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NOTATION

The following notation convention is adopted throughout this dissertation. Bold-
face upper case letters denote matrices, boldface lower case letters denote column
vectors, standard lower case letters denote scalars and standard upper case letters
denote random variables. In addition, we define:

Sets and generalized inequalities :

R: the field of real numbers.
C: the field of complex numbers.
R

p: the set of p-dimensional real-valued vectors.
R

p
+: the non-negative orthant, i.e., the set {x ∈ R : xi ≥ 0}.

R
p
++: the positive orthant, i.e., the set {x ∈ R : xi > 0}.

R
p×n: the set of p × n real-valued matrices.

S
p: the set of p × p symmetric matrices.

S
p
+: the subset of semi-positive definite matrices, i.e.

S
p
+ =

{

X ∈ S
p : xT Xx ≥ 0,∀x ∈ R

p
}

.

S
p
++: the subset of positive definite matrices, i.e.

S
p
++ =

{

X ∈ S
p : xT Xx > 0,∀x ∈ R

p
}

.

x º 0 (x ≻ 0 ) means that x ∈ R
p
+ (x ∈ R

p
++).

X º 0 (X ≻ 0 ) means that X ∈ S
p
+ (X ∈ S

p
++).

||·||2: the ℓ2 norm of a vector, ||x||2 =
√

∑p
i=1 x2

i .

||·||F : the Frobenius norm of a matrix, ||X||F =
√

∑p
i=1

∑n
j=1 x2

i,j.

Given a proper cone C ⊂ R
p and x,y ∈ R

p, x ºC y means that x − y ∈ C.
K: the second order (Lorentz) cone,

K =

{[

x

t

]

∈ R
N+1 : ||x||2 ≤ t

}

.

Matrix notation and operators:

T : matrix transpose operator.
†: matrix pseudoinverse operator.
⊗: Kronecker product.
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[·]S,T : submatrix operator, returns the matrix constructed from the rows indexed
by S and the columns indexed by T . We will drop the brackets whenever this is
possible. Similarly, [·]S,∗ denotes the submatrix obtained from the row indices
in S and all its columns.
diag (x) returns a diagonal matrix with the elements of x in its diagonal.
tr (·): the trace operator.
det (·): the determinant.
supp (X) returns the subset of column indices corresponding to columns with
at least one non-zero element.
〈·, ·〉 denotes the euclidean inner product between two matrices or vectors, de-
fined as 〈X,Y 〉 = tr

(

XT Y
)

.
(·)+ denotes the projection onto the non-negative orthant.
R (X) denotes the range of a matrix X.
In is the n × n identity matrix.
0n×p and 1n×p denote the n× p matrices of all-zeroes and all-ones respectively.
We will omit the dimensions whenever they are clear from the context.

Spectrum of symmetric matrices

λi (X) and vi (X): the i-th eigenvalue and eigenvector of X ∈ S
p.

λmax (X) and λmin (X) are defined as maxi λi (X) and mini λi (X), respectively.

ℵ (X) := λmin(X)
λmax(X)

is the condition number of X ∈ S
p.

VF (X) and ΛF (X) denote the p×F matrix and F×F diagonal matrix obtained
from the first F eigenvectors and the first F eigenvalues of X ∈ S

p, considering
the eigenvalues in decreasing order and F ≤ p.

Functions :

f (x): a generic real-valued function, f : R
p → R.

f (x): a generic multi-dimensional real function, f : R
p → R

n.
∇f : the gradient of a differentiable real-valued function,

∇f =

[

df (x)

dx1

, · · · ,
df (x)

dxp

]T

.

∇2f : the Hessian of a twice-differentiable real-valued function,

[

∇2f
]

i,j
=

d2f (x)

dxidxj

.

For any two real-valued functions f(x), g(x), we write

f(x) = O (g(x)) if lim sup
x→∞

∣

∣

∣

∣

f(x)

g(x)

∣

∣

∣

∣

< ∞

f(x) = o (g(x)) if lim
x→∞

f(x)

g(x)
= 0.
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ABSTRACT

Learning from high-dimensional multivariate signals

by

Arnau Tibau Puig

Chair: Alfred O. Hero III

Modern measurement systems monitor a growing number of variables at low cost.

In the problem of statistically characterizing the observed measurements, budget

limitations usually constrain the number n of samples that one can acquire, leading

to situations where the number p of variables is much larger than n. In this situation,

classical statistical methods, founded on the assumption that n is large and p is fixed,

fail both in theory and in practice. A successful approach to overcome this problem

is to assume a parsimonious generative model characterized by a number k of free

parameters, where k is much smaller than p.

In this dissertation we develop algorithms to fit low-dimensional generative models

and extract relevant information from high-dimensional, multivariate signals. First,

we define extensions of the well-known Scalar Shrinkage-Thresholding Operator, that

we name Multidimensional and Generalized Shrinkage-Thresholding Operators, and

show that these extensions arise in numerous algorithms for structured-sparse lin-

ear and non-linear regression. Using convex optimization techniques, we show that

these operators, defined as the solutions to a class of convex, non-differentiable, op-

timization problems have an equivalent convex, low-dimensional reformulation. Our

equivalence results shed light on the behavior of a general class of penalties that in-

cludes classical sparsity-inducing penalties such as the LASSO and the Group LASSO.

In addition, our reformulation leads in some cases to new efficient algorithms for a

variety of high-dimensional penalized estimation problems.

Second, we introduce two new classes of low-dimensional factor models that ac-

count for temporal shifts commonly occurring in multivariate signals. Our first con-
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tribution, called Order Preserving Factor Analysis, can be seen as an extension of the

non-negative, sparse matrix factorization model to allow for order-preserving tempo-

ral translations in the data. We develop an efficient descent algorithm to fit this model

using techniques from convex and non-convex optimization. Our second contribution

extends Principal Component Analysis to the analysis of observations suffering from

arbitrary circular shifts, and we call it Misaligned Principal Component Analysis. We

quantify the effect of the misalignments in the spectrum of the sample covariance ma-

trix in the high-dimensional regime and develop simple algorithms to jointly estimate

the principal components and the misalignment parameters.

All our algorithms are validated with both synthetic and real data. The real data is

a high-dimensional longitudinal gene expression dataset obtained from blood samples

of individuals inoculated by different types of viruses. Our results demonstrate the

benefit of applying tailored, low-dimensional models to learn from high-dimensional

multivariate temporal signals.
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CHAPTER I

Introduction

1.1 From petal lengths to mRNA abundance

The text-book famous “Iris flower dataset” (Fis36) was collected by E. Ander-

son and was popularized by R.A. Fisher in 1936 to illustrate his method of Linear

Discriminant Analysis. This dataset consists of 4 variables (Sepal length and width,

Petal length and width) measured over 50 plants of three different species. To the

21st century statistics practitioner, a natural question is the following: if E. Ander-

son’s intention was to characterize the morphological features of different species of

Iris in a specific geographical area, why did he limit the number of variables to only

four?

A plausible explanation is that E. Anderson was trying to strike a balance between

the minimum number of features that could discriminate between species, and the

number of different replicates he needed in order to obtain a representative sample.

Since Anderson’s time budget for data collection was probably limited, measuring

an additional feature would have likely implied a reduction in the total number of

replicates for each feature.

Fisher and Anderson’s was an era where data collection was a manual or semi-

automatized process, and the cost of measuring an additional variable was the same as

the cost incurred in monitoring each of the previous ones. This was the data collection

paradigm until the end of the 20th century: From medical research to communications

systems, the number of measured variables was limited by the fact that the cost of the

measurement system grew strongly with the number of observables. As a consequence,

one had to limit the number of variables in order to allocate enough budget to the

collection of replicates.

The advent of modern manufacturing techniques brought this limitation to an end.

In essence, new technologies have allowed measurement and computing systems to do
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economies of scale in the number of sensing devices. The cost of adding an additional

measurement sensor decreases with the number of sensors already integrated, giving

rise to measurement devices monitoring many orders of magnitude more variables

than in the past1.

This shift has profoundly changed the process of data collection and analysis: now

it is not necessary anymore for the biologist, the astronomist, the marketing specialist

or the antenna in the receptor of a communication system to know in advance what

the relevant variables are in order to statistically characterize a physical process.

Instead, one obtains measurements from a large pool of candidate features, and then

relies on computational power to process the data and select the variables relevant to

the study.

For example, in the data analysis problem that motivates this work, we are inter-

ested in extracting gene expression temporal patterns that drive the immune system

response of a cohort to upper respiratory tract viral infections. Unfortunately, the

specific genes that are involved in this process are unknown. During most of the

past century, we would have had to use medical and biological a priori knowledge to

determine a pool of candidate genes related to immune response and then perform

costly and sensitive gene expression assays for each of the tissue samples. In contrast,

modern Affymetrix mRNA microarray technology allows us to monitor tens of thou-

sands of genes at low cost, and extract relevant information exclusively from the data

using modern statistical techniques.

Unfortunately, the increase in the number of variables has not been accompanied

by a proportional increase in the number of replicates or samples that one is able to

record. As an example, very few mRNA microarray-based gene expression studies

collect more than tens of replicates, usually due to budget constraints. This phe-

nomenon is not limited to situations where the ratio between the available budget

and the cost of each sample caps the number of available replicates. For instance,

in wireless communications or in internet traffic data analysis (LBC+06), the process

under measurement is time-varying and hence one can only take few snapshots be-

fore violating the usual stationarity assumption. In conclusion, modern data sets are

usually characterized by having a much larger number of variables (denoted by p)

1Quoting the great statistician Jerome H. Friedman (Fri01): “Twenty years ago most data was
still collected manually. The cost of collecting it was proportional to the amount collected. [...] Now
much (if not most) data is automatically recorded with computers. There is a very high initial cost
[...] that is incurred before any data at all is taken. After the system is set up and working, the
incremental expense of taking the data is only proportional to the cost of the magnetic medium on
which it is recorded. This cost has been exponentially decreasing with time.”
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than replicates (denoted by n). This has a number of statistical and computational

consequences, which we briefly explore in the following section.

1.2 Finding needles in a haystack

As the great statistician and applied mathematician David Donoho wrote (Don00),

“[...] we are in the era of massive automatic data collection, systematically obtain-

ing many measurements, not knowing which ones will be relevant to the phenomenon

of interest. Our task is to find a needle in a haystack, teasing the relevant information

out of a vast pile of glut.”

In other words, the naive intuition according to which “the more data, the bet-

ter” seems to fail. For a fixed number of samples n, increasing the dimension of the

observables, p, (by, say, adding more sensors to our measurement system) effectively

increases the amount of data: p × n. However, following Donoho’s metaphor, an

increase in p is equivalent to an increase in the size of the haystack which is not nec-

essarily followed by an increase in the amount of needles. Indeed, there is practical

and theoretical evidence (JL08; FFL08) showing that an increase in the ratio p
n

some-

times blurs or even completely suppresses the informative part of a noisy signal. This

paradox is usually known as the “curse of dimensionality”. It is also worth mention-

ing that there are other consequences of the p ≫ n regime which have been dubbed

the “blessing” (as opposed to the “curse”) of dimensionality. Indeed, recent results

in probability and statistics show that there is much more structure in high dimen-

sional random data than one would expect. Moreover, this structure only manifests

itself in the high-dimensional setting, hence one can only take advantage of it in such

regime. Examples of this phenomena are the concentration of measure (Mas07) of

(well-behaved) functions of high-dimensional random variables around its mean, the

convergence of the distribution of eigenvalues of large random matrices to a simple

asymptotic distribution (Wig55), or the asymptotic uncorrelation phenomenon, by

which large sequences of random variables behave as if their terms were uncorrelated,

as the number of terms increases.

In order to overcome the curse of dimensionality, one popular approach is to as-

sume that most physical phenomena can be characterized by only a few variables.

For instance, in the Iris dataset example, E. Anderson knew, probably thanks to

his training and experience, that petal and sepal dimensions are good discriminatory

variables for the Iris subspecies. Among infinitely many other morphological features,

E. Anderson chose those four in order to perform his study. In contrast, in modern
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datasets one does not know a priori what the relevant features are, but it is often

still reasonable to assume that only a handful of the variables, or low-dimensional lin-

ear combinations of them, are relevant. For instance, in a seminal paper (GST+99),

Golub et al. showed that only 50 genes out of 6817 screened genes sufficed to build a

simple classifier that discriminated between acute lymphoblastic leukemia (ALL) and

acute myeloid leukemia (AML). This practical assumption is sometimes philosoph-

ically justified by the principle of parsimony, which is often (and perhaps wrongly)

identified2 with Occam’s razor: “entia non sunt multiplicanda praeter necessitatem”

(entities must not be multiplied beyond necessity.) Whether the parsimony assump-

tion is accurate or useful to describe reality is an important epistemological question.

In this dissertation we embrace K. Popper’s view (Pop02), who argues that simpler

models are preferable because they are better testable and less likely to be falsifiable3.

1.3 Parsimonious statistical models

Mathematically, the notion of parsimony is formalized by assuming a low-dimensional

generative model. In statistical learning, this is equivalent to restricting the class of

probability distributions that model the observations. In this dissertation we adopt a

parametric approach, which implies that the distribution classes we consider are com-

pletely characterized by a finite-dimensional set of parameters. Denoting by py (x; θ)

the joint distribution of a multivariate observation y ∈ R
p, we will assume that:

py (x; θ) ∈
{

f (x,θ) : R
2p → R+,

∫

f (x,θ) dx = 1,θ ∈ M
}

, (1.1)

where M ⊂ R
p is the parameter space, which we assume to be a low-dimensional

manifold of R
p. This characterization of the observations is theoretically attractive

because for many families of M and f (x,θ), the problem of estimating θ is compu-

tationally tractable and amenable to mathematical analysis. We proceed to illustrate

a few instances of this general model that will appear throughout this dissertation.

� Sparse Generalized Linear models: Generalized Linear Models (GLM) are su-

pervised learning models that characterize the distribution of a label or response

2In fact the history of what is often called “Occam’s razor” might have a funny twist. W.H.
Thorburn thoroughly argues in (Tho18) that “Occam’s Razor is a modern myth. There is nothing
medieval in it [...]”. According to (Tho18), the often-quoted latin statement was never written by
Occam and was first utilized much later, in 1639, by John Ponce of Cork.

3“Simple statements [...] are to be prized more highly than less simple ones because they tell us
more; because their empirical content is greater; and because they are better testable.” Chapter 7,
Section 43 in (Pop02)
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variable y as a function of a set of covariates, denoted by x ∈ Rp. In a Gener-

alized Linear Model, py,x (y, x) is assumed to belong to the exponential family,

and the mean of the response variable y is modeled as:

E (y|x) = g−1
(

xT θ
)

where g(x) is called the link function and θ ∈ M are the model parameters.

The estimation of θ is usually done by maximizing the likelihood of y given

x. In our context, we are interested in sparse GLMs, which means that M
specializes to:

Mk−sparse = {θ ∈ Rp : ||θ||0 ≤ k} (1.2)

where we define:

||θ||0 := |supp (θ) |,

and hence k is an upper bound on the number of non-zero elements in the

parameter vector. The estimate of θ in Sparse GLMs has to verify the model

constraints, which leads to a constrained Maximum Likelihood (ML) problem.

Given a collection of n independent observations {yi,xi}n
i=1, the constrained

ML estimator of θ is defined as:

θ̂ := arg max
n

∑

i=1

py|x (yi,xi) . (1.3)

s.t. ||θ||0 ≤ k

In this work we consider two types of generalized linear models, the linear

regression and the logistic regression model. In the linear regression model,

g(x) is taken to be the identity and py|x (y, x) is the Gaussian distribution with

unit variance. In such case, the ML estimate of θ is given by:

θ̂ = arg min
n

∑

i=1

∣

∣yi − xT
i θ

∣

∣

2
(1.4)

s.t. ||θ||0 ≤ k,

which is readily identified as the usual k-sparse signal recovery problem appear-
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ing in inverse problems or compressive sensing (Tro06):

θ̂ = arg min ||y − Dθ||22 (1.5)

s.t. ||θ||0 ≤ k.

Here D is a matrix of dictionary elements (a basis or an overcomplete dictio-

nary) and θ is the representation of the signal over this dictionary.

The second class of GLMs we will consider is the logistic regression model, where

py|x (y, x) is the binomial distribution and g(x) is the logit function (HTF05).

In this case, the constrained MLE takes the form:

θ̂ = arg min
n

∑

i=1

yix
T
i θ − log

(

1 + exT
i θ

)

(1.6)

s.t. ||θ||0 ≤ k,

We will consider variants of these Sparse GLM’s in Chapter 2 and 3, in the

application of finding groups of genes that discriminate the temporal responses

over different populations.

� Low-rank factor models : The models considered in the last section characterized

a response variable y as the output of a sparse linear model:

y ≈ Dθ , ||θ||0 ≤ k,

where θ ∈ Rp is sparse but D ∈ Rn×p is usually full column rank and/or

overcomplete, with p much larger than n. In contrast, in this section we consider

low rank linear models of the type:

y = FaT + n, rank (F ) = f ≪ p,

where p is the dimension of y, F ∈ Rp×f is a low-rank matrix of factors with

rank much smaller than the dimension of the ambient space, a ∈ Rf is a vector

of coefficients and n ∈ Rp is a small, random residual error. Depending on

the nature of the coefficient vector a and the residual n, this model specializes

to different paradigms. For instance, if a and n are assumed to be zero-mean

Gaussian random vectors, with isotropic covariance and unit variance, we have
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that:

py (x;Σ) =
1√

2π |Σ|1/2
exp

(

−1

2
xTΣ−1x

)

, Σ ∈ M
f−rank,

where

M
f−rank =

{

Σ ∈ Rp×p : Σ = FF T + I ≻ 0, rank (F ) = f
}

, (1.7)

which is a low-dimensional subset of the cone of positive definite matrices. This

model is also known as the Probabilistic PCA model (TB99). We will adapt a

similar model to the problem of estimating temporal patterns from misaligned

signals in Chapter 5.

Another class of low rank models stems from the assumption that a is non-

random parameter of interest. In this case, assuming the residual n is centered

and normal with isotropic covariance, we have

py (x; H ,a) =
1

√

2πσ2
n

exp

(

− 1

2σ2
n

(

x − HaT
)T (

x − HaT
)

)

,

{

H ∈ MH ⊂ Rp×f

a ∈ Ma

.

Under this model, a common estimate of H and a from observations {yi}n
i=1 is

the constrained Maximum Likelihood Estimator, defined as:

θ̂ = arg min
n

∑

i=1

∣

∣

∣

∣yi − HaT
i

∣

∣

∣

∣

2
(1.8)

s.t.

{

H ∈ MH

ai ∈ Ma, i = 1, · · · , n.

Depending on the specific choice of MH and Ma this problem relates to k-means

clustering (HTF05), Sparse Coding/Dictionary learning (OF97; KDMR+03),

Non-Negative Matrix Factorization (LS99a) or Tensor Decomposition (KB09),

to name a few. We develop a special instance of this class of models in Chapter 4,

in the problem of estimating order-preserving temporal factors from longitudinal

gene expression data.

In this dissertation we propose three different low-dimensional models for the

analysis of high-dimensional, multivariate signals which are extensions or combina-
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tions of the models listed above. Our models build on the special characteristics of

high-dimensional multivariate signals, which we proceed to describe in the following

section.

1.4 The special flavor of (high-dimensional) multivariate sig-

nals

We define a multivariate signal as a finite collection of multivariate random vari-

ables indexed by a set of increasing real numbers:

{[

Y t
1 , Y t

2 , · · · , Y t
G

]

∈ R
G, t ∈ {{t1, · · · , tT} , ti ≤ ti−1, 1 ≤ i ≤ T}

}

(1.9)

We will generally denote the realizations of the random variables (1.9) at a specific

time point t by a row vector yT
t . A realization of the multivariate signal will be

identified with a T × G matrix:

Y =













yT
1

yT
2

· · ·
yT

T













. (1.10)

In general, we will work with a collection of S realizations of (1.9), which we identify

with the vertical slices of a data cube, denoted by {Ys}S
s=1 and shown in Figure 1.1.

The main difference between a multivariate signal and an ordinary collection of

multivariate random vectors is the existence of an ordered structure, ti ≤ ti−1, 1 ≤ i ≤
T 4. The order assumption is important because it is closely related to the correlation

structure of Y t
i . Indeed, many time-varying physical processes exhibit some kind of

regularity over time: continuity, smoothness or other. For example, in video data,

one expects a certain degree of continuity between the images of adjacent frames.

Another example is gene expression longitudinal data, e.g., the one we describe in the

next section, where the expression values of a given gene are not expected to change

abruptly across adjacent time points. Statistically, this regularity manifests itself in

the form of a temporal correlation between Y t
i and its temporal neighbors Y t−1

i , Y t+1
i ,

· · · ,Y t+f
i . If we are to learn a statistical model from realizations {Ys}S

s=1, it seems

reasonable to enforce these properties in our estimators.

4This is more generally the definition of longitudinal data, which includes time series, spatial and
others types of data.
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Figure 1.1: Multivariate signal data cube.

From the discussion above, it follows that we can interpret multivariate signals as

a class of multivariate random variables for which we have a regularity prior along (at

least) one of the dimensions. Unfortunately, this prior comes at the price of a type of

sensitivity that is seldom taken into account. In many situations, one can not obtain

replicates {Ys}n
i=1 from (1.9), but rather a transformed version of them,

Xs = Ts (Ys) . (1.11)

It is obvious that except for the case where Ts (·) is the identity operator, the statistical

properties of Xs will be different from those of5 Ys. Consequently, any estimator

building on the temporal regularity of the underlying signal can be severely affected

by operators that modify its temporal correlation structure, such as permutations or

simple cyclic translations. More generally, the statistical properties of the signal along

the time axis are not invariant to transformations that alter its ordered structure.

We propose in this thesis two models that seek to compensate for the effects of two

classes of transformations Ts (·) that commonly occur in practice. In Chapter 4, we

consider a transformation model that applies order-preserving circular shifts to the

5This is in general the case whenever the statistical properties of Y t
s happen to be invariant with

respect to the operator Ts (·).
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basis elements of a generative linear model. In Chapter 5, we consider the simpler

class of cyclic translation operators, in which case Ts (·) is a permutation matrix. This

is a special case of the order-preserving model of Chapter 4, in which the shifts on

each basis element are assumed to be the same.

There is another aspect of multivariate signals that we have not yet explored, and

that has to do precisely with the “multivariate” part of the nomenclature. In many

situations, the random variables Y t
i represent particular features of a large complex

system and hence correlation will exist not only along neighboring time points, but

also across its multivariate structure (without restriction to neighboring indices in

this case). For example, in the context of gene expression data analysis, it is well

known that groups of genes belonging to the same signaling pathway exhibit similar

expression patterns. Another example arises in the context of MIMO communication

systems, which use correlation across signals received in different antennas at the

receiver to take advantage of spatial diversity.

If one has such prior knowledge, it would be foolish not to use it to our advantage.

In Chapter 2 and 3, we develop efficient optimization schemes to fit classes of Sparse

GLMs that enforce a low-dimensional model constructed from a-priori knowledge of

the underlying correlation structure.

We turn now to the description of the dataset which motivates most of the devel-

opments in this work.

1.5 Predictive Health and Disease (PHD)

Despite its relatively low mortality rate, Acute Respiratory Infections such as Rhi-

novirus (HRV), influenza (H3N2 and H1N1A), and respiratory syncytial virus (RSV)

have an important societal and economical impact (ZCV+09). Today’s detection and

classification of this family of diseases is largely based on physicians’ diagnostic exper-

tise, which relies on the assessment of the symptoms displayed by infected individuals.

The DARPA-funded Predictive Health and Disease project6 aims at developing novel

detection and classification schemes for such pathologies before the symptoms appear,

through the measurement of a pool of mRNA abundances in peripheral blood. The

underlying assumption is that peripheral blood is a good proxy for the immune sys-

tem response of an individual to a viral entity, which starts hours before symptoms

appear.

6http://www.darpa.mil/Our_Work/DSO/Programs/Predicting_Health_and_Disease_(PHD)

.aspx
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In order to study the feasibility of the project’s goal, the PHD gene expression

data set was collected as follows. After receiving appropriate Institutional Review

Board approval, the authors in (ZCV+09) performed separate challenge studies with

two strains of influenza (H3N2 and H1N1), human rhino virus (HRV) and respiratory

syncytial virus (RSV). For each such challenge study, roughly 20 healthy individuals

were inoculated with one of the above viruses, and blood samples were collected at

regular time intervals until the individuals were discharged. The blood obtained at

each of these time points was assayed with Affymetrix Genechip mRNA microarray

technology, yielding a matrix of gene expression values for each subject, such as the

one depicted as a heatmap in Figure 1.3. Stacking each subject’s gene expression

matrix yields the data cube in Figure 1.2.

Figure 1.2: Predictive Health and Disease data cube.

The raw Genechip array data was pre-processed using robust multi-array analysis

(IHC+03) with quantile normalization (BIAS03). For each of the individuals and

each time point, experienced physicians determined whether symptoms existed and

correspondingly assigned a set of labels. These labels constitute the ground truth for

our supervised learning tasks.

In this dissertation we address two major statistical challenges arising from the

PHD project goals. The first one, which we address in Chapters 2 and 3, is to

determine which genes are discriminatory of the different states of disease progression,
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Figure 1.3: Heatmap of the logarithm of the 11961 × 16 normalized temporal gene
expression matrix for a subject inoculated by H3N2 (influenza).

by using only early time samples with respect to the onset time, which is the time

when the first symptoms are recorded. The number of samples available for this

purpose is equal to the number of symptomatic subjects S = 9 times the number

of time points used to train our predictors, which is smaller or equal than T = 16.

On the other hand, the number of genes under our normalization scheme is equal to

G = 11961, meaning that in this tasks we are in a high dimensional regime, where
# variables
# samples

= G
S×T

≥ 83.

Our second challenge, which we undertake in Chapters 4 and 5, is to discover

temporal gene expression patterns that characterize the immune system response to

viral infection. A quick glimpse at Figure 1.4, which plots the normalized expression

values of 5000 genes with high temporal variability for a subject inoculated with

H3N2, demonstrates that this is not an easy feat. In addition, as we will explore

in Chapter 4, there is evidence that the immune system responses of each individual

have different latencies, and hence the matrices Xs corresponding to each subject can

not be taken as realizations from the same multivariate distribution. Instead, it will

be convenient to model the observations Xs as in (1.11), where they are characterized

as the result of applying a certain transformation to the common, underlying immune

system expression response denoted by Ys.

We outline next the contributions of this dissertation towards achieving the afore-

mentioned goals.
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Figure 1.4: Expression values for 5000 genes with high relative temporal variability
over 16 time points for a subject inoculated by H3N2. Underlying tempo-
ral patterns are clearly not visible due to noise and high-dimensionality.

1.6 Structure of this dissertation

In this section we relate the different chapters of this dissertation to the statisti-

cal learning problems associated to the Predictive Health and Diagnose project and

dataset described above.

1.6.1 Penalized estimation and shrinkage-thresholding operators

We have seen in Section 1.2 that a number of estimation and approximation

problems can be posed as a constrained optimization problem of the form:

θ̂ = arg min L
({

xi
}n

i=1
,θ

)

,

s.t. θ ∈ M ⊂ R
p

where L (·, ·) is usually a smooth and convex loss function measuring the fit of the

data to the model parameterized by θ, {xi}n
i=1 are independent, identically distributed

samples, and M denotes the subset of R
p characterizing the model constraints. In

13



particular, for the important class of k-sparse models, we had:

θ̂ = arg min L
({

xi
}n

i=1
,θ

)

(1.12)

s.t. ||θ||0 ≤ k.

For instance, when L is the squared ℓ2 loss,

L ({xi}n
i=1 ,θ) =

n
∑

i=1

∣

∣

∣

∣

∣

∣
xi

1 −
[

xi
2 xi

3 · · · xi
p

]

θ
∣

∣

∣

∣

∣

∣

2

2

the solution to (1.12) yields the best k-sparse least squares approximation of x1 from

x2, x3, · · · , xp. It is reasonable to think that such an estimator would have better

statistical properties than the unconstrained least squares (LS) estimator, specially

in the high dimensional setting where p > n and the least squares estimator is known

to be inconsistent. (Note for instance that we can add any vector from the null-space

of the design matrix to the LS solution without modifying the LS objective value).

Unfortunately, (1.12) is a combinatorial problem even when L (·, ·) is the squared

ℓ2 loss, and no efficient computational method is known to solve it. In fact, it is

known that the related problem of finding the smallest sparse approximation of a

linear system is NP-Hard (Nat95).

One approach to circumvent the computational burden of solving (1.12) is to relax

the combinatorial constraint ||θ||0 ≤ k to a convex constraint of the form ||θ||1 ≤ τ

(TBM79; Tib96; Tro06). Then one usually considers the penalized version of the

constrained problem7:

θ̂ = arg min L
({

xi
}n

i=1
,θ

)

+ λ ||θ||1 (1.13)

where λ is a parameter in one-to-one relationship with the sparsity parameter τ .

Since the loss function L is usually convex (as in the GLM examples of Section 1.2),

then (1.13) is a convex optimization problem. This seemingly simple relaxation has

two surprising properties: (i) it transforms a combinatorial problem to a polynomi-

ally solvable one (for instance, by interior point methods which are known to have

polynomial time complexity for self-concordant objectives (Wri)), and (ii) it has been

shown that under relatively mild assumptions the solution to (1.12) and the solution

to (1.13) are very close (Tro06).

7One can formalize the equivalence between the constrained and the penalized problems through
Lagrange duality theory (BV).
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The worst-case polynomial complexity of (1.13) represents a huge advantage with

respect to the combinatorial nature of (1.12). Notwithstanding, in most modern

statistical problems the dimension of the optimization domain, denoted by p, is often

in the order of the tens or hundreds of thousands of variables. This precludes the

usage of interior point (IP) methods which require the storage of p × p matrices

and the solution of p-dimensional systems of equations. Numerous efforts have been

devoted to developing algorithms that are better adapted to this large-dimensional

regime. Roughly speaking, these algorithms sacrifice the fast convergence properties

of IP methods in exchange of a very low per-iteration cost and sometimes weaker

convergence guarantees8 (DDDM04a; WNF09; CW06; BT09; BBC09).

In addition, the appropriate value of τ (or λ) is usually not known in advance. A

common approach is to estimate this tuning parameter via cross-validation (HTF05),

which requires the computation of the entire solution path, that is, the solution to

(1.13) as a function of λ. For the least squares loss, homotopy algorithms (OPT00;

EHJT04) take advantage of the piece-wise linearity of the solutions to (1.13) with

respect to λ to efficiently compute the solution path at little cost.

The LASSO problem, which is the specialization of (1.13) to the least squares

loss, has been proved effective for a variety of applications (MB06; THNC02; Can06).

However, it is well known that consistency of the LASSO estimator is only possi-

ble under low correlation conditions which are not necessarily reasonable in practice

(Bac08; NRWY10). To overcome this limitation, there has been a push to incorpo-

rate penalties that enforce structures other than simple sparsity while maintaining

the convexity of the optimization problem. One way to incorporate these structures

is to consider a generalization of the ℓ1 penalized estimation problem which takes the

following form:

θ̂ = arg min L
({

xi
}n

i=1
,θ

)

+ λΩ (θ) , (1.14)

where Ω (θ) is a sparsity-inducing penalty defined as:

Ω (θ) =
m

∑

i=1

√
ci ||θGi

||2 , (1.15)

where ci > 0, and Gi are subsets of indices such that Gi ⊆ {1, · · · , p} and ∪m
i=1Gi =

{1, · · · , p}. This class of penalties enforce more fine-grained sparse models, in that

8By weak convergence we refer here to convergence of the sequence of objective values but not
necessarily of the optimization parameters.
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they require the complement of the support set of the solution θ̂ to be the union of

the groups of active subsets:

supp
(

θ̂
)

= {1, · · · , p} \ ∪i∈A Gi, (1.16)

for some A ⊆ {1, · · · ,m}. When the groups are formed by individual indices, prob-

lem (1.14) specializes to the LASSO estimator, otherwise it is generally known as

the Group LASSO, with (ZRY09; SRSE10b; JMOB10) or without overlap (YL06a).

There is practical and theoretical evidence that such penalties are statistically su-

perior to the ℓ1 approach when the correlation structure of the data and the struc-

ture of the sparsity enforced by the penalty agree (OWJ08; SRSE10a; JOB10). It

is worth mentioning, however, that this class of penalties is by no means exhaus-

tive and that other schemes based on different convex functionals have been devised

(Bac10; JOV09; CT07; NW08).

