mixing (Newstadt et al., 2014) result for the EDS data with the same sample region

that it has very little precipitates information or grain structure as BSE or EBSD but

has higher contrast for the region in the sample with different chemical composition

(two black dots on the top left corner).

One important fact of these modalities is that they are usually acquired asyn-

chronously and have different spatial resolution. The actual resolution depends on

the electron beam diameter and the type of electron source, probe and the specimen.

In general, BSE image has the best spatial resolution of less than 0.5nm with scalar

value (intensity) for each pixel. EBSD is able to identify the pixel as small as 10nm,

where each pixel contains a small (e.g. 80×60 pixels2) gray scale image of diffraction

pattern. The diffraction patterns can be further translated to crystal orientation,

which has 3 degrees of freedom at each pixel location. EDS provides a spectrum (e.g.

vector of size 2048) for each pixel but has lower spatial resolution as 2µm. The differ-

ence in spatial resolution between different modality data complicates the process of

information fusion. Furthermore, due to the different experiment settings of the ma-

chines, e.g. electron beam incident angles or recorders, the acquired images may have

certain level of distortions. Many approaches have been proposed that use the fidu-

cial marks with manual and automated alignment tools to alleviate the misalignment

issue (Fung et al., 1996; Ress et al., 1999; Brandt et al., 2001). Recently, acquisition

methods which allow for simultaneous measurements of different signals have been de-

veloped. For example, Scanning Transmission Electron Microscopy (STEM) (Nellist ,
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2007; Pennycook and Nellist , 2011) can measure bright field, high angle dark field and

EDS spectra signals simultaneously; The TriBeam technique (Echlin et al., 2012) can

provide simultaneously SE, BSE, EDS and EBSD on a single microscopy platform.

However, even though these systems collect multi-modality data synchronously, the

differences in the physics of the image formation process in each modality require

compensation. For instance, ion-induced secondary electrons come from a shallower

sub-surface region while X-rays come from much deeper region in the sample. There-

fore, in order to fuse the multi-modal data, registration algorithms must be developed

to handle the different resolutions and compensate the misalignment between modal-

ities.

2.2.2 Anomaly-driven Fusion of Scanning Electron Microscopy Images

Possible observable features
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observed dataObservations with 
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Observations with 
high probability

Figure 2.3: The figure shows the relation between the distribution which models the
possible observations and the P -value of the actual observed data. The vertical coor-
dinate is the probability density of each outcome, calculated from the null hypothesis.
The P -value is the red area under the tail of the curve past the observed data point,
which is associated with testing the null hypothesis that T = 0 vs T > 0.

Anomaly-driven data fusion utilizes the anomaly information as feedback to drive

the image indexing, feature extraction and registration process. Here anomalies are
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defined as properties of the images that are inconsistent with a null hypothesis, e.g.,

homogeneity of the pixel values within a segmented region (a grain). As such the

theory of hypothesis testing (Neyman and Pearson, 1992) provides the framework

for anomaly-driven fusion. In this framework, a null hypothesis is defined and this

null hypothesis is tested using test statistics derived from the image samples, or

homologous subregions of these samples, in each modality. Under mild distributional

assumptions, the level of significance or P -value of the test statistic can be computed

for each modality and these P -values can be fused. The P -value is defined as the

probability, under the assumption of the null hypothesis, of obtaining a result equal to

or more extreme than what was actually observed (Fisher , 1934). For the materials

anomaly detection, the null hypothesis, H0, and the test statistic, T , is designed

according to our underlying knowledge about the normal event. Given the data,

we can calculate the observed test statistic tobs and evaluate the P -value. Figure 2.3

illustrates the P -value computation. The vertical coordinate is the probability density

of the test statistic under the null hypothesis. The P -value is the red area under the

tail to the right of the computed test statistic tobs of a given sample. If the null

hypothesis models the normal event accurately, then by thresholding the P -value at

various levels one can distinguish between the normal event, rare event and anomaly

event with prescribed level of statistical significance.

Hypothesis testing with P -value evaluation not only enables us to measure the

anomaly level quantitatively but also provides a natural way to fuse the information

from different modalities. Since the P -value represents the probability of observing a

sample test statistic at least as extreme as observed, the P -value associated with M

statistically independent modalities is given by the exclusion/inclusion principle as:

Pfuse = 1−
M∏
i=1

(1− Pi), (2.1)
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where Pi are the P -values for theM different modalities and Pfuse is the fused P -value.

The simplicity of (2.1) facilitates the fusion process and motivates our statistical based

anomaly-driven image fusion framework. The image modeling, indexing, registration,

and fusion will be illustrated in Chapter III, IV, V.

2.3 Multi-modal Image Fusion in Biomedical Imaging

The main objective of medical image fusion is to increase the clinical applicability

of medical images for diagnosis and assessment of medical problems, advancing the

research and study of human body, organs, and cells (Constantinos et al., 2001; James

and Dasarathy , 2014). The process of medical image fusion involves registering and

combining multiple imaging modalities to improve the imaging quality and reduce re-

dundancy, providing more accurate and comprehensive information. The signals from

multi-modal images offer a greater diversity of the features which are helpful for med-

ical analysis applications, e.g., brain tissue mapping and volume identification (Kok

et al., 1996; Barra and Boire, 2000), breast cancer detection and surgery (Raza et al.,

2005, 2006; Kirova et al., 2011), prostate localization and motion modeling (Hervas

et al., 2004; Hu et al., 2011)...etc.

There are several medical imaging modalities which can serve as primary inputs

to image fusion studies. Practically, it is impossible to capture every aspects of the

object from single modality and therefore combining the information from different

modalities ensure clinical accuracy and robustness of the analysis and resulting diag-

nosis. Some of the major modalities are listed as follows: (a) Computed Tomography

(CT): an imaging method that utilizes multiple X-ray projections taken from different

angles to construct detailed cross-sectional images; (b) Positron Emission Tomogra-

phy (PET): a nuclear imaging technique which provides information about how tissues

and organs are functioning; (c) Ultrasound: use high frequency sound waves’ echo

returned from body to create images of the inside of the body; (d) Magnetic Reso-
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nance Imaging (MRI): use radio waves and a magnetic field to create detailed images

of organs and tissues (Bushberg and Boone, 2011).

2.3.1 Multi-modal Head Motion Compensated Functional MRI Using

Slice-to-Volume Registration

Magnetic resonance imaging (MRI) uses a magnetic field and pulses of radio wave

energy to create images of organs and structures inside the body, providing different

information from X-ray, ultrasound, or computed tomography scan. The advantage

of MRI is its safety for the subject since it does not involve any exposure to radiation.

Furthermore, it has high accuracy for the soft tissue structures such as brain, heart

and eyes. However, the MRI images are relative sensitive to movement, increasing the

difficulty of assessing organs that involve movement (James and Dasarathy , 2014).

Therefore, the image fusion techniques can overcome this limitation in a multi-modal

imaging environment, enabling reconstruction and prediction of the missing informa-

tion (Marshall and Matsopoulos , 1993; Erie et al., 1999; Lindseth et al., 2001).

There are several modalities in MRI images depending on which emitted signal

is captured. For example, T1-weighted image demonstrates differences in the T1

relaxation time which relies upon the longitudinal relaxation of a tissue’s net magne-

tization vector. In T1-weighted image, fat appears bright while water has low signal

and appears dark. On the other hand, T2-weighted image highlights differences in

the T2 relaxation time, which relies upon the transverse relaxation of the net mag-

netization vector. Unlike T1-weighted image, water and fluid tend to be brighter in

T2-weighted image.

2.3.1.1 Functional MRI Image Acquisition

Functional MRI (fMRI) refers to the procedure which uses MRI technology to

measure brain activity by detecting associated changes in blood flow, called blood-
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oxygen-level dependent (BOLD) signal (Ogawa et al., 1990). Echo planar imaging

(EPI) (DeLaPaz , 1994) is a fast MR imaging technique captures T2-weighted signal

that allows acquisition of single images in as little as 20 − 100 msec. The excellent

temporal resolution of EPI makes it a favorable technique for fMRI. However, it is

more vulnerable to movement and geometric distortion (Schmitt et al., 1998) due to its

lower spatial resolution. Therefore, with the help of T1-weighted anatomical volume,

we can better reconstruct and compensate the noise introduced by head motion in

EPI images.

The image acquisition procedure could be separated into two parts. At first, the

subject is taken a full scan to get a higher resolution T1-weighted anatomical volume.

Secondly, the subject is asked to alternatively perform certain tasks (stimulation

period), e.g., finger tapping, picture naming, speaking...etc, and rest (control period).

During each of the period, we repeatedly take EPI images of the subject to capture

possible signal changes in activated region due to those tasks. Generally, this on-off

procedure is executed for several cycles until enough volumes in both stimulation and

control period are collected as illustrated in Fig 2.4.

2.3.1.2 Particle Filtering for Slice-to-volume Motion Correction in EPI

based fMRI

Head movement during scanning impedes activation detection in fMRI studies.

Head motion in fMRI acquired using slice-based Echo Planar Imaging (EPI) can be

estimated and compensated by aligning the images onto a reference volume through

image registration. However, registering EPI images volume to volume fails to con-

sider head motion between slices, which may lead to severely biased head motion

estimates. Slice-to-volume registration can be used to estimate motion parameters

for each slice by more accurately representing the image acquisition sequence. How-

ever, accurate slice to volume mapping is dependent on the information content of the
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Figure 2.4: The subject is taken a full scan to get a higher resolution T1-weighted
anatomical volume (left figure). The subject is asked to alternatively perform certain
tasks (stimulation period) and rest (control period). During each of the period, the
EPI images of the subject are repeatedly taken to capture possible signal changes
in activated region due to those tasks. This on-off (red-blue) procedure is executed
for several cycles until enough volumes in both stimulation and control period are
collected (right figure)

slices: middle slices are information rich, while edge slides are information poor and

more prone to distortion. In Chapter VI, we propose a Gaussian particle filter based

head motion tracking algorithm to reduce the image misregistration errors. The algo-

rithm uses a dynamic state space model of head motion with an observation equation

that models continuous slice acquisition of the scanner. Under this model the parti-

cle filter provides more accurate motion estimates and voxel position estimates. We

demonstrate significant performance improvement of the proposed approach as com-

pared to registration-only methods of head motion estimation and brain activation

detection.
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CHAPTER III

Statistical Estimation and Clustering of

Group-invariant Orientation Parameters

3.1 Introduction

In this chapter, we consider the estimation of parameters of distributions whose

domain is a particular non-Euclidean geometry: a topological space divided into M

equivalence classes by actions of a finite spherical symmetry group. A well known

example of a finite spherical symmetry group is the point group in 3 dimensions

describing the soccer ball, or football, with truncated icosahedral symmetry that also

corresponds to the symmetry of the Carbon-60 molecule. We formulates a general

approach to parameter estimation in distributions defined over such domains. First

we establish a restricted finite mixture representation for probability distributions

that are invariant to actions of any topological group. This representation has the

property that the number of mixture components is equal to the order of the group,

the distributions in the mixture are all parameterized by the same parameters, and

the mixture coefficients are all equal. This is practically significant since many reliable

algorithms have been developed for parameter estimation when samples come from

finite mixture distributions (Dempster et al., 1977).

∗This chapter is based on (Chen et al., 2015c,d,e)
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We illustrate the power of the representation for an important problem in materials

science: analysis of mean orientation in polycrystals. Crystal orientation characterizes

properties of materials including electrical conductivity and thermal conductivity.

Polycrystalline materials are composed of grains, of varying size and orientation,

where each grain contains crystal forms with similar orientations. The quality of

the material is mainly determined by the grain structure i.e. the arrangement of the

grains, their orientations, as well as the distribution of the precipitates. Thus accurate

estimation of crystal orientation of the grains is useful for predicting how materials

fail and what modes of failure are more likely to occur (De Graef and McHenry ,

2007).

The mean orientation of the grain, characterized for example by its Euler angles,

can only be specified modulo a set of angular rotations determined by the symme-

try group associated with the specific type of crystal, e.g. hexagonal, cubic. This

multiplicity of equivalent Euler angles complicates the development of reliable mean

orientation estimators. The problem becomes even harder when the orientations are

sampled from a region encompassing more than one grain such that the orientations

cluster over different mean directions. In such case, we would like to identify whether

the orientations are multi-modally distributed and also estimate the mean direction

for each cluster.

To handle the above problems, we extend the Von Mises Fisher (VMF) and Watson

models (Mardia and Jupp, 1999) under the proposed finite mixture representation,

and apply the expectation maximization (EM) maximum likelihood (ML) algorithm

for mixtures (Dempster et al., 1977). The proposed approach provides an accurate

iterative estimator of the mean Euler angle parameter and angular concentration

parameter of the extended distribution. Specifically, the extension is accomplished

as follows. We start with the standard spherical distribution model (VMF or Wat-

son), which is a density parameterized by location (angle mean) and scale (angle
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concentration) defined over the p-dimensional sphere. In this model, a point on the

sphere is specified by its direction vector, and the angle between two vectors is the

arc-cosine of the normalized inner product between them. The spherical symmetry

group extension is accomplished by applying the mixture representation to the stan-

dard distribution using the group of quaternion rotation matrices G, resulting in a

G-invariant distribution. Additionally, based on the G-invariant model, we propose

to use the Generalized Likelihood Ratio Test (GLRT) to detect the presence of mul-

tiple modes and a mixture of G-invariant models with EM algorithm to estimate the

parameters for each cluster.

The performance of the proposed EM orientation estimators is evaluated by simu-

lation and compared to other angle estimators. The ML orientation estimator is then

illustrated on Electron Backscatter Diffraction EBSD data collected from a Nickel

alloy whose crystal form induces the m3m cubic point symmetry group. We establish

that the ML orientation estimator results in significantly improved estimates of the

mean direction in addition to providing an accurate estimate of concentration about

the mean. Furthermore, with the extended mixture model, we are able to identify and

cluster multi-modally distributed samples more accurately than a standard K-means

algorithm.

The rest of this chapter is organized as follows. Section 3.2 describes group invari-

ant random variables and gives the mixture representation for their densities. Section

3.3 specializes to random variables invariant relative to actions of the spherical sym-

metry group and develops the G-invariant VMF and Watson distributions along with

EM-ML parameter estimator. The clustering methods based on the G-invariant dis-

tributions along with the GLRT are elaborated in Section 3.4. The crystallography

application and data simulation are presented in Section 3.5 and the experiment re-

sults are shown in Section 3.6. Section 3.7 has concluding remarks.
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3.2 Group-invariant random variables

Consider a finite topological group G = {G1, . . . , GM} of M distinct actions on

a topological space X , Gi : X → X and a binary operation ”*” defining the action

composition Gi∗Gj, denoted GiGj. G has the properties that composition of multiple

actions is associative, for every action there exists an inverse action, and there exists

an identity action (Birkhoff and Mac Lane, 1963). A real valued function f(x) on

X is said to be invariant under G if: f(Gx) = f(x) for G ∈ G. Let X be a random

variable defined on X . We have the following theorem for the probability density

f(x) of X.

Theorem III.1. The density function f : X → R is invariant under G if and only if

∃ h : X → R s.t.

f(x) =
1

M

M∑
i=1

h(Gix).
(3.1)

Proof: If (3.1) holds then f(Gx) = M−1
∑M

i=1 h(GiGx). Since G is a group GG = G

so that

f(Gx) =
1

M

M∑
i=1

h(GiGx) =
1

M

M∑
j=1

h(Gjx) = f(x) (3.2)

On the other hand, if f(Gx) = f(x),∀G ∈ G then let h(.) = f(.) we have

1

M

M∑
i=1

f(Gix) =
1

M

M∑
i=1

f(x) = f(x) (3.3)

Theorem III.1 says that any density f(x) that is invariant under group G can

be represented as a finite mixture of some function’s translates h(Gix) under the

group’s actions Gi ∈ G. This simple result has important implications on G-invariant

density estimation and parameter estimation. In particular it can be used to construct
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maximum likelihood estimators for parametric densities and kernel density estimators

of non-parametric G-invariant densities with finite sample guaranteed performance.

To illustrate the non-parametric case, assume that X has topological dimension d

with Lebesgue G-invariant density f(x). Define the symmetric non-negative second

order kernel function φ : X → R, i.e., φ(x) ≥ 0, φ(x) = φ(‖x‖, 0, . . . , 0),
∫
φ(x)dx =

1, and
∫
‖x‖2φ(x)dx < ∞. For the finite group G, define the G-invariant kernel

function K(x) = M−1
∑M

i=1 φ(Gix). Given a realization {xi}ni=1 of n i.i.d. samples

from f define the kernel density estimator f̂h(x) = n−1
∑n

i=1 K
(
x−xi

h

)
. Assume that

hn is a sequence of kernel widths that satisfies limn→∞ hn = 0 while limn→∞ hnn
d =∞.

Then, if f is smooth, using Thm III.1 and concentration results from (Devroye and

Lugosi , 2001), it can be shown that as n goes to infinity

E[‖f − f̂hn‖] = O(n−2/(4+d)),

where ‖f − f̂hn‖ =
∫
|f(x)− f̂hn(x)|dx is the `1 norm difference.

For the parametric case, let h(x;θ) be a density on X that is parameterized by a

parameter θ in a parameter space Θ. We extend h(x;θ) to a G-invariant density f

by using Thm. III.1, obtaining:

f(x;θ) =
1

M

M∑
i=1

hi(x;θ), (3.4)

where hi(x;θ) = h(Gix;θ). This density is of the form of a finite mixture of densities

hi(x;θ) of known parametric form where the mixture coefficients are all identical and

equal to 1/M . Maximum likelihood (ML) estimation of the parameter θ from an

i.i.d. sample {xi}ni=1 from any G-invariant density f can now be performed using

finite mixture model methods (McLachlan and Peel , 2004) such as the Expectation-

Maximization (EM) algorithm (Dempster et al., 1977) or the restricted Boltzman

machine (RBM) (Sohn et al., 2011).
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3.3 ML within a Spherical Symmetry Group

In this section we specialize to estimation of parameters for the case that the

probability density is on a sphere and is invariant to actions in a spherical symmetry

group. In Section 3.5 this will be applied to a crystallography example under spherical

distribution likelihood models for the mean crystal orientation. The measured and

mean orientations can be represented in three equivalent ways.

Euler angles E: The orientation is defined by a set of three successive rotations of a

reference unit vector about the specified axes (Eberly , 2008). Denote the Euler

angles as e = (α, β, γ) ∈ E , where α, γ ∈ [0, 2π] and β ∈ [0, π].

Quaternion Q: The quaternion representation describes the orientation as a 4D

vector on the 3D sphere (Altmann, 2005): q = (q1, q2, q3, q4) ∈ Q, where ‖q‖ =

1. The main advantage of this representation is that any rotation of q is simply

accomplished via left multiplication by a 4 × 4 orthogonal matrix Q called a

quaternion matrix.

Rodrigues Vector D: The Rodrigues vector describes the orientation by rotating

a reference vector along one direction v by angle θ according to the right hand

rule (Rodrigues , 1840). It is denoted as d = v tanw/2 = (d1, d2, d3) ∈ D, where

‖v‖ = 1 and w ∈ [0, π].

In this thesis, we use the quaternion representation to enable orientations to be

modeled by spherical distributions since the quaternion representation is a 4D vec-

tor on the 3-sphere S3. Any of the aforementioned orientation representations have

inherent ambiguity due to crystal symmetries. For example, if the crystal has cubic

symmetry, its orientation is only uniquely defined up to a 24-fold set of proper ro-

tations of the cube about its symmetry axes. These actions form a point symmetry

group, called 432, a sub-group of m3m. In quaternion space, since each orientation
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corresponds to two quaternions with different sign {q,−q}, these rotations reflections,

and inversions can be represented as a spherical symmetry group G of quaternionic

matrices {P1, . . . ,PM}, with sign symmetry such that Pi = −Pi−M/2 ∀M/2 < i ≤M ,

where M = 48 for cubic symmetry. Based on the symmetry group G, we can define

the distance between two quaternions under G as:

dG(q1,q2) = min
P∈G

arccos (qT1 Pq2) (3.5)

Two quaternions q1,q2 are called symmetry-equivalent to each other if they are

mapped to an equivalent orientation under G, i.e. dG(q1,q2) = 0. A fundamental

zone (FZ), also called the fundamental domain, is a conic solid subset of the sphere

that can be specified to disambiguate any particular orientation x. However, as will

be seen in Sec. 3.5, reduction of the entire data sample {xi}ni=1 to a FZ destroys infor-

mation necessary for maximum likelihood estimation: the entire G-invariant density

(3.4) must be used. In the following two subsections, we introduce two spherical

distributions: von Mises-Fisher and Watson distribution (Mardia and Jupp, 1999) to

model the orientations in quaternion space.