Unfortunately, the increase in modeling possibilities brought about by the penal-

ties in (1.15) is accompanied by an increase in the computational burden for solving

the associated penalized learning problem (1.14). On one hand, the proximal operator

associated to the penalty (1.15), defined as:

Pτ,Ω (x) = min
θ

1

2τ
||θ − x||22 + Ω (θ) , (1.17)

which constitutes the main building block for fast first order algorithms such as those

in (ABDF11; WNF09; CW06; BT09; BBC09), is only easy to evaluate in the separable

case, where the supports of the groups Gi do not overlap, or in the hierarchical case,

where the supports only overlap in a hierarchical manner. On the other hand, in

general, the solutions to (1.14) are no longer linear with respect to λ, rendering the

computation of the entire regularisation path more computationally demanding than

in the ℓ1 case.

In the second and third chapter of this dissertation we address the aforementioned

problems. First, we consider a generalization of (1.15) that incorporates the possibility

of enforcing sparcity in a different coordinate system than the one where the regression

fit is performed. This class of penalties is of the form:

Ω (θ) =
m

∑

i=1

√
ci ||AGi,·θ||2 , (1.18)

and, associated to them, we define the Generalized Shrinkage Thresholding Operator
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(GSTO):

Tλ,H (g) = arg min 1
2
θT Hθ + gT θ + λ

∑m
i=1 ci ||AGi,·θ||2 . (1.19)

In Chapter 2 and 3 we show that the GSTO arises naturally in a number of algorithms

for group-sparse penalized linear and non-linear regression. For example, if AGi,·

are indicator matrices such that [AGi,·]i,i = 1, [AGi,·]k,l = 0 for k, l 6= i, and we let

H = XT X, g = −XT y, this problem specializes to the ℓ1 penalized linear regression

problem (1.13). Other choices of AGi,· lead to group sparse solutions as in (1.16).

More generally, in analogy to the Scalar Shrinkage Thresholding Operator (SSTO),

the GSTO shrinks or thresholds the input vector g and returns a thresholded vector

in the following sense:

Tλ,H (g) ∈ Ker (AD,·) (1.20)

where D = ∪i∈AGi for some active set A ⊆ {1, · · · ,m}. In addition, we show that

the convex, non-differentiable problem (1.19) is approximately equivalent to a smooth

(differentiable) optimization problem over a much smaller domain of dimension m (as

opposed to p). This reformulation leads to efficient evaluations of Overlapping Group

LASSO problem and the proximal operator (1.17), which in some cases outperform

state-of-the-art first order methods. Finally, the smoothness of our reformulation

over the active set of variables allows us derive first-order updates with respect to

perturbations in λ, which enhance the computation of the regularization path over a

grid of penalty parameters.

1.6.2 Order-Preserving Factor analysis

We have seen in Section 1.2 that one possible way to avoid overfitting in the high-

dimensional regime is to enforce a low dimensional model. In unsupervised learning

tasks, such as the one of extracting immune system-related temporal responses from

gene expression data, a popular approach is to find a simultaneous factorization of

the temporal slices of the data cube in Figure 1.2:

Ys ≈ FAs, s = 1, · · · , S. (1.21)

Here F is a T × F factor (or loading) matrix common to all observations and As ∈
R

F×G are the coordinates or scores of the s-th observation on the factor matrix.

In low-rank factor models, we have F << G and choose F by Cross-Validation
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over a test set of entries that were treated as missing during the training phase.

In the application of this model to the gene expression example, F contains the

temporal patterns that explain away the correlations between different genes, and

each As describes the association of each subject’s genes with the temporal patterns

in F . Such a simultaneous matrix decomposition achieves several goals: it enhances

interpretability, it reduces the variance due to noise and it can be useful in imputating

potentially missing entries. The underlying assumption here is that there is strong

correlation among the columns of Ys, and that this correlation is persistent for all

s = 1, · · · , S, hence a few prototype patterns constructed from the columns of F are

enough to approximate well the data. This is a reasonable assumption for multivariate

signals, as we explained in Section 1.4.

Despite its relatively small number of degrees of freedom, factor models such as

(1.21) often suffer from identifiability issues. Notice for instance that there is a scale

ambiguity within F and As. In addition, the null space of F is relatively high-

dimensional and hence there exist multiple ways to represent Ys on F . To escape

from these issues while maintaining the advantages of the low-rank structure, several

authors have proposed to add additional constraints to F and {As}S
s=1. These include,

non-negativity (LS99a), sparsity (JOB10; WTH09) or both. These approaches work

well in practice, and they have also been theoretically justified under a rather stringent

setting (DS04).

Unhappily, in many cases, models of the form (1.21) fall short and fail to accom-

modate meaningful intersubject variability within the data matrices. In the context

of multivariate signals, a major problem is that outlined in Section 1.4, where we only

have access to a transformed version of the data we are interested in. For example, in

the analysis of immune system-related temporal patterns from gene expression data,

we need to account for the natural temporal variability across different subjects. As

we show in Chapter 4, this variability manifests itself as a difference in the temporal

latencies each individual shows after viral infection. Indeed, the sequence of gene

expression responses of each individual is similar, but the moment at which the re-

sponses occur vary by up to 24 hours. This motivates the following order-preserving

factor model,

Ys ≈ M (F ,ds) As, s = 1, · · · , S. (1.22)

where M (F ,d) is a matrix valued function that applies a circular shift to each column

of F according to the vector of shift parameters d, and d is a set of order-preserving
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Figure 1.5: Construction of the factor matrix M (F ,d) by applying a circular shift
to a common set of factors F parameterized by a vector d.

latencies (see Figure 1.5 for an explanatory diagram). This is an extension of the

usual factor model, to which it specializes by constraining d = 0.

The complexity of this model increases with respect to the simpler model in (1.21),

and so does the computational effort required to fit it. In Chapter 4, we propose a

block coordinate descent algorithm to fit the order preserving model (1.22) according

to a least squares criteria. Special care is devoted to the step concerning the estimation

of the order-preserving d, which is a non-convex global optimization problem. We

take advantage of the structure of the least squares objective to design a fast branch-

and-bound procedure to solve this problem that avoids a potentially costly exhaustive

search.

Our algorithm, combining convex and non-convex optimization techniques leads

to fitting a sparse, non-negative order-preserving factor model in only a matter of min-

utes, Cross-Validation of all tuning parameters included. Our OPFA decompositions

are shown to outperform simpler sparse factor analysis models when order-preserving

misalignments are present. We also show how the OPFA decomposition is a valuable

tool for extracting order-preserving patterns that are related to the immune system

response to viral infection in symptomatic individuals inoculated by influenza.

1.6.3 Misaligned Principal Component Analysis

One of the multiple advantages of the digital age is that rare and old scientific

documents are only a few clicks away from the comfort of our working space. Per-

haps surprisingly, this now easily accessible bibliographical evidence demonstrates

that many of the challenges that occupy today’s statisticians and engineers are any-

thing but new. One such example is found in the work of Karl Pearson, a British

mathematician credited with the invention of a number of classical statistical tools.
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In his 1901 paper “On lines and planes of closest fit to systems of points in the space”

(Pea01), K. Pearson considered the problem of representing a systems of points in

a high dimensional vector space by the means of a low-dimensional subspace. His

solution to this problem, preceding Hotelling’s work (Hot33) on the subject by a few

decades, was based on computing the leading eigenvector of the correlation matrix,

and is currently known as Principal Component Analysis (PCA).

PCA is nowadays routinely used as a dimensionality reduction method, for inter-

pretation, compression or representation purposes, and its multiple variants are still

the subject of current research. For instance, significant efforts have been devoted to

incorporating prior information to the PCA estimates, in the form of smoothness for

functional PCA (Ram97), or in the form of sparsity in the eigenvector estimates in

order to enhance interpretability (JL08; dEGJL07; WTH09).

In the problem that concerns us, the system of points is in fact a collection of re-

alizations of a (possibly multivariate) signal. Estimating a low-dimensional subspace

amounts then to finding latent temporal patterns that characterize the observations.

As in the previous section, this is equivalent to the problem of finding an approximate

decomposition:

Ys ≈ FAs, s = 1, · · · , S, (1.23)

with the exception that in the PCA framework, one assumes that As is a random

matrix with i.i.d. Gaussian elements. This assumption enables the estimation of F

through the covariance of Ys, decreasing the computational complexity with respect

to the Order Preserving Factor Analysis problem of Chapter 4 and rendering the

problem amenable to mathematical analysis. Analogously to the previous section,

when Ys contains correlated gene expression temporal responses, PCA yields a basis

for the temporal patterns that are common across genes.

It is well known that PCA can be interpreted as the Maximum Likelihood esti-

mate of the covariance matrix under a gaussian, low-rank factor model assumption

(TB99) such as the one in (1.7). Given a large number of independent identically

distributed observations and fixing the dimension, the MLE is known to be asymp-

totically consistent, and hence so is the PCA estimate. For multivariate signals, as

we suggested in Section 1.4, independent identically distributed (i.i.d.) replicates of

a signal are not always easy to obtain. Specifically, it is common to have misalign-

ments between batches of observations, due to sampling or physical limitations. In

such case, we find ourselves in the situation modeled by equation (1.11), where the
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observations are not i.i.d. and hence consistency can no longer be expected to hold.

A straightforward way to overcome this limitation, at least in the asymptotic regime,

is to compute the PCA estimate separately for each batch of observations having the

same degree of misalignment and then align the PCA estimates together to construct

a global estimate.

In the high dimensional regime, there is a more subtle and negative effect of

misalignments that sometimes will hinder this straightforward approach. In order to

understand it, we will consider the case where there is no misaligment, but the number

of variables p and the number of samples n are of the same order of magnitude. In this

regime, as illustrated by Figure 1.6 in a 2-dimensional example, the PCA estimate

can be severely off unless the Signal-to-Noise Ratio (SNR) is high enough. Intuitively,

when one has only a few noisy observations, the number of subspaces which span the

directions of higher variance is large unless the observations are very well aligned,

which only happens when the SNR is high enough. This phenomenon is known as

a phase transition effect, meaning that the estimation goes from being impossible to

practically perfect by increasing the SNR by only a few dBs (Pau07; BBAP05). As

a consequence, computing a PCA estimate for each batch of misaligned data is not a

good approach when the SNR or the number of replicates is small.

In Chapter 5, we will use recent developments in the characterization of the eigen-

vectors of random Wishart matrices to show that misalignments increase the phase

transition SNR from which estimation is possible. We also asymptotically quantify

this degradation as a function of a few parameters related to the underlying signal

spectrum. Our results highlight the advantage of considering all the observations to-

gether, despite the misalignments, whenever the SNR is close to the phase transition

point.

These results will also motivate us to consider the Misaligned PCA (MisPCA)

problem of simultaneously estimating the principal components and the misalignment

parameters. Unfortunately, this problem is combinatorial in nature, and the search

space grows exponentially fast with the number of misaligned observations. We will

propose instead two simple algorithms that approximate the MisPCA solution, while

offering substantial advantage with respect to the traditional PCA estimator.

1.7 Publications

The work presented in this dissertation has led to the following publications.

Journals:
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Figure 1.6: Estimated and true principal components, for 2 variables x1 and x2 and 5
samples, and increasing SNR. It is clear that the PCA estimate is pretty
accurate at 10dBs, while it is almost orthogonal to the true one at −3dBs.
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CHAPTER II

A multidimensional shrinkage-thresholding

operator

2.1 Introduction

Variable selection is a crucial step in modern statistical signal processing, where

oftentimes the number of variables largely exceeds the number of available samples.

In genomic signal processing, for instance, RNA microarray data consists of gene

expression levels for tens of thousands of genes, while the number of available samples

rarely exceeds the hundreds. In this sample-starved situation, it is common practice to

perform a preprocessing step to select the variables that are most relevant with respect

to the biological process under study (THNC03). The scalar shrinkage-threshold

operator is central to variable selection algorithms such as Iterative Thresholding

(DDDM04a) for image deblurring (BT09), wavelet-based deconvolution (NF01) or

predictive analysis of gene expression microarrays (THNC03).

In this chapter, we first introduce a multidimensional generalization of the scalar

shrinkage thresholding operator. We define this operator as the minimization of a

convex quadratic form plus a (non-squared) Euclidean (ℓ2) norm penalty. We analyze

this non-differentiable optimization problem and discuss its properties. In particular,

in analogy to the scalar shrinkage operator, we show that this generalization yields a

Multidimensional Shrinkage Thresholding Operator (MSTO) which takes a vector as

an input and shrinks it or thresholds it depending on its Euclidean norm. Our results

relies on a reformulation of the problem as a constrained quadratic problem with

a conic constraint. Using conic duality theory, we transform this multidimensional

optimization problem into a simple line search which can be efficiently implemented.

We propose a simple algorithm to evaluate the MSTO and show by simulations that

it outperforms other state-of-the-art algorithms.

24



In the second part of this chapter we discuss applications of the MSTO to several

estimation problems. First, we consider the Euclidean-norm penalized least squares

and discuss its relation to ridge regression (TAJ77) and robust regression (EGL97).

Using the MSTO formulation, we show that this problem leads to a solution which is

either the zero vector or the ridge-penalized least squares solution where the optimal

shrinkage is chosen through a line search.

The second application we consider is the problem of estimating the mean of a

Gaussian distribution under a block diagonal covariance and block sparse structure.

This is a variant of the Regularized Linear Discriminant Analysis (RLDA) problem

which seeks to construct a linear classifier using as little variables as possible (TP07),

(HTF05). We give an exact solution to this estimation problem in terms of the MSTO

and give an application of Block Sparse RLDA to the problem of selecting genes that

classify two different populations across different time points. Our implementation

using the MSTO allows to jointly process several RNA microarrays in a matter of

minutes.

Finally, we consider two applications in the context of group-sparsity penalized

regression, with disjoint and non-disjoint, hierarchical groups. This class of problems

appears in many signal processing applications where the problem suggests enforc-

ing a structured-sparse estimate rather than a simple sparse estimate. Examples of

this situation occur in spectrum cartography for cognitive radio (BMG10), jointly-

sparse signal recovery (WDS+05), regression with grouped variables (YL06a), source

localization (MCW05) or model-based compressive sensing (SRSE10b). We give a

block-wise descent algorithm for group-sparse linear regression and show that the

MSTO arises naturally in fast proximal algorithms for large-scale non-differentiable

convex optimization.

This chapter is organized as follows. In Section 2.2, we first define the MSTO and

introduce our first theoretical result. Second, we discuss how to efficiently evaluate

the MSTO. We illustrate applications of the MSTO in statistical signal processing

problems in Section 2.3. In Section 2.4 we present numerical experiments and an ap-

plication of the MSTO to the problem of finding genes whose time course discriminate

two population of individuals. We finally conclude the chapter in Section 2.5.
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2.2 Multidimensional Shrinkage-Thresholding Operator

The scalar shrinkage-thresholding operator is usually defined as:

Tλ,h (g) := arg min
x

1

2
hx2 + gx + λ|x| (2.1)

=

{

− |g|−λ
h

sign(g) if |g| > λ

0 otherwise.
,

where h, λ > 0 and g ∈ R. This operator takes a scalar g as an input and thresholds

or shrinks its magnitude. A natural generalization is the following Multidimensional

Shrinkage Thresholding Operator (MSTO):

Tλ,H (g) := arg minx
1
2
xT Hx + gT x + λ‖x‖2, (2.2)

where H ∈ S
N
+ , λ > 0 and g ∈ R

N . This is a convex optimization problem and can

be cast as a standard Second Order Cone Program (SOCP) (LVBL98):

min 1
2
t1 + λt2 + gT x

s.t.







V T x
t1−1

2
t1+1

2






ºK 0,

[

x

t2

]

ºK 0,
(2.3)

where V is such that H = V V T . SOCPs can be solved efficiently using interior point

methods (LVBL98). The next theorem shows that, as in the scalar case, the MSTO

shrinks or thresholds the norm of the input vector g and that the corresponding

SOCP (2.3) can be solved using a simple line search.

Theorem II.1. Let N < ∞, H ∈ S
N
+ , W ∈ S

N
++, g ∈ R (H) and λ > 0. The

optimal value of the N -dimensional, non-differentiable problem:

min
x

1

2
xT Hx + gT x + λ‖Wx‖2 (2.4)

is equal to the optimal value of the convex one-dimensional problem:

min
η≥0

(

1 − 1
2
gT B−1 (η) g

)

η, (2.5)

where

B (η) := ηH +
λ2

2
W 2 ≻ 0, (2.6)
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and the solutions of (2.4) and (2.5) are related by:

Tλ,H (g) =

{

−ηB−1 (η∗) g if ‖W−1g‖2 > λ

0 otherwise.
, (2.7)

where η∗ is the solution to (2.5). Furthermore, if λmin (H) > 0, the solution to (2.5)

satisfies:

η ∈ λ

2

(

‖W−1g‖2 − λ
)

[

1

λmax (W−1HW−1)
,

1

λmin (W−1HW−1)

]

(2.8)

Proof. Let us assume momentarily that W = I. Since H º 0 and ‖ · ‖2 is a norm, it

follows that xT Hx+gT x and ‖x‖2 are convex functions of x. Also, (2.4) is equivalent

to the following quadratic program with a second order conic constraint:

min
x,t

1
2
xT Hx + gT x + t (2.9)

s.t.

[

−λx

−t

]

¹K 0.

Slater’s condition for generalized inequalities is verified and strong duality holds.

Since K is self-dual, the conic dual can be written as ((BV), Section 5.9.1):

max q(u, µ) s.t.

[

u

µ

]

ºK 0, (2.10)

where the dual function is defined as

q(u, µ) = min
x,t

1

2
xT Hx + gT x + t − uT (λx) − µt. (2.11)

This inner minimization is unbounded in t unless µ = 1 and in x unless u ∈ R (H).

Otherwise, its optimum satisfies:

x = −H† (g − λu) . (2.12)

Plugging (2.12) in (2.10), and using the fact that a non differentiable dual conic

constraint
[

uT , 1
]T

ºK 0 is equivalent to a standard quadratic constraint ‖u‖2
2 ≤
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1, we obtain the following dual concave maximization:

max
‖u‖2

2≤1,u∈R(H)
−1

2
(g − λu)T

H† (g − λu) . (2.13)

The standard Lagrange dual of this problem is:

min
η≥0

max
u∈R(H)

−1

2
(g − λu)T

H† (g − λu) − η
(

uT u − 1
)

. (2.14)

Since H º 0 and H†g ∈ R
(

H†), the inner maximization is a simple quadratic

problem in u with solution:

u =
λ

2
B−1 (η) g, (2.15)

where B (η) is defined in (2.6). This leads to the following line search over the

Lagrange multiplier η:

min
η≥0

(

1 − 1

2
gT B−1 (η) g

)

η, (2.16)

which proves the equivalence between (2.4) and (2.5) and is convex by Lagrange’s

duality properties.

The eigenvalues of B−1 (η) are real and can be characterized as:

λi

(

B−1 (η)
)

=
1

ηλi (H) + λ2

2

. (2.17)

Since η ≥ 0, λi (H) ≥ 0 and λ > 0, it holds that 0 < λi (B
−1 (η)) ≤ 2

λ2 . Therefore, if

‖g‖2 ≤ λ then 1
2
gT B−1 (η) g ≤ 1 and

η

(

1 − 1

2
gT B−1 (η) g

)

≥ 0. (2.18)

This implies that if ‖g‖2 ≤ λ the minimum in (2.16) is attained by choosing η = 0.

Plugging (2.15) into (2.12) yields (2.7). Using this and plugging (2.15) in (2.12) yields

(2.7). To obtain the bounds on the solution to (2.16), we let u = λ
2
B−1 (η) g and use

the following inequalities:

λ

2

‖g‖2

ηλmin (H) + λ2

2

≥ ||u||2 ≥
λ

2

‖g‖2

ηλmax (H) + λ2

2

. (2.19)
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Since we have assumed ‖g‖2 > λ, u solving (2.13) has to verify the complementary

slackness condition, namely ‖u‖2
2 = 1. Setting ‖u‖2 = 1 in the inequalities above

yields the following bounds in η:

η ∈ λ

2
(‖g‖2 − λ)

[

1

λmax (H)
,

1

λmin (H)

]

(2.20)

where we define 1
0

= ∞ if λmin (H) = 0. This concludes the proof when W = I. To

extend the results to a general W ≻ 0, we just need to use the bijective change of

variables y = Wx and solve (2.4) with respect to y. Applying the results above and

undoing the change of variable finalizes the proof.

2.2.1 Evaluating the MSTO

According to Theorem II.1, evaluating the MSTO reduces to solving (2.5) when

‖g‖2 > λ. In the special case where H = kI for some k > 0, the optimality condition

for (2.5) leads to a simple solution for its positive root:

η∗ =
λ

2k
(‖g‖2 − λ) , (2.21)

which yields the following closed form expression for the MSTO:

Tλ,kI (g) = −1

k
(‖g‖2 − λ)+

g

‖g‖2

. (2.22)

where (x)+ = max (x, 0). This is equivalent to (2.1) if we define the multidimensional

sign function as sign (x) = x
‖x‖2

and coincides with the vectorial soft-threshold in

(WNF09). If H 6= kI and ‖g‖2 > λ, evaluating the MSTO is non trivial and

requires the numerical solution of the line-search in (2.5). In particular, we propose

to use a Projected Newton approach with Goldstein step-length rule (Dun80) which

incorporates the advantages of second order methods while respecting the constraint

η ≥ 0 in (2.5). Let

w (η) :=
(

1 − 1
2
gT B−1 (η) g

)

η,
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where B (η) is defined in (2.6). At iteration t, the Goldstein Projected Newton

iteration for problem (2.5) is given by (Dun80):

η̂t =

(

ηt − w′ (ηt)

w′′ (ηt)

)

+

,

ηt+1 = ηt + ωn

(

η̂t − ηt
)

, (2.23)

where w′ (η), w′′ (η) are the first and second derivatives of w (η) respectively. Letting

δ ∈ (0, .5), the step length ωn ∈ [0, 1] is determined according to the Goldstein scheme

(Dun80):

ωn ∈











{0} if w′ (ηt) (ηt − η̂t) = 0

{1} if w′ (ηt) (ηt − η̂t) > 0, h (ηt, η̂t, 1) ≥ δ

Ωδ (ηt, η̂t) if w′ (ηt) (ηt − η̂t) > 0, h (ηt, η̂t, 1) < δ,

where h (η, η̂, ω) = w(η)−w(η+ω(η̂−η))
ωw′(η)(η−η̂)

and Ωδ (η, η̂) = {ω ∈ [0, 1] , δ ≤ h (η, η̂, ω) ≤ 1 − δ}.
Notice that for ηt close enough to the optimum, ωn = 1, which corresponds to the

regular Newton regime. Here, w′ (η) and w′′ (η) are given by the following formulae

(see Appendix to Chapter 1 for the derivation):

w′ (η) := 1 − λ2

4
gT B−2 (η) g,

w′′ (η) := λ2

2
gT C (η) g,

(2.24)

where C (η) := B−3 (η) H . Convergence analysis for this line-search technique is

available in (Dun80).

Remark II.2 (Numerical implementation). To avoid inverting large matrices, in

our implementation we compute the update (2.23) as follows. First we compute the

Cholesky factorization of the positive definite matrix B (ηt−1), which we denote by R.

Then, we solve six triangular systems of equations of the type Qzk = zk−1, where Q

is R if k is odd and RT if k is even, and z0 = g. Finally we compute (2.23) as:

ηt ←
(

ηt−1 − 1 − λ2

4
zT

1 z1

λ2

2
z6Hg

)

+

(2.25)

2.3 Applications

Here we illustrate the MSTO by considering a few applications in statistical signal

processing.
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2.3.1 Linear regression with ℓ2 norm penalty

Given a vector of n observations y and an n × p design matrix X, we consider

the following class of problems:

min
θ

‖y − Xθ‖r
2 + λ‖θ‖q

2. (2.26)

Depending on r and q, this problem specializes to ridge regression (r = 2, q = 2),

robust least-squares (r = 1, q = 1) [Theorem 3.2, (EGL97)] or ℓ2-penalized least

squares (r = 2, q = 1). The following corollary of Theorem II.1 characterizes the

solution of the latter.

Corollary II.3. The solution to the ℓ2-penalized least squares

θ̂ = arg min
θ

‖y − Xθ‖2
2 + λ‖θ‖2, (2.27)

is:

θ̂ =

{

(

XT X + ǫI
)−1

XT y if ‖XT y‖2 > λ
2

0 otherwise,
(2.28)

where the shrinkage parameter ǫ = λ2

4η∗ is such that η∗ > 0 solves:

min
η>0

(

1 − yT X

(

ηXT X +
λ2

4

)−1

XT y

)

η. (2.29)

In the special case where X is orthogonal (2XT X = kI) then (2.26) has the closed

form solution (2.28) with ǫ = λk
2(k‖y‖2−λ)

.

The proof of this Corollary follows immediately from Theorem II.1 by observing

that θ̂ = Tλ,2XT X

(

−2XT y
)

.

Figure 2.1 depicts the geometrical interpretation of the result in Corollary II.3 in

a 3-dimensional space.

2.3.2 Group Regularized Linear Discriminant Analysis

We consider here the problem of estimating the mean of a Gaussian distribution

under the assumption of block-diagonal covariance and a block-sparse structure. Since

block-sparsity constraints are non-convex, a usual approach is to relax the constraint

to a convex Group LASSO (YL06a) penalty added to the maximum likelihood objec-
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(a) Tλ,2AT A

(

−2AT y
)

, ‖2AT y‖2 ≤ λ (b) Tλ,2AT A

(

−2AT y
)

, ‖2AT y‖2 > λ

Figure 2.1: Three-dimensional example of the result of applying the MSTO to a vector
y (denoted by (1) in the figure). The sphere (of radius λ) represents the
boundary of the region in which −2AT y gets thresholded to 0, the plane
represents the subspace [A]. Point (2) on the right plot is the projection
of y onto [A] and point (3) is the projected point after the shrinkage.
Notice that as predicted by Theorem II.1, the amount of shrinkage is
small compared to the norm of Tλ,2AT A

(

−2AT y
)

, since the point −2AT y

is far from the threshold boundary λ.

tive. Thus, given n independent realizations and m non-overlapping sets of indices

Gi, we seek to solve:

min
µ∈RN

m
∑

i=1

1

2
µT

Gi
Σ−1

Gi,Gi
µGi

− x̄T
Gi

Σ−1
Gi,Gi

µGi
+ λ‖WiµGi

‖2,

where ΣGi,Gi
is the covariance of the elements in Gi and x̄ is the empirical mean of

the observations. Here, the Wi are weighting matrices of the adequate size that allow

us to determine what features of the data are to be more heavily penalized, as we will

exemplify in Section 2.4.2. Applying (2.2), we can give the solution to this problem

in terms of the MSTO applied to each block of variables:

µ̂Gi
= Tλ,Σ−1

Gi,Gi

(

Σ−1
Gi,Gi

x̄Gi

)

, i = 1, · · · ,m. (2.30)
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This regularized mean estimation problem arises in the context of Regularized Linear

Discriminant Analysis (HTF05), (TP07), where we seek to build the linear discrimi-

nant function1:

δk,l (x̃) =

g
∑

i=1

x̃T
Gi

Σ−1
Gi,Gi

(

µk
Gi

− µl
Gi

)

which predicts whether x̃ belongs to class k (δk,l (x̃) > 0) or class l (δk,l (x̃) < 0).

Here µk is an estimate of the mean for the k-th class, obtained through equation

(2.30), and ΣGi,Gi
is an estimate of the covariance of the elements in Gi, which is

assumed the same across different classes. In (TP07), the authors set W = I and

propose to approximate (2.30) by:

µ̂Gi
=











(

1 − λ
˛

˛

˛

˛

˛

˛

Σ
−1
Gi,Gi

x̄Gi

˛

˛

˛

˛

˛

˛

2

)

x̄Gi
if

∣

∣

∣

∣Σ−1
Gi,Gi

x̄Gi

∣

∣

∣

∣

2
> λ

0 otherwise.

This approximation only coincides with the optimal solution of (2.30) when xGi
is an

eigenvector of Σ−1
Gi,Gi

, a situation which is not likely to occur in practice.

2.3.3 Block-wise optimization for Group LASSO Linear Regression

In this section we consider the problem of solving the Group LASSO penalized

Linear Regression problem. Given a vector of n observations y and an n×p design ma-

trix X and q disjoint groups of indices Gi ⊆ {1, ..., N} satisfying ∪q
i=1Gi = {1, ..., N},

the Group LASSO linear regression problem (YL06a) is defined as:

θ̂ = arg min
θ∈RN

‖y − Xθ‖2
2 +

q
∑

i=1

λi‖θGi
‖2, (2.31)

where λi are fixed penalty parameters which we assume known. For an arbitrary

design matrix X, problem (2.31) can be solved using a Block Coordinate Descent

(BCD) algorithm. The main idea of the BCD method is to iteratively solve (2.31)

for each block Gi, letting the parameters corresponding to the other blocks remain

fixed. Defining H = 2XT X, g = −2XT y and using the MSTO (2.2) we can obtain

the following update rule for each block Gi at iteration t:

θt
Gi

← Tλi,HGi,Gi

(

θt−1
Ḡi

HḠi,Gi
+ gGi

)

, (2.32)

1Here we assume that the prior probabilities for each class are equal.
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where Ḡi is the complementary set of indices with respect to Gi. Convergence of this

algorithm is guaranteed for this cost function (Tse01).

2.3.4 MSTO in proximity operators

The proximity operator of a (possibly non-differentiable) convex function Ω (x) is

defined as (Mor65), (CW06):

Pτ,Ω (g) := arg min
x

1

2τ
||x − g||22 + Ω (x) .

Proximity operators are the main ingredient of proximal algorithms (CW06), (BT09),

which arise in LASSO and Group LASSO penalized linear regression (DDDM04a),

(BT09), (ZRY09), collaborative sparse modeling (SRSE10b) and hierarchical dictio-

nary learning (JMOB10). In these applications, proximal algorithms can be under-

stood as a generalization of quasi-Newton methods to non-differentiable convex prob-

lems. An important example is the Iterative Thresholding procedure (DDDM04a),

(BT09) which solves problems of the form:

min
x

f (x) + Ω (x) ,

with f (x) differentiable and with Lipschitz gradient, by generating the sequence

xt+1 ← Pk,Ω

(

xt − k∇f
(

yt
))

,

for an appropriate k > 0 and a carefully chosen yt. These algorithms are suitable for

applications where the evaluation of Pk,Ω can be done at low cost.

In some cases, the proximity operator Pk,Ω can be evaluated in closed form. This

is the case for instance when Ω (x) = ||x||2, where it is given by the orthogonal MSTO

(2.22), or in general when Ω (x) =
∑

i ||Aix||2 and the supports of Ai are disjoint.

Another interesting example is the case of Group LASSO penalties with overlapping

hierarchical groups. Given λ > 0, q groups of indices Gi ⊆ {1, ..., N} and a partial

order O = (o1, ..., oq) of the groups such that Goi+1
∩ Goi

6= ∅ only if Goi
⊆ Goi+1

we

consider the following function:

Γ (x) = λ

q
∑

i=1

∣

∣

∣

∣xGoi

∣

∣

∣

∣

2
. (2.33)

34



It can be shown (JMOB10) that:

Pτ,Γ (g) = ,
q
i=1

(

TGoi
,τλ,I

)

(g) , (2.34)

where , is the composition operator and Ts,λ,I (g) is the MSTO defined on a subset

s,

Ts,λ,I (g) := arg minx
1
2
xT x + gT x + λ‖xs‖2, (2.35)

where s ⊆ {1, · · · , N}. It is clear that [Ts,λ,I (g)]s = Tλ,I (gs) and [Ts,λ,I (g)]i = gi for

i 6∈ s.

2.4 Numerical Results

In this section we first illustrate the advantage of evaluating the MSTO using our

theoretical results. Second, we will apply the MSTO to find predictive genes that

separate two populations in a real gene expression time course study.

2.4.1 Evaluation of the MSTO

In this section we illustrate the advantage of evaluating the MSTO using our

theoretical results. To this end, we compare the elapsed times to evaluate equation

(2.2) using three different optimization methods. The first one, which we denote by

MSTO in the figures, solves the dual problem in (2.5) using the projected Newton

approach described in Sec. 2.2.1. The second method uses an accelerated first order

method named FISTA2 (BT09) and the third method uses the commercial state-of-

the-art SOCP solver Mosek®. Our experiment consists of solving problem (2.27)

for randomly generated X and y where we control the conditioning of the matrix

H = 2XT X through the ratio p/n (where p is the number of columns and n is the

number of rows of X).

We show in Figure 2.2 the average elapsed times to achieve the same value of the

objective function, as a function of the number of variables and the ratio p/n. Our

algorithm outperforms the other two over a large range of values of p when p/n is

close to one, and offers comparable performances for larger values of p/n.

2FISTA is implemented using backtracking and (2.22) to compute its corresponding shrink-
age/thresholding update.
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(a) p/n = 1 fixed, varying p (b) n = 100 fixed, varying p/n
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Figure 2.2: Comparison of Mosek®, MSTO and FISTA elapsed times for solving
(2.27) while varying p (with p/n = 1 fixed, plot (a)) and varying p/n
(with n = 100 fixed, plot (b)). For each algorithm, we compute the
MSTO solution for three different values of the penalty parameter λ.
MSTO is significantly faster than the other two when the conditioning
of the problem is not too poor and offers comparable performance in the
other regimes.

2.4.2 Finding discriminative genes in a time course gene expression study

In this section we will apply the MSTO to the discovery of discriminative genes

in a time-course gene expression study. Our goal is to find a subset of genes that

discriminate two populations consistently across different time points. Our work can

be seen as an extension to time-course data of the popular “nearest shrunken centroid”
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method (THNC03) for discovering genes whose expression level discriminates different

biological conditions. We will first briefly describe the nearest shrunken centroid

method before turning to the description of our extension and the application to the

PHD dataset.

2.4.2.1 Class prediction via nearest shrunken centroid

The nearest shrunken centroid method can be understood as an ℓ1 penalized

estimation of a Gaussian mean under known, diagonal covariance. The data model

is akin to the following. Consider a situation where we have p gene expression values

from samples obtained from K different conditions. The gene expression level xk
i ∈ R

p

for the i-th gene for a sample from the k-th class is assumed to be a Gaussian random

variable with mean µk
i + µ̄i and variance σ2

i :

xk
i ∼ N

(

µk
i + µ̄i, σ

2
i

)

. (2.36)

Here µ̄i corresponds to the interclass mean, σ2
i is assumed to be the same for each

class and the genes are assumed to be uncorrelated to each other 3. Under this

assumptions an for given µ̄i and σ2
i , the maximum likelihood estimate of µk is given

by the intra-class average:

µ̂i
k = x̄i

k − µ̄i,

where x̄i
k denotes the empirical mean of the training samples from class k. The esti-

mates µ̄ + µ̂k constitute the centroids. A new (test) sample is classified by assigning

it to the class corresponding to the nearest centroid, as explained in (THNC03).

A negative characteristic of the estimate µ̂k is that is very sensitive to noise,

specially when the number of samples is small compared to p, the number of genes. To

alleviate this problem, (THNC03) propose to estimate instead “shrunken centroids”,

which relate to the ℓ1 penalized MLE estimate of µk under the Gaussian model (2.36).

Using equation (2.1), the i-th coordinate of this estimate is given by an application

of the Scalar Shrinkage Thresholding Operator (2.1):

µ̃k
i = Tλ,σi

(

x̄k
i − µ̄i

)

. (2.37)

3These assumptions are far from being true for real gene expression data. However, estimation of
the covariance between genes is impossible in practical scenarios, where there are tens of thousands
of genes and only tens of samples. The approach taken in (THNC03) is to impose a very-low
dimensional model on the covariance: a diagonal one. This obviously introduces bias, but mitigates
the variance and yields good results in practice.
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The shrunken centroids are then constructed as µ̄ + µ̃k. The soft-thresholding op-

erator has the effect of yielding sparse µ̃k that are more robust to noise. The genes

corresponding to non-null coordinates of µ̃k are those that are more strongly asso-

ciated with each particular class, giving insight into the relationship between the

selected genes and each phenotype.

2.4.2.2 Class prediction via nearest group-shrunken centroid

In gene expression time course studies, we are often interested in finding genes

whose expression values discriminate between two or more classes over time. In this

setting, genes of a given class can not be expected to have the same mean over

different time points, since this would imply that their gene expression value is not

time-dependent. We propose instead the following model. Denote by xk
i ∈ R

T the

vector gene expression values for the i-th gene over T time points, for a sample from

class k. We characterize each T -dimensional vector of gene expression levels as:

xk
i ∼ N

(

µk
i + µ̄i,Σ

2
i

)

, i = 1, · · · , p, , k = 1, · · · , K, (2.38)

where Σi is the temporal covariance matrix for the i-th gene and we assume, as in

(THNC03), that each gene is uncorrelated to the others, i.e. E
(

xk
i x

k
j
T
)

= 0, i 6= j.

Similarly to the previous section, we now need to estimate µk
i to construct the

centroids that will allows us to discriminate samples from different classes. Since

each gene’s component is now multi-dimensional, we propose to replace the shrinkage

thresholding operator in (2.37) by its multi-dimensional extension, the MSTO:

µ̃k
i = Tλ,Σi

(

x̄k
i − µ̄i

)

. (2.39)

Note that from the results in Section 2.3.2, this is precisely the penalized maximum

likelihood estimate of µk
i under known µ̄i and Σi, only that now, instead of an ℓ1

penalty, we use a group-ℓ2 penalty that enforces each gene to have all or none of its

components activated.

In the next section we apply this methodology to the 2-class problem, and show the

advantage of the MSTO-based approach over the original nearest shrunken centroid

method of (THNC03).

38



2.4.2.3 Specialization to the 2-class prediction problem

When the number of classes is equal to two, we will consider the following varia-

tion. Given a test sample x̃, the linear discriminant function of Section 2.3.2 special-

izes to the following,

δ1,2 (x̃) =

p
∑

i=1

x̃T
i Σ−1

i

(

µ1
i − µ2

i

)

,

and we assign the label ’1’ if δ1,2 (x̃) > 0 and ’2’ otherwise. A common approach for

the two class problem is to estimate ∆1−2
i := µ1

i − µ2
i instead of estimating µ1

i and

µ2
i separately. Under the Gaussian model and with the assumption that we have the

same number of training samples for each class, the ℓ2-penalized MLE estimate of

this quantity is given by:

∆̃1−2
i = Tλ,Σi

(

x̄1
i − x̄2

i

)

. (2.40)

Here x̄1
i and x̄2

i denote the average values for the ’1’ and for the ’2’ class, and each

variable’s covariance, Σi, is estimated as follows:

Σi = Ŝi + δI

where Ŝi is the pooled empirical covariance,

Ŝi =
1

n − 1

n
∑

i=1

xi

and δ is a shrinkage parameter that guarantees Σi ≻ 0. The choice of a pooled

covariance estimator is usually motivated by the scarcity of available samples, which

hinders the estimation of a covariance matrix for each class.

We will now assess the performance of the Group-Shrunken Centroid approach in

the 2-class prediction problem. For this purpose, we will generate data according to

model (2.38) with K = 2 and T = 6, and we let:

µ1
i − µ2

i = ∆1, Σi =
(

1
T
− 1

)

11T + I.

with varying ∆, a parameter which controls the separability between the two means

and is related to the Signal-to-Noise Ratio (SNR). As a measure of performance, we

will consider the Area Under the Curve (AUC). We compare the Group-Shrunken
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Figure 2.3: Comparison of prediction performances for the 2-class problem with p
variables and n samples, for each of the methods discussed in Section
2.4.2: nearest shrunken centroid (PAM), nearest group-shrunken centroid
(MSTO-PAM) and nearest group-shrunken centroid using the approxima-
tion from (TP07) (MSTO-PAM Approx). The measure of performance is
the estimated Area Under the Curve (AUC). As the number of samples
increases, the advantage of MSTO − PAM and its approximation over
PAM increases, possibly due to the incorporation of the covariance within
groups of variables in the predictor estimator.

Centroids approach given by (2.40) and denoted by MSTO-PAM, to the MSTO-

based approximation given in (2.31) from (TP07) and the classical Nearest Shrunken

centroids described in Section 2.4.2.1 (also known as PAM, and thus labeled in our

figure). The results, shown in Figure 2.3, reflect the advantage of taking into account

the group structure of the generative model, as shown by the increased robustness

with respect to noise. On the other hand, the approximation of (2.40) given by (2.31)

performs remarkably well, and better than the MSTO-PAM when n is very small

(n = 10). This can be explained by the fact that the performance of the covariance

estimate given in (2.41) with such small sample size is very poor, thus degrading the

predictive performance of the MSTO-PAM compared to the approximation in (2.31),

which does not use a covariance estimate in order to construct the centroid.
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2.4.2.4 Application to the PHD dataset

The PHD dataset for the H3N2 challenge study, described in Section 1.5, consists

of p = 11961 gene expression levels of 17 different individuals at 16 different time

points. Physicians have classified each individual into two classes, Symptomatic (Sx)

and Asymptomatic (Asx), depending on the strength of the physical symptoms they

show, with n1 = 9 individuals in class Sx and n2 = 8 individuals in class Asx. Our

goal is to find a small subset of genes that consistently discriminate the two classes

across samples from 6 different time points starting from inoculation time.

Using the results of the previous section for the 2-class problems, we denote or

discriminant function by:

δSx,Asx (x̃) =

p
∑

i=1

x̃T
i Σ−1

i ∆̃Sx/Asx

i ,

where the shrunken centroid ∆̃Sx/Asx

i for each gene is estimated as:

∆̃Sx/Asx

i = Tλ,Σi
(x̄Sx

i − x̄Asx

i ) ,

and each gene’s covariance is estimated as in (2.41).

In our study we consider three possibilities for the weight matrix W : An iden-

tity matrix, a diagonal matrix with decreasing exponential weights (diagonal W1,

[W1]k,k = e−(k−1)) and one with increasing exponential weights (diagonal W2, [W2]k,k =
e(k−1)

ep−1 ). The weight matrix W2 penalizes late time points more strongly, whereas W1

heavily penalizes early time points, allowing us to additionally constrain the candidate

gene trajectories depending on the temporal features we believe are more discrimina-

tory.

As it is common practice, we choose the regularization parameter λ by leave-one-

out cross-validation (HTF05), fixing the false alarm rate and estimating the power

for each value of λ over a 30-point grid.

Figure 2.4 plots the cross-validation results for the three choices of W . The curves

show the estimated predictive power at a false alarm rate of .05 and the average

number of genes used to construct the classifier for each level of λ. Each choice of W

correspond to the selection of different genes, which in turn have different prediction

capabilities, as reflected by the different power maximums in the upper panel. The

lower panel shows that the number of genes selected at the optimum power level is also

dependent on our choice of W . It is clear that the choice of decreasing exponential
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Figure 2.4: Cross-validation results for the three choices of W . The top plot shows
the estimated power of our classifier versus λ. The bottom plot shows the
average number of genes used in the classifier versus λ. As λ increases,
the penalty is more stringent and the number of genes included in the
model decreases.

weights offer the best trade-off between number of genes selected and power of the

classifier, achieving an estimated power of .91 with an average of only 5 genes.

In order to gain more insight on how the weight choice affects the gene selection,

we plot the most significant genes for each classifier in Figure 2.5. The significance

here is assessed through the number of times that each gene appears in the classifier,

compared to the total number of Cross-Validation runs. A gene whose coordinate

∆̃Sx/Asx

i is non-null in a large number of cross-validation runs is likely to be important in
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the discrimination task (Bac08). Here we select only genes that appear at least at 70%

of the Cross-Validation runs. Figure 2.5 shows the average within-class expression

response and the 95% confidence intervals for the significant genes obtained in each

case. Since W1 favors genes that are highly discriminative in the early time points,

this classifier selects genes whose trajectories remain separated over the 5 different

time points, at the price of requiring a higher number of genes to perform at the same

power level as the other two cases. On the other hand, W2 encourages a classifier that

is highly discriminative at the late time points, as reflected by the average trajectory

of gene LOC26010 (right panel).

Finally, we validate our results by constructing a classifier for the H1N1 challenge

study. This study consists of samples from 21 individuals, divided into 10 Symp-

tomatic and 14 Asymptomatic subjects. We train a simple LDA classifier with each

group of genes that were declared highly discriminatory for H3N2, whose trajecto-

ries are shown in Figure 2.5. We estimate the resulting ROC curves by leave-one-out

Cross Validation. The results, shown in 2.6, reflect the benefit of having a very sparse

discriminator consisting of only one gene. In addition, the high-level of prediction ac-

curacy suggests that genes discriminating sick individuals for the H3N2 virus are also

good discriminators for the H1N1 virus, despite the biological differences between the

two pathogens.

2.5 Conclusions

We have introduced the MSTO, which is a generalization of the Scalar Shrink-

age Thresholding Operator. Our main theoretical result shows that the MSTO can

be evaluated by solving a smooth low-dimensional problem and that they can be

interpreted as an Shrinkage/Thresholding operation on the input vector.

The MSTO appears naturally in several l2 penalized estimation problems. We

have demonstrated the efficiency of the Projected Newton algorithm in evaluating

the MSTO through its smooth reformulation, comparing it to other state of the

art optimization methods. We have finally shown an example of its application for

the discovery of predictive genes in a real time course gene expression study. Our

methodology is capable of rapidly selecting genes that have good prediction power

while allowing us to incorporate prior information on the type of time trajectories of

interest.

43



10 20 30 40 50 60

0.2
0.4
0.6
0.8

UBE2H

10 20 30 40 50 60

0.2
0.4
0.6
0.8

SELENBP1

10 20 30 40 50 60

0.2
0.4
0.6
0.8

C19orf22

10 20 30 40 50 60

0.2
0.4
0.6
0.8

RUNDC3A

10 20 30 40 50 60

0.2
0.4
0.6
0.8

FKBP8

10 20 30 40 50 60

0.2
0.4
0.6
0.8

Time (hours)

GYPB

Increasing exponential (W1)

10 20 30 40 50 60

0.2
0.4
0.6
0.8

LAMP3

 

 

10 20 30 40 50 60

0.2
0.4
0.6
0.8

IFIT1

10 20 30 40 50 60

0.2
0.4
0.6
0.8

SERPING1

10 20 30 40 50 60

0.2
0.4
0.6
0.8

RSAD2

10 20 30 40 50 60

0.2
0.4
0.6
0.8

IFI44L

10 20 30 40 50 60

0.2
0.4
0.6
0.8

Time (hours)

IFIT2

10 20 30 40 50 60

0.2
0.4
0.6
0.8

CCL8

Uniform weights

Sx

Asx

10 20 30 40 50 60

0.2
0.4
0.6
0.8

IFIT1

 

 

10 20 30 40 50 60

0.2
0.4
0.6
0.8

SERPING1

10 20 30 40 50 60

0.2
0.4
0.6
0.8

RSAD2

Time (hours)

Decreasing exponential (W2)

Figure 2.5: Average within-class expression response and the bootstrapped 95% con-
fidence intervals for the significant genes (appearing in more than 70%
of the CV predictors) obtained for each choice of weight matrix W . W1

favors genes that are discriminative in the early time points, which leads
to poor prediction performances. On the contrary, W2 encourages a clas-
sifier that is highly discriminative at the late time points, which is where
the difference between classes is stronger, leading to high prediction per-
formance.
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CHAPTER III

A generalized shrinkage-thresholding operator

3.1 Introduction

In this chapter we extend the multidimensional shrinkage-thresholding operator

(MSTO) of Chapter 2, defined as:

Tλ,H (g) = arg min
x

1
2
xT Hx + gT x + λ ||x||2 ,

to penalties other than the ℓ2 norm. In particular, we consider additive combinations

of ℓ2 norms applied to linear transformations of the optimization variables. Thus,

similarly to the MSTO, we define the Generalized Shrinkage Thresholding Operator

(GSTO) as the solution to the following convex optimization problem:

Tλ,H (g) = arg min
x

1
2
xT Hx + gT x + λ

∑m
i=1

√
ci ||AGi,∗x||2 ,

where H , g, λ, c, A, and {Gi}m
i=1 are the problem parameters, which we will define

later. Since, the GSTO reduces to the MSTO when A = I and I1 = {1, · · · , p} we

maintain the notation Tλ,H (g) to refer to both. In our formulation, A is potentially

a very large matrix and is not necessarily invertible, hence it will not always be

possible or practical to evaluate Tλ,H (g) by applying the change of variables y = Ax

and solving with respect to y.

In analogy to the MSTO, instances of the GSTO appear as a fundamental step in

proximal methods for non-linear regression problems and allow us to explicitly char-

acterize the solution of well-known penalized linear regression problems. Particularly,

we will show that different choices of A and {Gi}m
i=1 define a rich class of penalties,

including some special cases that are popular in the machine learning and signal

processing literature. For instance, choosing A = I leads to the LASSO (Tib96)
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or the Group LASSO (YL06b) penalties, depending on whether the disjoint subsets

Gi are singletons or subsets of larger sizes. The Hierarchical (ZRY09; JMOB10) or

Structured-Sparse Penalties (JAB09) can also be seen as special instances of the ad-

ditive ℓ2 penalty
∑m

i=1

√
ci ||AGi,∗x||2 with AGi,· = I|Gi| and overlapping subsets of

variables Gi. This last type of structure is particularly important because it arises

frequently in pathway-penalized gene expression regression problems such as the one

described in Section 3.4. In this class of problems, one seeks to find a subset of

pathways that are good linear predictors of the value of response variable. Pathways

are groups of genes that have been experimentally verified to participate in certain

biological processes, and are a priori known to be co-regulated. Unfortunately, the re-

lationship between genes and pathways is not many-to-one, instead, as illustrated by

the example in Figure 3.1, genes belong to several pathways leading to an overlapping

group-sparse structure.
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Figure 3.1: Number of pathways containing each gene, for the subset of 5125 genes
and 826 pathways used in the analyses of Section 3.4. On average, each
gene belongs to 6.2 pathways, and the number of pathways containing
each gene ranges from 1 to 135.

All of the aforementioned penalties are important because they enforce a coordinate-

wise sparse solution in penalized statistical learning problems. In the sequel, we will

also show that the more general penalties we consider here extend this paradigm to

the case where the sparsity is enforced in a space other than the ambient euclidean

space. This kind of structure includes extensions of well known paradigms such as

Total Variation penalized estimation, which enforce estimates with sparse discrete

differences which do not necessarily have a sparse representation on the canonical

coordinate system.

Interestingly, the analogy to the MSTO is not only related to the shrinkage-

thresholding effect of the operator on the input vector g. Using a transformation

of the non-differentiable GSTO problem to a quadratic constraint problem, we show
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that the GSTO can be evaluated by solving a problem of dimension equal to the

number m of ℓ2 norms appearing in the additive penalty. Thus, our reformulation

is specially convenient for problems where the number of terms in the penalty, is

much smaller than the dimension p of the ambient space. We will also show that the

low-dimensional GSTO reformulation can be approximately solved with guaranteed

accuracy using an efficient Projected Newton method that is specially convenient for

m taking values in the hundreds. For the problem of computing the regularization

path, that is, evaluating the GSTO over a grid of penalty parameters {λk}k, we de-

vise a path-following update that takes advantage of the smoothness of the GSTO

reformulation over the active set of variables to reduce significantly the number of

iterations necessary to evaluate the GSTO for each λ in the grid.

This chapter is organized as follows. In Section 3.2, we define the GSTO and

introduce our first key theoretical result. Second, we apply this result to obtain a

low-dimensional reformulation of the GSTO problem, and demonstrate that it indeed

behaves as a shrinkage thresholding operator for the well known LASSO and Group

LASSO cases. We give two algorithms to solve the low-dimensional reformulation in

Section 3.3 and a path-following update that enhances the evaluation of the GSTO

over a discrete grid of penalty parameters {λk}k. In Section 3.4 we present numerical

experiments and an application of the GSTO to the multi-task learning problem of

finding symptom predictors from the gene expression data of a group of Symptomatic

individuals.

3.2 The Generalized Shrinkage Thresholding Operator

Given H ∈ S
p
+, g ∈ R

p, λ > 0, c ∈ R
m
++, a collection of m subsets Gi ⊆ {1, · · · , p}

of size ni, and A ∈ R(
Pm

i=1 ni)×p, we define the Generalized Shrinkage-Thresholding

operator as the solution to the convex program:

Tλ,H (g) = arg min
x

1
2
xT Hx + gT x + λ

∑m
i=1

√
ci ||AGi,∗x||2 . (3.1)

Notice that if p = 1, m = 1 and A1 = 1, then the GSTO reduces to the SSTO of

Section 2.2. Also, if p > 1, m = 1 and A1 = I, then the GSTO is equal to the MSTO

(2.2).

Problem (3.1) can be cast as a Second Order Cone Program (SOCP), with m conic

constraints. Efficient Interior Point solvers exist for this class of problems, however,

they require storage of Hessian matrices of dimension p × p and computing solu-
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tions of p-dimensional systems of equations. For large-scale problems, this approach

necessitates exceedingly large memory requirements.

The following lemma shows that the solution of the convex p-dimensional, non-

differentiable problem (3.1) is directly related to the solution of a smooth (p +
∑m

i=1 ni)-

dimensional problem, paving the way for an analog of MSTOs Theorem II.1 for the

GSTO.

Lemma III.1. Let H ∈ S
p×p
+ , g ∈ R (H), λ ∈ R

m
++, a collection of m subsets

Gi ⊆ {1, · · · ,
∑m

i=1 ni} of size ni each, and A ∈ R(
Pm

i=1 ni)×p. Then the GSTO

problem (3.1),

min
x

1
2
xT Hx + gT x +

∑m
i=1 λi ||AGi,∗x||2 , (3.2)

is equivalent to the following (p +
∑m

i=1 ni)-dimensional, concave, differentiable dual

problem:

max −1
2
βT Hβ (3.3)

||νGi
||22 ≤ λ2

i i = 1, · · · ,m

g − AT ν = Hβ

and strong duality holds, that is, at the optimum, the objective in (3.2) and (3.3) are

the same. Furthermore, the solutions to (3.2) and (3.3) are related by:

Hx∗ = −Hβ∗, (3.4)

where x∗ = Tλ,H (g) denotes the optimum of (3.2) and is equal to the Generalized

Shrinkage Thresholding Operator evaluated at g.

Proof. Using a change of variables, we can rewrite problem (3.2) as follows:

min 1
2
xT Hx + gT x + λT t
[

−AGi,∗x

−ti

]

¹K 0 i = 1, · · · ,m

where ¹K denotes the generalized inequality corresponding to the second order cone

and t = [t1, · · · , tm]T . The dual function of this conic constrained problem is:

g (µ1, · · · ,µm) = inf
x,t

1

2
xT Hx + gT x + λT t −

∑

i

µT
i

[

AGi,∗x

ti

]

(3.5)
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where µi ∈ Rni+1, i = 1, · · · ,m. This infimum is given by:











−1
2

(

g − ∑

i

[

AT
Gi,∗ 0

]

µi

)T
H† (

g − ∑

i

[

AT
Gi,∗ 0

]

µi

)

if

{

[µi]n+1 = λi, i = 1, · · · ,m

g − ∑

i

[

AT
Gi,∗ 0

]

µi ∈ R (H)

−∞ otherwise.

After a simple notation change, we can write the dual problem as:

max −1
2

(

g − ∑

i A
T
Gi,∗ν̃i

)T
H† (

g − ∑

i A
T
Gi,∗ν̃i

)

[

ν̃i

λi

]

ºK∗ 0 i = 1, · · · ,m

g − ∑

i A
T
Gi,∗ν̃i ∈ R (H)

where ν̃i ∈ Rni , i = 1, · · · ,m. Equivalently, letting ν =
[

ν̃T
1 , · · · , ν̃T

m

]T

, we have:

max −1
2

(

g − AT ν
)T

H† (

g − AT ν
)

(3.6)
[

ν̃i

λi

]

ºK∗ 0, i = 1, · · · ,m

g − AT ν ∈ R (H) .

Slaters constraint qualification is verified and strong duality holds. The relationship

between the dual and primal variables is given by the set of points at which the

infimum in (3.5) is attained, which are the points in the set:

{

x∗ ∈ R
p : Hx∗ = −

(

g − AT ν
)}

. (3.7)

The range constraint set in (3.6) can be expressed as:

{

ν ∈ R

Pm
i=1 ni : g − AT ν ∈ R (H)

}

=
{

ν ∈ R

Pm
i=1 ni : g − AT ν = Hβ for some β

}

.

Enforcing the above constraint in the objective in (3.6), and taking into account that

the second-order cone constraint in (3.6) is equivalent to a quadratic constraint, we

obtain:

max −1
2
βT Hβ.

||νGi
||22 ≤ λ2

i i = 1, · · · ,m

g − AT ν = Hβ
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Finally, the relationship between the primal and dual optima is given by relation

(3.7):

Hx∗ = −
(

g − AT ν∗) = −Hβ∗, (3.8)

which proves (3.4). In addition, we can conclude that if β∗ ∈ R (H), then x∗ =

−β∗.

This result has the interesting property of transforming an unconstrained non-

differentiable problem to a constrained, twice-differentiable one: both the objective

and the constraint functions in (3.3) are smooth. The price to pay is that problem

(3.3) is of dimension much larger than (3.2), rendering the approach of solving to

(3.2) trough (3.3) unattractive. Note however that this transformation is reminiscent

of the first part of the smooth, 1-dimensional reformulation of the MSTO (Theorem

II.1). We will show next that in fact a low-dimensional reformulation is also possible

here, at least in the following two cases of special interest:

� Group-ℓ2 Penalized Linear Regression: The Group-ℓ2 penalized Linear Regres-

sion problem is defined as:

θP-LS = arg min
θ

1
2
||Xθ − y||22 + λ

∑m
i=1

√
ci ||AGi,∗θ||2 , (3.9)

with A, {Gi}m
i=1 satisfying the properties in the statement of Lemma III.1. We

will see next that applying Lemma III.1 yields an m-dimensional reformula-

tion of this p-dimensional problem and expresses the penalized linear regression

solution xP-LS as a shrinkage thresholding operation on the input vector XT y.

� Proximity Operator for Group-ℓ2 penalties : As we discussed in Section 2.3.4, the

proximity operator of a convex function is an essential piece of modern proximal

algorithms for large scale optimization, and is defined as:

Pτ,Ω (g) := arg min
θ

1

2τ
||θ − g||22 + Ω (θ) .

For the Group-ℓ2 penalties considered here, this operator specializes to:

Pλ (y) = arg minθ

1

2
||θ − y||22 +

m
∑

i=1

λi ||AGi,∗θ||2

We will see later that this problem can be reformulated into an m-dimensional
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problem. The efficient evaluation of the m-dimensional reformulation will be

the subject of future work.

The following result shows that the Group-ℓ2 Penalized Linear Regression problem

(3.9) is equivalent to an m-dimensional convex problem and that its solution is forced

to belong to the null-space of a submatrix obtained from a subset of rows of A.

Theorem III.2 ( Group-ℓ2 penalized Linear Regression). Let X ∈ R
n×p, y ∈ R

n,

λ > 0, c ∈ R
m
++, a collection of m subsets Gi ⊆ {1, · · · , p} of size ni, and A ∈

R(
Pm

i=1 ni)×p. Assume further that for any subset S ⊂ {1, · · · ,
∑m

i=1 ni} and its com-

plementary S̄ = {1, · · · ,
∑m

i=1 ni} \S , A verifies:

Ker (AS,·) ∩ Ker
(

AS̄,·
)

= {0} and rank (A) = p. (3.10)

Then, the solution to the Group-ℓ2 penalized Linear Regression problem, defined as:

min
θ

{

f (θ) = 1
2
||Xθ − y||22 + λ

∑m
i=1

√
ci ||AGi,∗θ||2

}

(3.11)

is given by:

θ∗ = −BDΓ−1 (η∗) BT
DXT y, (3.12)

where the matrix-valued function Γ (η) ≻ 0 is defined as follows:

Γ (η) = BT
D

(

∑

i∈Ω̄

1

2ηi

AT
Gi,·AGi,· + XT X

)

BD, (3.13)

and the sets D, D̄, Ω̄ are defined as:

Ω = {i ∈ {1, · · · ,m} : η∗
i = 0} Ω̄ = {1, · · · ,m} \Ω. (3.14)

D = ∪i∈ΩGi D̄ = {1, · · · ,
∑m

i=1 ni} \D,

The matrix BD is defined as follows:

BD =

{

a basis for Ker (AD,·) if |D| > 0

Ip otherwise.
(3.15)
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Finally, η∗ is the solution to the m-dimensional convex problem:

min
{

w (η) = −1
2
yT XBDΓ−1 (η) BT

DXT y + λ2ηT c
}

. (3.16)

η º 0

and, at the optimum, we have f (x∗) = w (η∗) + 1
2
‖y|22.

Proof. Applying Lemma (3.2) with H = XT X, g = −XT y, λ = λ
√

c and letting

Xβ = ψ it follows that (3.11) is equivalent to:

max −1
2
ψT ψ (3.17)

νT
Gi

νGi
≤ λ2ci i = 1, · · · ,m

−XT y − AT ν = XT ψ

The Lagrangian of this problem is given by:

l1 (η,ω) = supψ,ν

{

−1

2

(

ψT ψ + 2νT C (η) ν
)

+ ωT
(

AT ν + XT (ψ + y)
)

(3.18)

+λ2ηT c
}

where we let C (η) :=
∑

i ηiBi and

[Bi]k,l =

{

1 if k = l and
∑i−1

j=1 nj + 1 ≤ k ≤ ∑i
j=1 nj

0 otherwise
.

The supremum is unbounded unless (ω,η) ∈ D, where D is the set:

D :=

{

(ω,η) :

{

Aω ∈ R (C (η)) if η 6= 0,η º 0

ω = 0, η = 0

}

.

For any pair (ω,η) ∈ D, the supremum is attained at :

ν∗ =
1

2
C (η)† Aω (3.19)

ψ∗ = Xω,

and if η ≻ 0, for each (ω,η) ∈ D, both ψ∗ and ν∗ are unique. This yields:

l1 (η,ω) =

{

1
2
ωT

(

1
2
AT C (η)† A + XT X

)

ω + ωT XT y + λ2ηT c if (ω,η) ∈ D
∞ o/w.
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To continue, we need to define the following notation. Given a dual feasible η and

index sets {1, · · · ,m}, {1, · · · , p} and {1, · · · ,
∑m

i=1 ni}, define:

Ω = {i ∈ {1, · · · ,m} : ηi = 0} Ω̄ = {1, · · · ,m} \Ω. (3.20)

D = ∪i∈ΩGi D̄ = {1, · · · ,
∑m

i=1 ni} \D.

Thus the subspace R (C (η)) can be characterized as:

R (C (η)) =
{

x ∈ R

Pm
i=1 ni : xD = 0

}

from what follows that:

{ω : Aω ∈ R (C (η))} = {ω : AD,·ω = 0}
= {ω = BDφ}

with BD a p × dim (Ker (AD,·)) matrix defined as:

BD =

{

is a basis for Ker (AD,·) if |D| > 0

Ip otherwise.

This set equality allows us to parameterize l1 (η,ω) as a function of η and φ, which

we will denote by l2 (η,φ):

l2 (η,φ) =















1
2
φT BT

D

(

1
2
AT C (η)† A + XT X

)

BDφ+

+φT BT
DXT y + λ2ηT c

if η º 0

∞ otherwise.

(3.21)

where l2 (η,φ) = l1 (η,BDφ) and:

ω∗ = BDφ∗ (3.22)

Observe that, by construction, ABD =
[

0T
(

AD̄,·BD

)T
]T

, thus:

BT
DAT C (η)† ABD = BT

DAT
D̄,·CD̄,D̄ (ηΩ̄)−1

AD̄,·BD.

For fixed η, the dual function l2 (η,φ) is convex (in fact, it is also strictly convex)

and quadratic in φ and can be minimized in closed form with respect to φ. The
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optimality conditions are:

Γ (η) φ = −BT
DXT y. (3.23)

where we define the matrix Γ (η) as:

Γ (η) = BT
D

(

1

2
AT

D̄,·CD̄,D̄ (ηΩ̄)−1
AD̄,· + XT X

)

BD (3.24)

The matrix Γ (η) is non-singular and hence the above system has a unique solution

φ∗ = −Γ−1 (η) BT
DXT y. The positive definiteness of Γ (η) follows from the fact that

BT
DAT

D̄,·CD̄,D̄ (ηΩ̄)−1
AD̄,·BD ≻ 0.

To prove this last assertion, notice that since C−1
D̄,D̄

(ηΩ̄) ≻ 0, a necessary and

sufficient condition for this to hold is that Ker
(

AD̄,·
)

∩ R (BD) = ∅. If |D| =

0, then Ker
(

AD̄,·
)

= ∅ by the second assumption in (3.10). If |D| > 0, BD

is a basis for Ker (AD,·), and the former condition is equivalent to requiring that

Ker (AD,·) ∩ Ker
(

AD̄,·
)

= ∅, which is guaranteed by the first assumption in (3.10).