3.3.1 G-invariant von Mises-Fisher Distribution

The von Mises-Fisher (VMF) distribution arises in directional statistics (Mardia

and Jupp, 1999) as a natural generalization of the multivariate Gaussian distribution

to the (p − 1)-dimensional sphere S(p−1) ⊂ Rp, where p ≥ 2. The VMF distribution

is parameterized by the mean direction µ ∈ S(p−1) and the concentration parameter

κ ≥ 0:

φ(x;µ, κ) = cp(κ) exp (κµTx), (3.6)

where cp(κ) = κp/2−1

(2π)p/2Ip/2−1(κ)
and Ip(·) is the modified Bessel function of the first kind

of order p. Given an i.i.d sample {xi}ni=1 from the VMF distribution the ML estimator
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has the closed form expressions (Mardia and Jupp, 1999)

µ̂ =
γ

‖γ‖
, κ̂ = A−1

p

(
‖γ‖
n

)
, (3.7)

where γ =
∑n

i=1 xi and Ap(u) =
Ip/2(u)

Ip/2−1(u)
.

Let G be a group of symmetric actions {P1, . . . ,PM} acting on the quaternionic

representation of orientation on the 3-dimensional sphere S3. We extend the VMF

distribution (3.6) using the mixture representation in Thm III.1:

fv(x;µ, κ) =
1

M

M∑
m=1

φ(Pmx;µ, κ) (3.8)

=
1

M

M∑
m=1

φ(x; Pmµ, κ) (3.9)

where in going from (3.8) to (3.9) we used the inner product form µTx in (3.6) and the

symmetry of Pm. The expression (3.9) for the extended VMF distribution is in the

form of a finite mixture of standard VMF distributions on the same random variable

x having different mean parameters µm = Pmµ but having the same concentration

parameters κ.

The finite mixture (3.9) for the G-invariant density fv(x;µ, κ) is in a form for

which an EM algorithm (Dempster et al., 1977) can be implemented to compute the

ML estimates of µ and κ. Denoting the parameter pair as ω = {µ, κ}, the EM

algorithm generates a sequence {ω(k)} of estimates that monotonically increase the

likelihood. These estimates are given by ω(k+1) = amaxωES|X,ω(k) [logL(ω; {xi, si})],

where si is a latent variable assigning xi to a particular mixture component in (3.9)

and L(ω; {xi, si}) is the likelihood function of ω given the complete data {xi, si}ni=1.
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Specifically,

ES|X,ω[logL(ω; {xi, si})] (3.10)

=
n∑
i=1

M∑
m=1

ri,m(log cp(κ) + κ(Pmµ)Txi),

where ri,m = P (si = m|xi,ω). The EM algorithm takes the form where the detail

derivation is given in Appendix B:

E-step:

ri,m =
φ(xi; Pmµ, κ)∑M
l=1 φ(xi; Plµ, κ)

,m ∈ {1, 2, . . . ,M} . (3.11)

M-step:

µ̂ =
γ

‖γ‖
, κ̂ = A−1

p

(
‖γ‖
n

)
, (3.12)

γ =
n∑
i=1

M∑
m=1

ri,mPT
mxi. (3.13)

Notice that the proposed mixture has fixed mixing weights 1/M and shared con-

centration parameter κ, and the mean directions in different mixtures are connected

through the symmetry operators Pm. Therefore, the proposed model has much fewer

parameters need to be estimated than usual EM algorithm.

The E and M-step can be further simplified by exploiting the aforementioned sign
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symmetry of G. Equation (3.13) in M-step can be re-written as:

γ =
n∑
i=1

M∑
m=1

ri,mPT
mxi

=
n∑
i=1

M/2∑
m=1

ri,mPT
mxi − ri,M

2
+mPT

mxi


=

n∑
i=1

M/2∑
m=1

sinh (κ(Pmµ)Txi)∑M/2
l=1 cosh (κ(Plµ)Txi)

PT
mxi,

(3.14)

where sinh, cosh are the hyperbolic sinusoidal functions. Equation (3.11) in E-step is

simplified as:

r′i,m =
sinh (κ(Pmµ)Txi)∑M/2
l=1 cosh (κ(Plµ)Txi)

,m ∈
{

1, 2, . . . ,
M

2

}
. (3.15)

The results in Section 3.6 will demonstrate the computational improvement due

to the simplification.

3.3.2 G-invariant Watson Distribution

As described at the beginning of this section each orientation corresponds to two

quaternions with different sign, which is equivalent to an axis of the sphere. For axial

data it is more natural to use the Watson distribution (Watson, 1965), which models

the probability distribution of axially symmetric vectors on the (p − 1)-dimensional

unit sphere, i.e. ±x ∈ Sp−1 are equivalent. Similar to VMF, the distribution is

parametrized by a mean direction ±µ ∈ Sp−1, and a concentration parameter κ ∈ R.

Its probability density function is

Wp(x;µ, κ) =
1

M(1
2
, p

2
, κ)

exp
(
κ(µTx)2

)
, (3.16)
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where M is the Kummer confluent hypergeometric function defined in (Bateman et al.,

1955). According to (3.16), the positive-negative pair of group actions {Pm,−Pm}

contribute the same value in the density function. The set of the group action pairs

G ′ = {{Pm,−Pm}}M/2
m=1 is the quotient group G/I, where I = {Ip,−Ip} ⊂ G and Ip

is the identity matrix of dimension p. Therefore, G ′ is also a group and we can use

Thm III.1 to extend the Watson distribution to the mixture representation under G ′:

fw(x;µ, κ) =
1

M ′

M ′∑
m=1

Wp(x; Pmµ, κ), (3.17)

where M ′ = M/2. The ML estimates of µ and κ can also be calculated by EM

algorithm. The E-step for the Watson mixture distribution is

ri,m =
exp {κ((Pmµ)Txi)

2}∑M ′

l=1 exp {κ((Plµ)Txi)2}
,m ∈

{
1, 2, ...,M ′} . (3.18)

For the M-step, we take a similar approach as (Mardia and Jupp, 1999) as follows:

ES|X,ω[logL(ω; {xi, si})]

=n

κµT T̃µ− log

(
M ′M

(
1

2
,
p

2
, κ

)) ,
(3.19)

where T̃ = 1
n

∑n
i=1

∑M ′

m=1 ri,m(PT
mxix

T
i Pm) is the scatter matrix of x1, ...,xn. Let

t̃1, ..., t̃p be the eigenvalues of T̃ with

t̃1 ≥ ... ≥ t̃p, (3.20)

and let ±t1, ...,±tp be the corresponding unit eigenvectors. Since we want to find µ

which maximizes (3.19) such that µTµ = 1, the estimator of µ for fixed κ has the
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following form:

µ̂ = t1, κ̂ > 0,

µ̂ = tp, κ̂ < 0.

(3.21)

Similarly by fixing µ and setting to zero the derivative of (3.19) with respect to

κ, we have:

Yp(κ) =
M′(1

2
, p

2
, κ)

M(1
2
, p

2
, κ)

=

∑n
i=1

∑M ′

m=1 ri,m(µTPT
mxi)

2

n

⇒κ̂ = Y −1
p

(∑n
i=1

∑M ′

m=1 ri,m(µTPT
mxi)

2

n

)
,

(3.22)

The final estimates of µ and κ are obtained by checking both cases (κ̂ > 0,κ̂ < 0)

and choosing the one which is consistent for (3.21)(3.22). Detail derivation of the E,

M-step is given in Appendix C.

3.4 Clustering with a Spherical Symmetry Group

In this section we extend the parameter estimation problem to the situation where

there are multiple group-invariant distributions with different parameters that govern

the samples. This problem arises, for example, when estimating the mean orienta-

tion over a region containing more than one grain (perhaps undetected). Usually,

this problem can be solved by first applying some standard clustering methods, e.g.

K-means(Hartigan and Wong , 1979), and then estimating the parameters for each

cluster. However, clustering methods based on the distance relation between the

samples are complicated by the presence of spherical symmetry because it is neces-

sary to distinguish modes that are due only to symmetry. Therefore, we propose

a model-based clustering algorithm which accommodates symmetry to handle this

problem.
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Consider the situation where the samples {xi}ni=1 follow a mixture of G-invariant

density functions. For VMF distribution, the mixture density has the following form:

gv(x; {µc, κc, αc}) =
C∑
c=1

αc

 M∑
m=1

1

M
φ(x; Pmµc, κc)

 , (3.23)

where C is the number of clusters assumed to be fixed a priori and µc, κc are the

parameters for the c-th cluster and αc are the mixing coefficients where
∑C

c=1 αc = 1.

The parameters of (3.23) can be estimated by the EM algorithm:

E-step:

ri,c,m =
αcφ(xi; Pmµc, κc)∑C

h=1 αh
∑M

l=1 φ(xi; Plµh, κh)
(3.24)

M-step:

αc =
n∑
i=1

M∑
m=1

ri,c,m, (3.25)

µ̂c =
γc
‖γc‖

, κ̂c = A−1
p

(
‖γc‖
nαc

)
, (3.26)

γc =
n∑
i=1

M∑
m=1

ri,c,mPT
mxi, (3.27)

where ri,c,m is the probability of sample xi belonging to the c-th cluster and the m-th

symmetric component.

For Watson distribution, the mixture of G-invariant Watson density is

gw(x; {µc, κc}) =
C∑
c=1

αc

 M ′∑
m=1

1

M ′Wp(x; Pmµc, κc)

 (3.28)

The E-step is similar to (3.24) with φ replaced by Wp function. The M-step can
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be computed with a similar approach with the following modifications:

T̃c =
1

nαc

n∑
i=1

M ′∑
m=1

ri,c,m(PT
mxix

T
i Pm), (3.29)

κ̂c = Y −1
p

(∑n
i=1

∑M ′

m=1 ri,c,m(µTc PT
mxi)

2

nαc

)
, (3.30)

where αc =
∑n

i=1

∑M
m=1 ri,c,m.

3.4.1 Multi-modality Tests on G-invariant Spherical Distributions

Given sample set {xi}ni=1 on Sp−1, we want to determine whether the n samples are

drawn from one single distribution or a mixture of C distributions. For polycrystalline

materials, the solution to this problem can be used to discover undetected grains

within a region. We propose to use a multi-modality hypothesis test based on the

G-invariant distributions to solve this problem. The two hypotheses are H0: The

samples are from a single G-invariant distribution f(x; {µ, κ}); and H1: The samples

are from a mixture of C distributions g(x; {µc, κc}Cc=1). The Generalized Likelihood

Ratio Test (GLRT) (Hero, 2000) has the following form:

ΛGLR =
max{µc,κc}Cc=1∈Θ1

g({xi}ni=1; {µc, κc, αc}Cc=1)

max{µ,κ}∈Θ0 f({xi}ni=1; {µ, κ})
≷H1
H0
η (3.31)

where Θ0,Θ1 are the parameter spaces for the two hypotheses. The f and g func-

tions for VMF and Watson distributions are defined in (3.9), (3.17) and (3.23), (3.28)

respectively and the test statistic, ΛGLR, can be calculated by the proposed EM

algorithm. According to Wilks’s theorem (Wilks , 1938) as n approaches ∞, the

test statistic 2 log ΛGLR will be asymptotically χ2-distributed with degrees of free-

dom equal to (p + 1)(c − 1), which is the difference in dimensionality of Θ0 and Θ1.

Therefore, the threshold η in (3.31) can be determined by a given significance level

α.
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3.5 Application to Crystallographic Orientation

Crystal orientation and the grain distribution in polycrystalline materials deter-

mine the mechanical properties of the material, such as, stiffness, elasticity, and

deformability. Locating the grain regions and estimating their orientation and dis-

persion play an essential role in detecting anomalies and vulnerable parts of materials.

Electron backscatter diffraction (EBSD) microscopy acquires crystal orientation

at multiple locations within a grain by capturing the Kikuchi diffraction patterns

of the backscatter electrons (Saruwatari et al., 2007). A Kikuchi pattern can be

translated to crystal orientation through Hough Transformation analysis (Lassen,

1994) or Dictionary-Based indexing (Park et al., 2013). The process of assigning

mean orientation values to each grain is known as indexing. Crystal forms possess

point symmetries, e.g. triclinic, tetragonal, or cubic, leading to a probability density of

measured orientations that is invariant over an associated spherical symmetry group

G. Therefore, when the type of material has known symmetries, e.g., cubic-type

symmetry for nickel or gold, the G-invariant VMF and Watson models introduced in

Section 3.3 can be applied to estimate the mean orientation µg and the concentration

κg associated with each grain. Furthermore, the clustering method along with the

multi-sample hypothesis test in Section 3.4 can be used to detect the underlying

grains within a region.

3.5.1 Simulation of Crystallographic Orientation

To simulate the crystallographic orientations, we first draw random samples from

VMF and Watson distributions with p = 4. The random variable x in a spherical

distribution can be decomposed as:

x = tµ+
√

1− t2Sµ(x), (3.32)
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where t = µTx and Sµ(x) = (Ip − µµT )x/‖(Ip − µµT )x‖. Let f(x;µ) be the

p.d.f. of the distribution where µ is the mean direction. According to the normal-

tangent decomposition property, for any rotationally symmetric distribution, Sµ(x)

is uniformly distributed on Sp−2
µ⊥

, the (p−2)-dimensional sphere normal to µ, and the

density of t = xTµ is given by:

t 7→ cf(t)(1− t2)(p−3)/2. (3.33)

For VMF distribution, substituting (3.32) into (3.6) and combining with (3.33),

we have the density of the tangent component t as:

fv(t) = Cv exp {κt}(1− t2)(p−3)/2

Cv =

(
κ

2

)(p/2−1)
(
Ip/2−1(κ)Γ

(
p− 1

2

)
Γ

(
1

2

))−1

.
(3.34)

Similarly, the density of the tangent component of Watson distribution is:

fw(t) = Cw exp {κt2}(1− t2)(p−3)/2

Cw =
Γ(p

2
)

Γ(p−1
2

)Γ(1
2
)

1

M(1
2
, p

2
, κ)

.
(3.35)

Random samples from the density functions (3.34) and (3.35) can be easily generated

by rejection sampling.

The generated quaternions from VMF and Watson distributions are then mapped

into the Fundamental Zone (FZ) with the symmetric group actions to simulate the

wrap-around problem we observe in real data, i.e. observations are restricted to a

single FZ. For cubic symmetry, the FZ in quaternion space is defined in the following

set of equations where the derivation is given in Appendix A:
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|q2/q1| ≤
√

2− 1

|q3/q1| ≤
√

2− 1

|q4/q1| ≤
√

2− 1

|q2/q1 + q3/q1 + q4/q1| ≤ 1

|q2/q1 − q3/q1 + q4/q1| ≤ 1

|q2/q1 + q3/q1 − q4/q1| ≤ 1

|q2/q1 − q3/q1 − q4/q1| ≤ 1

|q2/q1 − q3/q1| ≤
√

2

|q2/q1 + q3/q1| ≤
√

2

|q2/q1 − q4/q1| ≤
√

2

|q2/q1 + q4/q1| ≤
√

2

|q3/q1 − q4/q1| ≤
√

2

|q3/q1 + q4/q1| ≤
√

2

(3.36)

where qi is the i-th component of quaternion q.

3.6 Experimental Results

3.6.1 G-invariant EM-ML Parameter Estimation on Simulated Data

Sets of n i.i.d. samples were simulated from the VMF or Watson distributions

using the method described in Sec.3.5.1 with given µ = µo, κ = κo for the m3m

point symmetry group associated with the symmetries of cubic crystal lattice planes.

The number of samples for each simulation was set to n = 1000 and κo was swept

from 1 to 100 while, for each simulation run, µo was selected uniformly at random.

The experiment was repeated 100 times and the average values of κ̂ and the inner

38



product µ̂Tµo are shown in Fig. 3.1 and 3.2. In the figures we compare performance

for the following methods: (1) the naive ML estimator for the standard VMF or

Watson model that does not account for the point group structure (labeled ”ML

Estimator”). (2) Mapping the n samples toward a reference direction xr (randomly

selected from {xi}ni=1) according to (3.37) followed by performing ML for the standard

VMF or Watson distribution (labeled ”Modified ML”). (3) Applying our proposed

EM algorithm directly to the n samples using the mixture of VMF distribution (3.11)-

(3.13) (labeled ”EM-VMF”) (4) Applying our proposed EM algorithm to the mixture

of Watson distribution (3.18)-(3.22) (labeled ”EM-Watson”).

x 7→ Pmx

Pm = arg min
P∈G

arccos (xTr Px)
(3.37)

To prevent the EM algorithm from converging to local minimum, for each set

of samples we performed the EM algorithm for T trials with randomly initialized

parameters. The final estimates of each set are obtained by choosing the estimates

which give the largest likelihood out of the T trials. In the experiment, we observed

that for each trial the EM algorithm usually converges within 30 iterations and the

likelihood function is monotonically increasing each iteration as expected. We found

out that the estimation accuracy is not sensitive to initialization especially for samples

which are generated from larger κ, and T = 10 is more than enough for obtaining

stable results as we shown in the following discussion.

Figure 3.1 shows the inner product values µTo µ̂. The proposed EM-VMF and EM-

Watson estimators have similar performance in that they achieve perfect recovery of

the mean orientation (µTo µ̂ = 1) much faster than the other methods as the concen-

tration parameter κo increases (lower dispersion of the samples about the mean) no

matter whether the data is generated from VMF (Fig.3.1a) or Watson distribution

(Fig.3.1b), indicating the robustness of the proposed approaches under model mis-
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Figure 3.1: Mean orientation estimator comparisons for G-invariant densities when
G is the m3m point symmetry group. Shown is the average inner product µTo µ̂ of
four estimators µ̂ when µo is the true mean orientation as a function of the true
concentration parameter κo for the data simulated from VMF (Fig.3.1a) and from
Watson (Fig.3.1b) distribution. Each estimator was implemented with n = 1000 i.i.d.
samples from the G-invariant density and the inner product shown is averaged over
100 trials. The naive estimator (”ML Estimator” in blue line) does not attain perfect
estimation (inner product = 1) for any κo since it does not account for the spherical
symmetry group structure. A modified ML estimator (”modified ML” in green dashed
line) achieves perfect estimation as κo becomes large. The proposed EM-ML methods
(”EM-VMF”, ”EM-Watson”) achieve perfect estimation much faster than the other
methods even under model mismatch (EM-VMF for Watson simulated data and vice
versa).

match. Notice that when κo is small (κo < 20 for VMF data and κo < 10 for Watson

data), none of the methods can accurately estimate the mean orientation. The reason

is that when κo is small the samples become nearly uniformly distributed over the

sphere. The threshold κo value at which performance starts to degrade depends on

the choice of point symmetry group and the distribution used to simulate the data.

In Fig. 3.2 it is seen that the biases of the proposed EM-VMF (Chen et al., 2015c)

and EM-Watson κ estimators are significantly lower than that of the other methods

compared. While the modified ML performs better than the naive ML estimator, its

bias is significantly worse than the proposed EM-VMF and EM-Watson approaches.

Figure 3.3 shows the computation time of the estimation algorithms presented in
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Figure 3.2: Concentration parameter estimator bias as a function of the true con-
centration κo for data simulated from VMF (Fig.3.2a)(Chen et al., 2015c) and from
Watson (Fig.3.2b) distributions. The bias of the naive ML (blue solid line) is large
over the full range of κo. The modified ML (green dashed line) estimates κ more accu-
rately when κo is small. Our proposed EM-VMF and EM-Watson estimators (black
dotted line and magenta dashed line) have lower bias than the other estimators.

Fig.3.1 and Fig.3.2. The computation time for all methods decreases as κo becomes

larger. When κo is small (κo < 20 for VMF data and κo < 10 for Watson data),

because the samples are almost uniformly distributed around the sphere, it is difficult

for the EM algorithms to converge to the optimal solution and they therefore require

maximum number of iterations to stop, forming the plateaus in Fig.3.3. Notice that

EM-Watson requires less time than EM-VMF even though it has more complicated

E and M-steps. The reason is that EM-Watson uses only half of the symmetry

operators, which corresponds to the size of the quotient group G/I as described in

Section 3.3.2. By applying the hyperbolic sinusoidal simplification in Section 3.3.1

(labeled ”EM-VMF-Hyper”), we can further reduce the computation time by more

than a factor of 2 compared to the original EM-VMF.
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Figure 3.3: Computation time for calculating the result in Fig.3.1 and Fig.3.2. EM-
Watson (magenta dashed line) has less computation time than EM-VMF (black dot-
ted line) because it uses only half of the symmetry operators. EM-VMF-Hyper (cyan
circle line) which uses the hyperbolic sinusoidal simplification of EM-VMF reduces
the computation time by more than a factor of 2.

3.6.2 G-invariant Clustering on Simulated Data

In this section, we demonstrate the performance of our proposed EM approaches

for clustering. Sets of n i.i.d. samples were simulated from the VMF or Watson

distributions with κ = κo and one of two mean directions (µ1,µ2) to generate two

clusters of samples. The spherical symmetry group is m3m as before. The number

of samples for each set was set to n = 1000 and κo was swept from 1 to 100 while,

for each set, µ1,µ2 was selected uniformly at random. The experiment was repeated

100 times and the average values of the inner product (µ̂T1µ1 + µ̂T2µ2)/2 are shown

in Fig. 3.4. In the figure we compare performances of the following methods: (1)

Cluster the samples by standard K-means algorithm with the distance defined by

the arc-cosine of the inner product and then use the naive ML within each cluster

to estimate the mean directions (labeled ”K-means”). (2) Cluster the samples by

K-means with the distance defined as (3.5) and then use the aforementioned modified

ML estimator (labeled ”Modified K-means”). (3) Apply our proposed multi-cluster
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EM-VMF algorithm to the n samples directly (3.24)-(3.27) (labeled ”EM-VMF”) (4)

Apply our multi-cluster EM-Watson algorithm to the n samples directly (3.29)-(3.30)

(labeled ”EM-Watson”).