Plugging in the optimal φ∗ verifying (3.23) in (3.21), leads us to the (second) dual

function:

w (η) = min
φ

l2 (η,φ)

= −1

2
yT XBDΓ−1 (η) BT

DXT y + λ2ηT c

with domain dom w (η) = {η º 0}. Hence the dual problem of (3.11) is given by:

min w (η) ,

η º 0

which proves (3.16). Slaters constraint qualifications are verified on (3.17) (take for

instance ψ = −y and ν = 0) and hence strong duality holds. On the other hand, the

optimality conditions (3.7) from the proof of Lemma III.1, (3.22) and (3.19) imply
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that:

(

XT X
)

x∗ = −
(

XT X
)

β∗

= −XT ψ∗

= −XT Xω∗

= −XT XBDφ∗

which proves (3.12).

The above result shows that our Group-ℓ2 penalty extends the LASSO and Group

LASSO penalties in that it generalizes coordinate-wise sparsity. Indeed, the solution

x∗ to (3.11) is given as a linear combination of elements of a basis BD of the kernel

of the matrix AD. This implies that the elements in x∗ are not necessarily zero,

however, their projection on AD will be, where D is determined by the inactive set

of shrinkage variables η∗
i > 0. It is worth observing that the assumption (3.10) could

be relaxed but is loose enough for most practical purposes.

To illustrate the specialization of our result to two well known cases, we now

consider the following Non-overlapping and Overlapping Group LASSO-penalized

linear regression problems.

3.2.1 Non-overlapping Group LASSO

Corollary III.3 (Group LASSO-penalized Linear Regression). Given a collection of

m groups of indices Gi ⊆ {1, · · · , p} of size ni = |Gi| satisfying ∪m
i=1Gi = {1, · · · , p}

and Gi ∩ Gj = ∅ for i 6= j, the LASSO (Tib96) or separable Group-LASSO problem

(YL06b), is defined as:

min
θ

1
2
||Xθ − y||22 + λ

∑m
i=1

√
ci ||θGi

||2 . (3.25)

The solution to this problem is given by:

θ∗
Z̄ = −

(

S (η∗) + XT
Z̄,·XZ̄,·

)−1

XT
Z̄,·y, (3.26)

θ∗
Z = 0, (3.27)

where the index subsets Z and Z̄ are given by:

Z = ∪i:η∗

i =0Gi Z̄ = {1, · · · , p} \Z,
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and S (η) is a |Z̄| × |Z̄| diagonal shrinkage matrix, with elements:

[S (η)]k,k =
1

2ηi

, with i such that Z̄k ∈ Gi, (3.28)

and η∗ is the solution to the m-dimensional convex problem:

min
{

w (η) = 1
2
θ∗T XT y + λ2ηT c

}

. (3.29)

η º 0

The proof follows by application of Theorem III.2 to this specific choice of A. See

Appendix B.1 for details.

3.2.2 Overlapping Group LASSO

Corollary III.4 (Overlapping Group LASSO penalized Linear Regression). Let Gi ⊆
{1, · · · , p}, i = 1, · · · ,m, be a collection of groups of variables, with ∪m

i=1Gi =

{1, · · · , p} and ni = |Gi|. Associate to each group Gi a positive vector of weights

wi ∈ R
ni
++. The structured-sparse (JOB10) or hierarchical Group-LASSO problems

(ZRY09), defined as:

min
θ

1
2
||Xθ − y||22 + λ

∑m
i=1

√
ci ||diag (wi) θGi

||2 , (3.30)

has a unique solution given by:

θ∗
Z̄ = −

(

S (η∗) + XT
Z̄,·XZ̄,·

)−1

XT
Z̄,·y, (3.31)

θ∗
Z = 0, (3.32)

where the index subsets Z and Z̄ are given by:

Z = ∪i:η∗

i =0Gi Z̄ = {1, · · · , p} \Z,

and S (η) is a |Z̄| × |Z̄| diagonal shrinkage matrix, with elements:

[S (η)]k,k =
∑

i:Z̄k∈Gi

1

2ηi

[wi]
2
Z̄k

, (3.33)
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and η∗ is the solution to the m-dimensional convex problem:

min
{

w (η) = 1
2
θ∗T XT y + λ2ηT c

}

. (3.34)

η º 0

The proof is an application of Theorem III.2 to this specific choice of A. See

Appendix B.2 for details.

3.2.3 Proximity operator for arbitrary Group-ℓ2 penalties

We showed in Section 2.3.4 that the proximity operator of a (possibly non-differentiable)

convex function Ω (x) is defined as (Mor65), (CW06):

Pτ (g) := arg min
x

1

2τ
||x − g||22 + Ω (x) ,

and is omnipresent in efficient, large-scale algorithms for solving problems of the type:

arg min
θ

f (θ) + Ω (θ) ,

where f (θ) is a convex, differentiable function with Lipschitz gradient. Example of

such functions in statistical learning are the logistic or the poisson regression losses.

In previous work, various authors have derived efficient algorithms to evaluate

Pτ (g) for the Group LASSO (LY10) and the Hierarchical LASSO penalties (JMOB10).

The next result shows that evaluating the proximity operator for the general class of

group-ℓ2 penalties can be done through the solution of an m dimensional problem,

where m is the number of ℓ2 norm terms in the penalty. In addition, similarly to

(LY10), we show that this problem is differentiable and hence efficient algorithms

for smooth optimization can be applied to evaluate Pτ (g) for the general group-ℓ2

penalties we introduced in Section 3.2.

Theorem III.5 (Proximity operator for arbitrary Group-ℓ2 penalties). Let y 6= 0 ∈
R

p, λ ∈ R
m
++, a collection of m subsets Gi ⊆ {1, · · · , p} of size ni, and A ∈ R

Pm
i=1 ni×p

such that AAT ≻ 0. Then the proximal operator for the overlapping group lasso

penalty, defined as:

Pλ (y) = arg minθ

1

2
||θ − y||22 +

m
∑

i=1

λi ||AGi,∗θ||2 (3.35)
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is given by:

Pλ (y) =
(

I − AT
(

AAT + 2C (η∗)
)−1

A
)

y (3.36)

where C (η) :=
∑

i ηiBi, with Bi defined in (3.44), and η∗ is the solution to the

m-dimensional convex problem:

min
{

l (η) = 1
2
yT AT

(

AAT + 2C (η)
)−1

Ay + ηT λ2 − 1
2
yT y.

}

(3.37)

η º 0

Furthermore, it holds that:

{

v ∈ R
m : vi = ν∗T Biν

∗ − λ2
i

}

∈ ∂l (η) (3.38)

where ∂l (η) denotes the subdifferential of l (η) and the (
∑m

i=1 ni)-dimensional vector

ν∗ is defined as:

ν∗ = −
(

AAT + 2C (η)
)−1

Ay. (3.39)

The proof of this result is given in Appendix B.5.

3.3 Algorithms

By Theorem III.2, the evaluation of the GSTO when H = XT X, g = XT y

requires the solution of the m-dimensional convex problem:

min
{

w (η) = −1
2
yT XBT

DΓ−1 (η) BDXT y + λ2ηT c
}

. (3.40)

η º 0

The function w (η) has domain dom w (η) = R
m
+ and it is continuous but non-

differentiable at the boundary of the feasible set. We can nonetheless show that it is

actually differentiable in the interior of its domain, η ≻ 0.

Theorem III.6. The function w (η), defined in (3.40), with Γ (η) defined in the

statement of Theorem III.2, is twice differentiable in the interior of its domain, and

its gradient and Hessian are given by:

[∇ηw (η)]i = λ2ci − ||νGi
||22 , (3.41)
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and:

[

∇2
ηw (η)

]

i,j
=

{

2
ηi
||νGi

||22 − 1
η2

i

νT BiAΓ−1 (η) AT Biν i = j

− 1
ηiηj

νT BiAΓ−1 (η) AT Bjν i 6= j
(3.42)

where

ν = −1

2
C−1 (η) AΓ−1 (η) XT y (3.43)

and C (η) :=
∑

i ηiBi, with:

[Bi]k,l =

{

1 if k = l and
∑i−1

j=1 nj + 1 ≤ k ≤ ∑i
j=1 nj

0 otherwise
. (3.44)

See Appendix B.3 for a proof of this result.

An immediate consequence of this theorem is that computing a subgradient of

w (η) in the interior of its domain only requires evaluating the primal candidate

(3.43). Evaluating the Hessian seems a priori computationally demanding since we

need to solve a system of the type

Γ (η) x = AT Bjν

for x for each j = 1, · · · ,m. Unfortunately, it is not straightforward to generalize our

theory to compute subgradients of w (η) for η lying at the boundary of its domain.

To circumvent this problem we propose to approximate η∗, the solution to (3.40), by

solving instead two perturbed versions of the original problem (3.40).

3.3.1 Subgradient method on a restricted parameter space

In this section we propose to approximate η∗ by solving instead the following

problem:

min
{

w (η) = −1
2
yT XBT

DΓ−1 (η) BDXT y + λ2ηT c
}

. (3.45)

η º ǫ1

for a very small ǫ. We denote the solution to the perturbed problem (3.45) by η∗
ǫ .

The solution to the primal will then be approximated by thresholding the elements

in η∗
ǫ with magnitudes smaller than or equal to ǫ and plugging the result into the
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expression for θ∗ given in by Theorem III.2:

θ∗
ǫ = −BDΓ−1 (TI,ǫ (η∗

ǫ )) BT
DXT y, (3.46)

Our strategy is to solve (3.45) using a subgradient method. From Theorem III.6,

computing a subgradient only requires to evaluate (3.43) at each iteration, which can

be done efficiently using the Sherman-Morrison-Woodbury matrix inversion formula

when n (the number of rows of X) is small (and hence XT X is of rank n). Since we

also need to respect the constraint η º ǫ1, we will use a projected subgradient strat-

egy (Ber99). Starting from a feasible η1 ≻ ǫ1, the projected subgradient algorithm

generates a sequence:

ηt+1 = Pǫ

(

ηt − αt∇ηw
(

ηt
))

. (3.47)

where Pǫ (·) denotes the projector operator onto the set η º ǫ1 and αt is a step size

chosen as follows:

αt =
w (ηt) − w∗

t

||∇ηw (ηt)||22
(3.48)

where w∗
t is a lower bound of the optimal value w (η∗

ǫ ). This lower bound can be

dynamically updated following the strategy described in (BNO+03), Section 8.2.1.

Since ||∇ηw (ηt)||22 < ∞ for any η ≤ ǫ1, the sequence ηt can be shown to verify

((Ber99), Proposition 8.2.8.)

inf
{

w
(

ηt
)}

t≥1
≤ w (η∗) + δ

for some small δ > 0, that depends on the parameters used to estimate w∗
t . Notice

that the subgradient method is not a descent method, and hence at the end of our

iterative procedure we will set:

η̂∗
ǫ = arg min

{

w
(

ηt
)}

t≥1
.

In practice, we will stop the algorithm after a fix number of iterations or whenever

the duality gap between (3.17) and (3.16), given by

∣

∣

∣

∣

w
(

ηt
)

−
(

−1

2
θtθt

)∣

∣

∣

∣
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for a feasible θt computed through (3.19), (3.22) and (3.23), is smaller than a pre-

specified tolerance.

Note finally that the sequence (3.47) is very similar in structure to a projected

gradient descent strategy. In this particular case, the only subgradient of w (η) over

η ≻ 0 is given by ∇ηw (η).

3.3.2 Projected Newton method on regularized dual problem

The subgradient approach is very simple and computationally light, but it is

known to have slow convergence properties that hinder its application whenever good

accuracy is necessary. In this section we propose a different approach to approximate

η∗ which consists of solving a perturbed version of the dual problem (3.17), namely:

max −1
2
ψT ψ + ǫνT ν, (3.49)

||νGi
||22 ≤ λ2ci i = 1, · · · ,m

−XT y − AT ν = XT ψ

where ǫ > 0 is a small parameter that we set to 10−9 in practice. Notice that when

ǫ = 0, the above problem is exactly the same as the original dual, (3.17), and that

their feasible set is the same for all ǫ ≥ 0. For ǫ > 0, problem (3.49) is strictly convex,

and following the exact same development of Theorem III.2, we can show that strong

duality holds and that its Lagrange dual is exactly given by:

min
{

wǫ (η) := −1
2
yT XΓ−1 (η + ǫ1) XT y + λ2ηT c

}

, (3.50)

η º 0

Since ǫ > 0, according to Theorem III.6 the function w (η + ǫ1) is twice differentiable

over the feasible set η º 0, and thus so is the objective wǫ (η) in (3.50). Differentiabil-

ity allows Newton-Raphson type methods, which are known to enjoy fast convergence

properties, to be applied to our problem.

The optimal value in (3.49) is relatively robust to the choice of ǫ, and, for small ǫ,

it is bound to be close to the optimal value of the original problem (3.17), as we will

show next. Observe that one can bound the objective in 3.49 for every feasible pair

(ψ,ν) as follows. First notice that, for any feasible pair (ψ,ν),

−1

2
ψT ψ ≤ −1

2
ψ∗T ψ∗
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where (ψ∗,ν∗) denotes the solution to the original problem, with ǫ = 0. Choose

(ψ̃, ν̃) to be the optimum of (3.49) for any ǫ > 0. Then:

−1

2
ψ̃T ψ̃ ≤ −1

2
ψ∗T ψ∗

and

−1

2
ψ̃T ψ̃ + ǫν̃T ν̃ ≤ −1

2
ψ∗T ψ∗ + ǫν̃T ν̃

Now, since ν̃ is feasible, ǫν̃T ν̃ is upper bounded by ǫλ2cT1, which implies that:

−1

2
ψ̃T ψ̃ + ǫν̃T ν̃ ≤ −1

2
ψ∗T ψ∗ + ǫλ2cT1

On the other hand, we also have:

−1

2
ψT ψ + ǫνT ν ≤ −1

2
ψ̃T ψ̃ + ǫν̃T ν̃,

for any feasible pair (ψ,ν), which allows us to conclude that:

−1

2
ψ∗T ψ∗ ≤ −1

2
ψ∗T ψ∗ + ǫν∗T ν∗ ≤ −1

2
ψ̃T ψ̃ + ǫν̃T ν̃ ≤ −1

2
ψ∗T ψ∗ + ǫλ2cT1.

Since strong duality holds, the above inequality allows us to conclude that, the opti-

mum of (3.50) satisfies:

|wǫ (η∗) − w (η∗
0)| ≤ ǫλ2cT1

where η∗
0 is the solution to (3.50) for ǫ = 0, that is, the solution to the original

problem (3.40). Thus, choosing a small ǫ will necessarily lead to a solution with

objective arbitrarily close to the original problem optimum.

To solve (3.49), we will use Bertsekas Projected Newton method (Ber82), which

takes advantage of the fact that the objective in (3.49) is smooth, and that the con-

straint set η º 0 is very simple. Essentially, at each iteration t, the projected newton

method consists of three steps. First, a candidate descent direction is computed:

∆η = −D−1
t ∇wǫ

(

ηt
)

. (3.51)

where Dt is a matrix constructed from the Hessian of wǫ (η), given in (3.42), evaluated

at ηt (though not the Hessian itself as in traditional Newton-Raphson descent). The
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descent direction leads to a possibly non-feasible update:

η̄α = ηt − αD−1
t ∇wǫ

(

ηt
)

, (3.52)

and finally, the step size α is selected so that the next feasible iterate, defined as:

ηt+1 = [η̄α]+ , (3.53)

where [·]+ denotes the projection to the positive orthant, verifies an Armijo-type rule

that guarantees the descent at each iteration, even when far from the optimum.

3.3.3 Homotopy: path-following strategy for the shrinkage variables

The solutions to the Group-ℓ2 penalized regression problem (3.11), denoted by x∗
λ,

depend on the penalty parameter λ. In most statistical learning problems, we need

to compute the shrinkage variables η∗ and the primal solution x∗
λ for several values

of this penalty parameter, to construct the regularization path, i.e. the trajectory of

x∗
λ as a function of λ.

Usually, a discretization approach is taken, where the user specifies a grid {λk}K
k=1

of candidate penalty parameters and then computes x∗
λk

for each penalty parameter

in the grid. In the special case of ℓ1, or LASSO penalties, it has been shown that

the regularization path is piecewise linear, hence an efficient algorithm is to compute

x∗
λk

only at the breaking points where variables enter or leave the active set (OPT00;

EHJT04).

For general Group-ℓ2 penalties, the path is no longer linear, as we will show below.

In most current algorithms, to reduce the computation time needed to compute the

regularization path
{

θ∗
λk

}

k
, a warm start/continuation strategy is usually employed,

where the algorithm to compute θ∗
λk+1

is initialized with θ∗
λk

(MVVR10; LY10).

Nonetheless, in our context, it is reasonable to ask whether for two different choices

of λ that are close to each other, the values of η∗, and hence those of θ, do not change

too much. The following result shows that this is indeed the case for the active

variables η∗
i > 0, so long as the Hessian of w (η) restricted to the active variables is

well-behaved.

Theorem III.7. Consider the setting and assumptions of Theorem III.2. For any

η º 0, let Ω̄ be the set of active variables of η, that is Ω̄ = {1, · · · ,m} \Ω, with

Ω = {i ∈ {1, · · · ,m} : ηi = 0}. Define the restriction of w (η) to the active variables
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as follows:

wΩ̄ (ηΩ̄) = −1

2
yT XBT

DΓ−1 (ηΩ̄) BDXT y + λ2ηT
Ω̄c (3.54)

where BD is a basis for Ker (AD,·) and D = ∪i∈ΩGi. Denote by η∗ the solution

to the m-dimensional convex problem (3.16). Then, the function wΩ̄ (ηΩ̄) is twice

differentiable for any ηΩ̄ ≻ 0 and, provided that ∇2wΩ̄

(

η∗
Ω̄

)

is non-singular, the

following holds:

dη∗
Ω̄

dλ
= −2λ

(

∇2wΩ̄ (η∗
Ω̄)

)−1
cΩ̄. (3.55)

See Appendix B.4 for a proof of this theorem.

This result suggests a strategy to obtain a good initialization value for our iterative

algorithms from the solution obtained for λk−1. Hence, we will predict ηk and xλk
at

the k-th point of the regularization path, from the computed values at the (k − 1)-th

iteration, using an update rule based on relation (3.55). Specifically, we will set:

ηk
Ω̄ =

[

η∗
λk−1

]

Ω̄
− 2 (λk − λk−1) λk−1

(

∇2wΩ̄

([

η∗
λk−1

]

Ω̄

))−1

cΩ̄, (3.56)

ηk
Ω = 0.

Here Ω̄ denotes the indices of non-zero elements of η∗
λk−1

, computed at λk−1. These

predictions will then be used to initialize our Projected Newton algorithm and obtain

the optimal pair η∗
λk

and θ∗
λk

at λk. The Projected Newton step converges in practice

in very few iterations, as long as the difference between λk and λk−1 is reasonably

small.

3.4 Numerical Results

In this section we first evaluate the numerical perfomance of our algorithms to

evaluate the GSTO for overlapping Group LASSO penalized linear regression prob-

lem. Second, we investigate the application of the GSTO to the multi-task learning

problem of predicting symptom scores from the gene expression responses of symp-

tomatic individuals.
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3.4.1 Evaluation of the GSTO

We study here the numerical performance of our algorithm in solving the over-

lapping Group LASSO linear regression problem of Section 3.2.2. Our experiments

consider different scenarios where we fix all of the problem parameters but one and

generate random data following a group-sparse linear regression model,

y = Xθ + n, θ is group-sparse,

with y ∈ R
n, X ∈ R

n×p and m overlapping groups. These groups are randomly

generated with average overlap of 50% and the ratio of active groups is equal to

1%. As a measure of performance, we consider the elapsed time and the number

of iterations needed for the algorithm to achieve a given target objective value. We

compare our GSTO algorithms of Section 3.3 to a state-of-the-art first-order algorithm

(LY10) based on the Fast Iterative Thresholding Algorithm (FISTA) paradigm of

(BT09), and to the commercial interior-point solver Mosek®. The comparison to

the Projection Subgradient method is omitted because our simulations show that

this algorithm is not competitive in this setting as it fails to achieve the desired

accuracy in reasonable time.

We consider three experiments, shown in Figure 3.2: (a) varying number of vari-

ables p with the number of groups m and the number of samples n fixed and equal to

100, (b) varying number of groups m with fixed p = 104 and n = 100 and (c) varying

number of samples with fixed p = 104 and m = 100. Since the computation time for

each algorithms depends on the sparsity of the solution, which is in turn controlled

by the parameter λ, we set this parameter to a tenth of the parameter which yields

all-zero solutions. Our results show that our algorithm outperforms the other two

for moderately small m and n and potentially very large p. This is expected since

the computation of the Hessian matrix required to implement the Projected Newton

Step requires the solution of m systems of equations of size n and the evaluation of a

number m(m − 1)/2 of p-dimensional vector multiplications and additions.

3.4.2 Computation of the regularization path

We consider here the application of the GSTO Projected Newton algorithm com-

bined with the continuation update of Section 3.3.3, to the problem of computing the

regularization path for the overlapping Group LASSO linear regression problem of

Section 3.2.2. We generate random data following the group-sparse linear regression

model of the previous section, with varying p, m and n. For each realization, we com-
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Figure 3.2: Comparison of GSTO and FISTA (LY10; BT09) elapsed times for solving
(3.30) as a function of p (a), m (b) and n (c). GSTO is significantly faster
than FISTA for p larger than 4000 and small m.

pute the regularization path over a 20 point grid of regularization parameters. The

maximum value in the grid is chosen to be such that it yields the all-zero solution,

and the minimum value is set to a millionth fraction of the maximum value.

We compare our method to the fast overlapping algorithm of (LY10), denoted as

FISTA, with a warm start as an initialization procedure. We compute the elapsed

times as a function of p, m and n with the other two parameters fixed, with the exact

same choices as in the previous section. The results, shown in Figure 3.3, demonstrate

again the competitiveness of our algorithm in the large p, small m and small n regime,

corroborating the results obtained in the previous section for computing a single point

in the regularization path.

3.4.3 Application to multi-task regression

In this section we consider the application of the GSTO to the multi-task learn-

ing problem of predicting symptom scores from the gene expression responses of

symptomatic individuals. In our context, the multi-task learning model is defined as

follows. For each individual s = 1, · · · , S, we measure a collection of gene expression

vectors obtained at T different time points, to form a T ×p matrix of gene expression

values denoted by Xs. The symptom score of each individual, denoted by ys, is a

T -dimensional vector containing a symptom severity index for each time point. We
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Figure 3.3: Comparison of GSTO and FISTA (LY10; BT09) elapsed times for com-
puting the regularization path of (3.30) as a function of p (a), m (b) and
n (c). GSTO is significantly faster than FISTA for p larger than 105 and
small m, n.

assume that the symptom scores can be well modeled by a sparse linear combination

of the gene expression responses, that is:

ys = Xsθs + ns (3.57)

where θs are the linear predictors for subject s and ns is the residual noise. All

subjects are humans inoculated by the same virus, therefore, a similar immune system

response is to be expected. To exploit this a priori information, we enforce that the

supports of the predictors θs be the same:

supp (θk) = supp (θl) , k 6= l, (3.58)

whereas the specific contribution of each gene to the individual symptom prediction

is not necessarily equal. The estimates {θs}S
s=1 are then obtained as the solution to

the following Group-ℓ2 penalized least squares problem:

min
θ1,··· ,θS

1
2

∑S
s=1 ||Xsθs − ys||22 + λ

∑m
i=1

√
ci

∣

∣

∣

∣

∣

∣
AGi,∗

[

θT
1 , · · · ,θT

S

]T
∣

∣

∣

∣

∣

∣

2
(3.59)
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In this section we consider three choices for the matrices AGi,∗ and the groups Gi in

the penalty above:

1. LASSO : The LASSO penalty corresponds to Gi = i, i = 1, · · · , pS and A = Ip.

This penalty yields sparse θs but does not enforce the support constraint (3.58),

but we consider it here to illustrate the benefit of structured-sparse penalties

such as the following two.

2. Gene-wise Group-LASSO : The gene-wise group-LASSO penalty enforces the

support constraint by choosing Gi = {i, i + p, · · · , i + p(S − 1)}, i = 1, · · · , p.

In this case the group matrix is chosen to be AGi,Gi
= I|Gi|, which corresponds

to the non-overlapping group-lasso case of Corollary III.3.

3. Pathway-wise Group-LASSO : The Pathway-wise group-LASSO penalty enforces

the support constraint and, in addition, incorporates prior information on groups

of genes that are known to be co-expressed. Given a set of m pathways (groups

of genes), Pi ⊂ {1, · · · , p}, i = 1, · · · ,m, we choose Gi = {Pi, Pi + p, · · · , Pi + p(S − 1)},
i = 1, · · · ,m and, again, AGi,Gi

= I|Gi|. This corresponds to the overlapping

group-lasso penalized linear regression of Corollary III.4.

It is worthwhile to notice that this multi-task model and estimate have in addition

the advantage of begin invariant to possible subject-dependent shifts in the temporal

axis: the objective in (3.59) is invariant to left-hand multiplications of Xs and ys by

a circular shift matrix.

Our experiments are set as follows. We obtain a set of 831 curated gene pathways

from Broad Institutes MSigDB database1 and restrict our interest to the 5115 genes

from our microarray assay that appear at least in one of these pathways. (Future

studies including other sets of pathways and/or more genes will be the subject of

future research.)

For each of the H3N2-infected subjects, we restrict our attention to those 9 de-

clared as symptomatic, and construct a 16 × 5115 design matrix Xs consisting of

16-time points of gene expression levels corresponding to each of the 5115 genes in

the MSigDB pathways. We also compile the symptoms (Runny Nose, Stuffy Nose,

Earache, Sneezing, SoreThroat, Cough, Headache, Muscle/Joint Pain) declared by

each individual at 10 different time points into a 10-time point aggregated symptom

score obtained as the sum of each symptom score at each time point. Since the times

at which the symptoms where assessed and the times at which the blood samples for

1http://www.broadinstitute.org/gsea/downloads.jsp
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Method Train MSE Test MSE Test MSE (LS) # Genes # Pathways

LASSO 0.07 0.03 0.025 14 -
Gene-wise GL 0.06 0.012 0.014 40 -

Pathway-wise GL 0.05 0.018 0.018 83 8
Least Squares 5 × 10−11 0.015 0.015 5125 -

Table 3.1: Comparison of symptom prediction performance for each of the Multi-task
regression methods of Section 3.4.3.

gene expression assay were drawn are not exatcly the same, we interpolate the former

to obtain a symptom score for each individual in sync to the gene expression time

points. The interpolated (dashed) and the original (solid lines) aggregated symptom

scores are shown in Figure 3.4.
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Figure 3.4: Interpolated (dashed) and original (solid lines) aggregated symptom
scores for each of the H3N2 infected symptomatic individuals.

For each individual, we divide the data into 10 time points for training and 6 for

testing each algorithm’s performance. To choose the tuning parameter λ that controls

the sparsity of the solutions, we perform 10-fold Cross Validation on the training data,

and choose the λ that minimizes the prediction error, measured through the relative

MSE. Since it is well-known that penalized estimators are biased for large λ, we

also compute the Least Squares estimator restricted to the support obtained through

(3.59). We also compare our results to the traditional Least Squares estimate, given

by solving (3.59) with λ = 0, which is not sparse and ill-conditioned due to the small

sample size. The results of our experiment are shown in Table 3.1.
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For the gene-wise and pathway-wise group lasso estimates, we give in Tables 3.2

and 3.3 the top-10 genes selected to construct the predictor, ordered by their p-values,

which are computed through an ANOVA procedure on the 11961 genes of our nor-

malized dataset. The first table reflects the association of the genes in the gene-wise

predictor with pathways linked to the immune system and the inflamatory response.

Table 3.3, in contrast, shows a less obvious correspondance between some of the ac-

tive pathways and known inflamatory-specific pathways. Some of the active pathways,

such as GLYCAN BIOSYNTHESIS or SNARE INTERACTIONS IN VESICULAR

TRANSPORT perform fundamental functions of cell homeostasis that may or may

not be associated to the specific response to a viral infection. On the other hand,

this might be a limitation of the pathway-wise sparsity penalty: if a certain gene is

highly predictive of the symptomatic response, selection of this gene might entail the

selection of one of the pathways to which it belong, since the support of the predictor

has to be equal to the complement of the inactive groups, as we showed in Corollary

III.4.

Finally, we show in Figure 3.5 the true and predicted aggregated symptom scores

for each individual, for the optimal pathway-wise group lasso predictor, and a heatmap

with the gene expression values associated to the active genes. It is clear that our

algorithm is able to construct the predictor from genes whose response correlates well

with the true symptom temporal course.

3.5 Conclusions and future work

We have introduced the GSTO, which extends the Scalar and the Multidimen-

sional Shrinkage Thresholding Operators to penalties composed of sums of ℓ2 norms

of linear combinations of the optimization variables. Our theoretical results give in-

sight to the behavior of a general class of structured-sparse penalties that includes,

but is not restricted, to the well known LASSO (Tib96), Group LASSO (YL06b) and

structured-sparsity Overlapping Group LASSO penalties (ZRY09; JAB09). In addi-

tion, we have shown that the GSTO can be reformulated into a lower-dimensional

problem, and that an infinitesimaly close perturbation of this problem is smooth. This

allows for second-order methods to approximately solve the original low-dimensional

non-smooth problem, and we numerically demonstrate that this approach is efficient

in certain regimes. We finally have demonstrated the applicability of the GSTO in a

high-dimensional multi-task learning problem involving the prediction of symptoms

from the gene expression levels of infected individuals. Future work includes the effi-
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Gene Symbol Gene Name Function (Wikipedia &
Genecards)

SIGLEC1 Sialic acid binding Ig-like
lectin 1

Macrophage marker

SERPING1 Serpin peptidase inhibitor,
clade G

Inhibition of the complement
system (part of the immune
system)

LAMP3 Lysosome-associated mem-
brane glycoprotein 3

ISG15 Interferon-induced 17 kDa Its activity is regulated by spe-
cific signaling pathways that
have a role in innate immunity

C1QB Complement component 1, q
subcomponent, B

Encodes a major constituent of
the human complement system

ATF3 Cyclic AMP-dependent tran-
scription factor ATF-3

C1QA Complement C1q subcompo-
nent subunit A

Encodes a major constituent of
the human complement system

CXCL10 C-X-C motif chemokine 10 Chemoattraction for mono-
cytes/macrophages, T cells,
NK cells, and dendritic cells.

LAP3 Leucine aminopeptidase 3
AIM2 Absent in melanoma 2 Contributes to the defence

against bacterial and viral
DNA.

Table 3.2: Top-10 genes in the support of the Gene-wise Group-LASSO multi-task
predictor, ordered by ANOVA p-value.

cient evaluation of the proximal algorithm associated to general Group-ℓ2 penalties,

which would allow the application of this rich class of penalties to general differen-

tiable cost functions with Lipschitz gradient.
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Pathway Ratio
Active
Genes

Active Genes Function (Kegg Database)

KEGG RIG I LIKE RE-
CEPTOR SIGNALING
PATHWAY

0.16 ISG15, IFIH1, NLRX1,
AZI2, RNF125, CYLD,
DDX3X, DDX3Y,
TBKBP1, DHX58,
TRIM25, DDX58

RIG-I-like receptors recruit
specific intracellular adap-
tor proteins to initiate sig-
naling pathways that lead
to the synthesis of type I
interferon and other inflam-
matory cytokines, which are
important for eliminating
viruses.

KEGG CYTOSO-
LIC DNA SENSING
PATHWAY

0.07 IL33, ZBP1, AIM2,
DDX58’

Responsible for detecting
foreign DNA from invading
microbes or host cells and
generating innate immune
responses.

KEGG O GLYCAN
BIOSYNTHESIS

0.53 GALNT3, GCNT4,
GALNT2, GALNT1,
GCNT3, GALNT7,
GALNT6, GALNT4,
GALNT10, GALNT11,
GCNT1, C1GALT1
B4GALT5, GALNT14,
C1GALT1C1, GALNT8

KEGG GLY-
COSAMINOGLYCAN
DEGRADATION

0.38 HYAL2, HYAL3,
HS3ST3A1, HYAL4,
HPSE2, HPSE, SPAM1,
HS3ST3B1

KEGG GLY-
COSAMINOGLY-
CAN BIOSYNTHESIS
HEPARAN SULFATE

0.57 EXTL3, NDST3, NDST4,
NDST1, NDST2, HS3ST2,
HS3ST1,EXTL1, EXTL2,
HS2ST1, HS3ST3A1,
GLCE, EXT1, EXT2,
HS3ST3B1

KEGG FOLATE
BIOSYNTHESIS

0.72 ALPL, ALPPL2, ALPI,
GGH, SPR, PTS, ALPP,
GCH1

KEGG SNARE IN-
TERACTIONS IN
VESICULAR TRANS-
PORT

0.39 SNAP29, BET1, USE1,
STX18, STX17, SEC22B,
VTI1B, BNIP1, VAMP5,
VAMP4, BET1L, VAMP3,
GOSR2, GOSR1, YKT6

KEGG CIRCADIAN
RHYTHM MAMMAL

0.6 ARNTL, NPAS2, CRY2,
PER2, PER1, PER3,
CRY1, CLOCK

Table 3.3: Active pathways and their active genes (ordered by ANOVA p-value) in the
support of the Pathway-wise Group-LASSO multi-task predictor. High-
lighted in red are the genes that also appeared in the Gene-wise Group
LASSO predictor.
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True
Test Points

Figure 3.5: Left columns: Heatmap of the gene expression values associated to the
active genes used in the predictor. Right columns: True and predicted
aggregated symptom scores for each individual. The predictors consid-
ered here are (i) the Gene-wise Group LASSO multi-task estimate (la-
beled as “Gene-wise GroupLASSO”) and (ii) the Least Squares predictor
restricted to the support of the Gene-wise Group LASSO multi-task esti-
mate (labeled as “LS-Sparse-Support”). The average relative MSE over
the 9 subjects is 0.012.
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CHAPTER IV

Order-Preserving Factor Analysis

4.1 Introduction

With the advent of high-throughput data collection techniques, low-dimensional

matrix factorizations have become an essential tool for pre-processing, interpreting

or compressing high-dimensional data. They are widely used in a variety of signal

processing domains including electrocardiogram (JL09), image (JOB10), or sound

(BD06) processing. These methods can take advantage of a large range of a priori

knowledge on the form of the factors, enforcing it through constraints on sparsity or

patterns in the factors. However, these methods do not work well when there are

unknown misalignments between subjects in the population, e.g., unknown subject-

specific time shifts. In such cases, one cannot apply standard patterning constraints

without first aligning the data; a difficult task. An alternative approach, explored

in this chapter, is to impose a factorization constraint that is invariant to factor

misalignments but preserves the relative ordering of the factors over the population.

This order-preserving factor analysis is accomplished using a penalized least squares

formulation using shift-invariant yet order-preserving model selection (group lasso)

penalties on the factorization. As a byproduct the factorization produces estimates

of the factor ordering and the order-preserving time shifts.

In traditional matrix factorization, the data is modeled as a linear combination of

a number of factors. Thus, given an n × p data matrix X, the Linear Factor model

is defined as:

X = MA + ǫ, (4.1)

where M is a n×f matrix of factor loadings or dictionary elements, A is a f×p matrix

of scores (also called coordinates) and ǫ is a small residual. For example, in a gene
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expression time course analysis, n is the number of time points and p is the number

of genes in the study, the columns of M contain the features summarizing the genes’

temporal trajectories and the columns of A represent the coordinates of each gene on

the space spanned by M . Given this model, the problem is to find a parsimonious

factorization that fits the data well according to selected criteria, e.g. minimizing

the reconstruction error or maximizing the explained variance. There are two main

approaches to such a parsimonious factorization. One, called Factor Analysis, assumes

that the number of factors is small and yields a low-rank matrix factorization (Pea01),

(CC70). The other, called Dictionary Learning (AEB06), (KDMR+03) or Sparse

Coding (OF97), assumes that the loading matrix M comes from an overcomplete

dictionary of functions and results in a sparse score matrix A. There are also hybrid

approaches such as Sparse Factor Analysis (JL09), (WTH09), (JOB10) that try to

enforce low rank and sparsity simultaneously.

In many situations, we observe not one but several matrices Xs, s = 1, · · · , S and

there are physical grounds for believing that the Xs’s share an underlying model.

This happens, for instance, when the observations consist of different time-blocks

of sound from the same music piece (BD06), (MLG+08), when they consist of time

samples of gene expression microarray data from different individuals inoculated with

the same virus (ZCV+09), or when they arise from the reception of digital data with

code, spatial and temporal diversity (SGB00). In these situations, the fixed factor

model (4.1) is overly simplistic.

An example, which is the main motivation for this work is shown in Figure 4.1,

which shows the effect of temporal misalignment across subjects in a viral challenge

study reported in (ZCV+09). Figure 4.1 shows the expression trajectory for a partic-

ular gene that undergoes an increase (up-regulation) after viral inoculation at time

0, where the moment when up-regulation occurs differs over the population. Train-

ing the model (4.1) on this data will produce poor fit due to misalignment of gene

expression onset times.

A more sensible approach for the data in Figure 4.1 would be to separately fit each

subject with a translated version of a common up-regulation factor. This motivates

the following extension of model (4.1), where the factor matrices Ms, As are allowed

to vary across observations. Given a number S of n × p data matrices Xs, we let:

Xs = MsAs + ǫs s = 1, · · · , S. (4.2)

Following the gene expression example, here n is the number of time points, p is

76



0 20 40 60 80 100
6

7

8

9

10

Time
E

xp
re

ss
io

n 
Le

ve
l

 

 
Subject 5
Subject 6
Subject 7
Subject 10

Figure 4.1: Example of temporal misalignment across subjects of upregulated gene
CCRL2. Subject 6 and subject 10 show the earliest and the latest up-
regulation responses, respectively.

the number of genes in the study, and S is the number of subjects participating in

the study. Hence, the n × f matrices Ms contain the translated temporal features

corresponding to the s-th subject and the f × p matrices As accommodate the pos-

sibility of subjects having different mixing weights. For different constraints on Ms,

As, this model specializes to several well-known paradigms such as Principal Compo-

nents Analysis (PCA) (Pea01), sparse PCA (JL09), k-SVD (AEB06), structured PCA

(JOB10), Non-Negative Matrix Factorization (NNMF) (LS99a), Maximum-Margin

Matrix Factorization (MMMF) (SRJ05), Sparse Shift-invariant models (BD06), Par-

allel Factor Analysis (PARAFAC) (CC70), (KB09) or Higher-Order SVD (HOSVD)

(BL10). Table 4.1 summarizes the characteristics of these decomposition models when

seen as different instances of the general model (4.2).

Model Structure of Ms Structure of As Reference

PCA Orthogonal Ms = F Orthogonal As SVD
Sparse-PCA Sparse Ms = F Sparse As Sparse PCA (JL09), (dEGJL07),

k-SVD (AEB06), PMD (WTH09)
Structured-PCA Ms = F Structured Sparse As (JOB10)

NNMF Non-negative Ms = F Non-negative As (LS99a)
Sparse Ms = [M (F , d1) · · ·M (F , dD)] Sparse As (LS99b),

Shift-invariant where {dj}D
j=1 are all possible (BD06), (MLG+08)

models translations of the n-dimensional
vectors in F .

PARAFAC/CP Ms = F As = diag (C·,s) B′ (KB09)
HOSVD Orthogonal Ms = F As = (G ×3 C·,s) B′ (BL10)

where slices of G
are orthogonal

OPFA Ms = M (F , ds), ds ∈ K Non-negative, This work.
where F is smooth sparse As

and non-negative and
K enforces consistent

precedence order

Table 4.1: Special cases of the general model (4.2).

In this chapter, we will restrict the columns of Ms to be translated versions of a

common set of factors, where these factors have onsets that occur in some relative
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order that is consistent across all subjects. Our model differs from previous shift-

invariant models considered in (LS99b), (BD06), (MLG+08) in that it restricts the

possible shifts to those which preserve the relative order of the factors among different

subjects. We call the problem of finding a decomposition (4.2) under this assumption

the Order Preserving Factor Analysis (OPFA) problem.

The contributions of this chapter are the following. First, we propose a non-

negatively constrained linear model that accounts for temporally misaligned factors

and order restrictions. Second, we give a computational algorithm that allows us to

fit this model in reasonable time. Finally, we demonstrate that our methodology is

able to succesfully extract the principal features in a simulated dataset and in a real

gene expression dataset. In addition, we show that the application of OPFA produces

factors that can be used to significantly reduce the variability in clustering of gene

expression responses.

This chapter is organized as follows. In Section 4.2 we present the biological

problem that motivates OPFA and introduce our mathematical model. In Section

4.3, we formulate the non-convex optimization problem associated with the fitting of

our model and give a simple local optimization algorithm. In Section 4.4 we apply

our methodology to both synthetic data and real gene expression data. Finally we

conclude in Section 4.5.

4.2 Motivation: gene expression time-course data

In this section we motivate the OPFA mathematical model in the context of gene

expression time-course analysis. Temporal profiles of gene expression often exhibit

motifs that correspond to cascades of up-regulation/down-regulation patterns. For ex-

ample, in a study of a person’s host immune response after inoculation with a certain

pathogen, one would expect genes related to immune response to exhibit consistent

patterns of activation across pathogens, persons, and environmental conditions.

A simple approach to characterize the response patterns is to encode them as

sequences of a few basic motifs such as (see, for instance, (SLMB07)):

� Up-regulation: Gene expression changes from low to high.

� Down-regulation: Gene expression changes from a high to a low level.

� Steady : Gene expression does not vary.

If gene expression is coherent over the population of several individuals, e.g., in re-

sponse to a common viral insult, the response patterns can be expected to show some
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Figure 4.2: Example of gene patterns with a consistent precedence-order across 3
subjects. The down-regulation motif of gene CD1C precedes the peak
motif of gene ORM1 across these three subjects.

degree of consistency across subjects. Human immune system response is a highly

evolved system in which several biological pathways are recruited and organized over

time. Some of these pathways will be composed of genes whose expressions obey a

precedence-ordering, e.g., virally induced ribosomal protein production may precede

toll-like receptor activation and antigen presentation (AU00). This consistency ex-

ists despite temporal misalignment: even though the order is preserved, the specific

timing of these events can vary across the individuals. For instance, two different per-

sons can have different inflammatory response times, perhaps due to a slower immune

system in one of the subjects. This precedence-ordering of motifs in the sequence of

immune system response events is invariant to time shifts that preserve the ordering.

Thus if a motif in one gene precedes another motif in another gene for a few subjects,

we might expect the same precedence relationship to hold for all other subjects. Fig-

ure 4.2 shows two genes from (ZCV+09) whose motif precedence-order is conserved

across 3 different subjects. This conservation of order allows one to impose ordering

constraints on (4.2) without actually knowing the particular order or the particular

factors that obey the order-preserving property.

Often genes are co-regulated or co-expressed and have highly correlated expression

profiles. This can happen, for example, when the genes belong to the same signaling

pathway. Figure 4.3 shows a set of different genes that exhibit a similar expression

pattern (up-regulation motif). The existence of high correlation between large groups
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Figure 4.3: Example of gene patterns exhibiting co-expression for a particular subject
in the viral challenge study in (ZCV+09).

of genes allows one to impose a low rank property on the factorization in (4.2).

In summary, our OPFA model is based on the following assumptions:

� A1: Motif consistency across subjects : Gene expression patterns have consis-

tent (though not-necessarily time aligned) motifs across subjects undergoing a

similar treatment.

� A2: Motif sequence consistency across subjects : If motif X precedes motif Y

for subject s, the same precedence must hold for subject t 6= s.

� A3: Motif consistency across groups of genes: There are (not necessarily known)

groups of genes that exhibit the same temporal expression patterns for a given

subject.

� A4: Gene Expression data is non-negative: Gene expression on a microarray

is measured as an abundance and standard normalization procedures, such as

RMA (IHC+03), preserve the non-negativity of this measurement.

A few microarray normalization software packages produce gene expression scores that

do not satisfy the non-negativity assumption A4. In such cases, the non-negativity

constraint in the algorithm implementing (4.9) can be disabled. Note that in general,

only a subset of genes may satisfy assumptions A1 -A3.
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4.3 OPFA mathematical model

In the OPFA model, each of the S observations is represented by a linear combi-

nation of temporally aligned factors. Each observation is of dimension n× p, where n

is the number of time points and p is the number of genes under consideration. Let

F be an n × f matrix whose columns are the f common alignable factors, and let

M (F ,d) be a matrix valued function that applies a circular shift to each column of

F according to the vector of shift parameters d, as depicted in Figure 4.4. Then, we

can refine model (4.2) by restricting Ms to have the form:

Ms = M (F ,ds) . (4.3)

where ds ∈ {0, · · · , dmax}f and dmax ≤ n is the maximum shift allowed in our model.

This model is a generalization of a simpler one that restricts all factors to be aligned

but with a common delay:

Ms = UsF , (4.4)

where Us is a circular shift operator. Specifically, the fundamental characteristic of

our model (4.3) is that each column can have a different delay, whereas (4.4) is a

restriction of (4.3) with ds
i = ds

j for all s and all i, j.

The circular shift is not restrictive. By embedding the observation into a larger

time window it can accommodate transient gene expression profiles in addition to

periodic ones, e.g., circadian rhythms (TPWH10). There are several ways to do this

embedding. One way is to simply extrapolate the windowed, transient data to a

larger number of time points nF = n + dmax. This is the strategy we follow in the

numerical experiments of Section IV-B.

This alignable factor model parameterizes each observation’s intrinsic temporal

dynamics through the f -dimensional vector ds. The precedence-ordering constraint

A2 is enforced by imposing the condition

ds1
j1
≤ ds1

j2
⇔ ds2

j1
≤ ds2

j2
∀s2 6= s1, (4.5)

that is, if factor j1 precedes factor j2 in subject s1, then the same ordering will hold

in all other subjects. Since the indexing of the factors is arbitrary, we can assume

without loss of generality that ds
i ≤ ds

i+1 for all i and all s. This characterization

constrains each observation’s delays ds independently, allowing for a computationally
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Figure 4.4: Each subject’s factor matrix Ms is obtained by applying a circular shift
to a common set of factors F parameterized by a vector d.

efficient algorithm for fitting model (4.3).

4.3.1 Relationship to 3-way factor models.

Our proposed OPFA framework is significantly different from other factor analysis

methods and these differences are illustrated in the simulated performance compar-

isons below. However, there are some similarities, especially to 3-way factor models

(KB09), (Com02) that are worth pointing out.

An n-th order tensor or n-way array is a data structure whose elements are indexed

by an n-tuple of indices (Com02). n-way arrays can be seen as multidimensional

generalizations of vectors and matrices: an 1-way array is a vector and a 2-way

array is a matrix. Thus, we can view our observations Xs as the slices of a third

order tensor X of dimension p × n × S: Xs = X·,·,i. Tensor decompositions aim

at extending the ideas of matrix (second order arrays) factorizations to higher order

arrays (KB09), (Com02) and have found many applications in signal processing and

elsewhere (Com02), (KB09), (BL10), (SGB00), (DLDMV00). Since our data tensor

is of order 3, we will only consider here 3-way decompositions, which typically take

the following general form:

Xi,j,k =
P

∑

p=1

Q
∑

q=1

R
∑

r=1

GpqrFipBjqCkr (4.6)

where P , Q, R are the number of columns in each of the factor matrices F , B, C

and G is a P × Q × R tensor. This class of decompositions is known as the Tucker

model. When orthogonality is enforced among F , B, C and different matrix slices
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of G, one obtains the Higher Order SVD (BL10). When G is a superdiagonal tensor1

and P = Q = R, this model amounts to the PARAFAC/Canonical Decomposition

(CP) model (CC70), (SGB00), (DLDMV00). The PARAFAC model is the closest to

OPFA. Under this model, the slices of Xi,j,k can be written as:

XCP
s = Fdiag (C·,s) B′. (4.7)

This expression is to be compared with our OPFA model, which we state again here

for convenience:

XOPFA
s = M (F ,ds) As. (4.8)

Essentially, (4.7) shows that the PARAFAC decomposition is a special case of the

OPFA model (4.8) where the factors are fixed (Ms = F ) and the scores only vary

in magnitude across observations (As = diag (C·,s) B′). This structure enhances

uniqueness (under some conditions concerning the linear independence of the vectors

in F , B, C, see (KB09)) but lacks the additional flexibility necessary to model

possible translations in the columns of the factor matrix F . If ds = 0 for all s, then

the OPFA (4.8) and the Linear Factor model (4.1) also coincide. The OPFA model

can be therefore seen as an extension of the Linear Factor and PARAFAC models

where the factors are allowed to experiment order-preserving circular translations

across different individuals.

4.3.2 OPFA as an optimization problem

OPFA tries to fit the model (4.2)-(4.5) to the data {Xs}S
s=1. For this purpose, we

define the following penalized and constrained least squares problem:

min
∑S

s=1 ||Xs − M (F ,ds) As||2F + λP1 (A1, · · · ,AS) + βP2 (F ) (4.9)

s.t. {ds}s ∈ K,F ∈ F ,As ∈ As

where ||·||F is the Frobenius norm, λ and β are regularization parameters, and the

set K constrains the delays ds to be order-preserving:

K =
{

d ∈ {0, · · · , dmax}f : di+1 ≥ di,∀i
}

. (4.10)

where dmax ≤ n. The other soft and hard constraints are briefly described as follows.

1G is superdiagonal tensor when Gijk = 0 except for i = j = k.
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For the gene expression application we wish to extract factors F that are smooth

over time and non-negative. Smoothness will be captured by the constraint that

P2(F ) is small where P2(F ) is the squared total variation operator

P2 (F ) =

f
∑

i=1

||WF·,i||22 (4.11)

where W is an appropriate weighting matrix and F·,i denotes the i-th column of

matrix F . From A4, the data is non-negative and hence non-negativity is enforced

on F and the loadings As to avoid masking of positive and negative valued factors

whose overall contribution sums to zero. To avoid numerical instability associated

with the scale invariance MA = 1
α
MαA for any α > 0, we constrain the Frobenius

norm of F . This leads to the following constraint sets:

F =
{

F ∈ R
n×f
+ : ||F ||F ≤ δ

}

(4.12)

As = R
f×p
+ , s = 1, · · · , S

The parameter δ above will be fixed to a positive value as its purpose is purely

computational and has little practical impact. Since the factors F are common to all

subjects, assumption A3 requires that the number of columns of F (and therefore, its

rank) is small compared to the number of genes p. In order to enforce A1 we consider

two different models. In the first model, which we shall name OPFA, we constrain the

columns of As to be sparse and the sparsity pattern to be consistent across different

subjects. Notice that A1 does not imply that the mixing weights As are the same

for all subjects as this would not accommodate magnitude variability across subjects.

We also consider a more restrictive model where we constrain A1 = · · · = AS = A

with sparse A and we call this model OPFA-C, the C standing for the additional

constraint that the subjects share the same sequence A of mixing weights. The OPFA-

C model has a smaller number of parameters than OPFA, possibly at the expense of

introducing bias with respect to the unconstrained model. A similar constraint has

been succesfully adopted in (JSD10) in a factor model for multi-view learning.

Similarly to the approach taken in (MBP+10) in the context of simultaneous

sparse coding, the common sparsity pattern for OPFA is enforced by constraining

P1 (A1, · · · ,AS) to be small, where P1 is a mixed-norm group-Lasso type penalty

function (YL06b). For each of the p× f score variables, we create a group containing
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its S different values across subjects:

P1 (A1, · · · ,AS) =

p
∑

i=1

f
∑

j=1

‖ [A1]j,i · · · [AS]j,i ‖2. (4.13)

Table 4.2 summarizes the constraints of each of the models considered in this chapter.

Following common practice in factor analysis, the non-convex problem (4.9) is

addressed using Block Coordinate Descent, which iteratively minimizes (4.9) with

respect to the shift parameters {ds}S
s=1, the scores {As}S

s=1 and the factors F while

keeping the other variables fixed. Starting from an initial estimate of F and {As}S
s=1,

and given ǫ, λ and β, at iteration t we compute:

{ds}S
s=1 ← EstimateDelays

(

F , {As}S
s=1

)

{As}S
s=1 ← EstimateScores

(

F , {ds}S
s=1

)

F ← EstimateFactors
(

{As}S
s=1 , {ds}S

s=1

)

t ← t + 1

and stop the algorithm whenever ct−1−ct ≥ ǫ. This algorithm is guaranteed to mono-

tonically decrease the objective function at each iteration. Since both the Frobenius

norm and P1 (·), P2 (·) are non-negative functions, this ensures that the algorithm

converges to a (possibly local) minima or a saddle point of (4.9).

The subroutines EstimateFactors and EstimateScores solve the following penalized

regression problems:

min
F

∑S
s=1 ||Xs − M (F ,ds) As||2F + β

∑f
i=1 ||WF·,i||22 (4.14)

s.t.











||F ||2F ≤ δ

Fi,j ≥ 0 i = 1, · · · , n,

j = 1, · · · , f

and

min
{As}S

s=1

∑S
s=1 ||Xs − M (F ,ds) As||2F + λ

∑p
i=1

∑f
j=1 ‖ [A1]j,i · · · [AS]j,i ‖2 (4.15)

s.t.











[As]j,i ≥ 0 i = 1, · · · , n,

j = 1, · · · , f,

s = 1, · · · , S

(4.16)
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Notice that in OPFA-C, we also incorporate the constraint A1 = · · · = AS in the

optimization problem above. The first is a convex quadratic problem with a quadratic

and a linear constraint over a domain of dimension fn. In the applications considered

here, both n and f are small and hence this problem can be solved using any standard

convex optimization solver. EstimateScores is trickier because it involves a non-

differentiable convex penalty and the dimension of its domain is equal to2 Sfp, where

p can be very large. In our implementation, we use an efficient first-order method

(PCP08) designed for convex problems involving a quadratic term, a non-smooth

penalty and a separable constraint set. These procedures are described in more

detail in Appendix C.3 and therefore we focus on the EstimateDelays subroutine.

EstimateDelays is a discrete optimization that is solved using a branch-and-bound

(BB) approach (LW66). In this approach a binary tree is created by recursively

dividing the feasible set into subsets (“branch”). On each of the nodes of the tree lower

and upper bounds (“bound”) are computed. When a candidate subset is found whose

upper bound is less than the smallest lower bound of previously considered subsets

these latter subsets can be eliminated (“prune”) as candidate minimizers. Whenever

a leaf (singleton subset) is obtained, the objective is evaluated at the corresponding

point. If its value exceeds the current optimal value, the leaf is rejected as a candidate

minimizer, otherwise the optimal value is updated and the leaf included in the list of

candidate minimizers. Details on the application of BB to OPFA are given below.

The subroutine EstimateDelays solves S uncoupled problems of the form:

min
d∈K

||Xs − M (F ,d) As||2F , (4.17)

where the set K is defined in (4.10). The “branch” part of the optimization is ac-

complished by recursive splitting of the set K to form a binary tree. The recursion

is initialized by setting So = {0, · · · , dmax}f , Io = {d ∈ K ∩ So}. The splitting of the

set Io into two subsets is done as follows

I1 = {d ∈ K ∩ So : dω1 ≤ γ1} (4.18)

I2 = {d ∈ K ∩ So : dω1 > γ1} ,

and we update S1 = {d ∈ So : dω1 ≤ γ1}, S2 = {d ∈ So : dω1 > γ1}. Here γ1 is an

integer 0 ≤ γ1 ≤ dmax, and ω1 ∈ {1, · · · , f}. I1 contains the elements d ∈ K whose

ω1-th component is strictly larger than γ1 and I2 contains the elements whose ω1-th

2This refers to the OPFA model. In the OPFA-C model, the additional constraint A1 = · · · =
AS = A reduces the dimension to fp.
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component is smaller than γ1. The same kind of splitting procedure is then subse-

quently applied to I1, I2 and its resulting subsets. After k−1 successive applications

of this decomposition there will be 2k−1 subsets and the k-th split will be :

It := {d ∈ K ∩ St} (4.19)

It+1 := {d ∈ K ∩ St+1}

where

St = {d ∈ Sπk
: dωk

≤ γk}
St+1 = {d ∈ Sπk

: dωk
> γk} .

and πk ∈
{

1, · · · , 2k−1
}

denotes the parent set of the two new sets t and t + 1, i.e.

pa(t) = πk and pa(t + 1) = πk. In our implementation the splitting coordinate ωk

is the one corresponding to the coordinate in the set Iπk
with largest interval. The

decision point γk is taken to be the middle point of this interval.

The “bound” part of the optimization is as follows. Denote g (d) the objective

function in (4.17) and define its minimum over the set It ⊂ K:

gmin (It) = min
d∈It

g (d) . (4.20)

A lower bound for this value can be obtained by relaxing the constraint d ∈ K in

(4.19):

min
d∈St

g (d) ≤ gmin (It) (4.21)

Letting Xs = X⊥
s + X

‖
s where X

‖
s = XsA

†
sAs and X⊥

s = Xs

(

I − A†
sAs

)

, we have:

||Xs − M (F ,d) As||2F =
∣

∣

∣

∣

(

XsA
†
s − M (F ,d)

)

As

∣

∣

∣

∣

2

F

+
∣

∣

∣

∣Xs
⊥∣

∣

∣

∣

2

F
,

where A†
s denotes the pseudoinverse of As. This leads to:

λ
(

AsA
T
s

) ∣

∣

∣

∣XsA
†
s − M (F ,d)

∣

∣

∣

∣

2

F
+

∣

∣

∣

∣Xs
⊥∣

∣

∣

∣

2

F
≤ g (d) , (4.22)

where λ
(

AsA
T
s

)

denotes the smallest eigenvalue of the symmetric matrix AsA
T
s .

Combining the relaxation in (4.21) with inequality (4.22), we obtain a lower bound
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on gmin (It):

Φlb (It) = mind∈St
λ

(

AsA
T
s

) ∣

∣

∣

∣XsA
†
s − M (F ,d)

∣

∣

∣

∣

2

F

+
∣

∣

∣

∣Xs
⊥∣

∣

∣

∣

2

F

≤ gmin (It) , (4.23)

which can be evaluated by performing f decoupled discrete grid searches. At the k-th

step, the splitting node πk will be chosen as the one with smallest Φlb (It). Finally,

this lower bound is complemented by the upper bound

gmin (It) ≤ Φub (It) = g (d) for ∀d ∈ It. (4.24)

These bounds enable the branch-and-bound optimization of (4.17).

4.3.3 Selection of the tuning parameters f , λ and β

From (4.9), it is clear that the OPFA factorization depends on the choice of f ,

λ and β. This is a paramount problem in unsupervised learning, and several heuris-

tic approaches have been devised for simpler factorization models (OP09; Wol78;

WTH09). These approaches are based on training the factorization model on a sub-

set of the elements of the data matrix (training set) to subsequently validate it on

the excluded elements (test set).

The variational characterization of the OPFA decomposition allows for the pres-

ence of missing variables, i.e. missing elements in the observed matrices {Xs}S
s=1. In

such case, the Least Squares fitting term in (4.9) is only applied to the observed set of

indices3. We will hence follow the approach in (WTH09) and train the OPFA model

over a fraction 1 − δ of the entries in the observations Xs. Let Ωs denote the set of

δ (n × p) excluded entries for the s-th observation. These entries will constitute our

test set, and thus our Cross-Validation error measure is:

CV (f, λ, β) =
1

S

S
∑

s=1

∣

∣

∣

∣

∣

∣

∣

∣

[

Xs − M
(

F̂ , d̂s
)

Âs

]

Ωs

∣

∣

∣

∣

∣

∣

∣

∣

2

F

where F̂ ,
{

d̂s
}S

s=1
,
{

Âs

}S

s=1
are the OPFA estimates obtained on the training set

excluding the entries in {Ωs}S
s=1, for a given choice of f , λ, and β.

3See the Appendix C.3 and C.4 for the extension of the EstimateFactors, EstimateScores and
Estimatedelays procedures to the case where there exist missing observations.
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Model Ms As

OPFA Ms = M (F ,ds) Non-negative
ds ∈ K, F smooth sparse As

and non-negative
OPFA-C Ms = M (F ,ds) Non-negative

ds ∈ K, F smooth sparse
and non-negative A1 = · · · = AS

SFA Ms = M (F ,ds), Non-negative
ds = 0 ,F smooth sparse As

and non-negative

Table 4.2: Models considered in Section IV-A.
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Figure 4.5: Dictionary used to generated the 2-factor synthetic data of Section 4.4.

4.4 Numerical results

4.4.1 Synthetic data: Periodic model

First we evaluate the performance of the OPFA algorithm for a periodic model

observed in additive Gaussian white noise:

Xs = M (F ,ds) As + ǫs s = 1, . . . , S. (4.25)

Here ǫs ∼ Nn×p (0, σ2
ǫ I), ds = sort (ts) where σ2

ǫ is the variance of ǫs and ts ∼
U

(

0,
√

12σ2
d + 1

)

are i.i.d. The f = 2 columns of F are non-random smooth signals

from the predefined dictionary shown in Figure 4.5. The scores As are generated

according to a consistent sparsity pattern across all subjects and its non zero elements

are i.i.d. normal truncated to the non-negative orthant.
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Here the number of subjects is S = 10, the number of variables is p = 100, and

the number of time points is n = 20. In these experiments experiments we choose

to initialize the factors F with temporal profiles obtained by hierarchical clustering

of the data. Hierarchical clustering (HTF05) is a standard unsupervised learning

technique that groups the p variables into increasingly finer partitions according to

the normalized euclidean distance of their temporal profiles. The average expression

patterns of the clusters found are used as initial estimates for F . The loadings {As}S
s=1

are initialized by regressing the obtained factors onto the data.

We compare OPFA and OPFA-C to a standard Sparse Factor Analysis (SFA)

solution, obtained by imposing dmax = 0 in the original OPFA model. Table 4.2

summarizes the characteristics of the three models considered in the simulations.

We fix f = 2 and choose the tuning parameters (λ, β) using the Cross-Validation

procedure of Section 4.3.3 with a 5 × 3 grid and δ = .1.

In these experiments, we consider two measures of performance, the Mean Square

Error (MSE) with respect to the generated data:

MSE :=
1

S

S
∑

s=1

E
∣

∣

∣

∣

∣

∣
Ds − D̂s

∣

∣

∣

∣

∣

∣

2

F
,

where E is the expectation operator, Ds = M (F ,ds) As is the generated noiseless

data and D̂s = M
(

F̂ , d̂s
)

Âs is the estimated data, and the Distance to the True

Factors (DTF), defined as:

DTF := 1 − 1

f

f
∑

i=1

E
F T

·,iF̂·,i

||F·,i||2
∣

∣

∣

∣

∣

∣
F̂·,i

∣

∣

∣

∣

∣

∣

2

,

where F , F̂ are the generated and the estimated factor matrices, respectively.

Figure 4.6 shows the estimated MSE and DTF performance curves as a func-

tion of the delay variance σ2
d for fixed SNR= 15dB (which is defined as SNR =

10 log

(

1
S

∑

s

E(||M(F ,ds)As||2F )
npσ2

ǫ

)

). OPFA and OPFA-C perform at least as well as

SFA for zero delay (σd = 0) and significantly better for σd > 0 in terms of DTF.

OPFA-C outperforms OPFA for high delay variances σ2
d at the price of a larger MSE

due to the bias introduced by the constraint A1 = · · · = AS. In Figure 4.7 the per-

formance curves are plotted as a function of SNR, for fixed σ2
d = 5. Note that OPFA

and OPFA-C outperform SFA in terms of DTF and that OPFA is better than the

others in terms of MSE for SNR> 0db. Again, OPFA-C shows increased robustness
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DTF [ mean (standard deviation) ] ×10−3

SNR ρ = 0.002 ρ = 1.08 ρ = 53.94
22.8 0.0 (0.0) 3.4 (9.4) 1.9 (3.2)
−2 1.3 (0.5) 1 (9.4) 1.25 (1.5)

−27.1 46 (20) 58 (17) 63 (8)

MSE [ mean (standard deviation ×10−3) ]
SNR ρ = 0.002 ρ = 1.08 ρ = 53.94
22.8 0.02 (1.5) 0.05 (69) 0.11 (99)
−2 0.35 (7.9) 0.36(22) 0.38 (32)

−27.1 0.96 (19) 0.99 (18) 1.00 (24)

Table 4.3: Sensitivity of the OPFA estimates to the initialization choice with respect
to the relative norm of the perturbation (ρ).

to noise in terms of DTF.

We also performed simulations to demonstrate the value of imposing the order-

preserving constraint in (4.17). This was accomplished by comparing OPFA to a

version of OPFA for which the constraints in (4.17) are not enforced. Data was

generated according to the model (4.25) with S = 4, n = 20, f = 2, and σ2
d = 5.

The results of our simulations (not shown) were that, while the order-preserving

constraints never degrade OPFA performance, the constraints improve performance

when the SNR is small (below 3dB for this example).