Figure 3.4 shows the average inner product values (µ̂T1µ1 + µ̂T2µ2)/2 from the

mean direction estimation. The proposed EM-VMF and EM-Watson are able to cor-

rectly cluster the samples and achieve perfect recovery of the two mean orientations

much faster than the other K-means approaches. Notice that the region where all the

methods fail is larger than the single cluster case since multiple clusters increase the

difficulty of parameter estimation. Again, no matter whether the samples are sim-

ulated from VMF or Watson distribution, our proposed approaches perform equally

well under both cases.

To further test the ability to detect multiple clusters given a set of samples, we

generate 1000 sets of samples. Each set has 1000 samples and is assigned randomly to

label 0 or 1. If the set is labeled 0, the samples are generated from a single distribution;

If the set is labeled 1, then the samples in the set are randomly generated from two

distributions with different means. The GLRT is used with the four aforementioned

clustering methods to test whether the samples in each set are uni-modal or multi-

modal. The Receiver Operating Characteristic (ROC) curves of the test results are

shown in Fig. 3.5. The naive K-means with ML estimator which does not consider

the symmetry group actions fails to distinguish whether the multiple modes are from

actual multiple distributions or due to the wrap-around effect from the fundamental

zone mapping. Therefore, this approach tends to over-estimate the goodness of fit of

the H1 model for true negative cases and under-estimate it for true positive cases,

resulting in a result that is even worse than random guessing. The modified K-

means performs better than K-means but worse than our proposed EM-VMF and

EM-Watson algorithms.
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Figure 3.4: Mean orientation estimator comparisons for samples generated from two
different means. Shown is the average inner product (µ̂T1µ1+µ̂T2µ2)/2 of four methods
when µ1,µ2 are the true mean orientations as a function of the true concentration
parameter κo for the data simulated from VMF (Fig.3.4a) and from Watson (Fig.3.4b)
distributions. Each estimator was implemented with n = 1000 i.i.d. samples from the
G-invariant densities with two different mean directions and the inner product shown
is averaged over 100 trials. The K-means with naive estimator (”K-means” in blue
line) does not attain perfect estimation (inner product = 1) for any κo. A modified K-
means with ML estimator (”modified K-means” in green dashed line) achieve perfect
estimation as κo becomes large. The proposed EM-VMF and EM-Watson methods
(”EM-VMF”, ”EM-Watson”) achieves perfect estimation much faster than the other
methods no matter whether the data are generated from VMF or Watson distribution,
indicating the robustness to model mismatch.
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Figure 3.5: ROC curve for detecting bi-modally distributed samples. The samples
are uni-modal or bi-modal distributed from VMF (Fig.3.5a) or Watson (3.5b) dis-
tributions with κo = 50. The naive K-means with ML estimator cannot cluster the
samples well and estimate the mean directions accurately, resulting in poor detection
which is even worse than random guessing. The modified K-means (green dashed
line) performs better than K-means but is still unsatisfactory. Our proposed EM-
VMF (black dots) and EM-Watson (magenta dashed line) methods have very good
performance in this detection task.
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3.6.3 EM-ML orientation estimation for IN100 Nickel Sample

We next illustrate the proposed EM-VMF and EM-Watson orientation estimators

on a real IN100 sample acquired from US Air Force Research Laboratory (AFRL)

(Park et al., 2013). The IN100 sample is a polycrystalline Ni superalloy which has

cubic symmetry in the m3m point symmetry group. EBSD orientation measurements

were acquired on a 512× 384 pixel grid, corresponding to spatial resolution of 297.7

nm. The Kikuchi diffraction patterns were recorded on a 80 × 60 photosensitive

detector for each of the pixels.

Figure 3.6 (a) shows a 200 × 200 sub-region of the full EBSD sample where the

orientations are shown in the inverse pole figure (IPF) coloring obtained from the

OEM EBSD imaging software and (d) is the back-scattered electron (BSE) image.

Note that the OEM-estimated orientations in some grain regions of the IPF image

are very inhomogeneous, which is likely due to a fundamental zone wrap-around

problem. Figure 3.6 (b)(c) shows the estimates of the mean orientations of the grains

using the proposed EM-VMF and EM-Watson algorithms. Figures 3.6 (d)(e) show

the estimated concentration parameter κ for the grains using the proposed EM-VMF

and EM-Watson algorithms.

Figure 3.7 shows the same sub-region of the full EBSD sample with an alternative

approach. We apply a combination of the proposed EM estimators (EM-VMF or EM-

Watson) and the GLRT (3.31) with C = 2 and significance level α = 0.05 to detect

multi-modal distributions within each OEM-segmented region. Figure 3.6 (a)(b) show

the estimates of the mean orientations of the regions/sub-regions, where the sub-

regions surrounded by white boundaries indicate those that have been detected as

deviating from the distribution of the majority of samples from the same region.

The multi-modally distributed regions may be due to undetected grains, inaccurate

segmentation, or noisy orientation observations. To distinguish the latter situations

from the first in which the region really consists of two grains, the misalignment/noise
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Figure 3.6: A 200× 200 sub-region of the IN100 sample. (a) is the IPF image for the
Euler angles extracted from EBSD by OEM imaging software. IPF coloring in some
grains is not homogeneous, likely due to the ambiguity problem. (d) is the BSE image
of the sample. (b) is the IPF image for the mean orientation of the grains estimated
by EM-VMF algorithm and (c) is the concentration parameters κ estimated by EM-
VMF for the G-invariant VMF density. (e) and (f) are the mean orientation and
concentration parameters κ estimated by EM-Watson algorithm. Our proposed EM-
ML estimators have high concentration κ even for those grains with inhomogeneous
Euler angles.

test introduced in Chapter V can be used. Figures 3.6 (c)(d) show the estimated

concentration parameter κ for the regions/sub-regions. Note that the estimated κ

are large for most of the regions/sub-regions because those regions which have multi-

modally distributed samples are detected and their concentration parameters are

estimated separately for each sub-region.
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Figure 3.7: A 200×200 sub-region of the IN100 sample. (a)(b) show the estimates of
the mean orientations of the regions/sub-regions using a combination of the proposed
EM estimators, EM-VMF and EM-Watson respectively, and the GLRT (3.31) to de-
tect multi-modal distributions within each OEM-segmented region. The sub-regions
surrounded by white boundaries indicate those that have been detected as deviat-
ing from the distribution of the majority of samples from the same region. (c)(d)
show the estimated concentration parameter κ for the regions/sub-regions. Note that
the estimated κ are large for most of the regions/sub-regions because those regions
which have multi-modally distributed samples are detected and their concentration
parameters are estimated separately for each sub-region.

3.7 Conclusion

We have obtained a general finite mixture representation for densities on domains

whose topologies have group invariances. This representation was used to construct

mixtures of the Von Mises-Fisher and Watson distributions that possess spherically

symmetric group invariances. An efficient EM algorithm was derived for estimation

of parameters of this mixture model. We further extended the model to consider the

multi-cluster case where the samples are from several group-invariant distributions
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with different parameters. The GLRT is proposed along with the mixture model to

detect the presence of multiple modes. The mixture of VMF and Watson models

were applied to the problem of estimation of mean grain orientation parameters in

polycrystalline materials whose orientations lie in the m3m point symmetry group.

Application of the finite mixture representation to other types of groups would be

worthwhile future work.
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CHAPTER IV

A Dictionary Approach to EBSD Indexing

4.1 Introduction

Electron backscatter diffraction, EBSD, is used to perform quantitative microstruc-

ture analysis of polycrystalline materials on a millimeter to nanometer scale (Schwartz

et al., 2009). Most current EBSD segmentation (i.e., delineation of individual grains

by determination of the grain boundary locations) and indexing (i.e., orientation de-

termination) methods extract orientations and widths of Kikuchi bands in a measured

pattern by using a modified Hough transform, implemented using image processing

tools such as butterfly convolution, Gaussian filtering, binning, peak detection, and

image quality maps to gauge indexing and segmentation accuracy (Tao and Eades ,

2005; Wright and Nowell , 2006). By comparing the measured diffraction line param-

eters to a pre-computed database, indexing yields the crystal orientation, commonly

described by three Euler angles with respect to a reference frame, for the volume

illuminated by the beam. By repeating the process on a grid of scanning locations on

the sample, an orientation map or image is produced. The image is then segmented

into grains by thresholding normed differences between the Euler angles (misorienta-

tions). The accuracy of the Hough approach to EBSD indexing depends to a large

extent on the visibility of the Kikuchi bands, which is often represented in terms of

∗This chapter is based on (Chen et al., 2015a)
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an image quality parameter.

In this chapter we introduce an alternative indexing approach that uses a physics-

based forward model for the full diffraction patterns and does not require application

of the Hough transform or other image processing tools. The proposed approach ex-

ploits the known physics of electron scattering phenomena that underlies the image

formation process. With this additional information, grain boundaries and anomalous

points can be detected as explicit classes at the same time as grains are segmented.

Anomaly detection (i.e., the automated detection of abnormal or unexpected diffrac-

tion patterns) is an important capability, since anomalies may correspond to defects

or contaminants that affect the material properties. In addition, unlike methods

based on the Hough transform, the proposed pattern dictionary approach differenti-

ates grain interiors from grain boundaries without requiring additional processing of

the measured patterns.

Automated indexing of electron diffraction patterns by means of pattern matching

techniques is not new, and was proposed in 1991 by Wright and coworkers (Wright

et al., 1991) for backscattered Kikuchi diffraction patterns, now commonly known as

electron backscatter diffraction patterns or EBSPs. Their approach involved auto-

mated comparisons between a series of experimental patterns and idealized patterns,

created from a set of orientations that uniformly covers the asymmetric region (or

fundamental zone) of Euler space. While the technique showed promising results,

computer limitations prevented the approach from gaining widespread acceptance.

In the context of precession electron diffraction in the transmission electron micro-

scope, Rauch and coworkers (Rauch and Dupuy , 2005; Rauch et al., 2008) proposed

a template-based pattern matching approach for the automatic orientation determi-

nation of quasi-kinematical diffraction patterns. The templates are computed from

kinematical structure factors, and the proper asymmetric part of Euler space is sam-

pled uniformly to generate a template collection, which is then compared quantita-
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tively against the experimental patterns. In this template matching process, only the

top match is considered in the determination of the crystal orientation. As we will

explain in detail in the rest of this chapter, our dictionary appproach uses, in addition

to a physics-based model for the generation of the dictionary, the statistical model

introduced in Chapter III for the orientation distribution of all the highly ranked

pattern matches to provide both a stable and robust estimate of orientation, as well

as a quantitative statistical uncertainty; the method proposed in (Rauch and Dupuy ,

2005) does not perform such a statistical analysis. The current commercially available

EBSD indexing suites also lack a statistical determination of the uncertainties in the

orientation determination.

The proposed indexing framework relies on two components: offline dictionary

generation and online dictionary matching to the sample. Offline dictionary gener-

ation is accomplished as follows. First, a dictionary of raw diffraction patterns is

generated using the forward model of (Callahan and De Graef , 2013). This dictio-

nary is tuned to the parameters of the microscope and the crystal symmetry group(s)

of the sample. Second, the singular value decomposition (SVD) of the dictionary is

computed and a second dictionary, called the dictionary of background compensated

patterns, is generated by projection of the raw dictionary onto the space orthogonal

to the first principal component; this is essentially a background subtraction process.

The first step in the online dictionary matching algorithm is to compute nor-

malized inner products between the uncompensated (raw) sample patterns and the

uncompensated dictionary. This is repeated on the compensated sample patterns and

the compensated dictionary patterns. The basis for the online dictionary matching

algorithm is the construction of a pair of bipartite graphs, uncompensated and com-

pensated, respectively, using these normalized inner products. A bipartite graph is a

graph connecting vertices or nodes in two disjoint sets () (Diestel , 2005); in our case,

the first set contains the experimental patterns at different locations on the sample,
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the second the dictionary patterns for different orientations. For each spatial location

on the sample, the top k (normalized) inner products between the sample diffraction

pattern and a dictionary determine the k-nearest-neighbor (k-NN) neighborhood of

the pattern in the dictionary. These k-NN neighborhoods form the backbone of the

proposed online dictionary matching algorithm.

From the bipartite graphs, sample patterns can be classified as grain interiors,

grain boundaries, or anomalies, using an unsupervised decision tree (DT) classifier

defined on the graphs. Specifically, the classifier uses the shapes of these k-NN neigh-

borhoods to discriminate between these types of patterns. A tightly clustered and

connected k-NN neighborhood indicates a grain interior sample pattern. A k-NN

neighborhood that forms two or three clusters in the dictionary indicates a grain

boundary sample pattern. k-NN neighborhoods that are very spread-out and scat-

tered indicate anomalous sample patterns. The unsupervised DT classifier uses the

uncompensated dictionary to distinguish unusual (anomalous) background patterns.

The compensated dictionary is used to distinguish non-anomalous patterns as interior

to a grain or on the boundary of a grain. A pixel is classified as anomalous, grain

interior or grain boundary using an unsupervised decision tree (DT) classifier to test

homogeneity of the pattern matches over a 3× 3 spatial patch centered at the pixel.

The effect of surface roughness, and the resulting shifts in the EBSD background

intensity, is a topic of ongoing analysis.

Indexing of crystal orientation is performed using a maximum likelihood (ML)

estimation strategy for determining the Euler angles. The ML strategy described in

Chapter III fits a group-invariant density model to the observed distribution of the

Euler angles of the top dictionary matches; the distribution is a probability distri-

bution on a sphere in a p-dimensional space. An iterative expectation-maximization

(EM) estimation algorithm is used to perform the fit. The use of the mixture model

allows one to account for the symmetry-induced ambiguities of the crystal orientation
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and produces an estimate of the Euler angles in the desired fundamental zone. A side

benefit is that the algorithm yields an estimate of the spread of the VMFm model

that can be used as an a posteriori confidence measure on the orientation estimate.

To the best of our knowledge, the framework proposed here is the first EBSD

indexing approach that uses a dictionary generated by a physics-based forward model.

Some advantages of our model-based approach are: 1) it incorporates the physics

of dynamical electron scattering; 2) it unifies segmentation, indexing and anomaly

detection; 3) it incorporates a statistical model that naturally generates both an

estimate of orientation and a measure of confidence in the estimate; 4) it involves

parallelizable operations relying on simple inner products and nearest neighbor search.

At the same time, the large size of the dictionary, together with the high dimension of

the diffraction patterns, create computational challenges as discussed in Section 4.5.

The outline of the chapter is as follows. Section 4.2 presents the proposed dictio-

nary model for EBSD pattern classification and indexing. Section 4.3 develops the

statistical algorithms for anomaly detection, segmentation, and indexing based on

the dictionary model. Section 4.4 describes the dictionary generation process. Sec-

tion 4.6 presents the experimental methods for generating the EBSD samples used in

Section 4.7. Section 4.7 presents the results of applying the proposed dictionary-based

classification and indexing to a Ni-base IN100 alloy. Finally, Section 4.8 summarizes

this chapter and points to future directions.

4.2 Dictionary Model

This section describes the non-linear forward model of (Callahan and De Graef ,

2013). It then shows how a physics-based dictionary of diffraction patterns can be

used to approximately linearize the forward model. For descriptive economy, through-

out this chapter we denote by a pixel a particular scan location on the sample surface;

with each pixel, there is an associated EBSD pattern acquired at the sample location.
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4.2.1 Forward model

When the beam is focused on a grain within the sample, the measured backscatter

diffraction pattern, Y, on the detector surface can be expressed as a function of the

crystal orientation θ, parameterized by an Euler angle triplet (α, β, γ), the incident

electron energy, E, and interaction depth, z0, as:

Y = H(P(θ, E, z0)) + N, (4.1)

where H(P(θ, E, z0)) is a forward model for the backscatter process and N is detector

noise. Here H is a measurement operator that accounts for the instrument geometry

and sensitivity, and P represents the thickness and energy averaged mean backscat-

ter yield. An accurate forward model for this yield was proposed by (Callahan and

De Graef , 2013). The model employs Monte Carlo simulations to obtain the energy,

spatial, and exit depth distributions of the backscattered electrons. This statistical

information is then used to compute a series of dynamical EBSD master patterns

as a function of the electron exit energies and directions. The master pattern rep-

resents all possible EBSD patterns for a given exit energy, and specification of the

grain orientation θ along with the detector geometry then leads to an actual EBSD

pattern for that orientation. These three steps constitute the forward model P . The

measurement operator H includes the scintillator-to-CCD conversion process in the

form of a point spread function for the coupling optics, as well as detector quantum

efficiency and CCD binning mode. In the remainder of this chapter, we will refer to

the depth and energy averaged diffraction pattern generated by the forward model

described above as the mean diffraction pattern.

As the electron beam is scanned across the sample surface, the diffraction pattern

will change due to changes in the local crystal orientation θ between homogeneous

grains. In grain interiors, the forward model (4.1) can be used to produce estimates of
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crystal orientation at each scan location. Elsewhere in the sample, e.g., near boundary

regions or near locations of anomalous features, the model (4.1) will no longer be a

good fit to the measured patterns. Thus, the goodness of fit of the forward model

can be used to classify grains, grain boundaries, and anomalies in the sample. This

forms the basis for our proposed use of the forward-model to perform classification

and indexing.

4.2.2 Sparse dictionary-based forward model

In principle one could formulate classification and indexing as a non-linear inverse

problem using the full forward model (4.1). For example, given a noise model for

N one could perform maximum likelihood estimation to solve the indexing problem

and likelihood-ratio testing to solve the classification problem. In the special case

of a Gaussian noise model both solutions would require solving the non-linear least-

squares problem minθ ‖Y−H(P(θ, E, z0))‖2, in which the Euclidean norm squared of

the residual fitting errors is to be minimized with respect to the orientation θ. Here,

we take a simpler approach to the inverse problem that leads directly to tractable

indexing and classification algorithms.

Let D denote a precomputed dictionary of mean diffraction patterns obtained by

densely sampling the function H(P(θ, E, z0)) over the range of orientations θ, keeping

E and z0 fixed. Assume that the size of D is d. Then, for sufficiently dense samples,

the model (4.1) can be approximated by

Y =
d∑
i=1

xiφi + N, (4.2)

where φi ∈ D are dictionary elements and xi are coefficients. When Y corresponds

to the measured pattern at a location within a grain, one might expect that only

a few xi’s will be non-zero, i.e., the representation (4.2) is sparse. In particular,
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as the dictionary becomes increasingly dense the sparsity of the representation will

also increase and, in the limit, xi will become a delta function xi = ∆(i − j), where

j is the index of the true orientation at that location. Note that when N = 0,

in this limiting case (of a fully dense dictionary) errorless estimation of θ can be

accomplished by finding the index i which yields the largest normalized inner product

ρ(Y, φi) = (Y,φi)
‖Y‖‖φi‖ , where, for two diffraction pattern A = ((Alm)) and B = ((Blm)),

〈A,B〉 =
∑

l,mAlmBlm, where l and m index the vertical and horizontal locations on

the photodetector. The significance of this fact is that we have simplified the solution

of a complicated non-linear least squares problem to the solution of a linear least

squares problem followed by a table lookup (matching an index of the dictionary to

the associated Euler angle).

In the practical case of a finite dictionary there will not be an exact match to the

true diffraction pattern and (4.2) is interpreted as a model that interpolates over the

patterns in the dictionary, with interpolation coefficients {xi}di=1. For the purposes of

indexing and classification we will restrict ourselves to sparse models, where only a

few (k) of these coefficients are non-zero, i.e., using only a small number of dictionary

elements to fit (4.1). This sparse approximation problem is a well studied mathe-

matical problem with many different iterative algorithms available for identifying the

few non-zero coefficients. The brute force algorithm that tries to find the best fit

over any set of k dictionary elements is intractable except for very small values of

k. Alternatives include basis pursuit methods such as orthogonal matching pursuit

(OMP), stepwise OMP (stOMP), compressive sampling OMP, iterative soft thresh-

olding (IST), and convex optimization relaxation methods such as l1 minimization

using active set, interior point, or sub-gradient methods (Tropp and Wright , 2010).

In the EBSD application, the sparse approximation has to be performed for each

and every pattern measured on the sample. Even with a relatively modest dictionary

size and low sample resolution, e.g., d = 100, 000 elements and n = 100, 000 scan
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locations, these methods are computationally heavy.

We have adopted a simpler correlation matching approach with significantly re-

duced computation requirements. Instead of fitting the model (4.2) through least

squares we simply use inner products to find the k top matches between the dictio-

nary and the observations. Specifically, for each measured pattern Y we compute the

normalized inner products (correlation) ρ(Y, φ1), ..., ρ(Y, φd) between Y and the dic-

tionary and rank them in order of decreasing magnitude. The top correlation matches

are the k dictionary patterns having the highest inner products. These k patterns

constitute and pixel’s k-nearest-neighbor (k-NN) neighborhood in the dictionary. The

collections of k-NN’s define a bipartite graph connecting measured patterns to pat-

terns in the dictionary. In general, these connections will be one-to-many, i.e., for

each experimental pattern there will be a small number of near matches in the dic-

tionary. The k-NN neighborhoods will be used to perform classification and indexing

as described in Section 4.3.