Finally, we conclude this sub-section by studying the sensitivity of the final OPFA

estimates with respect to the initialization choice. To this end, we initialize the

OPFA algorithm with the correct model perturbed with a random gaussian vector of

increasing variance. We analyze the performance of the estimates in terms of MSE

and DTF as a function of the norm of the model perturbation relative to the norm

of the noiseless data, which we denote by ρ. Notice that larger ρ corresponds to

increasingly random initialization. The results in Table 4.3 show that the MSE and

DTF of the OPFA estimates are very similar for a large range of values of ρ, and

therefore are robust to the initialization.

4.4.2 Experimental data: Predictive Health and Disease (PHD)

The PHD data set was collected as part of a viral challenge study that is described

in (ZCV+09). In this study 20 human subjects were inoculated with live H3N2

virus and Genechip mRNA gene expression in peripheral blood of each subject was

measured over 16 time points. The raw Genechip array data was pre-processed using
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Figure 4.6: MSE (top) and DTF (bottom) as a function of delay variance σ2
d for

OPFA and Sparse Factor Analysis (SFA). These curves are plotted with
95% confidence intervals. For σ2

d > 0, OPFA outperforms SFA both in
MSE and DTF, maintaining its advantage as σd increases. For large σd,
OPFA-C outperforms the other two.
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Figure 4.7: Same as Figure 4.6 except that the performance curves are plotted with
respect to SNR for fixed σ2

d = 5.

robust multi-array analysis (IHC+03) with quantile normalization (BIAS03). In this

section we show results for the constrained OPFA model (OPFA-C). While not shown

here, we have observed that OPFA-C gives very similar results to unconstrained OPFA

but with reduced computation time.

Specifically, we use OPFA-C to perform the following tasks:
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1. Subject Alignment: Determine the alignment of the factors to fit each subject’s

response, therefore revealing each subject’s intrinsic response delays.

2. Gene Clustering: Discover groups of genes with common expression signature

by clustering in the low-dimensional space spanned by the aligned factors. Since

we are using the OPFA-C model, the projection of each subject’s data on this

lower dimensional space is given by the scores A := A1 = · · · = AS. Genes

with similar scores will have similar expression signatures.

3. Symptomatic Gene Signature discovery: Using the gene clusters obtained in

step 2 we construct temporal signatures common to subjects who became sick.

The data was normalized by dividing each element of each data matrix by the

sum of the elements in its column. Since the data is non-negative valued, this will

ensure that the mixing weights of different subjects are within the same order of

magnitude, which is necessary to respect the assumption that A1 = · · · = AS in

OPFA-C. In order to select a subset of strongly varying genes, we applied one-way

Analysis-Of-Variance (NWK+96) to test for the equality of the mean of each gene at 4

different groups of time points, and selected the first p = 300 genes ranked according

to the resulting F-statistic. To these gene trajectories we applied OPFA-C to the

S = 9 symptomatic subjects in the study. In this context, the columns in F are

the set of signals emitted by the common immune system response and the vector

ds parameterizes each subject’s characteristic onset times for the factors contained in

the columns of F . To avoid wrap-around effects, we worked with a factor model of

dimension n = 24 in the temporal axis.

The OPFA-C algorithm was run with 4 random initializations and retained the

solution yielding the minimum of the objective function (6). For each f = 1, · · · , 5

(number of factors), we estimated the tuning parameters (λ, β) following the Cross-

Validation approach described in 4.3.3 over a 10×3 grid. The resulting results, shown

in Table 4.4 resulted in selecting β = 1×10−8, λ = 1×10−8 and f = 3. The choice of

three factors is also consistent with an expectation that the principal gene trajectories

over the period of time studied are a linear combination of increasing, decreasing or

constant expression patterns (ZCV+09).

To illustrate the goodness-of-fit of our model, we plot in Figure 4.8 the observed

gene expression patterns of 13 strongly varying genes and compare them to the OPFA-

C fitted response for three of the subjects, together with the relative residual error.

The average relative residual error is below 10% and the plots demonstrate the agree-

ment between the observed and the fitted patterns. Figure 4.9 shows the trajectories
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f = 1 f = 2 f = 3 f = 4 f = 5
min CV (f, λ, β) 20.25 13.66 12.66 12.75 12.72
Relative residual 7.2 4.8 4.5 4.5 4.4
error (×10−3)

λ̂(×10−8) 5.99 1 1 1 35.9

β̂ (×10−6) 3.16 3.16 0.01 0.01 100

Table 4.4: Cross Validation Results for Section 4.4.2.
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Figure 4.8: Comparison of observed (O) and fitted responses (R) for three of the
subjects and a subset of genes in the PHD data set. Gene expression
profiles for all subjects were reconstructed with a relative residual error
below 10%. The trajectories are smoothed while respecting each subject’s
intrinsic delay.

for each subject for four genes having different regulation motifs: up-regulation and

down-regulation. It is clear that the gene trajectories have been smoothed while con-

serving their temporal pattern and their precedence-order, e.g. the up-regulation of

gene OAS1 consistently follows the down-regulation of gene ORM1.

In Figure 4.10 we show the 3 factors along with the factor delays and factor loading
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Figure 4.9: Comparison of observed (O) and fitted responses (R) for four genes
(OAS1, CCR1, CX3CR1, ORM1 ) showing up-regulation and down-
regulation motifs and three subjects in the PHD dataset. The gene tra-
jectories have been smoothed while conserving their temporal pattern
and their precedence-order. The OPFA-C model revealed that OAS1
up-regulation occurs consistently after ORM1 down-regulation among all
subjects.

discovered by OPFA-C. The three factors, shown in the three bottom panels of the

figure, exhibit features of three different motifs: factor 1 and factor 3 correspond to up-

regulation motifs occurring at different times; and factor 2 is a strong down-regulation

motif. The three top panels show the onset times of each motif as compared to the

clinically determined peak symptom onset time. Note, for example, that the strong

up-regulation pattern of the first factor coincides closely with the onset peak time.

Genes strongly associated to this factor have been closely associated to acute anti-
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Figure 4.10: Top plots: Motif onset time for each factor (2) and peak symptom time
reported by expert clinicians (O). Bottom plots: Aligned factors for each
subject. Factor 1 and 3 can be interpreted as up-regulation motifs and
factor 2 is a strong down-regulation pattern. The arrows show each
factor’s motif onset time.

viral and inflammatory host response (ZCV+09). Interestingly, the down-regulation

motifs associated with factor 2 consistently precedes this up-regulation motif.

Finally, we consider the application of OPFA as a pre-processing step preceding

a clustering analysis. Here the goal is to find groups of genes that share similar ex-

pression patterns and determine their characteristic expression patterns. In order to

obtain gene clusters, we perform hierarchical clustering on the raw data ({Xs}S
s=1)

and on the lower dimensional space of the estimated factor scores ( {As}S
s=1), obtain-

ing two different sets of 4 well-differentiated clusters. We then compute the average

expression signatures of the genes in each cluster by averaging over the observed data

({Xs}S
s=1) and averaging over the data after OPFA correction for the temporal mis-

alignments. Figure 4.11 illustrates the results. Clustering using the OPFA-C factor

scores produces a very significant improvement in cluster concentration as compared

to clustering using the raw data {Xs}S
s=1. The first two columns in Figure compare

the variation of the gene profiles over each cluster for the temporally realigned data

(labeled `A´) as compared to to the profile variation of these same genes for the
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Figure 4.11: The first two columns show the average expression signatures and their
estimated upper/lower confidence intervals for each cluster of genes ob-
tained by: averaging the estimated Aligned expression patterns over the
S = 9 subjects (A) and directly averaging the misaligned observed data
for each of the gene clusters obtained from the OPFA-C scores (M).
The confidence intervals are computed according to +/− the estimated
standard deviation at each time point. The cluster average standard
deviation (σ) is computed as the average of the standard deviations at
each time point. The last column shows the results of applying hierar-
chical clustering directly to the original misaligned dataset {Xs}S

s=1. In
the first column, each gene expression pattern is obtained by mixing the
estimated aligned factors F according to the estimated scores A. The
alignment effect is clear, and interesting motifs become more evident.

misaligned observed data (labeled `M´). For comparison, the last column shows the

results of applying hierarchical clustering directly to the original misaligned dataset

{Xs}S
s=1. It is clear that clustering on the low-dimensional space of the OPFA-C

scores unveils interesting motifs from the original noisy temporal expression trajecto-

ries.
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4.5 Conclusions

We have proposed a general method of order-preserving factor analysis that ac-

counts for possible temporal misalignments in a population of subjects undergoing a

common treatment. We have described a simple model based on circular-shift trans-

lations of prototype motifs and have shown how to embed transient gene expression

time courses into this periodic model. The OPFA model can significantly improve

interpretability of complex misaligned data. The method is applicable to other signal

processing areas beyond gene expression time course analysis.

A Matlab package implementing OPFA and OPFA-C is available at the Hero

Group Reproducible Research page (http://tbayes.eecs.umich.edu).
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CHAPTER V

Misaligned Principal Components Analysis

5.1 Introduction

Principal Component Analysis (PCA) (Hot33) is a widely used technique for

dimensionality-reduction of high dimensional data, with applications in pattern recog-

nition (PK93), blind channel estimation (MDCM02) and network-traffic anomaly de-

tection (LCD04). In all these applications, PCA can be used to separate the latent

features corresponding to signal from the random fluctuations of noise. The extracted

features can then be utilized for interpretation, classification or prediction purposes.

The fundamental assumption underlying this approach is that the signal lies in a

lower dimensional subspace, while the noise is random and isotropic; spreading its

power across all directions in the observation space.

Unfortunately, in many cases, despite the appropriateness of the low-dimensional

subspace model, measurement limitations can lead to different observations revealing

very different signal subspaces. One important situation where this occurs arises when

the sampling times of each observation batch cannot be synchronized appropriately.

These synchronizations problems can be viewed as due to (i) technical limitations in

the sampling procedure or (ii) different temporal latencies of the phenomena under

study. Examples of the first appear in music signal processing (BD05) or uncalibrated

arrays of antennas (NM96; SK00),

The second situation occurs for instance in multi-path communications (VdVVP02),

sensor network-based geolocalization systems (PHIP+03), speech (CB83), image (PK93),

genomic (TPWZ+11; BJ04), proteomic (FGR+06) or Electro-cardiogram (ECG) (SL06)

signal processing. In the previous chapter, we considered an Order Preserving Factor

Analysis (OPFA) model that accounted for order-preserving circular shifts in each

factor and we demonstrated its effectiveness for extracting order-preserving factors
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from misaligned data. Here, we propose an alternative approach to OPFA that ap-

plies to misaligned data without order restrictions and is applicable to larger sample

sizes.

In this chapter, we first consider the limitations of PCA for the problem of es-

timating a rank-F , F ≥ 1, signal subspace from high-dimensional misaligned data.

We introduce a modified version of PCA, called Misaligned PCA (MisPCA), which

simultaneously aligns the data and estimates the aligned signal subspace.

The chapter is divided into two parts. First, we propose a simple approxima-

tion of the combinatorial MisPCA estimation problem that considerably improves

the PCA estimate whenever misalignments are present. Second, building on recent

results in random matrix theory (Pau07; BGN11), we derive high-dimensional asymp-

totic results that characterize the minimum SNR necessary to detect and estimate

the signal from the sample covariance under a Gaussian observation model. (The

Gaussian model assumption is common in our setting but may not be necessary for

the derivation of the theoretical results, as illustrated by the more general setting of

(BGN11).)

This chapter is organized as follows. Section 5.2 introduces the misaligned signal

model. We give algorithms for Misaligned PCA in Section 5.3. Section 5.4 studies the

statistical effects of misalignments on the sample covariance. We present numerical

results and a gene expression data analysis application in Section 5.5 and we conclude

the chapter in Section 4.5.

5.2 Problem Formulation

We consider the following discrete-time, circularly misaligned, rank-F signal model,

xi [k] =
∑F

f=1 ai
fhf [k − di] + ǫi [k] , i = 1, · · · , n. (5.1)

Here hf [k] are unknown orthogonal real sequence of length equal to p and indexed by

k, and the integer valued elements of the vector d ∈ {0, · · · , dmax}n parameterize the

amount of circular shift in each observation, with dmax < p. For each i = 1, · · · , n, the

random variables ai are i.i.d, zero-mean Gaussian and the p-length sequences ǫi [k] are

i.i.d., zero-mean Gaussian white processes. To simplify the notation, we will further

assume that E [ǫ2
i [k]] = 1 and

∑p
k=1 h2

f [k] = 1. We denote each component’s power

by:

σf = E
[

(

ai
f

)2
]

, f = 1, · · · , F. (5.2)

100



The signal-to-noise ratio (SNR) of model (5.1) is defined as:

SNR = max
f=1,··· ,F

σf

E [ǫ2
i [k]]

, (5.3)

and we define each component’s normalized power as:

σ̄f =
σf

maxf=1,··· ,F σf

, f = 1, · · · , F. (5.4)

The problem considered in this paper is that of estimating the signal sequences hf [k],

f = 1, · · · , F , from a collection of observations obeying model (5.1). For convenience,

we will write (5.1) in vector form:

xi = Cdi
Hai + ǫi, i = 1, · · · , n,

where xi and ǫi are p-dimensional real vectors, ai is a real vector of dimension F ,

H = [H1, · · · ,HF ] is a p × F matrix of factors such that HT H = IF , and Cdi
is a

p × p circular shift matrix with shift equal to di:

[Cdi
]k,l =

{

1 if k = (di + l) mod p

0 otherwise.

Using the properties of ai and ǫi we can conclude that xi follows a multivariate

Gaussian distribution with zero mean and covariance:

Σi = E
[

xix
T
i

]

= SNRCdi
Hdiag σ̄HT CT

di
+ Ip. (5.5)

5.3 Algorithms

In general, the covariance matrix of each observation is not the same for all

i = 1, · · · , n. However, equation (5.5) reflects an underlying rank-F structure corre-

sponding to the signals H . In this section we propose to exploit this fact by estimat-

ing H from the joint likelihood of the misaligned data {xi}n
i=1. The log-likelihood

function is:

l (H ,d,σ) = c −
n

∑

i=1

tr
(

Σ−1
i xix

T
i

)

−
n

∑

i=1

log detΣi
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where c denotes a constant independent of the relevant parameters. Using the

Sherman-Morrison-Woodbury matrix inversion formula,

l (H ,d,σ) = c + n
F

∑

f=1

σf

1 + σf

HT
f S (d) Hf − n

F
∑

f=1

log (σf + 1) ,

where, for any τ ∈ {0, · · · , dmax}n, possibly different from d, we define the p × p

matrix:

S (τ ) =
1

n

n
∑

i=1

CT
τi
xix

T
i Cτi

. (5.6)

This quantity can be interpreted as an aligned sample covariance matrix, with align-

ment parameter equal to τ . When τ = 0, this coincides with the sample covariance.

Maximizing l (H ,d,σ) under the constraints HT I = IF , for fixed σ leads to the

Misaligned Principal Component Analysis (MisPCA) solution:

λMisPCA = max
F

∑

f=1

λf (S (τ )) (5.7)

s.t. τ ∈ {0, · · · , dmax}n ,

which consists of finding the alignment vector τ that maximizes the first F eigenvalues

of the aligned covariance S (τ ). The optimal alignment is denoted by dMisPCA, and

the corresponding MisPCA signal estimates are given by:

HMisPCA = VF

(

S
(

dMisPCA
))

,

where VF (X) denotes the matrix constructed from the first F leading eigenvectors

of a matrix X. To estimate the σ, it suffices to maximize l
(

HMisPCA,dMisPCA,σ
)

under the constraint σf ≥ 0. The optimum occurs at (see Appendix D.1):

σMisPCA
f =

{

0 if λMisPCA
f < 1

λMisPCA
f − 1 otherwise.

(5.8)

5.3.1 PCA and Alternate MisPCA (A-MisPCA) approximations

Unfortunately, the MisPCA problem (5.7) is combinatorial, and exhaustive search

is prohibitive even for small n. Here we consider two simple approximate solutions

to (5.7). The first approximation ignores the misalignments altogether, i.e. solving
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(5.7) with d = 0. This leads to the usual PCA estimate of H :

HPCA = VF (S (0)) . (5.9)

The second approximation, alternatively estimates d and H . At each iteration

t > 1, we compute:

dA-MisPCA
t = arg max

τ∈{0,··· ,dmax}n
tr

(

S (τ ) HA-MisPCA
t−1

)

HA-MisPCA
t = VF

(

S
(

dA-MisPCA
t

))

(5.10)

where we set HA-MisPCA
0 to an initial estimate of H and stop the algorithm when the

change in likelihood is sufficiently small. We call this procedure Alternating MisPCA

(A-MisPCA).

5.3.2 Sequential MisPCA (S-MisPCA)

The Alternating MisPCA described in the previous section updates the estimates

dA-MisPCA
t and HA-MisPCA

t at each iteration based on knowledge of the entire batch

of observations, with which we need to compute the misaligned covariance for each

element in {0, · · · , dmax}n. This might be computationally restrictive for very large n,

and is not adapted to situations where we may receive the data sequentially such as

real-time applications. In this section we propose a simple algorithm that sequentially

aligns each new observation to the previous estimates and updates the estimates for

d and H accordingly. At iteration t, the Sequential MisPCA (S-MisPCA) algorithm

computes:

dS-MisPCA
t = arg max

τ∈{0,··· ,dmax}
tr

(

t − 1

t

(

St−1
(

dS-MisPCA
t−1

)

+
1

t
CT

τ xtx
T
t Cτ

)

HS-MisPCA
t−1

)

HS-MisPCA
t = VF

(

St
(

dS-MisPCA
t

))

(5.11)

where St−1
(

dS-MisPCA
t−1

)

denotes the aligned covariance of the preceding t− 1 observa-

tions:

St−1 (τ ) =
1

t − 1

t−1
∑

i=1

CT
τi
xix

T
i Cτi

.

This algorithm has lower complexity than A-MisPCA, at the price of lower perfor-

mance, as we will numerically study in Section 5.5.3.
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5.4 Statistics of the misaligned covariance

The performance of the algorithms presented in the last section depend on the

statistics of the leading eigenvalue and eigenvector of the random matrix S (τ ), for

a fixed, deterministic τ . In this section, we use recent asymptotic results on the

spectrum of large random matrices (Pau07; BGN11) to characterize the asymptotic

behavior of λ1 (S (τ )) and v1 (S (τ )).

Before we proceed to state our main result, we will need to define the following

quantities. For any t ∈ {0, · · · , p − 1}n, define the function s (t) : {0, · · · , p − 1}n →
{0, · · · , n}p, with coordinates given by:

si (t) =
| {j ∈ {1, · · · , n} : tj = i − 1} |

n
(5.12)

where |S| denotes the cardinality of a set S. (One can interpret s (t) = [s1 (t) , · · · , sp (t)]

as a histogram of the values in t.) In addition, for any H ∈ R
p×F , we define the fol-

lowing Fp × Fp symmetric, block-Toeplitz matrix RH , with elements:

[RH ]Fk+i,F l+j = HT
k Ci−jHl

{

1 ≤ i, j ≤ F

0 ≤ k, l ≤ p
(5.13)

This matrix specializes to the autocorrelation matrix of H , Rh, when F = 1. For

F > 1, RH can be interpreted as a multi-dimensional autocorrelation matrix.

Under the assumptions of Section 5.2, is is easy to show that the expected value

of the matrix S (τ ) is given by:

Σ (τ ) := E [S (τ )] = SNRHdiag (s (d−pτ ) ⊗ σ̄) H
T + Ip,

and we call this matrix the aligned population covariance, where

H =
[

H C1H · · · Cp−1H

]

,

d denotes the true alignment parameter with which the data was generated, and −p

indicates a modulo p subtraction.

In the classical fixed p, large n setting, it is known that S (τ ) converges to Σ (τ ),

and hence so does its corresponding eigenstructure. In this section, we consider the

following high-dimensional setting, where p is allowed to grow with n:

(A1) The number of variables p = pn grows linearly with the number of samples n,
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and as n tends to infinity,

lim
n→∞

pn

n
= c > 0. (5.14)

Note that this includes the possibility of pn being larger than the number of

observations n.

(A2) The observations xi, i = 1, · · · , n, are Gaussian and obey model (5.5), with

parameters SNR, σ̄, H and d, defined in Section 5.2.

(A3) The first F eigenvalues of the aligned population covariance, Σ (τ ), defined in

(5.14), have multiplicity one.

The following result shows that the leading eigenpairs of S (τ ) matches those of

Σ (τ ) only if the SNR is higher than a phase transition SNR which depends on the

unknown parameters of the model, H and d.

Theorem V.1. Let τ ∈ {0, · · · , dmax}n, and S (τ ), Σ (τ ) be the pn × pn aligned

sample and population covariance matrices evaluated at τ , defined in (5.6) and (5.14),

respectively. Then, under assumptions (A1)-(A3), as n → ∞ we have:

λf (S (τ ))
a.s.→







(SNRγf + 1)
(

1 + c

SNRγf

)

SNR >
√

c
γf

(1 +
√

c)2 otherwise,

and:

|〈vf (S (τ )) ,vf (Σ (τ ))〉|2 a.s.→







(SNRγf)
2−c

(SNRγf)
2
+cSNRγf

SNR >
√

c
γf

0 otherwise,

where
a.s.→ denotes almost sure convergence, and c is defined in (5.14). Here, γf is the

gain/loss affecting the f -th eigenvector of S (τ ) due to τ being different from d, and

is given by:

γf = λf

(

diag (s (d−pτ ) ⊗ σ̄)
1
2 RHdiag (s (d−pτ ) ⊗ σ̄)

1
2

)

, (5.15)

where s (t) and RH are defined in (5.12) and (5.13), respectively.

See Appendix D.2 for a proof. This result is better understood graphically. Figures

5.1 and 5.2 show the average |〈vf (S (0)) ,wf〉|2 computed over 50 random realizations
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Figure 5.1: Predicted and average values of λf (S (0)) and |〈vf (S (0)) ,vf (Σ (0))〉|2 ,
f = 1, · · · , 3, for H ∈ R

p×3 equal to three orthogonal pulses with narrow
support (their support is much smaller than the dimension of the signal),
shown in the top panel. The predictions of Theorem V.1 are shown in
solid lines, the empirical average obtained over 50 random realizations
are shown dashed. As p and n increase, the empirical results get closer
to the predicted values. Notice that in this experiment the first three
eigenvalues of the population covariance are close to each other, rendering
the estimation of the corresponding eigenvectors harder. Figure 5.2 shows
the results of the same experiment with pulses of larger width.

generated with model (5.1) for H ∈ R
p×3, n = p samples and two choices of H . Notice

that the empirical results accurately match the asymptotic theory.
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Figure 5.2: Same as in Figure 5.1 for H ∈ R
p×3 equal to three orthogonal pulses with

large support (their support is in the order of the dimension of the signal).
Notice that in this case the eigenvalues of the population covariance are
more spaced than in the results of Figure 5.1, as reflected by the distance
between the phase transition points of each eigenpair, and the convergence
of the empirical results to the predictions is faster.

Theorem V.1 determines a “no-hope” regime for PCA and MisPCA. Consider for

instance the PCA estimate, where τ = 0. Then Theorem V.1 implies that if the SNR
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is smaller than

1

λf

(

diag (s (d) ⊗ σ̄)
1
2 RHdiag (s (d) ⊗ σ̄)

1
2

)

√
c, (5.16)

then each of the PCA estimates, defined in (5.9), is orthogonal to the corresponding

eigenvector of Σ (0), which contains partial information about the underlying signal

H . The scalar accompanying
√

c in (5.16) can be interpreted as a tradeoff between

the magnitude of the misalignments and the smoothness of the signal H , as we will

explore in the following sections.

More generally, if SNR ≤
√

c
γF

for any τ ∈ {0, · · · , dmax}n, then the first part of

Theorem V.1 asserts that the MisPCA objective in (5.7) is almost surely uninforma-

tive:

F
∑

f=1

λf (S (τ ))
a.s.→ (1 +

√
c)2F as n → ∞,

and hence there is little hope for recovering d and H .

In order to apply Theorem V.1 in a practical scenario, one would need to know

both H and d beforehand, to subsequently compute the gain/losses due to misalig-

ments, γf , and determine minimum operating SNR at which estimation is possible.

In the following sections we give results that will allow us to characterize γf for each

f , from only partial information about H and d.

5.4.1 PCA under equispaced, deterministic misalignments

We consider first the simplest situation where we take the PCA estimate, τ = 0,

and the misalignments d are deterministic and equispaced over {0, · · · , dmax}, in the

following sense: For each k ∈ {0, · · · , dmax}, there are exactly n
dmax+1

observations

such that di = k. This implies that:

si (d) =

{

1
dmax+1

if 0 ≤ i ≤ dmax

0 otherwise.
(5.17)

Hence in such case Theorem V.1 implies that the “no-hope” regime includes all SNR

smaller than

dmax + 1

λ1

(

[RH ]Ω,Ω

)

√
c, with Ω = {1, · · · , dmax + 1} . (5.18)
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Of special interest is the case where F = 1, i.e. we have only a rank-1 signal. In

such case [RH ]Ω,Ω corresponds to a principal submatrix of the autocorrelation matrix

of H , which is a Toeplitz symmetric matrix parameterized by the autocorrelation

sequence of H , denoted by rh [k] and defined as:

rh [k] = HT CkH , 0 ≤ k ≤ p − 1. (5.19)

The following result, which is an application of a result in (Fer92) to bound the

eigenvalues of Toeplitz symmetric matrices, characterizes λ1

(

[Rh]Ω,Ω

)

as a function

of the Discrete Fourier spectrum of rh [k].

Theorem V.2. Let Rh be the (dmax + 1) × (dmax + 1) autocorrelation matrix of a

vector h,

[Rh]i,j = hT Ci−jh = rh [|i − j|] 0 ≤ i, j ≤ dmax.

where rh [k] is its autocorrelation sequence, defined in (5.19). Then,

ωi + δ − 1 ≤ λi (Rh) ≤ ωi + δ̄ − 1 (5.20)

where

ωi = i-th [Re r̂h [0] , · · · ,Re r̂h [dmax + 1]]

δ = min
k

Re r̂h

[

k +
1

2

]

δ̄ = max
k

Re r̂h

[

k +
1

2

]

where i-th x denotes the operator that returns the i-th largest element of a real vector

x, Re x denotes the real part of a complex number x and r̂h [k] is the Discrete Fourier

Transform of the autocorrelation sequence rh [k]:

r̂h [k] =
dmax
∑

i=0

rh [i] ej 2πi
dmax+1

k

Proof. It is clear that Rh is a Toeplitz symmetric matrix, since [Rh]i,j = [Rh]j,i =

[Rh]i+1,j+1 = rh [|i − j|]. We can hence use the results in (Fer92), which bound

the eigenvalues of a Toeplitz symmetric matrix with functions of the eigenvalues

of a circular matrix in which the original Toeplitz matrix can be embedded. Let
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c ∈ R
2(dmax+1) be the vector parameterizing a 2(dmax +1)×2(dmax +1) circular matrix

C, defined as:

[C]i,j = ci−2(dmax+1)j

where −p denotes a modulo 2(dmax + 1) subtraction. It is well-known that the eigen-

values of C, denoted here by µi are given by the discrete Fourier transform of the

sequence {ci}2(dmax+1)
i=1 :

µk =

2(dmax+1)
∑

i=1

cie
j2π(i−1)

2(dmax+1)
k. (5.21)

Notice that here the µi’s are not necessarily sorted in descending order. Choose:

c = [rh [0] , · · · , rh [dmax] , 0, rh [dmax] , · · · , rh [1]] (5.22)

and observe that the matrix Rh can be embedded in the circulant matrix C as follows:

[C]Ω,Ω = Rh, with Ω = {1, · · · , dmax + 1} .

Exploiting the properties of this embedding, the author in (Fer92) obtains the follow-

ing bounds:

1

2

[

i-th
[

µ0, µ2, · · · , µ2(dmax+1)

]

+ min
k

µ2k+1

]

≤ λi (Rh) (5.23)

λi (Rh) ≤
1

2

[

i-th
[

µ0, µ2, · · · , µ2(dmax+1)

]

+ max
k

µ2k+1

]

. (5.24)

The rest of our effort will be devoted to developing an expression of µ2k and µ2k+1 in

terms of the DFT of the sequence rh [k]. From (5.21) and (5.22):

µk =
dmax+1
∑

i=1

rh[i − 1]e
j2π(i−1)

2(dmax+1)
k +

2(dmax+1)
∑

i=dmax+3

rh[2(dmax + 1) − i + 1]e
j2π(i−1)

2(dmax+1)
k

= r̂h

[

k

2

]

+ ej2πk

dmax+1
∑

t=2

rh[t − 1]e
−j2π(t−1)
2(dmax+1)

k

= r̂h

[

k

2

]

+ r̂h

[

−k

2

]

− 1

where we have used the fact that rh[0] = 1, and r̂h[k] denotes the dmax + 1-points
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DFT of rh evaluated at k:

r̂h [k] =
dmax+1
∑

i=1

rh[i − 1]e
j2π(i−1)
dmax+1

k.

By properties of the DFT, we can conclude that:

µ2k = 2Re r̂h [k] − 1

µ2k+1 = 2Re r̂h

[

k +
1

2

]

− 1

Combining these expressions with the bounds in (5.23) yields (5.20).

Figure 5.3 shows the application of this result to bound the eigenvalues of two

signals of dimension 20, a rectangular and a triangular signals of increasing width,

denoted by W , 1 ≤ W ≤ dmax + 1, with dmax = 10.

Theorem V.2 seems to require knowledge of the spectrum of the autocorrelation

sequence of h[k] restricted to lags smaller or equal than dmax. This demands less a

priori information than knowing the signal itself, however, ideally, one would like to

derive bounds on the eigenvalues of Rh that depend solely on fewer parameters of the

signal. The answer to this question is affirmative, at least for a subset of signals, as

the following example illustrates.

Consider a rectangular signal of width 1 < W < dmax + 1:

Πi =

{

1√
W

if 1 ≤ i ≤ W

0 if W ≤ i ≤ p
(5.25)

The corresponding autocorrelation function is given by:

rΠ[i] =

{

1 − i
W

if 0 ≤ i ≤ W

0 otherwise.

and its (dmax + 1)-points DFT is:

r̂Π[k] =
W

∑

i=0

(

1 − i

W

)

e
j2πik

dmax+1

Using the formulae
∑Q

i=0 ρi = 1−ρQ+1

1−ρ
and

∑Q
i=0 iρi = ρ−(Q+1)ρQ+1+QρQ+2

(1−ρ)2
‘, we obtain
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Figure 5.3: Eigenvalues for the autocorrelation matrix Rh for two 20-dimensional
signals: a rectangular and a triangular signal of increasing width, denoted
by W , and dmax = 10. The upper and lower bounds for each eigenvalue
are computed using Theorem V.2.

that:

Q
∑

i=0

ρi − 1

Q

Q
∑

i=0

iρi =
Q − (Q + 1)ρ + ρQ+1

Q (1 − ρ)2
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Furthermore, for a complex ρ with unit magnitude, we have:

Q
∑

i=0

ρi − 1

Q

Q
∑

i=0

iρi =
Q − (Q + 1)ρ + ρQ+1

2Qρ (Reρ − 1)

=
Qρ−1 − (Q + 1) + ρQ

2Q (Reρ − 1)

Applying the above expression with Q = W and ρ = e
j2πk

dmax+1 yields:

r̂Π[k] =







−(W+1)+We
−j2πk

dmax+1 +e
j2πk

dmax+1
W

2W(cos( 2πk
dmax+1)−1)

if 1 ≤ k ≤ dmax + 1

W+1
2

if k = 0
.

Taking the real part:

Re r̂Π[k] =







−(W+1)+W cos( 2πk
dmax+1)+cos( 2πk

dmax+1
W)

2W(cos( 2πk
dmax+1)−1)

if 1 ≤ k ≤ dmax + 1

W+1
2

if k = 0
.

It is easy to check that Re r̂Π[k] ≥ 0 and that:

ω1 = max
k

Re r̂Π[k] =
W + 1

2
,

which allow us to apply Theorem V.2 to obtain:

W − 1

2
≤ λi (RΠ) .

Finally we combine this result with (5.18) to upper bound the “no-hope” SNR:

dmax + 1

λ1

(

[RH ]Ω,Ω

)

√
c ≤ 2 (dmax + 1)

W − 1

√
c. (5.26)

The right hand side of the above equation is an overestimator of the “no-hope” SNR

below which rectangular signals of width W become undetectable. This has a direct

application in certain multi-path communications environment, where the normalized

channel impulse response, denoted by c[k], can be well approximated as:

c[k] =
dmax
∑

i=0

aiδ[k − i]
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with ai independent, normal random amplitudes. In this setting, equation (5.26) gives

a sufficient minimum SNR at which the signal needs to be transmitted in order to

be able to recover it from the covariance matrix. Finally, observe that the “no-hope”

SNR exhibits a tradeoff between the amplitude of the misalignments and the width

of the signal, as the intuition might suggest.