In addition to the dictionary D, referred to as the uncompensated dictionary,

we will use a derived dictionary of compensated patterns Dc to cluster the observed

patterns into classes that can then be used for anomaly detection, segmentation and

indexing. The compensated dictionary Dc consists of patterns in D after projecting

away the background. This is performed by applying the singular value decomposi-

tion to determine the principal component, which closely resembles the population

mean of the patterns in D, and projecting the dictionary onto the space orthogonal

to the principal component (i.e., removing the mean pattern from each individual

pattern). This compensation process, which simply removes the background common

to all patterns, improves the dictionarys ability to discriminate between diffraction

patterns. However, the uncompensated dictionary will also be used since it can better

discriminate anomalies that are primarily manifested in the background.
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4.3 Classification and Indexing

The proposed correlation matching approach to classification proceeds in two

steps. First inner products between the observed patterns and patterns in the dic-

tionaries D and Dc are computed. For each observed pattern we only store its k

closest dictionary matches, i.e., those dictionary patterns with the k highest inner

products with respect to the observed pattern. Then a pixel is classified as a grain

interior, a grain boundary, or an anomaly using a decision tree classifier applied to

the set of top pattern matches in the dictionary. The proposed correlation matching

approach to indexing pixel orientation computes an estimate of the mean orientation

over the top matching patterns in the dictionary. In order to account for noise and

the non-euclidean nature of the Euler sphere, the mean angles are estimated using

a specially adapted maximum likelihood estimator, introduced in the indexing sub-

section below. Pixel classification and indexing are performed independently and are

discussed separately.

4.3.1 Classification

Classification of a pixel is performed by evaluating the inner products between the

pixels uncompensated and compensated patterns and patterns stored in the dictionar-

ies D and Dc, respectively. Anomalies are detected as abnormally low average inner

products between an uncompensated pixel pattern and patterns in D. Specifically

the average inner product similarity measure is defined as

ρ̄(i) =
1

d

d∑
j=1

YT
i φj

‖Yi‖‖φj‖
, (4.3)

where is the average of the normalized inner products between pattern Yi at pixel i

and the d pattern {φj}dj=1 in the dictionary D.

Boundaries between grains are detected based on the lack of homogeneity of the
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matches to the dictionary Dc of a pixel and its 8 adjacent pixels, which we call a 3×3

spatial patch. Specifically, for pixel i we define the neighborhood similarity measure

ρNc(i) as the average amount of overlap between the k-NN neighborhood in Dc of the

pixel and the k-NN neighborhoods, with k = 40, in Dc of the adjacent pixels on the

patch:

ρNc(i) =
1

8k

∑
j∈I3×3(i)

card{NkNN(j) ∩NkNN(i)}, (4.4)

where I3×3(i) are the indices of the 8 neighbors of pixel i. The neighborhood similarity

ρNc(i) will have value close to 1 when the image patch is located in a grain. Its value

will be close to zero when the image patch is centered on an anomaly. Its value will

be between zero and one when the image patch is at a grain boundary (See Fig. 4.1).

Figure 4.1: Illustration of a neighborhood similarity measure that quantifies the over-
lap between k-NN neighborhoods in an image patch. When the patch is inside a
grain, the center of the patch will have a k-NN neighborhood that overlaps with the
k-NN neighborhoods of the adjacent pixels. A patch that straddles a boundary will
have the center pixel k-NN neighborhood overlapping with the neighborhoods of a
small number of other pixels. When the patch is centered at an anomalous pixel there
is little or no overlap between the k-NN neighborhoods of the center and adjacent
pixels.

The inner product similarities (for anomalies) and the neighborhood similarities
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(for grain boundaries) are used by a pattern classifier to assign each pixel to one of

four classes. While many different types of unsupervised classifiers could be used,

e.g., k-means, linear discriminant analysis (Hastie et al., 2005) or deep learning net-

works (Hinton et al., 2006), here we propose to cluster patterns using an unsupervised

Decision Tree (DT) classifier (Hastie et al., 2005) whose classification boundaries are

determined so that they separate the modes (regions of concentration) of the his-

tograms of inner-product similarity and neighborhood similarity over the sample. The

non-overlapping modes can easily be separated by thresholding of the similarity value

while the others can be estimated using a mode decomposition method such as Gaus-

sian mixture modeling, also called mixture of Gaussian (MoG) modeling (Figueiredo

and Jain, 2002). This is illustrated in Fig. 4.2. The unsupervised DT classifier is

illustrated in Fig. 4.3 in Section 4.7 for the IN100 sample considered. Four clusters

were discovered by the model: anomalous pixels, which divided into two subclusters

of shifted background and noisy background, and normal pixels, divided into grain

boundary and grain interior.
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Figure 4.2: A two component Gaussian mixture model has a good fit to the neigh-
borhood similarity histogram in right panel of Fig. 4.8. The point where the two
Gaussian components cross (dotted vertical line) determines the threshold for the
right lower branch of the unsupervised decision tree classifier in Fig. 4.3.

Decision tree classifiers have been previously applied to many imaging applica-
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tions, e.g., land cover classification in remote sensing (Friedl and Brodley , 1997; Pal

and Mather , 2003). However, there are significant differences between the proposed

DT classifier and those previously applied. First, the proposed classifier is a hy-

brid DT that uses special features (background compensated and uncompensated

patterns) and similarity measures (inner products and neighborhood intersections)

specific to materials microanalysis. Second, unlike standard non-parametric DT clas-

sifiers, the proposed DT is informed by a physics model through the generated dic-

tionary of diffraction patterns. Third, our use of unsupervised Gaussian mixture

models to determine the classification thresholds means that the DT classifier thresh-

old parameters are determined by the Gaussian mixture models and do not need to

be tuned, thus eliminating the need for labeled training data and time consuming

cross-validation.

4.3.2 Indexing

The proposed pixel indexing method is formulated as a statistical estimation prob-

lem. The pixel’s crystal orientation is estimated via maximum likelihood under a

Von Mises-Fisher mixture density model for the quaternions of the k top dictionary

matches. Note that the k used in the maximum likelihood model may be different

from the k used to compute the neighborhood similarity for the DT classifier. We

motivate the Von Mises-Fisher model as follows. Recall that the dictionary is gen-

erated for a set of predetermined orientations θ. Hence using simple table lookup,

the indices of dictionary patterns found in the k-NN neighborhood of a pixel can

be mapped to a set of k orientations {θj}kj=1. If the pixel is in a grain then these

orientation will be clustered around a true crystal orientation, that we call θ, at the

pixel location. We extract a maximum likelihood estimate of this orientation using a

statistical model for the variation of θj’s.

We assume that the k best matching orientations {θj}kj=1 of a pixel form a ran-
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dom sample from an underlying marginal density f(;̇θ), supported on the orientation

sphere. Then the maximum likelihood estimator of θ is

θ̂ = amaxθ

k∏
j=1

f(θj;θ). (4.5)

As is customary in the theory of directional statistics (Mardia and Jupp, 1999)

we parameterize the density of 3-dimensional orientations by their equivalent 4-

dimensional unit length quaternions {qj}kj=1 (‖qj‖2 = 1). As described in Chap-

ter III, due to crystal symmetry, there are many (M) orientations that are equivalent

to each other, i.e., the representation is not unique. For any quaternion q, the set

of symmetry equivalent quaternions can be represented as {Pmq}2M
m=1 where Pm is

a 4 × 4 quaternion (rotation) matrix and P1 is the identity matrix. The matrices

{Pm}48
m=1 to establish a 4D representation of the m3m point group (De Graef and

McHenry , 2007).

The proposed model for orientations is based on a generalization of the Von Mises-

Fisher density (Mardia and Jupp, 1999) to group structured domains on the sphere.

The standard Von Mises-Fisher density over the 3-dimensional sphere with location

parameter µ and precision parameter κ is defined as

φ(x;µ, κ) = c4(κ) exp (κµTx), ‖x‖2 = 1 (4.6)

where cp(κ) = κp/2−1

(2π)p/2Ip/2−1(κ)
and Iν is the modified Bessel function of the first kind.

Here ‖µ‖2 = 1 and κ > 0 control the location of the mode (maximum) and spread

of the density over the sphere, respectively. The natural generalization to the group

structured domain is the periodic mixture density

fv(x;µ, κ) =
1

2M

2M∑
m=1

φ(x; Pmµ, κ). (4.7)
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This Von Mises-FIsher mixture (VMFm) density contains 2M replicates of the Von

Mises-Fisher density over the sphere centered at all the symmetry-equivalent values

of the location parameters µ.

Substitution of (4.7) into (4.5) and use of the well-known invariance property of

maximum likelihood estimation (Lehmann and Casella, 1998) gives a form for the

maximum likelihood estimator of grain orientation θ̂ in terms of the joint maximum

likelihood estimators µ̂ and κ̂:

{µ̂, κ̂} = amaxµ,κ

k∏
j=1

2M∑
m=1

γmfv(qj; Pmµ, κ). (4.8)

where γm = (2M)−1. Even though this maximization problem appears daunting, it

can be iteratively and efficiently computed by applying the well known expectation-

maximization (EM) procedure for constrained parameter estimation in mixture mod-

els (McLachlan and Peel , 2004). For a full account of this procedure has been elabo-

rated in Chapter III. Note that 1/κ̂ gives an empirical estimate of the degree of spread

of the density about the orientation estimate µ̂. Thus, κ̂ is a measure of confidence

of this estimate.

4.4 Generation of the Dictionary

The dictionary approach requires a uniform sampling of orientation space SO(3).

Several sampling schemes are available in the literature; among the most popular

schemes are a deterministic sampling method based on the Hopf fibration (Yershova

and LaValle, 2004; Yershova et al., 2009) and the HEALPix framework (Hierarchi-

cal Equal Area isoLatitude Pixelization) (Gorski et al., 2005). Neither of these ap-

proaches is easily adaptable for integration with crystallographic symmetry. Instead,

we employ a recently developed strategy that starts from a simple 3D cubic grid

which is mapped uniformly onto SO(3) (Roca et al., 2014). This cubochoric mapping
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is uniform, refinable, and isolatitudinal, and consists of three steps:

1. a uniform cubic grid of (2N + 1)3 grid points is generated inside a cube of edge

length a = π2/3;

2. the cube is divided into six pyramids with apex at the cube center and the cube

faces as base, and each pyramid is mapped uniformly onto a sextant of a ball,

using a generalization of the mapping of a square onto a curved square (Roca

and Plonka, 2011);

3. all points inside the ball are then transformed, using a generalized inverse equal-

area Lambert mapping, to the unit quaternion Northern hemi-sphere, which is

isomorphous with SO(3).

From the quaternion representation one can readily derive other orientation pa-

rameterizations; the Rodrigues parameterization is most suitable for the determina-

tion of the orientations that belong to the fundamental zone (FZ) for a given crystal

symmetry, because the boundaries of the FZ are planar. The more conventional Eu-

ler angle representation typically has curved surfaces as the boundaries of the FZ, so

that Euler angles are less useful for uniform sampling approaches. It should be noted

that lower crystal symmetry implies a larger dictionary, since the fundamental zone

size increases with a reduction in symmetry; acceleration of the dot product calcula-

tions by means of a GPU (graphical processing unit) is a topic of ongoing research.

The use of the Rodrigues representation to determine the dictionary elements has

computational advantages, but care must be taken in the case of crystal symmetries

with a single diad axis, for which the Rodrigues fundamental zone becomes infinite in

the direction normal to the axis. Our approach still produces a uniform sampling of

orientation space, although all rotations by an angle of 180° are represented by points

at infinity (which correspond to points on the outer cube surface in the cubochoric

representation).
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The dictionary used for the remainder of this chapter was generated by setting

N = 100, and keeping only those orientations for which the corresponding Rodrigues

vector lies inside the fundamental zone for the octahedral m3̄m point group. The

patterns in the dictionary were down sampled to 60 by 80 pixel images. This results

in a dictionary D with d = 333226 elements of dimension 4800. A representative

(random) selection of 9 dictionary elements in D and Dc is shown in Fig. 4.4. The left

panel of Fig. 4.5 shows how the sampling points are distributed inside the octahedral

Rodrigues FZ. The right panel of the figure shows the rate of drop-off of the top 200

inner products in the compensated dictionary Dc for 4000 randomly selected reference

elements. This decay rate is used to select the number of nearest neighbors (k = 40)

used for the classifier described in Section 4.3 and implemented in Section 4.7.

4.5 Computational Considerations

The online dictionary matching algorithm requires inner product evaluation be-

tween the measured sample diffraction patterns and the dictionary diffraction pat-

terns. Let d denote the number of patterns in the dictionary (dictionary size), L

denote the number of pixels on the photodetector (pattern size), and n denote the

number of pixels on the sample (sample size). The time complexity of calculating the

mean inner product over the entire measured sample is O(L(d+ n)).

For the indexing method, to determine the k-NN dictionary patterns for a given

pixel the k largest inner products need to be determined from the set of all inner

products between the pixel and patterns in the dictionary. The time complexity of

the whole process is O(Ldn), assuming k � d. The computation time and space grow

rapidly when the dictionary size and sample size become large.

Computational challenges can be addressed in several ways. The simplest ap-

proach is to use parallelization and distributed computation. All of the algorithms

introduced here can be parallelized over the spatial domain since they involve local
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operations. For example, ML orientation estimation is applied independently to each

pixel and DT classification is applied to each spatial patch in the sample. To speed

up the k-NN dictionary search one can use methods from information retrieval such

as dictionary caching and KD trees to accelerate the inner product evaluation and

ranking process. These methods rely on the similarity of diffraction patterns over the

k-NN neighborhood. However, as they rely on approximation, these methods may

also introduce indexing errors. A study of these and other computational trade-offs

is important and will be discussed in the final thesis.

4.6 Experimental Methods

To test the dictionary approach against an experimental data set, a polycrystalline

IN100 Nickel-based super-alloy sample was selected. The sample was polished using

a multi-platen Robomet.3D, using a grit of 1 micron diamond slurry on a TexMet

cloth and finished with a 40 nm colloidal silica slurry on a ChemoMet cloth. Between

polishing steps, a water clean was used on a ChemoMet cloth.

A backscattered electron (BSE) image was recorded using a Tescan Vega 3 XMH

scanning electron microscope outfitted with a LaB6 filament. An EBSD map was

obtained with the same SEM and a Bruker e-Flash1000 system. A tilt angle of 70°,

voltage of 30kV, working distance of 15mm, and emission current of about 1nA were

used to collect the EBSD map. The spatial resolution in both x and y directions was

297.7nm, and a Kikuchi pattern of 80 × 60 pixels was acquired and stored at every

point in a 512× 382 map.

4.7 Results

A dictionary was designed as described in Section 4.4 for the octahedral m3̄m

crystal symmetry group to match the known characteristics of the IN100 sample and
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the SEM system, as described in Section 4.6. Dictionary inner-products and k-NN

neighborhoods were computed from the detected pattern at each scan location.

We indicate four different scan locations (pixels) with qualitatively different pat-

terns in Fig. 4.6. These locations are representative of the four different clusters of

pattern, described below (see Fig. 4.3), that were discovered by the unsupervised DT

classifier. In Fig. 4.7 the histograms of the dictionary inner-products are shown for

each of these pixels. The shifted background and noisy background pixels have inner-

products that are well separated from each other in addition to being separated from

the inner-products of the grain interior and grain boundary pixels. Thus one might

expect that the group of anomalous pixels, represented by the former two, could be

easily separated from the group of normal pixels, represented by the latter two, using

any reasonable clustering technique based on the inner-products. On the other hand,

the inner-product histograms for the grain interior pixel and the grain boundary pixel

are overlapping. This overlap makes it difficult to distinguish these two types of pixels

and justifies the need for the more sensitive neighborhood similarity measure that is

better able to separate them.

Figure 4.8 shows the full-sample histograms of inner-products ρ̄ with respect to

D and neighborhood similarities ρNc with respect to Dc, respectively, over all pixels

and over all patterns in the dictionaries. The left panel of Fig. 4.8 can be interpreted

as the addition of all other inner-product histogram to the four histograms shown in

Fig. 4.7. Similarly to Fig. 4.7, the full-sample inner-product histogram exhibits three

well separated modes, which confirms that anomalous pixels can easily be separated

from the normal pixels on the basis of thresholding each pixel’s average inner product

measure. The three modes correspond to anomalous pixels with inner-products clus-

tered around 0.7 and 0.97 (not visible in the range of ρ̄ plotted) and normal pixels

with inner-products clustered around 0.997.

The right panel of Fig. 4.8 shows the histogram of all neighborhood similarities
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computed with neighborhood size k = 40. The latter histogram is bimodal and

asymmetric about its mean. The higher mode located near 37 corresponds to pixels

whose k-NN neighborhood in Dc has high overlap with the k-NN neighborhoods of

its 8 adjacent pixels. Such pixels are likely to be interior to a grain. The lower

mode located near 26 corresponds to patches of pixels near grain boundaries, patches

that have less similar k-NN neighborhoods than in-grain pixels. To separate these tow

modes, we fitted a two component mixture-of-Gaussian model to the histogram in the

middle panel using the MoG EM algorithm (McLachlan and Peel , 2004). The result

of this fit is shown in Fig. 4.2. The point of intersection of each of the fitted Gaussian

densities (shown in the Figure by vertical dotted line) is used as the DT classification

threshold for discriminating between grain boundaries and grain interiors.

Figure 4.3 shows the unsupervised DT classifier used to cluster observed patterns.

The lower four nodes are leaf nodes while the upper three nodes are decision nodes for

which thresholds are used to assign labels. These thresholds were determined from

the observed histograms shown in Fig. 4.8 as described above. The DT classifies each

pixel on the sample based on the pattern matches in the dictionaries. The top node,

labeled ”observation” classifies pixel as a ”anomaly” or as ”normal” by thresholding

the average inner-product ρ̄ between the pattern at the center pixel of the patch

and the patterns of the dictionary. Any threshold between ρ̄ = 0.97 and ρ̄ = 0.99

would separate the normal pair (grain interior, grain boundary) from the anomalous

pair (noisy background, shifted background) and we selected the midpoint. The

anomalous patterns are further subclassified on the left branch of the DT by applying

a threshold between 0.7 and 0.95 to ρ̄. The DT classifies normal pixels as either grain-

interior or grain-boundary pixels by applying the threshold 32/40 to the neighborhood

similarities ρNc . Representative patterns are shown at the bottom of Fig. 4.3 that

have been identified as belonging to each of the respective four clusters.

Figure 4.9 shows the pixel neighborhood similarities (left panel) and the pixel
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classifications (right panel) as images as determined by the unsupervised DT classi-

fier. In the classification image the blue/red regions and black regions respectively

correspond to pixels classified as anomalies and boundaries. These class labels can

be used for segmentation of the grains and identification of the anomalies. A blowup

of these images in Fig. 4.9 is shown in Fig 4.10 for a small region.

Next we illustrate the use of the dictionary for estimation of the Euler angles in

the sample. For the same subregion as in Fig. 4.10, Fig. 4.11 illustrates the OEM

(original equipment manufacturer) orientation estimates (top left image), an estimate

equal to the orientation of the element of the dictionary having largest normalized

inner product with the pixel pattern (top right image), the proposed ML estimator

µ̂ of the orientation (VMFm location parameter) computed from the top k = 4

matches in the dictionary (bottom left image), the proposed ML VMFm estimator µ̂

computed with k = 10 (bottom right image). The ML estimates κ̂ of the VMFm scale

parameters were computed for each pixel. This κ̂ parameter is inversely proportional

to the width of the estimated VMFm model over the 3 dimensional quaternion sphere.

Figure 4.12 shows images of these ML estimates translated into angular uncertainty

(in degrees) by using the transformation ∆θ = arccos(1− 1/κ)180
π

, which is the 1/e-

width of the VMFm distribution in any fundamental zone. Note that the OEM

image in Fig. 4.11 has many spurious orientation estimates within grains unlike the

proposed dictionary based methods. Note also that the ML orientation estimates

produce smoother in-grain orientations. The k = 4 and k = 10 ML orientation

estimates have low confidence (high variance) at some locations on grain boundaries

and in anomalous region at bottom right. This low confidence is quantified by the

ML estimator of the scale parameter κ of the VMFm model, shown in Fig. 4.12 for

k = 4 and k = 10.
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4.8 Conclusion and Future Work

We have introduced a novel method for indexing polycrystalline materials that

uses both mathematical-physics modeling and mathematical-statistics modeling. The

physics-based forward model is discretized into a dense dictionary of diffraction pat-

terns that are indexed by Euler angle triplets. The dictionary is fixed for each crystal

symmetry group and each SEM instrument configuration. The statistical model is

based on the group symmetry of quaternion representation of the Euler angles on

the 3-sphere in 4 dimensions. A feature of this method is that it performs classifi-

cation, segmentation, and indexing in the unified framework of dictionary matching.

A feature of the indexing method is that it incorporates a concentration parameter

that can be estimated jointly with the Euler angles of a pixel or of a grain. This

concentration parameter can be used to report the degree of confidence one can have

in the Euler estimates. An iterative maximum likelihood estimator was proposed for

estimating the orientation and associated confidence parameters in a statistical Von

MisesFisher mixture model. The method was illustrated on a single sectional slice of

a Nickel alloy sample.

As the proposed indexing method is pixel driven it is directly applicable to in-

dexing over 3 dimensional volumes. Future work will include algorithm acceleration

to make full volumetric indexing fast enough to be practical. Potential acceleration

methods include multi-resolution and multi-scale trees, fast coordinate ascent ML

optimization, and parallelization. Other areas for future work include robustifica-

tion of the dictionary to model mismatch, sensitivity to reductions in detector image

resolution, and extensions of the dictionary approach to other electron diffraction

modalities, such as electron channeling patterns and precession electron diffraction.

Preliminary investigations indicate that, while dictionary-based classification appears

to be robust to model mismatch, the proposed dictionary-based indexing algorithm

is somewhat sensitive to model mismatch. This suggests that the dictionary design

71



may need to be fine tuned to the SEM instrument in addition to the samples crystal

symmetry group. The extension to other SEM modalities such as EDS is also possible

but would require development of dictionaries that capture other types of data (e.g.,

spectra).

72



 0.0039062  0.99609 

 0.33594 
 0.66406  0.35721  0.64279 

Observation

Anomaly Normal

Shifted Noisy Boundary Interior

10 20 30 40 50 60

10

20

30

40

50

60

70

80
10 20 30 40 50 60

10

20

30

40

50

60

70

80
10 20 30 40 50 60

10

20

30

40

50

60

70

80
10 20 30 40 50 60

10

20

30

40

50

60

70

80

Shifted

Background
Noisy

Background

Grain

Boundary

Grain 

Interior

Figure 4.3: Decision tree for clustering detected patterns on the IN100 sample with
examples of patterns in each cluster below the leaf nodes at bottom. Physical loca-
tions of these patterns on the sample are shown in Fig. 4.6. The classifier uses the
uncompensated pattern matches of a pixel to decide between shifted and noisy back-
ground at lower left. It uses the homogeneity of the compensated pattern matches
over a 3× 3 patch to decide between grain boundary and grain interior on the right.
The number on each decision tree branch is the proportion of patterns at the parent
node that were classified with label of child node.
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Figure 4.4: A random subset of the 333226 elements in the dictionary generated for
the IN100 sample. Shown are 9 representative patterns, each 6080 pixels, in the
uncompensated (Left) and compensated (Right) versions of the dictionary.
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Figure 4.5: Left: The sampling pattern (at 1/8 density) of dictionary Rodrigues
vectors in the fundamental zone (solid lines) of the cubic symmetry point group
m3̄m. Right: Graph of the top 200 normalized inner products between the entire
compensated IN100 dictionary and a randomly selected set of 4000 reference elements
in the IN100 dictionary. For each of the reference elements the top 200 inner products
have been rank ordered in decreasing order and plotted. A knee occurs in vicinity of
k = 40 for which the normalized inner product drops by at least 1/3 of the maximum
value.
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Figure 4.6: Raw SE and EBSD images of IN100 sample generated by the Tescan
Vega SEM with native OEM software. Left: SE image of the IN100 sample showing
physical locations of the four patterns shown at bottom of DT classifier in Fig. 4.3.
The inner-product histograms for the diffraction patterns at these locations are shown
in Fig. 4.7. Right: IPF colored EBSD pixel orientation image.
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Figure 4.7: Histograms of the inner products between patterns in the dictionary
and the patterns of the four EBSD scan locations (pixels) shown in Fig. 4.6. The
histograms for the shifted background and the noisy background are well separated
from each other and from the histograms for the grain boundary and grain interior
pixels in Fig. 4.6. These latter two histograms are very concentrated near 1 and
overlap each other (not distinguishable at this scale).
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Figure 4.8: Left: histogram of normalized inner products between detected patterns
on the sample and dictionary patterns restricted to the range ρ̄ = [0.99, 0.999] to
reveal the modes associated with grain interior and grain boundary patterns. Two
other modes (not shown) are located near ρ̄ = 0.7 and ρ̄ = 0.97 corresponding to
background shift and noisy background pixels, respectively (see Fig. 4.7). Right:
histogram of neighborhood similarity measures between dictionary neighborhoods
over a 3× 3 patch centered at each pixel in the sample for neighborhood size k = 40.
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Figure 4.9: Left: An image rendering of the (un-normalized) neighborhood similarity
measure (k = 40 nearest neighbors in dictionary) used in the right branch of the
DT classifier in Fig. 4.3. Right: A map of the pattern classes in the IN100 sample
as determined by the DT classifier in Fig. 4.3. The colors encode the four classes
as follows: white=grain interior, black=grain boundary, red=noisy background, and
blue=shifted background. Note that the black boundaries effectively segment the
sample according to crystal orientation.

Figure 4.10: Blowup of a small region right of center in each of the images of Fig. 4.9.
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Figure 4.11: Comparison of orientation indexing. Top left: IPF images generated
by OEM software. Top right: IPF image obtained by rendering the top matching
patterns in the dictionary (this is identical to the ML estimator of the orientation
using VMFm model with k = 1). Bottom left: Image of ML estimates of orientation
using VMFm model on the orientations of the k = 4 top dictionary matches. Bottom
right: Same as bottom left except that k = 10. Note that the OEM image has
many spurious orientation estimates within grains unlike the other dictionary based
methods. Note also that the ML orientation estimates produce smoother in-grain
orientations. The k = 4 and k = 10 ML orientation estimates have low confidence
(high variance) at some locations on grain boundaries and in anomalous region at
bottom right. This low confidence is quantified by the ML estimator of the scale
parameter κ of the VMFm model, shown in Fig. 4.12 for k = 4 and k = 10.
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Figure 4.12: Images of the ML estimator of the orientation standard deviation (in
degrees) obtained by ML estimation of the scale parameter κ of the VMFm model
corresponding to the bottom two sub-figures of Fig. 4.11. The angular standard
deviation ranges from 0.05 degrees to 0.5 degrees but those values above 0.25 have
been hard-limited for ease of visualization (only 1% of all values are above 0.25 de-
grees). Note that the areas of least confidence are in the vicinity of boundaries and
anomalies. The highest standard deviations occur at pixels that straddle boundaries
between grains having the highest misorientation.
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CHAPTER V

Coercive Region-level Registration for

Multi-modal Images

5.1 Introduction

In previous chapters, we introduced the statistical model which incorporates the

crystal symmetry property and how this model can be applied to the mean crystal

orientation estimation and the dictionary-based indexing approach for EBSD data.

In this chapter, we will addresses the two problems of multi-modal image registra-

tion and image segmentation, which are inevitable steps before fusion, within a single

framework. Multi-modal registration refers to registration of images acquired by dif-

ferent sensor/scanner types. It has been applied to many areas, e.g. medical images,

microscopy images, and radar images, to combine information from different modal-

ities and provide more comprehensive understanding about the true object. Image

segmentation, the partitioning of an image into meaningful regions, is an important

step in image analysis and understanding.

In this chapter, we focus on multi-modal registration and segmentation as applied

to scanning electron microscope (SEM) images of materials; the methods to be dis-

cussed are equally applicable to other multi-modal images that share spatial structure.

∗This chapter is based on (Chen et al., 2015b)
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SEM techniques are widely used in materials science for material characterization, for

example detection of defects that may cause fatigue when operating. Segmentation

is of interest to map locations of grains, uniform regions occupied by continuous

crystal lattices, since grain structure is a principal factor in determining the proper-

ties of a polycrystalline material such metallic or ceramic materials (Shah and Duhl ,

1988). Multi-modal registration is desired because different scanning electron modali-

ties carry complementary information (Wang et al., 2005; Nordmark et al., 2008). For

example, Backscattered Electrons (BSE) provide information about topography and

local fine-scale surface texture (Goldstein, 2003) while Electron Backscatter Diffrac-

tion (EBSD) measures crystal orientation which is useful in locating grains and grain

boundaries (Schwartz et al., 2009).

Multi-modal registration is made challenging by the fact that images from dif-

ferent modalities may have different resolutions, values that lie in different spaces

(e.g., scalars vs. vectors), and different levels of distortion. In SEM for instance,

these differences are due to different electron beam geometries, sensors, and record-

ing electronics. Furthermore, there is no complete forward imaging model that jointly

characterizes the multi-modal signals. Without the complete image formation model,

pixel-level registration methods (Bonnet and Liehn, 1988; Glasbey and Martin, 1996;

Tang et al., 2007), i.e., those that establish correspondences between pixels, usually

resort to interpolation, a somewhat ad-hoc solution that may bias the resulting im-

ages toward excessive smoothness. On the other hand, image registration has to

assume certain transformation model, such as rigid body displacement (Hill et al.,

2001), local deformations (Rueckert et al., 1999; Szeliski and Coughlan, 1997), or

other relative differences (Meyer et al., 1997; Rohr et al., 2001) between the reference

and target images. Due to the fact that there is no transformation model that ade-

quately describes the image distortion between different microscopy modalities, the

transformation model mismatch may also introduce artificial errors in the registration
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result.

Image segmentation is a process of partitioning an image into multiple segments

(i.e., sets of connected pixels) which is useful in identifying and locating the grains in

different SEM modalities of polycrystal materials, such as BSE (Chuang et al., 2008)

or EBSD (Schwartz et al., 2009) images. Kass et al. formulated image segmentation as

an optimization problem with an edge-based model, called Snakes (Kass et al., 1988),

which has an enormous impact in image segmentation community. Yet, it has the

drawbacks as sensitive to initialization and non-trivial extension to color or texture

images (Cremers et al., 2007). Region-based models which utilize level set functions

with variational methods are proposed to segment images into 2-phases (Amadieu

et al., 1999; Chan and Vese, 2001) or multi-phases (Vese and Chan, 2002). It has been

shown that these approaches are more robust to noise and to varying initialization.

However, one has to determine the number of segments a priori and they do not have

the flexibility of adding or merging regions during the process, which is an essential

step in our grain identification problem. Most of all, since all of the above approaches

segment the image in each modality independently, finding the correspondences of the

segmented regions between different modalities as required in image fusion becomes

another difficult problem, especially when the segmentation results are not consistent

across modalities due to noise or low contrast.

In this work, we propose a coercive region-level approach to simultaneously reg-

ister and segment images of different modalities that share similar spatial structure.

The algorithm is initialized by segmenting one image by a standard method and

coarsely mapping the result onto the other image. Then the two images are reg-

istered at the region level and further segmented through alternating minimization

of a statistically-based objective function which is adopted from region growing and

mering techniques (Zhu et al., 1995; Nock and Nielsen, 2004). There are several

advantages of our approach. First, the region-level approach is free of pixel value

83



interpolation and its inherent assumptions. Second, it takes advantage of modalities

with better discriminative power, improving the overall segmentation result. The

approach also preserves region correspondences to facilitate data fusion. Lastly, both

registration and refinement of segmentation are driven by statistical models. In par-

ticular, we propose hypothesis tests to detect boundaries that are missed by the initial

segmentation due to low contrast.

The rest of this chapter is organized as follows. In Section 5.2, we describe the

objective function, statistical models for data from different modalities, and opti-

mization methods for the region-level registration algorithm. In Section 5.3, we focus

on hypothesis testing for detecting missing boundaries. Section 5.4 shows experi-

mental results for synthetic and real materials images and compares several different

approaches. Section 5.5 concludes this chapter.

5.2 Algorithm Framework and Models

5.2.1 Objective Function

We assume that there are two images from different modalities. A pixel location

(x, y) ∈ Ii, i ∈ {1, 2} is represented as vector p, where Ii is the spatial domain for the

i-th modality. The pixel value at p is given by a function Ii(p). Note that the values

I1(p1) and I2(p2) may lie in different spaces. The region-level registration problem

is to find partitions of Ii, Si = {Rij}
Ni
j=1, where each segment Rij is a collection of

connected pixel locations and Ni is the number of segments, to minimize the following

objective function:

U(S1, S2) = J(S1, I1) + J(S2, I2) + λD(S1, S2), (5.1)

where J(Si, Ii) is the intra-modal energy function that measures how well the seg-

mentation fits the image data and D(S1, S2) is the inter-modal energy function that
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coerces the segmentation results to be topologically similar, motivated by the fact

that they share the same underlying physical structure. The parameter λ controls

the relative importance of the two terms.

In this chapter, we define the inter-modal energy D(S1, S2) to be the number of

segment boundaries that are present in one modality but not the other. This num-

ber is easily tracked because our algorithm maintains tight correspondences between

segments in the two images. More generally, segment structure can be represented

by a connected adjacency graph and the inter-modal energy can be any function

which measures the topological distance between two graphs. The intra-modal en-

ergy J(Si, Ii) is defined by the statistical models described in the following subsection.

5.2.2 Statistical Models for Pixel Values

In the materials context, each segment Rij corresponds to a grain, a continu-

ous crystal lattice. Motivated by this, we assume that the observed values within a

segment are similar and can be modeled by i.i.d. random variables following a dis-

tribution with the same parameters. In the sequel, the image modality subscript i is

suppressed for simplicity. Let the probability density function (PDF) of the distribu-

tion for one modality be denoted by f(I(p)|α), where α represents the parameters

specifying the model. The intra-modal energy function in (5.1) given a set of segments

S = {R1, R2, ..., RN} is defined as:

J(S, I) =
N∑
j=1

−∑
p∈Rj

log f(I(p)|α̂j) + ε

∫
∂Rj

dl

 (5.2)

where ∂Rj is the boundary of region Rj with counter-clockwise definition and α̂j is the

maximum-likelihood (ML) estimate for the parameters of region Rj. The first term

is the negative log-likelihood of observations which penalizes grain inhomogeneity

and the second term penalizes the boundary length, where ε controls the level of
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smoothness.

In this chapter, we consider the EBSD and BSE images of one section of a material

as our input. Note that other image types can be used directly given properly defined

statistical models. For BSE images, since the pixel values are scalars, the intensities

in the same grain region are modeled by a univariate Gaussian N (µj, σ
2
j ), where µj, σ

2
j

are the mean and variance of Rj. Notice that µj and σ2
j are unknown parameters to

be estimated from image data.

For EBSD images, the pixel values characterize the local crystal orientation, which

can be represented by Euler angles (Eberly , 2008), Rodrigues vectors (Morawiec and

Field , 1996) or quaternions (Altmann, 2005). We choose the unit-quaternion rep-

resentation, i.e. a q ∈ S3, the 3-dimensional unit sphere in R4. This allows use

of the von Mises-Fisher (VMF) distribution in directional statistics (Mardia and

Jupp, 1999), a natural generalization of the multivariate Gaussian distribution to

the sphere S(p−1) ⊂ Rp (here p = 4). Again, due to the crystal symmetry which

causes there to be more than one quaternion representation corresponding to a single

crystal orientation, we adopt the mixture of VMF distributions as proposed in Chap-

ter III to model the orientations. To briefly describe the model, let G be a group

of quaternion matrices {P1, . . . ,PM} which define the symmetry actions that map a

quaternion q to its symmetric equivalents. The PDF of the pure VMF distribution

is φ(x;µ, κ) = cp(κ) exp(κµTx), where x,µ ∈ S(p−1), µ is the mean direction, κ is

the concentration parameter, cp(κ) = κp/2−1

(2π)p/2Ip/2−1(κ)
and Ip(.) is the modified Bessel

function of the first kind with order p. The density function of the VMF mixture

distribution is then given by

fv(x;µ, κ) =
M∑
m=1

1

M
φ(x; Pmµ, κ) (5.3)

The parameters µ and κ can be estimated from image data through the Expectation-
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Maximization algorithm derived in Chapter III.

5.2.3 Optimization

We minimize the objective function (5.1) by alternately fixing S
(k)
1 , S

(k)
2 and solving

(5.4) and (5.5),

S
(k+1)
2 = arg min

S
J(S, I2) + λD(S

(k)
1 , S) (5.4)

S
(k+1)
1 = arg min

S
J(S, I1) + λD(S, S

(k+1)
2 ) (5.5)

where k is the iteration index. Typically 2-3 iterations suffice.

To initialize the algorithm, the initial segmentation of the first modality, S
(0)
1 , is

obtained by using a suitable image segmentation method. For example, the Voronoi-

based method in (Bachmann et al., 2011) or our proposed dictionary-based approach

presented in Chapter IV can be applied to EBSD images and the Stabilized Inverse

Diffusion Equation method to BSE images (Chuang et al., 2008). Since EBSD data

provides crystal orientation which defines grain regions more accurately, we choose to

start with EBSD segmentation in this work. Next, to account for global misalignment

and any resolution difference between the modalities, we determine an affine trans-

formation by registering the outer boundary of the material sample in one modality

to the other. The transformation is then used to map S
(0)
1 onto the other modality,

yielding the initial segmentation S
(0)
2 . Note that due to localized distortions between

the modalities, the initial segmentation S
(0)
2 may be misaligned with the image values

as shown in Fig.5.1a and therefore needs to be registered.

Optimizing (5.4) and (5.5) is done in two steps. The first step is to consider

splitting regions in the current segmentation by adding boundaries. In Section 5.3, we

propose a hypothesis testing approach for this purpose based on the statistical model
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(5.2). The second step is to register the misaligned boundaries. Due to the fact that

adjusting boundary positions does not change the topology of the segment structure,

the inter-modal energy function D(S1, S2) is not changed in this step, reducing (5.4)

and (5.5) to the intra-modal energy function J(S, I) alone, which is given by our

statistical model. We use the Region Competition algorithm (Zhu et al., 1995) to

minimize J(S, I). This algorithm applies gradient descent to move pixels comprising

the boundaries ∂Rj along their respective normal directions. There are two forces

driving the movement corresponding to the two terms in (5.2): the statistics force

which comes from the distribution model for the pixel values, and the smoothing force

which drives the boundary to have smaller curvature. More details are given in (Zhu

et al., 1995).

5.3 Hypothesis Tests for Missing Boundaries

This section elaborates upon the first step in solving (5.4) and (5.5), namely

hypothesis testing to determine whether a region R ∈ S should be split into two

based on the observed image values. We refer to this as the missing boundary problem.

Recall that R may come from the initial segmentation result from another modality

and may not fit the current image data. Figure 5.1 shows examples of misalignment

and a missing boundary. One can see that both of the situations have multi-modal

distributions of pixel values within the initially defined regions but only Fig.5.1b

shows a missing edge that should be identified. Therefore, a region R is declared

as having a missing boundary if and only if it satisfies the following two conditions:

(1) The pixel values are multi-modally distributed. (2) The multi-modal distribution

is unlikely to be caused by misalignment. We develop two hypothesis tests for the

two criteria. The first hypothesis test uses the Generalized Likelihood Ratio Test

(GLRT) (Neyman and Pearson, 1992) to test whether the pixel values are multi-

modally distributed. The second hypothesis test differentiates misalignment from a
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(a) Misalignment (b) Missing Edge

Figure 5.1: (a) shows a misaligned boundary while (b) indicates a missing boundary.
Notice that in both situations, pixel values within the regions outlined in red are
multi-modally distributed.

missing boundary.

5.3.1 Hypothesis Test for Multi-Modality

Recall from Section 5.2.2 that the set of pixel values within a region R are modeled

by a distribution f(I(R);α) with unknown parameters α, where I(R) = {I(p)}p∈R

are the observed pixel values in R. Assume there exists a boundary ψ which partitions

R into two sub-regions R+, R− with parameters α+,α−. The two hypotheses are H0:

region R is indeed a single region, i.e. α+ = α−; and H1: R consists of two regions.

The GLRT has the following form:

log ΛGLR = log max
ψ

max{α+,α−} f(I(R);α+,α−, ψ)

max{α+=α−} f(I(R);α+,α−, ψ)

= max
ψ

∑
p∈R+

log f(I(p)|α̂+) +
∑
p∈R−

log f(I(p)|α̂−)

−
∑
p∈R

log f(I(p)|α̂) ≷H1
H0
λ (5.6)

where α̂, α̂+, α̂− are the ML estimates of the parameters under the null and alter-

native hypotheses and λ is the coefficient in (5.1). The GLRT can be viewed as a
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trade-off between the improvement in the intra-modal energy and the penalty of λ

paid in the inter-modal energy when inserting a boundary. The boundary length

penalty is neglected here for simplicity but can be included easily.

In the following subsections, we derive the GLRT for univariate Gaussian and

VMF distributions given the boundary ψ. We only discuss the equal variance (con-

centration parameter) case due to the paper length constraint. These expressions

supply the objective function, denoted as ΛGLR|ψ, to be maximized with respect to

ψ in (5.6). We use the Region Growing algorithm (Zhu et al., 1995) to locate the

optimal boundary ψ. The algorithm partitions a region starting from two seed pixels

and greedily adds neighboring pixels until all pixels in the region are chosen.