5.4.2 PCA under random misalignments of small magnitude

We consider here the case where each element of the vector d is drawn inde-

pendently from a uniform distribution over {0, · · · , dmax}. The “small magnitude”

assumption here refers to the situation where dmax ≪ pn and grows very slowly with

pn.

First, we will characterize the asymptotic behavior of s (d). The i-th element of

s (d) is given by

si (d) =

{

1
n

∑n
j=1 I(dj, i) if 0 ≤ i ≤ dmax

0 if dmax + 1 ≤ i ≤ p
,

where I(x, y) is an indicator function that returns 1 if x = y and 0 otherwise. Since

the dj’s are drawn independently from one another and Var (I(dj, i)) = dmax

(dmax+1)2
, a

simple application of Chebyshev’s inequality shows that, as n → ∞,

si (d) →p
1

dmax + 1
, 0 ≤ i ≤ dmax,

where →p denotes convergence in probability. We can turn now to the problem of

estimating λ1

(

diag s (d)
1
2 RHdiag s (d)

1
2

)

as n → ∞. The function x ∈ R
2
+ →

[RH ]i,j
√

x1x2 is continuous in x for any i, j, hence we have, by Proposition 8.5 of

(Kee10):

diag s (d)
1
2 RHdiag s (d)

1
2 →p

1

dmax + 1
[RH ]Ω,Ω , as n → ∞, (5.27)

with Ω = {1, · · · , dmax + 1}, under a Frobenius norm metric. Finally, it is a well

known result of matrix analysis (see for instance, Appendix D in (HJ90)) that the

eigenvalue function of a real symmetric matrix is a continuous function of its argu-

ment. Combining this fact with Proposition 8.5 of (Kee10) allows us to conclude

that:

λ1

(

diag s (d)
1
2 RHdiag s (d)

1
2

)

→p
1

dmax + 1
λ1

(

[RH ]Ω,Ω

)

,
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where Ω = {1, · · · , dmax + 1}. This means that, as one would expect, the small

magnitude, random misalignment case essentially reduces to the case studied in the

previous section, Section 5.4.1.

5.4.3 Asymptotic bias of PCA under deterministic equispaced misalign-

ments

We have shown in the last section that misalignments can have a negative effect

at low SNR’s, where they may render the signal undetectable at the same level of

SNR where it would have been detectable if no misalignment was present. There is

however another perverse effect of misaligments that does not disappear as the SNR

or the sample size increases: the introduction of bias to the traditional PCA estimate.

In this section we will characterize the asymptotic bias in terms of the distance

between the estimated and the original subspace, which is spanned by the matrix H .

A reasonable measure of distance between the subspaces spanned by two matrices A

and B is given by:

d (A,B) =
∥

∥

∥
A

(

AT A
)†

AT − B
(

BT B
)†

BT
∥

∥

∥

2

F
, (5.28)

that is, the Frobenius distance between the projection matrices associated to each

one of these matrices. Precisely, we will compute the asymptotic distance between

the signal subspace spanned by H and the subspace spanned by the PCA estimate

VF (S (0)) := [v1 (S (0)) , · · · ,vF (S (0))] , (5.29)

as n → ∞ and SNR → ∞, for the deterministic equispaced misalignment model

discussed in Section 5.4.1. A word of caution is required here since VF (S (0)) is only

uniquely defined whenever the first F eigenvalues of S (0) counting multiplicities are

strictly larger than the p−F subsequent eigenvalues. If this is not the case, then there

is more than one possible VF (S (0)). As an example, if λ1 (S (0)) is of multiplicity

M > F , then there are
(

F
M

)

possibilities to construct VF (S (0)) and hence one would

need to define a criteria to decide which one of these possibilities is the right one to

compare H to.

In order to simplify our development, we will assume in the sequel that σ̄ = 1,

that is, that all the signal components have the same energy. Similar results could be

obtain with a generic σ̄, at the price of introducing additional notational burden.
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First, we observe that, by Theorem V.1, as n → ∞ and SNR → ∞ we have:

VF (S (0)) → VF (Σ (0)) . (5.30)

We will thus focus on the quantity d (H ,VF (Σ (0))), instead of its sample analog

d (H ,VF (S (0))). Since both H and VF (Σ (0)) are unitary matrices, this quantity

simplifies to:

d (H ,VF (Σ)) =
∥

∥

∥
HHT − VF (Σ)VF (Σ)T

∥

∥

∥

2

F

= 2
(

F − tr
(

VF (Σ)VF (Σ)T
HHT

))

, (5.31)

where we have denoted Σ (0) by Σ in order to alleviate the notation. It is clear from

the equation above that if

HTVF (Σ)VF (Σ)T
H = IF (5.32)

then d (H ,VF (Σ)) = 0. The following result shows that this is also a necessary

condition, and gives an expression for d (H ,VF (Σ)) that depends exclusively on the

spectrum of the multidimensional autocorrelation matrix of H , RH , defined in (5.13).

Theorem V.3. Assume that σ̄ = 1F×1 and that the misalignments are equispaced

and deterministic, so that s (d) is given by (5.17). Assume further that the first

F leading eigenvalues of Σ (0), counting multiplicities, are strictly larger than the

subsequent p − F , so that VF (Σ (0)) is uniquely defined. Then, the asymptotic bias

between the subspace spanned by the PCA estimate and the original signal, as n → ∞
and SNR → ∞, is strictly positive and given by:

d (H ,VF (Σ (0))) = 2
(

F − tr
(

VHΛF

(

R̃H

)

VT
H

))

> 0

unless

VHΛF

(

R̃H

)

VT
H = IF , (5.33)

where VH =
[

VF

(

R̃H

)]

{1,··· ,F},·
, and R̃H denotes the (dmax + 1) × (dmax + 1) upper

left principal submatrix of the autocorrelation matrix of H, defined in (5.13).
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Proof. First we observe that, since σ̄ = 1F×1 and s (d) is given by (5.17),

Σ = SNR Hdiag
([

1(dmax+1)×1,0(p−dmax−1)×1

]

⊗ 1F×1

)

H
T + Ip,

=
SNR

dmax + 1
H̃H̃

T
+ Ip,

where

H̃ = [H ,C1H , · · · ,CdmaxH ] .

Thus,

VF (Σ) = VF

(

H̃H̃
T
)

. (5.34)

In addition, by definition, the eigenvectors of H̃
T
H̃ are given by,

H̃
T
H̃vi

(

H̃
T
H̃

)

= λi

(

H̃
T
H̃

)

vi

(

H̃
T
H̃

)

and consequently,

H̃H̃
T

(

H̃vi

(

H̃
T
H̃

))

= λi

(

H̃
T
H̃

) (

H̃vi

(

H̃
T
H̃

))

,

which shows that the right hand side is a multiple of an eigenvector of H̃H̃
T
. Hence,

by (5.34):

VF (Σ) = H̃VF

(

R̃H

)

Λ
− 1

2
F

(

R̃H

)

(5.35)

where we define the autocorrelation matrix restricted to misalignments of magnitude

smaller or equal than dmax:

R̃H = H̃
T
H̃. (5.36)

Fan’s inequality (BL06) asserts that, for any two p × p symmetric matrices X and

Y ,

tr (XY ) ≤
p

∑

i=1

λi (X) λi (Y ) (5.37)

with equality only if X and Y have a simultaneous ordered spectral decomposition.
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Since λi

(

HHT
)

= λi

(

VF (Σ)VF (Σ)T
)

= 1 for i = 1, · · · , F , and 0 for F < i ≤ p,

we can use (5.37), to establish:

tr
(

VF (Σ)VF (Σ)T
HHT

)

≤ F (5.38)

with equality if and only if there exists a symmetric, orthogonal matrix Q such that

VF (Σ)VF (Σ)T = Qdiag ([1F×1,0p−F×1]) QT

HHT = Qdiag ([1F×1,0p−F×1]) QT

It follows that, for any such Q,

QTVF (Σ)VF (Σ)T
Q = QHHT QT

which implies that VF (Σ)VF (Σ)T = HHT and that the equality in (5.38) is attained

whenever:

HTVF (Σ)VF (Σ)T
H = I.

Replacing the expression for VF (Σ) obtained in (5.35) leads to the condition:

HT
H̃VF

(

R̃H

)

Λ−1
F

(

R̃H

)

VF

(

R̃H

)T

H̃
T
H = I (5.39)

Observe now that the matrix R̃H defined in (5.36) is a block Toeplitz matrix param-

eterized by the F × F matrix function:

rH (d) := HT CdH , (5.40)

that is,

[

R̃H

]

Bi,Bj

= rH (j − i) , where Bi = {(i − 1)F + 1, · · · , iF} .

Note also that, by definition of rH (d),

H̃
T
H = [rH (0) , rH (−1) , · · · , rH (−dmax)]

T (5.41)

=
[

rH (0) , rH (1)T , · · · , rH (dmax)
T
]T

.

which happens to correspond to the first column of the multidimensional autocorre-
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lation matrix R̃H . This has an interesting implication: the eigenvectors of a block-

Toeplitz matrix R̃H parameterized by a vector [rH (0) , · · · , rH (dmax)] satisfy:

[rH (0) , · · · , rH (dmax)] vi

(

R̃H

)

= λi

(

R̃H

) [

vi

(

R̃H

)]

I
(5.42)

where I = {1, · · · , F}.
Thus condition (5.39) reduces to:

[

VF

(

R̃H

)]

I,·
ΛF

(

R̃H

) [

VF

(

R̃H

)]T

I,·
= I, (5.43)

which proves (5.33).

This result is perhaps surprising in that the asymptotic bias solely depends on

the first F elements of the first F eigenvectors of the multi-dimensional correlation

matrix of H , denoted by RH . To illustrate its potential application, consider now

the following special cases:

R1
H = 1dmax+1×dmax+1 ⊗ IF and R2

H = Idmax+1 ⊗ IF .

Using properties of the Kronecker product, we can assert that:

λi

(

R1
H

)

=

{

dmax + 1, i = 1, · · · , F

1 F < i ≤ F (dmax + 1)
(5.44)

λi

(

R2
H

)

= 1,

and:

vi

(

R1
H

)

=
1√

dmax + 1
1dmax+1 ⊗ eF

i , i = 1, · · · , F (5.45)

vi

(

R2
H

)

= e
F (dmax+1)
i , i = 1, · · · , F

where e
p
i is the i-th canonical vector in R

p. First, we notice that R2
H does not verify

the necessary condition to define VF (Σ2) uniquely and hence Theorem V.3 does not

apply. In fact, for F = 1 and a signal H2 with autocorrelation matrix equal to R2
H ,

one can show that V1 (Σ2) is given by any element of the set of circularly shifted

H2. If we do not happen to choose the right shift, the bias will be non-null whereas

wrongly applying Theorem V.3 would lead us to assert that it will be zero.

On the other hand, consider H1 = 1√
p
1p which verifies R1

H = 1dmax+1×dmax+1. The

constant signal H1 is invariant to circular shifts, and this intuition is confirmed by
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the application of Theorem V.3 which asserts that the PCA estimate from misaligned

copies of such signal will be asymptotically unbiased.

We will numerically investigate these asymptotic results for other choices of signals

in Section 5.5.2.

5.5 Experiments

In this section, we present numerical results that illustrate the application of the

theory developed in the preceding sections and study the performance of the MisPCA

algorithms described in Section 5.3.

5.5.1 Phase transitions in misaligned signals

In this section we investigate the non-asymptotic accuracy of the phase transition

predictions for the PCA estimate from Section 5.4.1 and 5.4.2, for the rank-1 signal

case, F = 1.

We generate data according to model (5.1) with p = 300, F = 1, uniform and

independently distributed misalignments di ∈ {0, · · · , dmax} and varying n and dmax.

We experiment with three choices for H , depicted in the top panel of Figure 5.4:

(i) a rectangular signal with width W = 30 as defined in (5.25), (ii) the same signal

convoluted with a triangular pulse of width 10 and (iii) a sum of two sinusoids with

periods T1 = 1
2

and T1 = 1
3
. In the first experiment, we fix dmax = 30 and let the

SNR vary between SNR = −10 and SNR = 30dB and and n between n = 100 and

n = 1000. At each point (SNR, n), we compute the affinity between the PCA estimate

HPCA and the original signal H , which we define as:

a
(

HPCA,H
)

= max
j∈{1,··· ,p}

〈CjH
PCA,H〉2. (5.46)

Notice that this measure is invariant to translations of H and that it is a reciprocal

of the Frobenius distance between the estimated and true signal:

∣

∣

∣

∣HPCA − H
∣

∣

∣

∣

2

F
≥ 2

(

1 −
√

a (HPCA,H)
)

.

The second experiment is identical to the first one except that now we fix n = 100,

and vary SNR between SNR = −10 and SNR = 30dB and dmax between dmax = 2 and

dmax = 99. The results of both experiments are shown in Figure 5.4. Superimposed

to the heatmap of affinity, we plot the phase transition bounds obtained by the

120



0 100 200 300
0

0.05

0.1

0.15

0.2

Time

M
ag

ni
tu

de
Rectangular

0 50 100 150 200 250 300
0

0.05

0.1

0.15

0.2

Time

Rectangular convoluted with triangular

0 50 100 150 200 250 300
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

Time

2 sinusoids

200 400 600 800 1000
−10

−5

0

5

10

15

20

25

30

n

S
N

R

200 400 600 800 1000
−10

−5

0

5

10

15

20

25

30

n
200 400 600 800 1000

−10

−5

0

5

10

15

20

25

30

n

50 100 150 200 250
−10

−5

0

5

10

15

20

25

30

d
max

S
N

R

50 100 150 200 250
−10

−5

0

5

10

15

20

25

30

d
max

50 100 150 200 250
−10

−5

0

5

10

15

20

25

30  

d
max

 

0.2 0.4 0.6 0.8

Figure 5.4: Heatmaps depicting the average value over 30 random realizations of the
affinity a (HPCA, ·) between the PCA estimate and the true signal, as
a function of (SNR, dmax) (middle panel) or (SNR, n) (bottom panel),
for each of three rank-1 signals shown on the top panel. The red line
corresponds to the computed phase transition SNR, given by Theorem
V.1. The white dashed lines depict the upper and lower bounds obtained
by combined application of Theorems V.1 and V.2.

direct application of Theorem V.1 (red), which uses knowledge of the signal H and

the misalignments d. The white dashed lines depict the upper and lower bounds
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obtained by combined application of Theorems V.1 and V.2.

The results in Figure 5.4 shows how the asymptotic theory developed in Section

5.4 is of practical use at a non-asymptotic regime. As predicted by Theorem V.1 and

Section 5.4.2, a
(

HPCA,H
)

shows a clear phase transition frontier at

dmax + 1

λ1

(

[RH ]Ω,Ω

)

√
c,

shown in solid red. Figure 5.4 also highlights the advantage of pooling misaligned

observations: despite the misalignment, the phase transition point decreases signifi-

cantly as n increases.

5.5.2 Asymptotic Bias predictions

In this section we study the asymptotic bias predictions developed in Section 5.4.3.

Intuitively, one expects signals with larger temporal support to be less affected by

misalignments than signals with support concentrated on a very small region of the

temporal axis. In order to validate this intuition, we consider now three different

signals of increasing temporal support, and generate data according to model (5.1)

with p = 300, F = 3, n = 500 and uniform and independently distributed misalign-

ments of magnitude smaller than dmax. For each realization, we plot in Figure 5.5

the subspace distance between the PCA estimate and the true signal H , defined in

(5.31), as a function of the SNR level and the magnitude of the misalignments, dmax.

We also plot superimposed the sample average of these distances (solid blue) and the

predicted bias (red).

It is clear that as the SNR increases, the empirical results accurately match the

predictions, even for the relatively small n = 500. In addition, Figure 5.5 shows that

the sensitivity to misalignments is much less pronounced for signals of larger support

(rightmost plots) compared to the small support signals on the left.

5.5.3 Numerical comparison of MisPCA Algorithms

In this section we compare the various MisPCA algorithms described in Section

II. As a reference benchmark, we compute the Oracle-PCA, which assumes knowledge

of d and consists of performing PCA on S (d).

In order to compare the performance of each method, we estimate the minimum

SNR needed for each algorithm to attain a certain level of fidelity ρ with respect to
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Figure 5.5: Asymptotic bias for the PCA estimate of a misaligned rank 3 signal of di-
mension p = 300 with uniformly distributed misalignments of increasing
magnitude. We consider three signals, depicted in the upper panels, with
increasingly larger support. Our asymptotic predictions demonstrate the
intuitive fact that signals with wider support are more robust to misalign-
ments: the bias for the signal on the rightmost plots is about one third
of the bias for the narrow signal on the leftmost plots.

the generative H :

min
{

SNR : d
(

Ĥ ,H
)

≤ ρ
}

,
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where the distance d
(

Ĥ ,H
)

between the estimated and the true H is defined in

(5.31).

We perform our experiments for varying n and dmax, and we consider three choices

of unitary H ∈ R
100×F with ranks F = 1, F = 3 and F = 10. The top plots of Figure

5.6 show the results for the case F = 1 as a function of the number of samples n with

dmax = 40. The bottom plots of the same figure show the results for the case F = 1

as a function of dmax for fixed n = 200. The same experiment is performed for the

cases F = 3 and F = 10, and the corresponding results are shown in Figures 5.7 and

5.8, respectively.

These results demonstrate the advantage of A-MisPCA over S-MisPCA and PCA

in almost every regime. Only when dmax = 1 does PCA compare to A-MisPCA.

In that regime, the misalignments are small compared to the width of the rectan-

gular signal and hence affect little the PCA estimate. Interestingly, the results also

show that the A-MisPCA algorithm is remarkably robust to the magnitude of the

misalignments.

5.5.4 Numerical comparison to OPFA

In this section we compare the performance of MisPCA and the OPFA of Chapter

4 under the two respective generative models.

We consider two measures of performance, the distance between the subspaces of

the true and the estimated factors, and the MSE of the data estimator constructed by

fitting a least-squares model to the estimated factors. The MisPCA and the OPFA

model are inherently different: the latter allows for different (but order-preserving)

shifts to apply to each factor and the former restricts the shifts to be the same for

each factor. In addition, the OPFA incorporates structural constraints about the

non-negativity and the smoothness of the data that MisPCA does not enforce. It

is thus expected that each of this algorithms works better than the other when the

generative model is the right one.

In order to test this hypothesis, we generate 100-dimensional non-negative data

from a 2-factor model with random order preserving (OPFA model) and circular (Mis-

PCA model) misalignments. For each SNR level, and each realization, we compute

the distance between the true and the estimated subspaces and the reconstruction

MSE. Figure 5.9 (left) shows the results under the MisPCA model, and Figure 5.9

(right) shows the results of the same experiment under an OPFA model.

As expected, each algorithm outperforms the other in both performance measures

under its respective correct model. In addition, the saturation of MSE curves at
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Figure 5.6: Estimated SNR levels needed for each of the algorithms to attain a level

of fidelity ρ, defined as min
{

SNR : d
(

Ĥ ,H
)

≤ ρ
}

, for ρ ∈
{

F, F
3
, 2F

3

}

,

as a function of the number of samples n, and as a function of dmax, the
maximum misalignment, for a rank-1 signal (F = 1).

high SNR reflect the bias of OPFA and MisPCA under the misspecified model. It is

also interesting to note that both algorithms suffer from a similar phase transition

phenomenon; only when the SNR is large enough do their factor estimates correlate

with the true signal subspace.

5.5.5 A-MisPCA: Initialization and comparison to Brute Force MisPCA.

The Alternating MisPCA is a sub-optimal iterative procedure that depends on

the initialization choice. In this section we show that the A-MisPCA algorithm is

in fact quite robust with respect to the initialization choice, and hence we provide

a justification for the random initialization criteria we use in the applications. In

addition, we will also show that, despite its sub-optimality, the A-MisPCA estimator

shows performance comparable to that of the brute-force estimator obtained when

solving the MisPCA problem (5.7) exactly through an exhaustive search.
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Figure 5.7: Same as in Figure 5.6 for the case F = 3. Notices that since PCA is
biased, here it fails to attain the target fidelity level in several regimes.

Due to the computational burden of the latter, we have to limit our study here

to S = 5, p = 100, n = 50. We chose the generative signal to be a rank-2 signal

with support width equal to 10. In order to study the sensitivity of A-MisPCA to

the initialization choice, we initialize the algorithm as follows. For a given θ ∈ [0, 1],

we set the initial value H0 to:

H0 = θΠ + (1 − θ)n,

where n is a random gaussian vector with unitary variance, normalized so that ||n||2 =

1. Thus θ = 1 corresponds to initializing with the true signal Π and θ = 0 to a totally

random initialization. We compute the affinity d
(

Ĥ ,H
)

with respect to Π for the

A-MisPCA estimator over a small grid of values for (SNR, dmax) and θ ∈ {0, .5, 1}.
We also compute the affinity for the brute-force MisPCA (BF-MisPCA) estimator

obtained by solving (5.7). The results, shown in Table 5.1, evidence the robustness

of A-MisPCA with respect to initialization: the largest difference among the affinity
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Figure 5.8: Same as in Figure 5.6 for the case F = 10.
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Figure 5.9: Right : MisPCA vs OPFA under a non-negative MisPCA generative
model. Left : MisPCA vs OPFA under an OPFA generative model.

values obtained for different θ is smaller than 0.5. In addition, comparing to Table

5.2 shows that the differences between the affinity values obtained by BF-MisPCA
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d
(

HA-MisPCA,Πr
)

[mean(std.dev.)]
SNR dmax = 1 dmax = 50 dmax = 99

θ = 0
−10 3.7(0.076) 3.7(0.065) 3.7(0.049)
3 1.1(0.14) 2.5(0.63) 2.6(0.63)
17 0.031(0.0038) 0.59(0.44) 0.65(0.36)
30 0.0015(0.00016) 0.66(0.53) 0.67(0.43)

θ = .5
−10 3.8(0.059) 3.8(0.058) 3.7(0.056)
3 1.2(0.16) 2.9(0.52) 3.1(0.43)
17 0.045(0.04) 0.74(0.6) 0.71(0.38)
30 0.047(0.069) 0.7(0.6) 1(0.71)

θ = 1
−10 3.8(0.061) 3.8(0.063) 3.7(0.068)
3 1.2(0.19) 2.7(0.6) 3.1(0.38)
17 0.1(0.087) 0.84(0.68) 0.78(0.52)
30 0.056(0.066) 0.83(0.72) 1(0.74)

Table 5.1: Sensitivity of the A-MisPCA estimates to the initialization choice.

d
(

HBF-MisPCA,Πr
)

[mean(std.dev.)]
SNR dmax = 1 dmax = 50 dmax = 99
−10 3.7(0.072) 3.7(0.079) 3.7(0.056)
3 1.2(0.16) 1.7(0.28) 2.1(0.45)
17 0.031(0.0038) 0.44(0.19) 0.6(0.24)
30 0.0015(0.00016) 0.36(0.18) 0.55(0.23)

Table 5.2: Performance of the Brute Force MisPCA estimator.

and the A-MisPCA algorithms are smaller or equal to .1. This highlights the fact

that A-MisPCA achieves performance comparable to BF-MisPCA at a much smaller

computational cost.

5.5.6 Application to longitudinal gene expression data clustering

In this section we apply our methodology to the study of an influenza chal-

lenge study which is part of the (DARPA) Predicting Health and Disease program

(HZR+11). This dataset consists of a collection of 272 microarray samples of di-

mension G = 12023 genes obtained from 17 individuals. All of these subjects were

inoculated with influenza A H3N2Wisconsin and T = 16 blood samples were extracted
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Figure 5.10: Hierarchical Clustering results obtained after MisPCA and PCA-based
dimensionality reduction. The leftmost and the right most panels show
the centroids (+/− standard deviations) after MisPCA and PCA, re-
spectively. The middle panels correspond to a 2-dimensional embedding
of the data projected on the MisPC’s (left) and the PC’s (right).

before and after inoculation at prespecified time points. Finally, the clinicians on the

team established which of these subjects developed symptoms, based on a standard-

ized symptom scoring method. In previous work, we showed that the trajectories of

the gene expression values for different subjects are misaligned with respect to one

another (TPWZ+11).

An important problem in the analysis of temporal gene expression data is that

of performing temporal clustering, which consists in identifying groups of genes with

similar temporal pattern. These genes are likely to be part of a biological pathway
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and their temporal responses relate to the mechanistics of the process under study. In

this section, we use A-MisPCA as a dimensionality reduction tool prior to clustering,

and we show its advantage with respect to dimensionality reduction using standard

PCA. Our approach is based on two steps. The first step consists in finding an aligned

decomposition of the T × G gene expression matrix Xs for each subject, where G is

the number of genes and T = 16 is the number of points. In this analysis, we assume

that each column of each subject’s gene expression matrix follows the Misaligned

Linear Factor model of Section 5.2:

[Xs]∗,i = Cds
H [As]∗,i + n, i = 1, · · · , G, s = 1, · · · , S

Here the matrix H ∈ RT×F is a matrix of temporal factors, and Cd is a circulant shift

matrix parameterized by d. This is a coarser model than the OPFA one of Chapter

4: the temporal factors here are forced to be aligned equally for all gene profiles of

a given subject. In addition, the model is likely to be biased due to the assumption

of uncorrelation of [As]∗,i, [As]∗,j essential to the MisPCA model. We view this

model mismatch as part of a tradeoff between model accuracy and computational

complexity.

We estimate dMisPCA
s and HMisPCA, using MisPCA and compute AMisPCA

s as the

projection of the data on the aligned principal components:

AMisPCA

s =
(

HMisPCAT
HMisPCA

)−1

HMisPCAT
CT

dMisPCA
s

Xs

We use the same procedure with dPCA
s = 0 to obtain the PCA estimates HPCA and

APCA
s . The number F of Principal Components (F = 4) is chosen as to minimize the

cross validation error, using the cross-validation procedure described in (TPWZ+11).

As is common in gene-expression data analysis, we apply an Analysis-of-Variance

pre-processing step to select G = 1000 genes exhibiting high temporal variability.

The second step consist on applying a hierarchical clustering algorithm1 to the

columns of the matrices

ÃMisPCA =
[

AMisPCA

1
T , · · · ,AMisPCA

S
T
]T

ÃPCA =
[

APCA

1
T , · · · ,APCA

S
T
]T

,

1The hierarchical clustering algorithm is used with standardized Euclidean distance and complete
linkage. Different choices of the number of clusters were explored and 6 was shown to give the most
interpretable results.
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constructed from the projection of the data on the aligned subspace, AMisPCA
s , and

the misaligned subspace, APCA
s , obtained in the first step. The results are shown in

Figure 5.10. The MisPCA-based centroids, shown on the leftmost panel, have on

average 30% less variance that those obtained using PCA. The second and the third

panel show a 2-dimensional embedding, computed using Multidimensional Scaling

(MDS), of the projection of the data on the MisPC’s and the Principal Components

(PC’s). It is clear that the clusters corresponding to up-regulated genes (low-to-high

variation) are better separated from the down-regulated ones (high-to-low variation)

in the MisPCA-based projections.

5.6 Conclusion

In this work we have addressed the problem of estimating a common underlying

subspace from second-order statistics of misaligned time series. We have shown that

misalignments introduce bias in the usual PCA estimator and increase the phase tran-

sition SNR, which is the minimum SNR required to be able to detect the signal from

second order statistics. These results motivate us to propose an approximate Mis-

aligned PCA algorithm that estimates the principal component while compensating

for the misalignments. We demonstrate the accuracy of our theoretical predictions on

several prototypical signals. We also show the effectiveness of our relaxed MisPCA

algorithm, which outperforms PCA at little additional computational cost.
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CHAPTER VI

Conclusions and future work

6.1 Conclusions

The leitmotif underlying this research work has been to demonstrate the advan-

tage of using complex statistical models to extract information from high-dimensional

noisy data. A recurring theme throughout all our projects has been the quest for a

balance between computational complexity and statistical gain with respect to less

refined models that do not account for data intricacies. As we have seen, the most

interesting parsimonious models are often combinatorially hard to fit: one has to

explore an exponentially growing number of configurations to find the optimal pa-

rameter estimate. Our approach has been based on the following principle: sometimes

there is no need to solve the exact combinatorial problem; instead, a relaxation or a

greedy approximation will yield estimates that have good statistical properties while

being computationally solvable by today’s computers.

For example, in the second and third chapter, we have shown that there exist

low-dimensional reformulations of a class of non-differentiable optimization problems

arising in the relaxation of structured-sparsity constraints. These reformulations have

the potential of leading to efficient algorithms for complicated penalized estimation

problems, enabling the introduction of complex, finely-crafted structure priors in

the analysis of high-dimensional data such as gene expression time course studies.

These algorithms have empirical complexities much lower than the worst-case third-

order polynomial complexity traditionally associated to generalist convex optimiza-

tion solvers, making its application possible to datasets with large dimension and/or

large number of structural constraints.

In the fourth chapter, we have proposed a generative factor model that accounts

for order-preserving misalignments between the temporal factors of observations from

a random, high-dimensional multivariate time series. In this model, both the fitting of
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the sparse factor scores and the estimation of the order-preserving alignments for each

observation’s factors are inherently combinatorial. To overcome this difficulty, we have

designed convex and global optimization algorithms that exploit the structure of the

problem to fit this model approximately, but efficiently. Our numerical simulations

suggest that the loss due to our approximations is outweighed by the gain due to the

tailoring of our model to the specific learning problem.

Finally, in Chapter 5 we have addressed the problem of subspace estimation under

a noisy environment with sampling synchronization problems. This joint estimation

problem is again exponentially complex: in the discrete misalignment setting, the

number of possible misalignments grows exponentially with the number of observa-

tions. We have asymptotically quantified the degradation of the estimates due to

the misalignments between observations, and proposed a simple algorithm that par-

tially compensates for their negative effects. Our analysis and algorithms suggest

again that in many practical cases it is not worthwhile to solve the combinatorial

misaligned PCA estimation problem; instead, a simple approximate algorithm that

partially compensates for the nuisance misalignments will be good enough.

6.2 Future work

For better or worse, doctoral studies are a limited-time enterprise, and many inter-

esting questions have to be left out for future exploration. This work is no exception,

and there are a number of open questions that could be the subject of interesting

future research. The following list is by no means exhaustive, but illustrates the

author’s most interesting unexplored topics:

� Efficient algorithms to evaluate the proximity operator of group-ℓ2 penalties :

Our results from Chapter 3 show that the p-dimensional proximity operator

of general group-ℓ2 penalties can be evaluated through the solution of an m-

dimensional, convex, smooth optimization problem, where m is potentially much

smaller than p. Such an efficient evaluation would open the door to the applica-

tion of fine-tuned structured sparsity penalties to a variety of high-dimensional

statistical learning problems other than the penalized linear regression problems

we explored.

� Applications of group-ℓ2 penalties for manifold-based sparsity : Theorem III.2

shows that the GSTO is bound to satisfy

Tλ,H (g) ∈ Ker (AD,·) (6.1)
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where D = ∪i∈AGi for some active set A ⊆ {1, · · · ,m}. Immediate applica-

tions of the GSTO and the group-ℓ2 penalties arise anywhere where one wants

to enforce sparsity on a basis other than the canonical basis of R
p. For exam-

ple, one can choose A to be composed from chosen rows of the Discrete Fourier

Transform matrix, or A to be a discretization of the differential operator, in

order to enforce different types of smoothness in the operator’s output. Another

interesting and more general approach would be to choose A to model a lin-

earization of a smooth manifold on R
p. In this case, the operator output would

have a sparse representation on the linearization of the manifold, allowing for a

whole new class of structural constraints.

� Development of conditions under A-MisPCA/Seq-MisPCA solve the MisPCA

problems : We have given in Section 5.3 and Alternating-MisPCA algorithm

to approximate the solution to the combinatorial MisPCA problem. It is not

hard to show that, for F = 1, under high SNR conditions and signals with

non-flat autocorrelation, the A-MisPCA and the Seq-MisPCA algorithms solve

the MisPCA problem. An interesting project would be to characterize the

conditions under which the A-MisPCA algorithm leads to the MisPCA solution,

as a function of the SNR and the characteristics of the underlying signal.

� PCA under uniform misalignment : There is another aspect of the MisPCA

problem that we have left unexplored. In fact, from our developments in Chap-

ter 5, it follows that under the deterministic, equispaced misaligned model, the

covariance matrix of the misaligned observations reduces to:

Σ (τ ) =
SNR

dmax + 1
Hdiag (1 ⊗ σ̄) H

T + Ip.