5.3.1.1 Multi-modality Test for Univariate Gaussian Distribution

The GLR ΛGLR|ψ given boundary ψ for testing mean equality between two Gaus-

sian distributions has the following form (Seize, 1977):

ΛGLR|ψ =

(
σ̂2

0
n+

n
σ̂2

+ + n+

n
σ̂2
−

)n/2

, (5.7)

where σ̂2
0, σ̂

2
+, σ̂

2
− are the ML estimators of the variances under the null and alterna-

tive hypothesis and n, n+, n− are the numbers of pixels in regions R,R+, R−. The

optimization of the boundary ψ then takes the form

ψ̂ = arg min
ψ

∑
p∈R+

(I(p)− µ̂+)2 +
∑
p∈R−

(I(p)− µ̂−)2
(5.8)

where µ̂± is the ML estimate of the mean in R±.
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5.3.1.2 Multi-modality Test for von Mises-Fisher Distribution

The VMF mixture distribution is reduced to single VMF through transoforming

the samples by the symmetry operator towards the mean direction estimated by

the EM algorithm introduce in ChapterIII. According to the derivation of the ML

estimators in (Dhillon and Sra, 2003), ΛGLR|ψ has the following form:

ΛGLR|ψ =
cp(κ̂1)n

cp(κ̂0)n
exp (κ̂1(‖r+‖+ ‖r−‖)− κ̂0‖r0‖) (5.9)

where r+ =
∑

p∈R+
I(p), r− =

∑
p∈R− I(p), r0 = r+ + r− and κ̂1 = A−1

p ((‖r+‖ +

‖r−‖)/n), κ̂0 = A−1
p (‖r0‖/n), Ap(x) = Ip/2(x)/Ip/2−1(x). The optimization over ψ is

ψ̂ = arg max
ψ

n(log cp(κ̂1) + κ̂1Ap(κ̂1))

= arg max
ψ
‖
∑
p∈R+

I(p)‖+ ‖
∑
p∈R−

I(p)‖
(5.10)

The last equality comes from the fact that n(log cp(x)+xAp(x)) and Ap(x) are mono-

tonically increasing functions of x. The proof of (5.10) is elaborated in Appendix D.

5.3.2 Hypothesis Test for Misalignment

For regions that pass the previous multi-modality test (H1 declared in (5.6)), we

perform a second hypothesis test to determine whether the multi-modal distribution

is due to H0: boundary misalignment, or H1: a missing boundary. Since in most

cases, misalignment causes only a small portion of pixels to differ from the majority,

one naive test is to set a threshold on the ratio of the size of the smaller region to the

whole region:

T =
min{|R+|, |R−|}

|R|
≷H1
H0
η (5.11)

However, since region size can vary over several orders of magnitude, the same
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Figure 5.2: Misalignment caused by displacement for (a) a realistic region shape; (b)
a simplified circular model.

absolute amount of misalignment (in pixels) can result in very different size ratios,

making it hard to set a universal threshold. Therefore, we propose an adaptive

threshold which incorporates region size. Boundary misalignment is modeled by a

displacement in position (see Fig.5.2a), where the displacements (dx, dy) are bivariate

Gaussian with zero mean and covariance Σd = σ2
dI2 and I2 is the 2 × 2 identity

matrix. For simplicity, the region is modeled as a circle with radius r (Fig. 5.2b),

where r =
√
|R|/π is the equivalent radius of region R. Based on these assumptions,

the test statistic in (5.11) can be formulated as the following function of d =
√
x2 + y2

given r:

T = fr(d) = 1− 2

π
arccos(

d

2r
) +

d

πr2

√
r2 − d2/4

⇒ d = f−1
r (T ) ≷H1

H0
f−1
r (η) = η′

The second line follows because fr is an increasing function. Since the displacement

d follows a Rayleigh(σd) distribution, given the user specified false positive rate α, we

set

α = P (d > η′|H0) = Q(η′) = P (T > fr(η
′)|H0)

⇒ η = fr(Q
−1(α))
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where Q(.) is the Rayleigh tail distribution. As a result, the threshold is adaptively

determined by α and the equivalent radius r.

5.4 Experiments

5.4.1 Boundary Detection Accuracy on Simulated Data

In this section, we compare grain boundary detection performance on simulated

EBSD and BSE images using three different approaches: A. Segment the BSE and

EBSD images separately by suitable existing segmentation algorithms (Nock and

Nielsen, 2004; Bachmann et al., 2011); B. Segment EBSD and register the bound-

aries onto BSE using a B-Spline deformation model and the mutual information

criterion (Maes et al., 1997; Rueckert et al., 1999); C. The proposed coercive regis-

tration/segmentation algorithm with λ = 0.15, ε = 25, α = 0.05.

The grain shapes in the testing data are taken from real microscopy images down-

loaded from BlueQuartz (BlueQuartz , 2003) and segmented by their Dream3D tool-

box. For each slice, some of the grains are randomly selected and displaced to produce

boundary misalignment according to the Gaussian displacement model with σd = 3

(pixels). This creates the ground truth boundaries for evaluation. The pixel values

for BSE and EBSD are generated from Gaussian and VMF distributions with random

mean and variance/concentration for each grain region. More sophisticated methods

which simulate more realistic grain shapes evolution and orientation distribution are

worth further investigation (Elsey et al., 2013; Esedo Lu and Otto, 2015).

To evaluate the boundary detection accuracy, we use the “overlapping rate”. Let

B(w) be the set of boundary pixel locations with boundary width w, which is obtained

by image dilation with filter disk radius w/2. The overlapping rate is defined as

O(w) = |BT (w) ∩ B̂(w)|/|BT (w) ∪ B̂(w)|, where BT (w), B̂(w) are the ground truth

and estimated boundary.
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Figure 5.3: The proposed coercive approach (red line) has much higher boundary
overlapping rate than other approaches since it is able to detect missing boundaries
and register misaligned boundaries.

Figure 5.3 shows the overlapping rate of the three approaches for different bound-

ary widths. Independent segmentation has the worst performance since it does not

make use of shared sub-structure between modalities. With B-spline registration,

there is some improvement but it is still not satisfactory, especially for small w. The

proposed coercive registration approach with hypothesis testing is able to accurately

register misaligned boundaries and detect missing edges. Therefore, it has much

better boundary detection performance.

5.4.2 Results on Real Microscopy Data

We apply the proposed method to the IN100 data set which contains 170 slices of

EBSD and BSE images of a Ni-base alloy. Figure 5.4 shows one registration/segmentation

result overlaid on the BSE image. The red lines are the initial boundaries obtained

by the EBSD segmentation and affine-transformed to match BSE. The blue lines are

the realigned boundaries and the green lines are the missing boundaries detected by

the hypothesis tests. The initial red lines are misaligned with the BSE image values

but are corrected by our registration algorithm. Using statistical hypothesis tests, we
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Figure 5.4: The registered boundaries (blue lines) fit the BSE image values much
better than the initial boundaries from EBSD (red lines). The proposed approach is
also able to detect and locate missing boundaries within grain regions (green lines).

are also able to detect and locate missing boundaries in some grain regions. These

results in real data demonstrate that the proposed approach can accurately register

boundaries and segment grain regions at the same time.

5.5 Conclusion

In this chapter, we proposed a coercive registration/segmentation algorithm for

multi-modal images. The algorithm alternately utilizes information from one modal-

ity to help segment the image in the other modality, resulting in significant per-

formance improvement in both modalities. The proposed hypothesis test based on

statistical models of pixel values can accurately detect and locate missing bound-

aries between regions. Furthermore, our approach identifies and preserves all of the

correspondences between regions in different modalities, which is important for fus-

ing information after registration. The experiment results on simulated and real

microscopy images show that our approach is able to effectively correct misaligned
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grain boundaries and detect missing boundaries within grain regions.

96



CHAPTER VI

Multimodality Motion Compensated fMRI Using

Slice-to-Volume Registration

In this chapter, we move our discussion from material microscopy image to biomed-

ical image. We propose a multi-modal image registration approach based on particle

filter to handle the head motion correction problem in functional Magnetic Resonance

Imaging (fMRI). We demonstrate that this approach is able to accurately register the

images to compensate for head motion, improving the following analysis and the

activation detection result.

6.1 Introduction

Brain activation studies aim to identify specific regions in the brain that are as-

sociated with particular tasks. Detection of such functional regions is commonly

performed by acquiring functional magnetic resonance imaging (fMRI) data using

echo planar imaging (EPI) where the signal contrast is caused by the change of oxy-

genation in blood flow associated with local upstream neural activity. To detect

brain activation in this noisy environment, one typically averages responses over sev-

eral identical stimuli. Repeated scanning that is synchronous with the onset of the

∗This chapter is based on (Chen et al., 2016a,b)
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required task (e.g., finger tapping, picture naming, etc.) is used to support signal

averaging to improve the signal to noise ratio (SNR) for detecting the blood oxygen

level de-saturation (BOLD) response (Turner et al., 1998). By synchronously aver-

aging the series of brain image volumes over the course of an fMRI study, the BOLD

signal contrast can be significantly enhanced.

Ideally, each voxel in the volume time series records the signal evolving over time

for a specific position. However, if the head of the subject moves during the scanning

process, the time variation of voxel locations results in blurring or loss of signal and

severe degradation of the fMRI image. This effect accumulates additional noise in the

activation signal, impairing activity analysis accuracy. In experiments that require

verbalized activation studies the head cannot be immobilized as the subject is required

to speak during scanning. Therefore, some degree of head motion is inevitable even

with cooperative subjects.

To deal with the above problem, the head motion can first be estimated and

then used to correctly place fMRI image slices into the fMRI volume. Stereo optical

tracking systems have been proposed to provide good real-time motion estimation

with reasonable accuracy (Zaitsev et al., 2006; Qin et al., 2009). However, these

systems require complicated and time-consuming system calibration. Other works

use micro radio-frequency coils, called “active markers”, for real-time prospective

correction (Ooi et al., 2009, 2011). Although such approaches can achieve good

performance, they require additional equipment, incurring additional expense and

adding complexity to the experimental protocol. Besides, there is a time lag between

the actual instantaneous position of the subject’s head and its computation from

the sensors. Furthermore, the markers are mounted on the skin whose elasticity can

introduce errors in head motion estimation.

In this chapter we take an image registration approach to head motion estimation,

which does not require additional equipment except for a computer. We model the
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head motion by rigid body motion and the motion is directly estimated from the

parameters of a rigid body transformation that maps the target image into a reference

image. Specifically, the motion parameters are estimated by optimizing pre-defined

image similarity measures, e.g., cross-correlation or mutual information (Maintz and

Viergever , 1998), between functional and anatomical reference images. In (Friston

et al., 1995), the head motion is estimated for each functional volume by registering

the volumes to a reference volume. However, since the EPI images are taken slice

by slice, stacking the slices directly and treating them as volumes neglects the head

motion between consecutive slices within the same volume, i.e. inter-slice motion.

Figure 6.1 shows the inter-slice motion with respect to the scanner caused by head

nodding during the scan. Note that, in the interleaved acquisition (Butts et al., 1994)

as shown in the figure, the time interval between adjacent slices can be multiple of the

nominal slice acquisition interval. The second figure from the right demonstrates the

mismatch between the slice-stacked volume and the true human brain due to head

motion. The most right figure shows how the volume is reconstructed by correcting

the motion for each slice, which captures the brain activity signal more accurately.

Mapping-slice-to-volume (MSV)(Kim et al., 1999) proposed by Kim et al. was

the first work to address the slice-to-volume registration approach. As compared to

volume-to-volume registration, the slice-to-volume approach is capable of estimating

and correcting the head motion for each slice by more accurately following the EPI

acquisition sequence slice by slice. However, the images at the top apex of the head

have fewer image features, and are more prone to geometric distortions (Schmitt et al.,

1998) than the slices from the mid brain. This may negatively affect the performance

of slice-to-volume registration approaches to motion estimation. A main disadvantage

of the slice-to-volume approach is computational complexity as the image similarity

measure may have many local maxima in the presence of noise and inadequate image

features. As usual, choosing suitable initialization for the optimization process is
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Figure 6.1: The inter-slice motion with respect to the scanner caused by head nodding
during the scan. Note the interleaved acquisition (Butts et al., 1994) shown in the
figure that the time interval between adjacent slices is large compared to the slice
acquisition interval. The second figure from the right demonstrates the mismatch
between the slice-stacked volume and the true human brain due to head motion. The
most right figure shows the motion corrected volume, which geometrically instantiates
the original brain signal more accurately.

essential for accurate registration. While the focus of this work is fMRI we wish to

acknowledge work focused on fetal anatomical imaging in utero by other authors (Kim

et al., 2010; Kainz et al., 2015).

In this work, we propose a head motion tracking (HMT) algorithm based on a

dynamic state space model (SSM) that tracks and estimates the head motion for each

slice. The head motion parameters are modeled by a random walk, and the Gaussian

particle filter (Kotecha and Djuric, 2003) is used to estimate the head motion given

the observed sequence of EPI slices. The main advantage of our proposed approach

is that it utilizes the information from previous acquired slices to provide a good

starting point and effectively reduces the parameter search space in the optimization

process, improving registration accuracy. The experimental results in Section 6.4 show

that our approach outperforms other methods in terms of head motion parameter

estimation, and in terms of activation detection accuracy for both synthetic and

noisy real data.

This chapter is organized as follows. In Section 6.2, we review background of
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the general image registration problem as well as the existing head motion correction

methods. In Section 6.3, we describe our Head Motion Tracking (HMT) algorithm and

how it is used to estimate the motion parameters. Section 6.4 shows the experimental

results for synthetic and real data, and provides comprehensive comparisons between

different approaches. Section 6.5 concludes this chapter.

6.2 Head Motion Estimation by Image Registration

The aim of image registration is to find a one-to-one transformation Tθ that maps

a reference image IR onto a target image IT ; The two images which may come from

different imaging modalities. The transformation parameter θ is found by optimizing

an image similarity measure M(.) between the target image and the transformed

image Tθ(IR) with respect to θ:

θ̂ = arg max
θ

M(IT , Tθ(IR)), (6.1)

where Tθ(.) is the transformation function parameterized by θ. The parameterization

of Tθ could account for rigid body displacement (Hill et al., 2001), local deforma-

tions (Rueckert et al., 1999), or other relative differences between the reference and

target image volumes (Meyer et al., 1997; Rohr et al., 2001). For head motion a

rigid body displacement parameterization is adequate: θ = [α, β, γ, δx, δy, δz], where

α, β, γ are spherical Euler angles and δx, δy, δz are spatial positions defining the origin

of the spherical coordinate system.

The image similarity measure used in this chapter is the mutual information (MI),

which has been widely applied to multi-modal biomedical image registration (Maes

et al., 1997). Mutual information between the images can be evaluated by first esti-

mating the marginal and joint distributions p(X), p(Y ), p(X, Y ) and then substituting
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into:

I(X;Y ) =
∑
x∈X

∑
y∈Y

p(x, y) log
p(x, y)

p(x)p(y)
, (6.2)

where X, Y are the random variables of the target and reference images’ pixel inten-

sity, respectively.

The image acquisition process starts by collecting an anatomical volume Vanat of

the subject’s head using T1-weighted MRI (McRobbie et al., 2006), which serves as the

reference IR for a functional MR image. The functional MR images are acquired via

multislice single-shot echo-planar imaging (EPI) sequences acquired by T ∗2 -weighted

MRI, which has significantly lower spatial resolution than the T1-weighted MRI. Let

V = {Vm}Mm=1 denote the set of collected EPI volumes, where M is the total number of

volumes acquired during the brain scan session. Each of the EPI volumes is composed

of a set of EPI slices Vm = {Smn}Nn=1, where N is the number of slices per volume. The

head motion is estimated by registering the set of EPI images V onto the anatomical

volume Vanat. There are two main approaches that are commonly used to perform

this multi-modality registration:

6.2.0.1 Volume-to-volume Registration

Friston et al. (Friston et al., 1995) proposed to estimate the head motion for each

volume by registering the EPI images volume by volume via the optimization:

θ̂m = arg max
θ

MI(Vm, Tθ(Vanat)). (6.3)

The advantage of this approach is that the 3D volume contains abundant image

features. However, since the EPI images are acquired slice by slice, this approach

is not able to track significant movement occurring between each EPI slice. As EPI

slices are commonly acquired in interleaved fashion, the typical time elapsed between

adjacent slices can be as large as 1 second (Turner et al., 1998; Butts et al., 1994).
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Therefore, inter-slice head motion can be significant.

6.2.0.2 Slice-to-volume Registration

Slice-to-volume registration maps each individual slice into the anatomical refer-

ence volume space as proposed in (Kim et al., 1999). The motion parameters are

estimated for slices instead of volumes via the optimization:

θ̂mn = arg max
θ

MI(Smn, T ∗θ (Vanat)), (6.4)

where T ∗θ (.) is the function that interpolates the anatomical volume into 2D section

with the motion parameter θ. This approach is capable of estimating and recovering

the inter-slice head motion. However, because each 2D EPI slice Smn carries less

information than the 3D volume Vm, using (6.4) can be sensitive to noise. Thus it is

important to couple together the registration of successive EPI slices. The coupling

of successive EPI slices in the registration process constitutes the main contribution

of this chapter.

6.3 Head Motion Tracking

6.3.1 Coordinate Transformation

Our head motion tracking algorithm adopts the slice-to-volume approach to es-

timate the head motion for each EPI slice. As in (6.3) and (6.4) we formulate this

problem as an optimization. We use a Gaussian particle filter to initialize and track

the rigid body motion parameters across EPI slices. Let S = {St}Tt=1 denote the set

of acquired EPI slices re-arranged in order of acquisition time, where T = MN is

the total number of slices in the experiment. Given the acquired EPI slices S and

the anatomical volume Vanat, the aim of the tracking algorithm is to estimate the

head motion parameters at each time {θt}Tt=1. Since we model the head motion as a
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rigid body transformation, the parameter θt has six degrees of freedom and can be

represented as a 3 × 3 rotation matrix Rt and a translation vector qt. Let xr, xo

denote the 3D-coordinates in the reference and observation coordinate systems. The

conversion between the two coordinate systems can be described as:

(xr − c) = Rt((Rsxo + qs)− c) + qt, (6.5)

where Rs,qs are fixed transformations introduced by coordinate mismatch between

the two MRI scanners, e.g., due to initial head position difference, and c is the head

rotation center that ideally corresponds to the location of the cervical vertebrae.

Note that Rs,qs, c are constant over time and only need to be estimated once in the

whole experiment. The proposed method to estimate these parameters is discussed

in Section 6.3.3.

6.3.2 Head Motion Tracking Algorithm

We use a state space model (SSM) (Durbin and Koopman, 2012) to describe

the head motion, where θt denotes the rigid body parameters at time t. The state

equation is modeled using a Gaussian random walk with covariance matrix Σd:

θt+1 = θt + ut, ut ∼ N (0,Σd) (6.6)

Note that our HMT algorithm can also be applied with more general head motion

model, e.g., a kinematic model (Han et al., 2009). The acquired EPI slices, called the

observation in the sequel, is related to the state through the quasi-likelihood function:

p(St|θt) =
1

Z
L(M(St, T

∗
θt(Vanat))), (6.7)

where L(.) can be chosen as any function such that it is positive and monotonically

increasing (i.e. L(x) ≥ 0, ∀ − ∞ < x < ∞, x > y ⇒ L(x) > L(y)) and Z is
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a normalization coefficient that turns the objective function L(.) into a conditional

probability, which is denoted p(St|θt) and is called the quasi-likelihood function of

θt. Here St = {Sj}t+hj=t−h denotes the stack of slices over a length 2h+ 1 time interval

centered at time t. If h = 0, St is reduced to a single EPI slice St; If h = N/2, then

the optimization becomes similar to the usual volume-to-volume registration. The

parameter h controls the trade-off between parameter estimator bias and variance.

In the analysis reported below we have used h = 1, which was found sufficient to

incorporate enough features to achieve robustness without too much smoothing and

biasing the estimation result.

The Kalman Filter (Kalman, 1960) is the optimal minimum mean squared error

estimator for a linear SSM when both the state dynamics and the measurement equa-

tions are linear in the state vector and the driving noise vectors. In non-linear cases,

one has to resort to some form of approximation to the minimum mean squared er-

ror estimator, such as the extended Kalman filter (EKF)(Julier and Uhlmann, 1997)

or the unscented Kalman filter (UKF)(Wan and Van der Merwe, 2000). These ap-

proaches require explicit state and observation equations, which are not readily avail-

able in the fMRI problem treated here. Alternatively, one can approximate the pos-

terior distribution of the state using sequential importance sampling, i.e., the particle

filter (Doucet et al., 2000).

The Gaussian particle filter (GPF)(Kotecha and Djuric, 2003) approximates the

posterior using a set of weighted samples, known as particles, and uses importance

sampling and Monte-Carlo integration methods to approximate the state and obser-

vation distributions. The main advantage of GPF compared to other particle filtering

approaches is its lower computational complexity and amenability to parallel imple-

mentation. In GPF algorithm, the posterior at time t is approximated by a Gaussian

distribution N (µt,Σt), and then resampling follows by drawing P particles from the

Gaussian distribution. The particles are weighted according to the observation and
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are used to form the distribution for the next time step.

Our Head Motion Tracking (HMT) algorithm is based on the GPF framework

which utilizes the posterior distribution to provide a good initialization to the op-

timization process. The algorithm is summarized in Algorithm HMT (page 109).

Initially slice-to-volume registration (Kim et al., 1999) is used to generate an initial

head motion estimate θ̂0. As in the GPF, for each slice at time t, the algorithm

has two stages: Measurement update and Time update. In the Measurement update

stage, we use P particles {θ(j)
t }Pj=1 drawn at the last time step to evaluate the par-

ticle weights using the quasi-likelihood function p(St|θt) defined in (6.7). The quasi-

likelihood function should have two properties: (1) It is monotonically increasing with

the image similarity M(St, T
∗
θ (Vanat)); (2) The weighted particles are approximately

distributed according to a multivariate Gaussian density. To satisfy the two prop-

erties, we propose to use a histogram equalization approach to evaluate the particle

weights. The target density is the distribution of z = f(x) where x and f(.) are the

6-dimension multivariate Gaussian random variable and density, respectively. Letting

gZ(z) denote the density of z, we can equalize the histogram to obtain the particle

weights.

gZ(z) = π3
(
−2 log (2π)3z

)2
, z ∈ (0, (2π)−3]. (6.8)

The detailed derivation of (6.8) is given in Appendix E. The particle weights are

normalized to sum to 1 and then used to calculate the weighted mean and covariance.

Since the weighted mean incorporates abundant information about the image similar-

ity distribution in neighboring regions, it is a good starting point for the optimizer. In

this chapter, we use the Nelder-Mead (Nelder and Mead , 1965) optimizer to perform

the maximization:

θ̂t = arg max
θ

M(St, T
∗
θ (Vanat)). (6.9)

Nelder-Mead is a simplex method used to iteratively find the optimum of an
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Figure 6.2: The state and time update for each iteration in the proposed HMT
algorithm.

objective function in a multi-dimensional space. Note that the proposed histogram

equalization approach is not restricted to any particular definition of image similarity.

Therefore MI can be replaced by any other image similarity measure, e.g., Normalized

MI (Studholme et al., 1999), localized MI (Klein et al., 2008), graph-based MI (Star-

ing et al., 2009), or feature-based measures (Oliveira and Tavares , 2014)...etc. The

transformation parameter θ̂t that maximizes (6.9) is the estimated head motion at

time t. After the motion parameter is estimated, we perform a standard re-sampling

step to estimate the covariance matrix of the posterior distribution, which is then used

to establish the prior distribution of the next slice in the Time Update stage using

(6.6). The diagram of each iteration in the proposed HMT algorithm is summarized

in Fig. 6.2.

Often the MRI acquired images are very noisy and difficult to register, especially

for slices near the lower and upper apex of the head. Figure 6.3 shows an example of

the images of the middle head (a) and top apex (b). We can see that the top apex

head image has much less information content than the middle head that can be used

for registration. To reduce the effect of these noisy slices, we screen the slices for

adequate signal strength. Specifically, we reject all EPI slices for which fewer than
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15% of the pixels are above a certain threshold value. For these rejected slices, we

skip the optimization step and estimate the motion parameters through interpolation

of the estimates from neighboring slices. We use 2nd-order interpolation, which is

accurate when the head motion has approximately constant angular and translational

accelerations (Park et al., 2004).

6.3.3 System Parameters Setting

In the proposed Head Motion Tracking algorithm there are several parameters

that need to be set: Rs,qs, c,Σd:

6.3.3.1 Fixed Coordinate Transformation Rs,qs

Since Rs,qs are constant over the entire experiment, they can be estimated by first

taking the average of all EPI volumes over time, and then registering the averaged

EPI volume to the anatomical volume.

6.3.3.2 Head Rotation Center c

To estimate the head rotation center, we run the HMT algorithm on the first K

image slices (we used K = 70 in our experiment) by assuming c = 0 as the origin. Let

{θ̂t}Kt=1 denote the estimate of the motion parameters for these K image slices. Here

we assume that the patient’s body position is stable during the scan (the subject is

often immobilized and lying in the machine) and therefore the amount of translation

should be small, i.e. ‖qt‖ ≈ 0. Based on this assumption, the rotation center can be

estimated by solving the least squares problem:

ĉ = arg min
c

K∑
t=1

‖qt − (I3 −Rt)c‖2
2, (6.10)

where I3 is the 3× 3 identity matrix.
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6.3.3.3 Head Motion Covariance Σd

The estimate of the head motion covariance matrix is generated in two steps. We

initially set Σd to the identity matrix (rotation in degree and translation in mm)

and run the HMT algorithm over K image slices to obtain the estimates {θ̂t}Kt=1.

Subsequently, the matrix Σd is estimated as the covariance matrix of the consecutive

parameter differences:

Σ̂d = Cov(θ̂t − θ̂t−1)

=
1

K − 1

K∑
t=2

(θ̂t − θ̂t−1)(θ̂t − θ̂t−1)T
(6.11)

Algorithm HMT

Input: EPI slices {St}Tt=1 and anatomical volume Vanat

1. Estimate the parameters for the first slice θ̂0 using slice-to-volume registration.

2. Draw P particles {θ(j)
0 }Pj=1 from N (θ̂0,Σd).

3. for t← 1 to T

4. (∗ Measurement update ∗)

5. Equalize the histogram of M(St, T
∗
θ
(j)
t

(Vanat)) to (6.8) to get w̄
(j)
t and then

normalize to sum to 1

w
(j)
t = w̄

(j)
t /

P∑
j=1

w̄
(j)
t

6. Estimate the sample mean and covariance

µt =
P∑
j=1

w
(j)
t θ

(j)
t

Σt =
P∑
j=1

w
(j)
t (θ

(j)
t − µt)(θ

(j)
t − µt)T

7. Initialize the registration process with µt to estimate the motion param-
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eter:

θ̂t = arg max
θ

M(St, T
∗
θ (Vanat))

8. (∗ Time update ∗)

9. Draw samples {θ(j)
t }Pj=1 from N (θt,Σt).

10. For j = 1, ..., P , sample from p(θt+1|θt = θ
(j)
t ) to obtain {θ(j)

t+1}Pj=1.

11. return {θ̂t}Tt=1

 

 

20 40 60 80 100 120

20

40

60

80

100

120

0

50

100

150

200

250

(a) middle slice of head

 

 

20 40 60 80 100 120

20

40

60

80

100

120

0

2

4

6

8

10

12

14

(b) top apex slice of head

Figure 6.3: The middle head (a) and top apex (b) of the real human data are shown
in gray scale. Notice that the top apex image has very little useful features and the
signal strength (pixel intensity) is much lower than the middle head image.

6.4 Experimental Results

6.4.1 Synthetic Data Generation

We downloaded high resolution T1, T2-weighted MRI volumes from the Inter-

national Consortium of Brain Mapping (ICBM) (Cocosco et al., 1997). The high

resolution T1 MRI brain volume was used as the anatomical reference volume with

voxel size 0.78× 0.78× 1.5mm3. The EPI slices were emulated by interpolating the

T2-weighted volume under artificial motion induced by applying a sequence of trans-
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formations to the image with smoothly varying motion parameters as used in (Kim

et al., 1999). The voxel size of the EPI slices is 1.56× 1.56× 6mm3, a blurring Gaus-

sian low-pass kernel with σ = 2 was applied, and 3% Gaussian noise was added to

simulate real EPI slices. The activation signal was introduced by adding 5% intensity

to selected voxels in manually drawn regions of interest at various locations in the

volume as in (Kim et al., 2008). This produced a synthetic EPI data set consisting

of M = 120 volumes with N = 14 slices per volume. Figure 6.4(a) shows the ground

truth motion parameter of the three rotation angles (in degree) from slice 1 to 200.

The simulated time series in a block design paradigm consists of 120 volumes with 6

activation cycles. There are 20 volumes per cycle which contains 10 stimulation and

10 control volumes.

6.4.2 Performance Measures

In the following comparison, we evaluate the performance quantitatively with

respect to misregistration error, activation detection accuracy and reliability:

6.4.2.1 Average Voxel Distance

The misregistration error is measured by average voxel distance, which is the av-

erage distance between the registered voxel coordinate and the true voxel coordinate.

Let xregt (i) and xtruet (i) denote the coordinates of voxel i transformed using the es-

timated motion parameter θ̂t and true motion parameter θt of slice t. The average

voxel distance is defined as:

Dt =
1

Nv

Nv∑
i=1

‖xregt (i)− xtruet (i)‖, (6.12)

where Nv is the total number of voxels in a single EPI slice.
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6.4.2.2 Activation Detection ROC Curve

The estimated motion parameters {θ̂t}Tt=1 are used to reconstruct the motion

corrected EPI volumes Ṽ = {Ṽm}Mm=1. To identify the activated brain region, the

non-parametric random permutation test(Nichols and Holmes , 2002) is performed on

the intensities in the EPI volumes. Let {um(i)}Mm=1 to be the set of intensities for

voxel i of the M reconstructed volumes. The null hypothesis H0 of the activation test

is: ”The mean of the voxel intensities under each of the conditions, stimulation or

control, are equal.” Under this hypothesis, any re-ordering of {um(i)}Mm=1 should give

the same statistic, which we used the two-sample t-test statistic. Let Nr denote the

number of re-ordering, tj be the two-sample t-test statistic corresponding to ordering

j and t̃ be the statistic of actual ordering. The P -value is then calculated by counting

the proportion of the test statistics {tj}Nr
j=1 which are more extreme than t̃. By

taking a threshold on the P -value, we can determine which voxels are activated in

this experiment. In this work, we set Nr equal to 2000 and the threshold for P -value

is 0.5%. When a ground truth activation map is available as in the synthetic data,

the detection performance can be evaluated by the Receiver Operating Characteristic

(ROC) curve and the Area Under the Curve (AUC).

6.4.2.3 Activation Detection Reliability

We use the Activation Test-retest Reliability (ATR) measure (Noll et al., 1997;

Genovese et al., 1997) to compare the performance when the ground truth of mo-

tion parameters and activation map are unknown. This approach assumes that

each voxel is either truly active or truly inactive. We use the random permuta-

tion test with two-sample t-test statistic to generate the activation maps as de-

scribe in Section 6.4.2.2. The reliability of the test is measured in terms of true ac-

tive and false active probability, pA = p({v is classified as active}|{v is truly active})

and pI = p({v is classified as active}|{v is truly inactive}), respectively. Ideally, pA
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should be 1 and pI should be 0. Therefore, higher pA and lower pI indicate more

reliable testing result.

To estimate pA, pI , we need to replicate the fMRI experiments L times, where

L ≥ 3. In this work, we obtain the replications by splitting the acquired volumes into

L = 4 disjoint sets randomly as suggested in (Noll et al., 1997) to ensure statistical

independence accross voxels and replications. We use the random permutation test

to generate L activation maps for each of the sets. Let r(i) ∈ {0, 1, ..., L} be the

number of replications out of L in which the voxel i is classified active. We model

r(i) as a mixture of two binomial distributions:

λB(L, pA) + (1− λ)B(L, pI), (6.13)

where B is the binomial distribution and λ represents the proportion of truly active

voxels. We estimated the parameters by maximizing the likelihood function.

6.4.3 Evaluation Using Synthetic Data

The simulated EPI slices described in Section 6.4.1 are registered to the anatomical

volume to estimate the motion parameters by using the following three methods (im-

plemented in MATLAB R2015a): (1) volume-to-volume registration (Friston et al.,

1995) (V2V); (2) slice-to-volume registration (Kim et al., 1999) (S2V), where the

optimization process is initialized by the V2V result; (3) the proposed Head Motion

Tracking algorithm (HMT) with P = 4000 particles. Figures 6.4(b)-(d) show the

estimated motion parameters for the first 200 slices, where the black solid lines de-

note ground truth and the color dashed lines denote estimated motion parameters.

Figure 6.4(b) demonstrates that the volume-to-volume registration method can ac-

curately estimate motion for each volume but cannot accurately track the motion

over the slices. On the other hand, S2V (Fig. 6.4(c)) can better track the head mo-
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tion over different slices but has high bias, especially for slices near the apex of the

head where slice image intensity and contrast are low. Our proposed HMT algorithm

(Fig. 6.4(d)) is able to track the head motion much more accurately than the other

two approaches. Figure 6.5(a) shows the boxplot of the average voxel distance after

registration for different methods. The whiskers are the outliers outside the inner

fence (defined by 1.5×F -spread (Hoaglin et al., 1986)). All of these methods reduced

a fair amount of the voxel misregistration errors compared to no motion correction

case (NoCorr). Notice that our HMT algorithm has significantly lower misregistra-

tion error, as measured by voxel distance, and is much more stable (fewer outliers)

than the other methods. The mean of Dt over all slices are listed in the first column

of Table 6.1.

The estimated parameters are used to reconstruct the motion corrected EPI vol-

umes, and activated voxels are identified by the random permutation test. The

ROC curves of the activation detection result of different approaches are compared

in Fig. 6.5(b). Note that the volumes that are reconstructed using ground truth mo-

tion parameters achieve perfect detection (red solid line). Again, our HMT algorithm

(blue dashed line) outperforms other methods and is closest to the ground truth.

The Area under Curve (AUC) for each approach is listed in the second column of

Table 6.1. The comparison of activation detection reliability is listed in the first two

columns in Table 6.2. It can be seen that all of the three methods have similar pI ,

but the proposed HMT has significantly higher pA than the other two methods.

6.4.4 Evaluation Using Real Data

We further validate the performance of the proposed HMT algorithm on real fMRI

experimental data. We used two datasets that are denoted ”Run1” and ”Run2”, and

that were acquired from two normal volunteers. The study was approved by the In-

stitutional Review Board at the University of Michigan Medical School and informed

114



Avg. Dt AUC

Truth 0.000 1.000
No Corr. 4.497 0.732
V2V 2.426 0.855
S2V 1.225 0.924
HMT 0.393 0.953

Table 6.1: Estimation and Activation Result Comparison: As compared to the other
motion compensation algorithms (No Corr., V2V, S2V), the proposed HMT algo-
rithm attains lower average misregistration error Dt and better Area Under the Curve
(AUC) detection performance.

consent was obtained from each subject prior to participation. The subjects per-

formed a simple motor task, uni-lateral sequential finger tapping, in the experiment.

We asked the subject to do their best to minimize head motion for Run1 dataset

and asked the subject to intentionally nod his head for Run2 dataset. The head

was scanned 126 times with 14 slices in each volume for these two datasets. The

anatomical voxel size is 1× 1× 1.5mm3 and the EPI voxel size is 2× 2× 6mm3.

Figure 6.6 shows the three Euler angles estimated by S2V (first column color

dashed lines) and HMT (second column color dashed lines) overlaid with the V2V

result (black solid lines) for the first 200 slices. Notice that the estimated rotation in

Run2 (second row) is larger than Run1 (first row), which matches our expectations

given the experimental protocol. Similarly to the experiments with synthetic data,

reported in Section 6.4.3, S2V can be used to estimate the motion for each slice but is

noisy. The abrupt changes in the motion parameters demonstrated by S2V represent

unlikely head movement, which suggests incorrect estimation. On the other hand, the

proposed HMT algorithm produced much more stable and smoother motion estimates,

which more accurately reflects real head motion. The superior tracking performance

of HMT is a consequence of the dynamical modeling that couples together estimates

from successive slices leading to smoother and less noisy tracking performance.

The improvement in the head tracking translates into better activation detection
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performance, Fig 6.7 shows colorized activation maps overlaid on the anatomical

MRI, which is used as an additional reference volume for registration. These selected

slices (denoted as slice A, B, and C) displayed in different rows, show representative

activated regions. Significant voxels are marked in red and blue to indicate the

temporal positive and negative correlations, respectively.

Figure 6.7(a) shows the activation maps for V2V, S2V, and the proposed HMT

algorithms applied to the Run1 dataset. For this easier dataset (less head motion),

we can see that all methods are able to produce active regions that are near the motor

cortex related to finger moves (Beisteiner et al., 2001). However, the volume-based

(first column) approach produced much more spread out active regions, which may

be due to small amounts of head motion. S2V (second column) did produce more

clustered active regions, however, it also has some active voxels which are scattered

in the white matter and are therefore likely to be false positive detections. Our

proposed HMT (third column) generated active regions along the gray matter and

has the least false positive voxels in the white matter. For the more challenging

Run2 dataset (larger head motion), shown in Fig. 6.7(b), the activation maps of V2V

and S2V (left two columns) have very few active voxels that are scattered across the

volume. In contrast, the proposed HMT algorithm (third column) produced clean and

well clustered active regions on the gray matter, which are more likely to correspond

to real brain activity responses. A quantitative measure of the activation detection

reliability is summarized in Table 6.2. We can see that the three methods have the

same level of pI values but HMT has significantly higher pA, especially for the harder

Run2 dataset.

6.5 Conclusion

In this work, we have proposed a head motion tracking (HMT) algorithm that

uses an image registration objective function combined with a Gaussian particle filter
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Method
Simulated Run1 Run2
pA pI pA pI pA pI

Truth 1.000 0.000 - - - -
V2V 0.128 0.003 0.521 0.003 0.047 0.001
S2V 0.248 0.002 0.614 0.003 0.048 0.001

HMT 0.662 0.003 0.623 0.003 0.087 0.002

Table 6.2: Activation Detection Reliability: The proposed HMT algorithm attains
significantly higher pA, especially for Run2 dataset, while keeps the same level of pI
compared to the other motion compensation algorithms (V2V, S2V).

to couple motion estimates from successive EPI slices, resulting in improved perfor-

mance. Due to the fact that the proposed algorithm utilizes the information from

consecutive slices in the fMRI scan volume, it effectively combines the bias reduction

properties of the S2V approach and the variance reduction properties of the V2V

approach.

Evaluation based on synthetic data demonstrated that the proposed HMT al-

gorithm can significantly improve accuracy over the volume-to-volume and slice-to-

volume approaches in terms of motion parameter estimation and activation detection

accuracy. Using real human experimental data we demonstrated that the proposed

algorithm is able to produce more stable estimates of head motion and brain activa-

tion maps. Unlike previous approaches to head motion compensation, the activation

maps of the HMT produce more reliable active regions even when the head motion is

large during the fMRI scan.

Improvements in robustness and accuracy of the proposed HMT algorithm may

permit scientists to analyze more complex brain activation patterns. This can be

especially beneficial for experiments that involve a wider spatial distribution activa-

tion regions, and are more likely to have motion artifacts, e.g., in working memory or

speech experiments. Furthermore, our HMT approach might allow fMRI to be reli-

ably applied to patients having significant motion disorders, e.g., Parkinson’s disease,

117



who currently do not benefit from fMRI examinations.
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Figure 6.4: (a) shows the ground truth of head motion parameters in three Eu-
ler angles for the first 200 slices. (b)(c)(d) show the motion parameters estimated
by volume-to-volume (V2V), slice-to-volume (S2V) and the proposed head motion
tracking (HMT) algorithm. The black solid lines are the ground truth and the color
dashed lines are the estimated motion parameters. (b) demonstrates that the volume-
to-volume registration method can accurately track the average motion for each vol-
ume but does not accurately track motion for each slice in the volume. S2V (c) can
estimate the head motion for each slice but suffers from large tracking errors. The
proposed HMT algorithm (d) is able to track the head motion much accurately than
the other two approaches.
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Figure 6.5: (a) is the boxplot of the average voxel distance after registration for dif-
ferent methods. The whiskers are the outliers outside the inner fence (defined by
1.5 × F -spread). The proposed HMT algorithm has significantly lower voxel mis-
registration errors and is more stable (fewer outliers) than the other methods. (b)
shows the ROC curves for activation detection. Note that the volumes that are recon-
structed using ground truth motion parameters achieve perfect detection (red solid
line). Our proposed HMT algorithm (blue dashed line) outperforms other methods
(S2V, V2V, No Correction) and is closest to the ground truth.
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Figure 6.6: The three Euler angles estimated by S2V (first column color dashed lines)
and HMT (second column color dashed lines) overlaid with V2V result (black solid
lines) for the first 200 slices. Note that the estimated rotation in Run2 (second row)
is larger than that of Run1 (first row). Similarly to the experiments with synthetic
data summarized in Fig. 6.4, S2V can estimate the motion for each slice but is noisy.
The proposed HMT algorithm produces more stable and continuous head motion
estimates which is more convincing in describing real head motion.
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Figure 6.7: The colorized activation maps overlaid on the anatomical MRI images
for Run1 (a) and Run2 (b) datasets. The results of the three methods: (1) V2V
registration; (2) S2V registration; (3) proposed HMT algorithm are listed in order
from left to right column. In (a), we can see that the V2V (first column) approach
produced a more dispersed set of active regions due to the inter-slice head motion.
S2V (second column) produced more clustered active regions but has lots of false
positive voxels scattered in the white matter. The proposed HMT (third column)
generated the least dispersed active regions and had the least false positive voxels in
the white matter. In (b), the activation maps from V2V and S2V (left two columns)
had few and scattered active voxels due to the effect of head motion. The proposed
HMT (third column) produced clean and well clustered active regions.
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CHAPTER VII

Conclusion and Future Work

7.1 Conclusion

Image fusion provides comprehensive information which advances the analysis and

characterization of the image content in many different areas. This thesis focused on

multi-modal image registration and fusion problems in two main domains: I. materials

microscopy and biomedical imaging. For each of the domains, we have proposed a

novel and effective algorithm and provided numerical experiments on both simulated

and real world data to demonstrate the performance improvement.