In this setting, an effective algorithm to estimate H could be based on MUSIC/SPIRIT-

like techniques, where one estimates a basis for the noise subspace, denoted by

N , and consequently estimates H by solving:

min
HT H=I

∣

∣

∣

∣NT
H

∣

∣

∣

∣

2
,

that is, one tries to estimate the signal H , whose equispaced translated version,

given by H, is most orthogonal to the noise subspace.
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APPENDIX A

Appendix to Chapter 2

A.1 Derivation of the gradient and Hessian for the Projected

Newton method.

First we derive the formulae (2.24) used in the Projected Newton Algorithm of

Section 2.2.1 , for the case W = I. For other W ≻ 0, the formulas follow through a

change of variable. Letting

q (η,µ) := −1
2
(g − λµ)T

H† (g − λµ) − η (µ′µ − 1)

and using the fact that w (η) = maxµ∈R(H) q (η,µ), we have:

w′ (η) := dw(η)
dη

= dq(η,µ)
dη

∣

∣

∣

µ=µopt

= 1 − µT
optµopt = 1 − λ2

4
g′B−2 (η) g

where µopt := arg maxµ∈R(H) q (η,µ) = λ
2
B−1 (η) g. Also,

w′′ (η) := d2w(η)

(dη)2
= λ2

2
gT dB−1(η)

dη
g

= λ2

2
g′C (η) g.

where C (η) := B−3 (η) H . Since η ≥ 0, g ∈ R (H), R (H) = R (C (η)) and λ > 0

then λ2

2
gT C (η) g > 0. Furthermore, if λi (H) < ∞, it holds that:

λi (C (η)) ≤ max
i

λi (H)
(

ηλi (H) + λ2

2

)3 ≤ max
i

8
λi (H)

λ6
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∞ >
4‖g‖2

2

λ4
max

i
λi (H) ≥ w′′ (η) > 0

for ∀η ≥ 0. It follows that w (η) is strictly convex and w′′ (η) is uniformly bounded

over η º 0. Since w (η) ≥ 0 is lower bounded and η º 0 is a compact set, we can

invoke Theorem 4.1 in (Dun80) to conclude that the Goldstein Projected Newton

iterate (2.23) converges method to the minimizer of (2.5).
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APPENDIX B

Appendix to Chapter 3

B.1 Proof of Corollary III.3

We will assume without loss of generality that the groups Gi are sorted in ascend-

ing order according to the indices they contain. First, we identify the objective in

(3.25) with that in (3.11) by setting AGi,Gi
= Ini

and AGi,Ḡi
= 0. Since Gi ∩Gj = ∅

for i 6= j, this implies that A = Ip and
∑m

i=1 ni = p. It is clear that for any

S ⊂ {1, · · · , p} and its complementary S̄ = {1, · · · , p} \S , Ip verifies:

Ker (IS,·) ∩ Ker
(

IS̄,·
)

= {0} .

and hence we can safely invoke Theorem III.2 with A = Ip and Ii = Gi verifying the

conditions in the statement of this Corollary.

Second, for any given η, using the definition of Bi in (3.44) allows us to conclude

that the sets D and D̄ are simply given by:

D = ∪i:ηi=0Gi and D̄ = ∪i:ηi>0Gi.

It is easy to check that, for any given η,

Ker (AD,·) = {v ∈ R
p : vD = 0}

and hence we can choose the basis BD =
[

Ip−|D|,0
T
|D|×p−|D|

]T

for Ker (AD,·). Iden-

tifying the sets Z = D and Z̄ = D̄ and using A = Ip, the matrix Γ (η) in (3.13)
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specializes to:

Γ (η) = S (η) + XT
Z̄,·XZ̄,·,

with S (η) defined in (3.28). Finally, we apply the fact that for any vector v ∈ R
p−|D|,

and the basis BD defined above, BDv =
[

vT
Z̄
,0T

|Z|

]T

to obtain (3.26) from (3.12).

B.2 Proof of Corollary III.4

First, we let A ∈ R
Pm

i=1 ni×p be defined as follows:

AIi,Gi
= diag (wi) AIi,Ḡi

= 0ni×p−ni
i = 1, · · · ,m (B.1)

where Ii =
[

∑i−1
j nj,

∑i−1
j nj + 1, · · · ,

∑i
j nj − 1

]

. For any subset S ⊆ {1, · · · ,
∑m

i=1 ni},
we claim that:

Ker (AS,·) = {v ∈ R
p : vZ = 0, Z = ∪i:S∩Ii 6=∅supp (AS∩Ii,·)} (B.2)

where supp (X) is the set of indices corresponding to columns of X with at least one

non-zero element. We prove this claim as follows. First, it is clear that if v belongs

to the set on the left hand side, then

AS∩Gi,·v = 0|S∩Gi|

for any i such that S ∩ Gi 6= ∅. On the other hand, suppose that k ∈ Ker (AS,·).

Then, for every i such that S ∩ Gi 6= ∅,

AS∩Gi,·k = diag
(

[wi]supp(AS∩Gi,·)

)

[k]supp(AS∩Gi,·) = 0.

Since diag
(

[wi]supp(AS∩Gi,·)

)

≻ 0, this implies that [k]supp(AS∩Gi,·) has to be zero in

order to comply with the leftmost equality, which completes the proof of the claim

made in (B.2).

By (B.2), we have that if ∃v ∈ Ker (AS,·)∩Ker
(

AS̄,·
)

with v 6= 0, then this vector

must satisfy:

vZ1∪Z2 = 0, v{1,··· ,p}\Z1∪Z2 6= 0.
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where

Z1 = ∪i:S∩Ii 6=∅supp (AS∩Ii,·)

and

Z2 = ∪i:S̄∩Ii 6=∅supp
(

AS̄∩Ii,·
)

.

Since we have assumed that ∪m
i=1Gi = {1, · · · , p}, it follows that {1, · · · , p} \Z1∪Z2 =

∅ and hence such v has to be v = 0. It follows that A verifies condition (3.10) and

we can invoke Theorem III.2. Second, for any given η, and using the equivalence in

(B.2), we can characterize Ker (AD,·) as follows:

Ker (AD,·) = {v ∈ R
p : vZ = 0, where Z = ∪i:ηi=0Gi}

where D is defined in (3.14). It follows that BD =
[

Ip−|Z|,0
T
|Z|×p−|Z|

]T

is a basis for

Ker (AD,·), with Z = ∪i:ηi=0Gi. Substituting this choice of BD and A defined by

(B.1) in (3.13) leads to:

Γ (η) = S (η) + XT
Z̄,·XZ̄,·,

with S (η) defined in (3.33). Finally, we apply the fact that for any vector v ∈ R
p−|Z|,

and the basis BD defined above, BDv =
[

vT
Z̄
,0T

|Z|

]T

to obtain (3.31) from (3.12).

B.3 Proof of Theorem III.6

First we will need to prove two auxiliary results. First, for any η ≻ 0 and a small

enough α such that η + αd ≻ 0, we claim that:

C−1 (η + αd) = C−1 (η) − αC−1 (η) C (d) C−1 (η) + O
(

α2
)

(B.3)

To see this, observe that by definition of the matrix C (η):

C (η + αd) = C (η) + αC (d) .

Now for any two symmetric matrices A and E, repeatedly apply the formula:

(A + E)−1 = A−1 − (A + E)−1
EA−1
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to obtain:

(A + E)−1 = A−1 − A−1EA−1 + (A + E)−1 (

EA−1
)2

(B.4)

Substituting A = C (η) and E = αC (d) and observing that both C−1 (η) and

(C (η) + αC (d))−1 exist when η ≻ 0 for a small enough α, leads to (B.3). Our

second claim is that:

Γ−1 (η + αd) = Γ−1 (η) +
α

2
Γ−1 (η) AT C−1 (η) C (d) C−1 (η) AΓ−1 (η)(B.5)

+O
(

α2
)

To prove this, first we will use (B.3) to write:

Γ (η + αd) =
1

2
AT C−1 (η + αd) A + XT X

= Γ (η) − α

2
AT C−1 (η) C (d) C−1 (η) A + O

(

α2
)

As proved during the proof of Theorem III.2, Γ (η) ≻ 0 and so is Γ (η + αd) if

η + αd ≻ 0. It follows that we can apply (B.4) again with A = Γ (η) and E =

−α
2
AT C−1 (η) C (d) C−1 (η) A + O (α2) to obtain:

Γ−1 (η + αd) = Γ−1 (η) +
α

2
Γ−1 (η) AT C−1 (η) C (d) C−1 (η) AΓ−1 (η)

−O
(

α2
)

as α → 0.

We are now ready to compute the directional derivative of w (η) at η ≻ 0:

w′ (η,d) = lim
α→0

w (η + αd) − w (η)

α

= lim
α→0

−1
2
yT XBT

DΓ−1 (η + αd) BDXT y + 1
2
yT XBT

DΓ−1 (η) BDXT y

α
+ λ2dT c

= −1

4
yT XΓ−1 (η) AT C−1 (η) C (d) C−1 (η) AΓ−1 (η) XT y + λ2dT c

= −νT C (d) ν + λ2dT c,

which shows that the directional derivative exists and is linear in d, an hence w (η), is

a differentiable function. The gradient is then given by (3.41). To show that w (η) is

also twice differentiable, we will proceed as follows. First, we denote each coordinate
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of the gradient of w (η) by gi (η), i.e.:

gi (η) = λ2ci − ||νGi
||22 = λ2ci − ||Biν||22 .

where

ν =
1

2
C−1 (η) AΓ−1 (η) XT y

The directional derivative of the gradient’s coordinates is then given by:

g′
i (η; d) = limα→0

−1
4

∣

∣

∣

∣BiC
−1 (η + αd) AΓ−1 (η + αd) XT y

∣

∣

∣

∣

2

2
+ 1

4
||Biν||22

α (B.6)

We will first focus on the first element in the denominator above. Using (B.3) we can

conclude that

C−1 (η + αd) AΓ−1 (η + αd) XT y

is equal to

C−1 (η) AΓ−1 (η + αd) XT y − αC−1 (η) C (d) C−1 (η) AΓ−1 (η + αd) XT y + O
(

α2
)

.

Substituting Γ−1 (η + αd) above using (B.5), we obtain:

ν +
α

2
C−1 (η) AΓ−1 (η) AT C−1 (η) C (d) ν − αC−1 (η) C (d) ν + O

(

α2
)

,

which yields:

1

4

∣

∣

∣

∣BiC
−1 (η + αd) AΓ−1 (η + αd) XT y

∣

∣

∣

∣

2

2
= ||Biν||22 +

ανT BiC
−1 (η) AΓ−1 (η) AT C−1 (η) C (d) ν

−2αBiν
T C−1 (η) C (d) ν + O

(

α2
)

.

Plugging this expression back to (B.6) leads to:

g′
i (η; d) = 2νT BiC

−1 (η) C (d) ν − νT BiC
−1 (η) AΓ−1 (η) AT C−1 (η) C (d) ν,

which shows that gi (η) is differentiable and hence w (η) is twice differentiable with

Hessian given in (3.42).
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B.4 Proof of Theorem III.7

First observe that if η∗ is optimal, it also verifies:

η∗
Ω̄ = arg min wΩ̄ (ηΩ̄) (B.7)

η∗
Ω̄ ≻ 0.

Since ηΩ̄ ≻ 0, it follows by Theorem III.6 that wΩ̄ (ηΩ̄) is twice differentiable and

that η∗
Ω̄
≻ 0 has to verify the optimality conditions:

∇wΩ̄ (ηΩ̄) = 0. (B.8)

Or, using the expression for the gradient given in (3.41), η∗
Ω̄

solves:

λ2ci − νT
Gi

νGi
= 0 for each i ∈ Ω̄, (B.9)

where we have let:

ν =
1

2
C−1 (ηΩ̄) AΓ−1 (ηΩ̄) BT

DXT y (B.10)

By Theorem III.6, the function

gi (ηΩ̄, λ) = λ2ci − νT Biν

is continuous and differentiable with respect to λ and ηΩ̄. Its transposed gradient is

the Hessian of wΩ̄ (ηΩ̄), and is given by (3.42). If ∇ηΩ̄
g (ηΩ̄, λ) = ∇2wΩ̄ (ηΩ̄) is non-

singular at η∗
Ω̄
, then by the implicit function theorem (see for instance Proposition

1.1.14 in (BNO+03)):

dη∗
Ω̄

dλ
= −

(

∇2wΩ̄ (η∗
Ω̄)

)−1 ∇λg (ηΩ̄, λ) . (B.11)

Substituting

∇λg (ηΩ̄, λ) = 2λc (B.12)

above yields (3.55).
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B.5 Proof of Theorem III.5

Applying Lemma III.1 with H = I and g = −y, problem (3.35) is equivalent to:

max −1
2

(

−y − AT ν
)T (

−y − AT ν
)

νT Biν ≤ λ2
i i = 1, · · · ,m

The Lagrange dual function of this problem is given by:

l (η) = supν −1
2

(

−y − AT ν
)T (

−y − AT ν
)

− 1
2
νT 2C (η) ν + ηT λ2

Since AAT º 0, the above problem is concave and its optimality conditions are given

by:

(

AAT + 2C (η)
)

ν = −Ay

It is easy to check that Ay ∈ R
(

AAT + 2C (η)
)

and since AAT ≻ 0 the supremum

is unique and attained at:

ν∗ = −
(

AAT + 2C (η)
)−1

Ay,

which yields (3.36) through equation (3.7):

Pλ (y) = y + AT ν∗ =
(

I − AT
(

AAT + 2C (η)
)−1

A
)

y.

Finally, evaluating l (η) at ν∗ yields:

l (η) = 1
2
yT AT

(

AAT + 2C (η)
)−1

Ay + ηT λ2 − 1
2
yT y.

Strong duality holds and hence the equivalence between (3.35) and (3.37) follows. To

prove (3.38) it suffices to observe that, letting gi (ν) = λ2
i − νT Biν, we have:

l (η) = max
ν

−1

2

(

−y − AT ν
)T (

−y − AT ν
)

− ηT g (ν) − 1

2
yT y.

≥ −1

2

(

−y − AT ν̂
)T (

−y − AT ν̂
)

− ηT g (ν̂) − 1

2
yT y.

= l (η̂) − (η − η̂)T
g (ν̂)
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hence,

l (η) − l (η̂) ≥ (η − η̂)T (−g (ν̂))

and −g (ν̂) is a subgradient of l (η̂).
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APPENDIX C

Appendix to Chapter 4

C.1 Circulant time shift model

Using circular shifts in (4.3) introduces periodicity into our model (4.2). Some

types of gene expression may display periodicity, e.g. circadian transcripts, while

others, e.g. transient host response, may not. For transient gene expression profiles

such as the ones we are interested in here, we use a truncated version of this periodic

model, where we assume that each subject’s response arises from the observation of

a longer periodic vector within a time window (see Figure C.1):

Xs = [M (F ,ds) As + ǫs]Ω . (C.1)

Here, the factors are of dimension nF ≥ n and the window size is of dimension n (in

the special case that n = nF , we have the original periodic model). In this model,

the observed features are non-periodic as long as the delays ds are sufficiently small

as compared to nF . More concretely, if the maximum delay is dmax, then in order to

avoid wrap-around effects the dimension should be chosen as at least nF = n + dmax.

Finally, we define the index set Ω corresponding to the observation window as:

Ω =
{

ω1, ω1 + 1, ω1 + 2..., ω2
}p

(C.2)

where ω1 and ω2 are the lower and upper observation endpoints, verifying n = ω2−ω1.
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Figure C.1: Right : Each subject’s factor matrix Mi is obtained by applying a cir-
cular shift to a common set of factors F parameterized by a vector of
misalignment. d. Left : In order to avoid wrap-around effects when
modeling transient responses, we consider instead a higher dimensional
truncated model of larger dimension from which we only observe the
elements within a window characterized by Ω.

C.2 Delay estimation and time-course alignment

The solution to problem (4.9) yields an estimate d̂s for each subject’s intrinsic

factor delays. These delays are relative to the patterns found in the estimated factors

and therefore require conversion to a common reference time.

For a given up-regulation or down-regulation motif, I, which we call the feature

of interest, found in factor g, we choose a time point of interest tI . See Figure C.2

(a) for an example of choice of tI for an up-regulation feature.

Then, given tI and for each subject s and each factor k, we define the absolute

feature occurrence time as follows:

ts,k =
(

d̂s
k + tI

)

mod nF − ω1. (C.3)

where d̂s
g is the estimated delay corresponding to factor k and subject s and ω1 is

the lower endpoint of the observation window (see (C.2)). Figure C.2 illustrates the

computation of ts,k in a 2-factor example.

The quantities ts,k can be used for interpretation purposes or to realign temporal

profiles in order to find common, low-variance gene expression signatures, as shown

in Section 4.4.2.
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Figure C.2: (a) Time point of interest (tI) for the up-regulation feature of factor 1.
(b) The absolute time points t1,1, t1,2 are shown in red font for two differ-
ent subjects and have been computed according to their corresponding
relative delays and the formula in (C.3).

C.3 Implementation of EstimateFactors and EstimateScores

We consider here the implementation of EstimateFactors and EstimateScores un-

der the presence of missing data. Let Ωs =
[

ωs
1, · · · , ωs

p

]

∈ {0, 1}n×p be the set of

observed entries in observation Xs. The objective in (4.9) is then:

S
∑

s=1

∣

∣

∣

∣[Xs − M (F ,ds) As]Ωs

∣

∣

∣

∣

2

F
(C.4)

We will show how to reformulate problems EstimateFactors (4.14) and EstimateScores

(4.15) in a standard quadratic objective with linear and/or quadratic constraints.

First, we rewrite the objective (C.4) as:

S
∑

s=1

p
∑

j=1

∣

∣

∣

∣

∣

∣
diag

(

ωs
j

)

[Xs]·,j − diag
(

ωs
j

)

M (F ,ds) [As]·,j

∣

∣

∣

∣

∣

∣

2

F
.
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Expanding the square we obtain:

S
∑

s=1

∣

∣

∣

∣[Xs − M (F ,ds) As]Ωs

∣

∣

∣

∣

2

F
=

∑S
s=1

∑p
j=1 [As]

T
·,j M (F ,ds)T diag

(

ωs
j

)

M (F ,ds) [As]·,j

−2 [Xs]
T
·,j diag

(

ωs
j

)

M (F ,ds) [As]·,j

+
∑S

s=1

∣

∣

∣

∣[Xs]Ωs

∣

∣

∣

∣

2

F
. (C.5)

To obtain the EstimateFactors objective, first we will rewrite the OPFA model

(C.1) using matrix notation. Let Ui be a circular shift matrix Ui parameterized by

the i-th delay d component. Then

M (F ,d) = [U1F1, · · · ,UfFf ] = HF̃

where Fj denotes the j-th column of F , H is the concatenation of the Ui matrices

and F̃ is a matrix containing the columns of F with the appropriate padding of zeros.

With this notation and (C.5) we obtain:

S
∑

s=1

∣

∣

∣

∣[Xs − M (F ,ds) As]Ωs

∣

∣

∣

∣

2

F
∝F

∑S
s=1

∑p
j=1 tr

(

[As]·,j [As]
T
·,j F̃ T HT

s diag
(

ωs
j

)

HsF̃
)

−2tr
(

[As]·,j [Xs]
T
·,j diag

(

ωs
j

)

HsF̃
)

.

We now use the identity ((NM99), Thm. 3 Sec. 4):

tr
(

ZXT Y W
)

= vec (W )T
Z ⊗ Y T vec (X) ,

to write:

S
∑

s=1

∣

∣

∣

∣[Xs − M (F ,ds) As]Ωs

∣

∣

∣

∣

2

F
∝F vec

(

F̃
)T (

∑S
s=1

∑p
j=1 [As]·,j [As]

T
·,j ⊗ HT

s diag
(

ωs
j

)

Hs

)

vec
(

F

−2vec
(

∑S
s=1

∑p
j=1 HT

s diag
(

ωs
j

)

[Xs]·,j [As]
T
·,j

)

vec
(

F̃
)

.

Finally, making use of the fact that F̃ is a block-column matrix with the columns of

F padded by zeros, we conclude:

S
∑

s=1

∣

∣

∣

∣[Xs − M (F ,ds) As]Ωs

∣

∣

∣

∣

2

F
∝F vec (F )T

QF vec (F ) − 2qT
F vec (F )
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where we have defined

QF =

[

S
∑

s=1

p
∑

j=1

[As]·,j [As]
T
·,j ⊗ HT

s diag
(

ωs
j

)

Hs

]

J ,J

(C.6)

qF =

[

vec

(

S
∑

s=1

p
∑

j=1

HT
s diag

(

ωs
j

)

[Xs]·,j [As]
T
·,j

)]

J

(C.7)

and J are the indices corresponding to the non-zero elements in vec
(

F̃
)

. Hence,

EstimateFactors can be written as:

min
F

vec (F )T (

QF + βdiag
(

W T W , · · · ,W T W
))

vec (F ) − 2qT
F vec (F ) (C.8)

s.t.











||F ||2F ≤ δ

Fi,j ≥ 0 i = 1, · · · , n,

j = 1, · · · , f

The dimension of the variables in this problem is nf . In the applications considered

here, both n and f are relatively small and hence this program can be solved with

a standard convex solver such as SeDuMi (Stu99) (upon conversion to a standard

conic problem), or the Projected Newton method (Ber82) on the dual problem that

we describe next. To alleviate the notation, we will consider the following problem,

which has essentially the same structure as (C.8):

min
f

1
2
fT Qf + qT f

s.t. fT f ≤ δ

f º 0

where º denotes an element-wise inequality (also the generalized inequality corre-

sponding to the positive orthant cone). The lagrange dual function of this differen-

tiable, convex optimization problem is given by:

w (η, ǫ) = inf
f

1

2
fT (Q + 2ǫI) f + (q − η)T

f − ǫδ

If q − η ∈ R (bQ + 2ǫI), the infimum is finite, and we obtain:

w (η, ǫ) =

{

−1
2
(q − η)T (Q + 2ǫI)−1 (q − η) − ǫδ q − η ∈ R (Q + 2ǫI)

−∞ otherwise.
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The dual problem is hence:

min −1
2
(q − η)T (Q + 2ǫI)−1 (q − η) − ǫδ

s.t. ǫ ≥ 0

η º 0

q − η ∈ R (Q + 2ǫI)

In general, Q is positive definite in our problems, due to the quadratic part of the

smoothness penalty (βdiag
(

W T W , · · · ,W T W
)

). Hence, we can drop the range

constraint and solve:

min −1
2
(q − η)T (Q + 2ǫI)−1 (q − η) − ǫδ (C.9)

s.t. ǫ ≥ 0

η º 0

Through a simple projected Newton method (Ber82) which only requires evaluating

the Hessian and gradient of the objective in (C.9).

On the other hand, we can follow a similar procedure to reformulate the objective

in EstimateScores (4.15) into a penalized quadratic form. First we use (C.5) and

(C.6) to write:

S
∑

s=1

∣

∣

∣

∣[Xs − M (F ,ds) As]Ωs

∣

∣

∣

∣

2

F
∝{As}S

i=1

∑S
s=1 vec (As)

T
Qs

Avec (As) − 2qs
A

T vec (As)

where

Qs
A =







M (F ,ds)T diag (ωs
1) M (F ,ds) 0 . . . 0

0 0 · · · 0

0 · · · 0 M (F ,ds)T diag
(

ωs
p

)

M (F ,ds)






(C.10)

qs
A =

[

[Xs]
T
·,1 diag (ωs

1) M (F ,ds) · · · [Xs]
T
·,p diag

(

ωs
p

)

M (F ,ds)
]

.(C.11)

Thus EstimateScores can be written as:

min
F

∑S
s=1 vec (As)

T
Qs

Avec (As) − 2qs
A

T vec (As) + λ
∑p

i=1

∑f
j=1 ‖ [A1]j,i · · · [AS]j,i ‖2(C.12)

s.t.











||F ||2F ≤ δ

Fi,j ≥ 0 i = 1, · · · , n,

j = 1, · · · , f
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This is a convex, non-differentiable and potentially high-dimensional problem.

For this type of optimization problems, there exists a class of simple and scalable

algorithms which has recently received much attention (ZE10), (DDDM04b), (CW06),

(PCP08). These algorithms rely only on first-order updates of the type:

xt ← TΓ,λ

(

v − 2xt−1 (αI − Q)
)

, (C.13)

which only involves matrix-vector multiplications and evaluation of the operator T ,

which is called the proximal operator (CW06) associated to Γ and C and is defined

as:

TΓ,λ (v) := min
1

2
x′x + v′x + λΓ (x)

s.t. x ∈ C.

This operator takes the vector v as an input and outputs a shrunk/thresholded ver-

sion of it depending on the nature of the penalty Γ and the constraint set C. For some

classes of penalties Γ (e.g. l1, l2, mixed l1 − l2) and the positivity constraints con-

sidered here, this operator has a closed form solution (TPWOH09), (CW06). Weak

convergence of the sequence (C.13) to the optimum of (C.8) is assured for a suitable

choice of the constant α (PCP08), (BT09).

C.4 Delay Estimation lower bound in the presence of Missing

Data

As we mentioned earlier, the lower bound (4.23) does not hold anymore under the

presence of missing data. We derive here another bound that can be used in such

case. From expression (C.5), we first obtain the objective in EstimateDelays (4.17)

in a quadratic form:

S
∑

s=1

∣

∣

∣

∣[Xs − M (F ,ds) As]Ωs

∣

∣

∣

∣

2

F
∝ds

∑S
s=1

∑p
j=1 tr

(

M (F ,ds)T diag
(

ωs
j

)

M (F ,ds) Ps,j

)

−2tr (Qs,jM (F ,ds)) .

Where we have let Ps,j := [As]·,j [As]
T
·,j and Qs,j = [As]·,j [Xs]

T
·,j diag

(

ωs
j

)

. Notice

that each of the terms indexed by s is independent of the others. Using (C.6), we
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obtain

∣

∣

∣

∣[Xs − M (F ,ds) As]Ωs

∣

∣

∣

∣

2

F
∝ vec (M (F ,ds))T ∑p

j=1

(

Ps,j ⊗ diag
(

ωs
j

))

vec (M (F ,ds))

−2vec
(

∑p
j=1 QT

s,j

)T

vec (M (F ,ds)) .

We now can minorize the function above by:

∣

∣

∣

∣[Xs − M (F ,ds) As]Ωs

∣

∣

∣

∣

2

F
≥ λ

(

∑p
j=1 Ps,j ⊗ diag

(

ωs
j

)

)

vec (M (F ,ds))T vec (M (F ,ds))

−2vec
(

∑p
j=1 QT

s,j

)T

vec (M (F ,ds)) +
∑S

s=1

∣

∣

∣

∣[Xs]Ωs

∣

∣

∣

∣

2

F

which leads to:

∣

∣

∣

∣[Xs − M (F ,ds) As]Ωs

∣

∣

∣

∣

2

F
≥ λ

(

∑p
j=1 Ps,j ⊗ diag

(

ωs
j

)

)

||F ||2F

−2vec
(

∑p
j=1 QT

s,j

)T

vec (M (F ,ds)) +
∣

∣

∣

∣[Xs]Ωs

∣

∣

∣

∣

2

F
.

Using the relaxation in (4.21), we can now compute a lower bound Φlb (It) as

Φlb (It) = λ
(

∑p
j=1 Ps,j ⊗ diag

(

ωs
j

)

)

||F ||2F +
∣

∣

∣

∣[Xs]Ωs

∣

∣

∣

∣

2

F

−2 maxd∈St
vec

(

∑p
j=1 QT

s,j

)T

vec (M (F ,ds)) .
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APPENDIX D

Appendix to Chapter 5

D.1 Derivation of the MLE estimate for the signal-to-noise

ratio of each component

We will only consider the case F = 1. Since l
(

hMisPCA,dMisPCA,σ
)

is separable

with respect to σf , the general case F > 1 follows immediately from the case F = 1.

It is easy to verify that if λMisPCA < 1, then l
(

hMisPCA,dMisPCA, σ1

)

is monotoni-

cally decreasing over σ1 ≥ 0. Otherwise, it has a positive stationary point at:

σ◦
1 = λMisPCA − 1.

The second derivative of l
(

hMisPCA,dMisPCA, σ1

)

with respect to σ1 is negative at σ◦
1,

hence σ◦
1 is at least a local maxima. It is easy to check that l

(

hMisPCA,dMisPCA, σ1

)

is strictly increasing over 0 ≤ σ1 < σ◦
1 and strictly decreasing over σ◦

1 > σ1, thus the

local maxima is also a global maxima. This finalizes the proof of (5.8).

D.2 Proof of Theorem V.1

The eigenvalue decomposition of Σ (τ ) is denoted by QΣ∆ΣQT
Σ, where QΣ is a

unitary matrix containing its eigenvectors and ∆Σ is a diagonal matrix containing its

eigenvalues:

[∆Σ]i,i =

{

SNR λi

(

Hdiag (s (d−pτ ) ⊗ σ̄) H
T
)

+ 1 1 ≤ i ≤ r

1 r < i ≤ p
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where r = rank
(

Hdiag (s (d−pτ ) ⊗ σ̄) H
T
)

≤ 2dmax. A well-known property of the

eigenvalues of Grammian matrices allows us to conclude that λi

(

Hdiag (s (d−pτ ) ⊗ σ̄) H
T
)

is equal to:

λi

(

diag (s (d−pτ ) ⊗ σ̄)
1
2 RHdiag (s (d−pτ ) ⊗ σ̄)

1
2

)

where we have used the definition of RH from (5.13).

Using properties of the Gaussian distribution, we can write:

S (τ ) = QΣS̃QT
Σ.

where S̃ = ZZT

n
and each column of the p×n matrix Z follows a zero-mean multivari-

ate Gaussian distribution with covariance ∆Σ. The result for λ1 (S (τ )) follows from

observing that λf (S (τ )) = λf

(

S̃
)

and applying Theorems 1 and 2 from (Pau07).

The result concerning vf (S (τ )) follows from observing that:

〈vf (S (τ )) ,vf (Σ (τ ))〉 = 〈QΣvf

(

S̃
)

,vf (Σ (τ ))〉

= 〈vf

(

S̃
)

,ef〉,

where ef denotes the vector of all zeros except for a 1 in the f -th coordinate, and

applying Theorem 4 from (Pau07). See (BGN11) for an alternative derivation and

insight into the origin of the phase transition.
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ABSTRACT
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Chair: Alfred O. Hero III

Modern measurement systems monitor a growing number of variables at low cost.

In the problem of statistically characterizing the observed measurements, budget

limitations usually constrain the number n of samples that one can acquire, leading

to situations where the number p of variables is much larger than n. In this situation,

classical statistical methods, founded on the assumption that n is large and p is fixed,

fail both in theory and in practice. A successful approach to overcome this problem

is to assume a parsimonious generative model characterized by a number k of free

parameters, where k is much smaller than p.

In this dissertation we develop algorithms to fit low-dimensional generative mod-

els and extract relevant information from high-dimensional, multivariate time series.

First, we define extensions of the well-known Scalar Shrinkage-Thresholding Operator,

that we name Multidimensional and Generalized Shrinkage-Thresholding Operators,

and show that these extensions arise in numerous algorithms for structured-sparse

linear and non-linear regression. Using convex optimization techniques, we show that

these operators, defined as the solutions to a class of convex, non-differentiable, op-

timization problems have an equivalent convex, low-dimensional reformulation. Our

equivalence results shed light on the behavior of a general class of penalties that in-

cludes classical sparsity-inducing penalties such as the LASSO and the Group LASSO.

In addition, our reformulation leads in some cases to new efficient algorithms for a

variety of high-dimensional penalized estimation problems.

Second, we introduce two new classes of low-dimensional factor models that ac-

count for temporal shifts commonly occurring in multivariate time series. Our first

contribution, called Order Preserving Factor Analysis, can be seen as an extension

of the non-negative, sparse matrix factorization model to allow for order-preserving



temporal translations in the data. We develop an efficient descent algorithm to fit

this model using techniques from convex and non-convex optimization. Our second

contribution extends Principal Component Analysis to the analysis of observations

suffering from arbitrary circular shifts, and we call it Misaligned Principal Component

Analysis. We quantify the effect of the misalignments in the spectrum of the sample

covariance matrix in the high-dimensional regime and develop simple algorithms to

jointly estimate the principal components and the misalignment parameters.

All our algorithms are validated with both synthetic and real data. The real data is

a high-dimensional longitudinal gene expression dataset obtained from blood samples

of individuals inoculated by different types of viruses. Our results demonstrate the

benefit of applying tailored, low-dimensional models to learn from high-dimensional

multivariate time series.
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