In Chapter II, we have reviewed background of image fusion, described the ad-

vantages and difficulties of image fusion, and introduced different types of fusion

frameworks. We have motivated and elaborated our proposed approaches of image

fusion in material microscopy and biomedical images.

In Chapter III, we have presented a general finite mixture representation for den-

sities on domains whose topologies have group invariances. An efficient EM algorithm

was derived for estimation of parameters of this mixture model. We have further ex-

tended the model to consider the multi-cluster case where the samples are from several

group-invariant distributions with different parameters. We have demonstrated the

effectiveness of this model in both simulated and real dataset. This model forms an

important component in the following EBSD indexing, region-level registration and
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uncertainty quantification.

In Chapter IV, we have presented a novel method for indexing polycrystalline

materials that uses both mathematical-physics modeling and mathematical-statistics

modeling introduced in Chapter III. The dictionary generated from the physics-based

forward model is fixed for each crystal symmetry group and each SEM instrument

configuration. A feature of this method is that it performs classification, segmen-

tation, and indexing in the unified framework of dictionary matching. A feature of

the indexing method is that it incorporates a concentration parameter that can be

estimated jointly with the orientations of a pixel or of a grain. This concentration

parameter can be used to report the degree of confidence one can have in the orien-

tation estimates. The segmentation result can further be utilized as the input of our

proposed coercive region-level registration.

In Chapter V, we have proposed a coercive registration/segmentation algorithm

for multi-modal images. The algorithm alternately utilizes information from one

modality to help segment the image in the other modality, resulting in significant

performance improvement in both modalities. The proposed hypothesis test based

on statistical models of pixel values can accurately detect and locate missing bound-

aries between regions. Furthermore, our approach identifies and preserves all of the

correspondences between regions in different modalities, which is important for fusing

information after registration.

In Chapter VI, we have proposed a head motion tracking (HMT) algorithm that

uses an image registration objective function and the Gaussian particle filter to cou-

ple motion estimates from successive EPI slices. With the help of the information

from multi-modal images and the prior knowledge from consecutive observations, our

proposed method combines both the bias reduction properties of the S2V approach

and the variance reduction properties of the V2V approach, resulting in significantly

improved performance. The robustness and accuracy of the proposed HMT algorithm
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can allow scientists to analyze more complex brain activation patterns. Especially for

experiments which may involve a wider spatial distribution of functional signal, and

are more likely to have motion artifacts, e.g., working memory or speech.

7.2 Future Work

There are many interesting directions that are worthy of future study:

First, since we have finished the works of anomaly-driven fusion framework based

on the statistical model to perform indexing, segmentation and anomaly-level evalu-

ation, a future direction is to focus on quantifying and fusing the anomaly-level with

P -values. Figure 7.1 shows an example of the boundary P -value of BSE and EBSD

images. The boundary P -value of BSE image is calculated by the grain-level Gaussian

assumption with the hypothesis test on mean difference between neighboring grains.

Lower P -value exhibits that the existence of the boundary is significant while higher

P -value shows that the boundary does not have obvious mean difference. On the

other hand, the boundary P -value for EBSD crystal orientations is computed by the

proposed mixture model with the mean distance hypothesis test. Notice that some of

the boundaries which are significant in BSE image are not significant in EBSD data

and vice versa. The P -values for the two modalities are fused together by Eq.(2.1)

to generate Fig 7.1(c). Large P -values in the fused image shows that the boundaries

are not significant either in BSE or EBSD or both, which might be caused by false

boundary detection, phase transition or other possible anomalies.

Furthermore, as discussed in Chapter II that the material’s mechanical properties

are mainly determined by the grain structure (Rice, 2000), how to model the nominal

distribution of grain structure and infer the abnormal structure of grain arrangement

combining the multi-modal microscopy images is an important question for detecting

the defects and incipient fatigue failures. One possible approach is to use the graph

representation for the grain regions extracted by our proposed method in Chapter V
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Figure 7.1: (a) The boundary P -value is overlaid with BSE image. The boundary P -
value is calculated by the grain-level Gaussian assumption with the hypothesis test on
mean difference between neighboring grains. The P -values represent the significance
of the existence of the boundaries in BSE. (b) The boundary P -value is overlaid
with EBSD image. The boundary P -value is computed by the von Mises-Fisher
distribution with the mean distance hypothesis test. The P -values represent the
significance of the existence of the boundaries in EBSD. Notice that some boundaries
which are significant in BSE image are not significant in EBSD data. (c) The P -value
fused by Eq.(2.1) for the two modalities. Notice that the boundaries with higher P -
values are either obscure in BSE or EBSD or both.

and apply the tools in graph theory (Bondy and Murty , 1976; West and others , 2001;

Diestel , 2005) to analyze the anomaly of grain structure.

Another interesting direction of the dictionary-based indexing approach is that

we can exploit the information of the observed and dictionary diffraction patterns to

perform superresolution of grain boundary. As we discussed in Chapter IV, a grain

boundary diffraction pattern is a mixture of the diffraction patterns from the spa-

tially neighboring grains. By analyzing the mixture component or the kNN patterns

in the dictionary of a grain boundary pixel, we should be able to estimate the bound-

ary in sub-pixel level. One of the difficulty we might face of this approach is the

computational complexity. The size of dictionary is fairly large (more than 300000

elements in our experiment). How to efficiently find the two or more clusters of kNN

of a diffraction pattern and perform the analysis is an important challenge of this

approach. Also, incorporating the information of misorientation between neighboring

grains to improve the segmentation accuracy is another direction worth exploration.

In Chapter VI, we have proposed a robust and accurate registration approach
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which uses mutual information as image similarity metric to estimate head move-

ment. Although MI has been proven to be effective in many multi-modal registration

applications, its assumption of image pixel distribution may be violated due to the

geometric distortion in MR images, resulting in unstable registration result. Other

similarity metrics which have been proven to be more robust to the geometric distor-

tion, such as localized mutual information (LMI) (Russakoff et al., 2004; Klein et al.,

2008), or graph-based MI (Neemuchwala et al., 2006), may improve the performance.

Other than the head motion parameter estimation problem as we focused in this the-

sis, how to reconstruct the EPI volume using the estimated motion parameters also

plays an important role in the performance of brain activation detection. Due to the

fact that the EPI images are not parallel and have much coarser resolution than the

anatomical volume, how to interpolate and reconstruct the original BOLD signal is

worth our further investigation. On the other hand, since the rigid body transfor-

mation parameters are composed of Euler angles and translations, it is more natural

to use spherical distributions, e.g., Von Mises-Fisher distribution, than multivariate

Gaussian to model the change of head rotation. Also, more general head motion

model, e.g., a kinematic model (Han et al., 2009), can be adopted to further improve

the head motion estimation accuracy.
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APPENDIX A

Fundamental Zone for Cubic Symmetry

In (Morawiec and Field , 1996) a set of conditions defining the fundamental zone

are given in terms of Rodrigues space:

N⋂
i=2

{r; tan(wi/4)± rli ≥ 0}. (A.1)

Here wi ∈ [0, π] and li are the rotation angle and the unit vector of the rotation

axis of the i-th element of the rotation symmetry group. M is the order of the group

and i = 1 corresponds to the identity operator.

For cubic symmetry corresponding to them3m point symmetry group, there are 24

Rodrigues symmetry operators as shown in Table A.1. The transformation equations

between the Rodrigues vector d = (d1, d2, d3) and the quaternion q = (q1, q2, q3, q4)

are as follows:

q1 =
1√

1 + ‖d‖2
, qi =

di−1√
1 + ‖d‖2

, i ∈ [2, 3, 4]. (A.2)

By applying (A.1) and (A.2), the fundamental zone for the cubic structure in
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Symmetry Operator Rodrigues Vector

2-fold on < 1, 0, 0 > ∞(1, 0, 0)
∞(0, 1, 0)
∞(0, 0, 1)

4-fold on < 1, 0, 0 > ±(1, 0, 0)
±(0, 1, 0)
±(0, 0, 1)

2-fold on < 1, 1, 0 > ∞(1,±1, 0)
∞(1, 0,±1)
∞(0, 1,±1)

3-fold on < 1, 1, 1 > ±(1, 1, 1)
±(1,−1, 1)
±(1, 1,−1)
±(−1,−1, 1)

Table A.1: Cubic symmetry operators and their Rodrigues Vectors.

quaternion space obeys the following set of equations:



|q2/q1| ≤
√

2− 1

|q3/q1| ≤
√

2− 1

|q4/q1| ≤
√

2− 1

|q2/q1 − q3/q1| ≤
√

2

|q2/q1 + q3/q1| ≤
√

2

|q2/q1 − q4/q1| ≤
√

2

|q2/q1 + q4/q1| ≤
√

2

|q3/q1 − q4/q1| ≤
√

2

|q3/q1 + q4/q1| ≤
√

2

|q2/q1 + q3/q1 + q4/q1| ≤ 1

|q2/q1 − q3/q1 + q4/q1| ≤ 1

|q2/q1 + q3/q1 − q4/q1| ≤ 1

|q2/q1 − q3/q1 − q4/q1| ≤ 1

(A.3)
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APPENDIX B

Derivation of EM Algorithm for Mixture of VMF

Distributions

The Expectation-Maximization algorithm (Dempster et al., 1977) is an iterative

approach for obtaining maximum-likelihood parameter estimates in models where

there are hidden latent variables and, in particular, finite mixture models. The al-

gorithm alternates between performing two steps: ”Expectation step (E-step)” and

”Maximization step (M-step)” in each iteration. In the E-step, one calculates the

expectation of the complete data log-likelihood function assuming the parameters of

the model are fixed. In the M-step, the updated parameters are estimated by maxi-

mizing the expectation function. The process is repeated until the objective function

converges.

Here we assume that all the observed quaternions {xi}ni=1 are realizations from the

M -fold finite mixture of Von Mises-Fisher (VMF) distributions which has the PDF

(B.1).

fv(x;µ, κ) =
1

M

M∑
m=1

cp(κ) exp (κ(Pmµ)Tx), (B.1)

Notice that The only parameters we need to estimate are the mean parameter µ

and the concentration parameter κ. The latent variable si ∈ [1, 2, ...,M ] indicates the
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index of the distribution a sample xi, i = 1, . . . , n, belongs to. Based on the model,

the expectation of the log-likelihood given the complete data {xi, si}ni=1, called the Q

function, has the following form:

Q(ω;ω(k))

=ES|X,ω(k) [logL(ω; {xi, si})]

=
n∑
i=1

M∑
m=1

ri,m(log cp(κ) + κ(Pmµ)Txi),

(B.2)

where ω = {µ, κ} is the set of parameters and ri,m is the posterior probability P (si =

m|xi,ω).

For the E-step, denote ω(k) = {µ(k), κ(k)} to be the estimated parameters at the

k-th iteration, ri,m can be calculated by:

ri,m = E[1(si = m)|xi;ω(k)]

= P (si = m|xi;ω(k))

=
cp(κ

(k)) exp (κ(k)(Pmµ
(k))Txi)∑M

l=1 cp(κ
(k)) exp (κ(k)(Plµ(k))Txi)

.

(B.3)

In the M-step the parameters are updated by maximizing the Q function. Taking

the partial derivative w.r.t µ of .(B.2) subject to the constraint ‖µ‖ = 1 we have:

∂

∂µ
Q(ω;ω(k)) =

n∑
i=1

M∑
m=1

ri,mκQT
mxi = 2λµ

⇒µ̂ =
γ

‖γ‖
,γ =

n∑
i=1

M∑
m=1

ri,mQT
mxi,

(B.4)

where λ is a Lagrange multiplier. By taking the partial derivative w.r.t κ, the ML
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estimator of κ is:

∂

∂κ
Q(ω;ω(k)) = N

c
′
p(κ)

cp(κ)
+ κγTµ

⇒κ̂ = A−1
p (
‖γ‖
N

),

(B.5)

where Ap(u) =
Ip/2(u)

Ip/2−1(u)
.
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APPENDIX C

Derivation of EM Algorithm for Mixture of

Watson Distributions

Here we assume that all the observed quaternions X = {xi}ni=1 are realizations

from the M -fold finite mixture of Watson distributions which has the PDF.

fw(x;µ, κ) =
1

M

M∑
m=1

M(
1

2
,
p

2
, κ)−1 expκ((Pmµ)Tx)2, (C.1)

where M(1/2, p/2, )̇ denotes the Kummer function

M(
1

2
,
p

2
, κ) = B(

p− 1

2
,
1

2
)−1

1∫
−1

expκt2(1− t2)(p−3)/2dt, (C.2)

Let the latent variable si ∈ [1, 2, ...,M ] indicates the index of the distribution

a sample xi, i = 1, . . . , n, belongs to. Based on the model, the expectation of the

complete likelihood with the hidden variables has the following form:
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Q(ω;ω(k))

=ES|X,ω(k) [logL(ω; {xi, si})]

=
n∑
i=1

M∑
m=1

ri,m(log
1

MM(1
2
, p

2
, κ)

+ κ((Pmµ)Txi)
2)

=
n∑
i=1

M∑
m=1

ri,mκ(µTPT
mxi)(µ

TPT
mxi)

T − n log

(
MM(

1

2
,
p

2
, κ)

)

=κµT

 n∑
i=1

M∑
m=1

ri,m(PT
mxix

T
i Pm)

µ− n log

(
MM(

1

2
,
p

2
, κ)

)

=n

(
κµT T̃µ− log

(
MM(

1

2
,
p

2
, κ)

))
,

(C.3)

where ω = {µ, κ} is the set of parameters and ri,m is the posterior probability that

si = m. For the E-step, ri,m can be calculated by:

ri,m = E[1(si = m)|xi;ω]

= P (si = m|xi;ω)

=
expκ((Pmµ)Txi)

2∑M
l=1 expκ((Plµ)Txi)2

.

(C.4)

In the M-step the parameters are updated by maximizing the Q function. From

(C.3) we know that T̃ = 1
n

∑n
i=1

∑M ′

m=1 ri,m(PT
mxix

T
i Pm) is the scatter matrix of

x1, ...,xn. Let t̃1, ..., t̃p be the eigenvalues of T̃ with

t̃1 ≥ ... ≥ t̃p, (C.5)

and let ±t1, ...,±tp be the corresponding unit eigenvectors. Since we want to find µ

which maximizes (C.3) such that µTµ = 1, the estimator of µ for fixed κ has the
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following form:

µ̂ = t1, κ̂ > 0,

µ̂ = tp, κ̂ < 0.

(C.6)

Similar to the approach in (Bijral et al., 2007), we have the Lagrange function of

(C.3) as the following:

L =
n∑
i=1

M∑
m=1

ri,m(log
1

MM(1
2
, p

2
, κ)

+ κ((Pmµ)Txi)
2) + λµTµ, (C.7)

where λ is the Lagrange multiplier. By taking partial derivative w.r.t. κ of (C.7) and

set to zero, we have:

n∑
i=1

M∑
m=1

ri,m(µTPT
mxi)

2 =
M′(1

2
, p

2
, κ)

M(1
2
, p

2
, κ)

n∑
i=1

M∑
m=1

ri,m. (C.8)

Let

Yp =
M′(1

2
, p

2
, κ)

M(1
2
, p

2
, κ)

=

∑n
i=1

∑M
m=1 ri,m(µTPT

mxi)
2∑n

i=1

∑M
m=1 ri,m

⇒κ̂ = Y −1
p (

∑n
i=1

∑M
m=1 ri,m(µTPT

mxi)
2∑n

i=1

∑M
m=1 ri,m

),

(C.9)

The final estimates of µ and κ are obtained by checking both cases (κ̂ > 0, κ̂ < 0)

and choosing the one which is consistent for (C.6)(C.9).
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APPENDIX D

Proof of Equation (5.10)

To proof the second equality of (5.10), we need the following two properties:

Proposition D.1. Ap(κ) =
Ip/2(κ)

Ip/2−1(κ)
and A−1

p (κ) are strictly increasing functions

∀κ > 0.

Proof. As shown in (Amos , 1974), we have:

dIv+1(x)/Iv(x)

dx
> 0,∀x > 0. (D.1)

This proposition comes directly by letting v = p/2 − 1 and x = κ. The inverse

function A−1
p (κ) is also a strictly increasing function.

Proposition D.2. n log cp(κ)+nκAp(κ) is a strictly increasing function of κ for any

n.

Proof. Let f(κ) = n(log cp(κ) + κAp(κ)). Take the derivative of f with respect to κ

we have:

df(κ)

dκ
= n(

1

cp(κ)

dcp(κ)

dκ
+ Ap(κ) + κ

dAp(κ)

dκ
) (D.2)
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From the derivation of (Dhillon and Sra, 2003), we have the formula:

Ap(κ) = − 1

cp(κ)

dcp(κ)

dκ
(D.3)

Substitute it back to (D.2). We have:

df(κ)

dκ
= n(κ

dAp(κ)

dκ
) (D.4)

According to Proposition D.1, we have dAp(κ)/ dκ > 0. As a result, we can conclude

that df(κ)/ dκ > 0 and f(κ) is a strictly increasing function with respect to κ.

With the monotonic increasing Propositions D.1 and D.2, (5.10) can be simplified

as:

ψ̂ = arg max
ψ

n log cp(κ̂1) + nκ̂1Ap(κ̂1) (D.5)

= arg max
ψ

κ̂1 (D.6)

= arg max
ψ

A−1
p (
‖r+‖+ ‖r−‖

n
) (D.7)

= arg max
ψ
‖r+‖+ ‖r−‖ (D.8)

= arg max
ψ
‖
∑
p∈ψ+

I(p)‖+ ‖
∑
p∈ψ−

I(p)‖ (D.9)

138



APPENDIX E

Particle Weights Evaluation

The particle weights are evaluated through the quasi-likelihood function p(St|θt).

The quasi-likelihood function should have two properties: (1) It is monotonically

increasing with the image similarity M(St, T
∗
θ (Vanat)); (2) The weighted particles are

distributed approximately to multivariate Gaussian. To satisfy the two properties,

we propose to use a histogram equalization approach to evaluate the particle weights.

The multivariate Gaussian density is shown below:

f(x) =
1√

(2π)d|Σ|
exp−1

2
(x− µ)TΣ−1(x− µ). (E.1)

The goal here is to find the distribution of z = f(x) where x is the random variable

following (E.1). Let gZ(z) denote the density of z. We can equalize the histogram of

image similarity to gZ(z) to obtain the particle weights.

Without loss of generality and for simplicity, in the following derivation, we assume

the covariance to be identity matrix and µ = 0. The density function and its inverse
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can be re-written as:

h(r) =
1√

(2π)d
exp−1

2
r2,

h−1(z) =

√
−2 log

(√
(2π)dz

)
, z ∈ (0,

√
(2π)−d],

(E.2)

where r = ‖x‖. Define GZ(z) as cumulative density function of gZ(z) (i.e. GZ(z) =

p({f(x) ≤ z})), where x is the random variable following the multivariate Gaussian

density (E.1). According to the spherical symmetry, G(z) has the following form by

integration along the radial direction:

G(z) = 1− p({f(x) ≥ z})

= 1−
h−1(z)∫

0

Sd−1u
d−1h(u)du

= 1− Sd−1

(
H∗(h−1(z))−H∗(0)

)
,

(E.3)

H∗(u) =

u∫
−∞

vd−1h(v)dv, (E.4)

where Sd−1 is the surface area of unit (d− 1)-sphere, e.g., S0 = 2,S1 = 2π. To obtain

g(z), we need to take the derivative of G(z) with respect to z:

g(z) =
dG(z)

dz
= −Sd−1

dH∗(h−1(z))

dz

= −Sd−1
H∗(h−1(z))

dh−1(z)

dh−1(z)

dz
,

(E.5)

H∗(h−1(z))

dh−1(z)
= z

(
h−1(z)

)d−1
, (E.6)
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dh−1(z)

dz
= − 1

zh−1(z)
. (E.7)

By substituting (E.6)(E.7) into (E.5), we have:

gZ(z) = Sd−1

(
−2 log

(√
(2π)dz

))(d−2)/2

=
dπd/2

Γ(d
2

+ 1)

(
−2 log

(√
(2π)dz

))(d−2)/2

.

(E.8)

Figure E.1(a) shows the density gZ(z) for different dimension d. Notice that in

this work, the multivariate Gaussian is used to model the rigid body head motion

which has 6 dimensions and therefore gZ(z) has the following form:

gZ(z) = π3
(
−2 log (2π)3z

)2
, z ∈ (0, (2π)−3]. (E.9)

Figure E.1(b) plots (E.9) with the simulated histogram. The histogram of image

similarity is equalized to (E.9) to obtain the weights of each particle.
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Figure E.1: (a) shows the density gZ(z) for different d. (b) shows the simulated
histogram compared with theoretical gZ(z) for d = 6.
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