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Résumé: On présente des résultats qui spécifient les
limites fondementales sur la précision des estimées de la
position d’une source optique quasimonochromatique vue
par un téléscope avec détecteur de photons CCD. Pour
un téléscope & petite ouverture, nos résultats indiquent
que c’est théoriquement possible de déterminer la position
d’une source avec une précision supérieure & 1/50-iéme de
la limite de diffraction en détectant seulement 1200 pho-
tons.

1 Introduction

The problem of localizing the position of one or more op-
tical point sources arises in applications such as galactic
astronomy and astrometry, satellite navigation and teleme-
try, and star tracking systems for global positioning. Lower
bounds on achievable localization error are useful in that
they characterize the performance limits intrinsic to any es-
timator which are imposed soley by the structure of the es-
timation problem. Lower bounds have previously been de-
rived under restrictive assumptions such as: 1) direct noise-
less observations of the photon point process incident on
the photo-detector array; 2) negligable thermal noise [2,7].
However, while these assumptions may be good approx-
imations for strong optical sources, cryogenically cooled
detectors, and integrate-and-dump CCD arrays, they may
not be justified for many cases of interest, e.g. weak stellar
sources. Indeed, these assumptions are inapplicable for a
continuously observed photo-detector output whose single
photon-response (SPR) is temporally and spatially ban-
dlimited and contaminated by thermal (electronics) noise.
In this paper we derive rate distortion lower bounds on lo-
calization MSE which allow us to study the impact of finite
detector bandwidth and thermal noise on achievable esti-
mation error. A useful and tractible bound is derived for
the special cases of a single point source, low accumulated
photon flux, a spherically-symmetric point spread (blur)
function, and exponential temporal-decay of the detector
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Abstract: We investigate fundamental limits on achiev-
able estimation accuracy for estimating the spatial posi-
tion of a far-field monochromatic optical point source on
the basis of diffraction and noise limited spatio-temporal
measurements at the output of a light-sensitive imaging
(CCD) array. We apply our results to a small aperture
CCD telescope and show that it is theoretically possible
to resolve point source position to within 1/50-th of the
diffraction limit on the basis of fewer than 1200 photons.

SPR. For example, this case arises in laser radar for long
distance telemetry and in weak star tracking [1,5,6]. Us-
ing the results of this paper we can identify the form of a
SNR threshold which separates localization errors into two
regimes: the photon-noise-limited regime, where estimator
performance equal to that achievable for noiseless direct
photon detection is possible; and the thermal-noise-limited
regime, where such direct detection estimator performance
is not achievable. We then give numerical results which in-
dicate that for the small aperture telescope studied, fewer
than 1200 photons are theoretically required to resolve a
point source to within 1/50-th of the diffraction-limit, de-
fined as the (FW H M)? of the optical blur spot. Further-
more, we show that for this case the rate-distortion bound
can be significantly tighter than the classical CR bound.

2 Measurement Model

The measurements are obtained by detecting incoherent
quasimonochromatic light on an optical focal plane array
of photo detectors. The measurements are distortion and
distortion contaminated by optical diffraction, quantum
(photon) noise, and thermal (electronics) noise. We model
the photo-detector as a fixed disk of radius ro. Assume
a far-field stationary point source generates a symmetric
blur function with center of symmetry at detector posi-
tion 7 = [, 7|7 relative to the center [0,0] of the detec-
tor surface. We will assume a priori that 7 is uniformly
distributed over a disk T = {u;,uy : ul + u3 < r#} in-
scribed on the interior of the detector surface A = {uy, uy -
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ul + u} < r?}, r, > r;. The output of the detec-
tor is observed continuously over an observation interval

[—%,%). Define the spatio-temporal coordinates (t,u) € I,
e [=%, %] x A, of photon incidences over the observation

interval and over the detector surface. Conditioned on T,
let A = {A(t,u~1):(t,u) € I} be the intensity of the in-
cident photon point process dN = {dN(t,u) : (¢,u) € I}.
We assume that the point process dN, equivalently the
counting process N, is conditionally Poisson given 7. De-
fine n = N(I) the total number of incident photons over 1.
Let {(ti,u;)}IL, be the n coordinates of these photons. Let
g: denote the total induced charge on the photo-detector
resulting from a photon interaction at spatial position w;
and at time t;. Conditioned on n, {g;}!X, is a sequence of
i.i.d. random variables with range G = IR and probability
density p,. The mean p, and variance 03 of the density
py specify the mean efficiency and energy spread, respec-
tively, of the photon-collection process. We assume that
the g;’s are statistically independent of T given n.

The sequence {(t;,1;), g}, of photon arrival coordinates
(ti,u;) € [=%,%] x A and photo-detector gains g; € G
defines a marked point process dM with index set I =
[=%,%] x A and mark space G. In the sequel we refer
to the process M as the direct photon detection data or
the photon-noise-limited regime. By contrast the actual
measurement corresponds to the following finite bandwidth

and thermal noise contaminated observations over (,u) €
I

X(t,u) = _Zg;p(t —ti,u— W) + w(t,u) (1)

I

where w is a spatio-temporal white Gaussian noise. We as-
sume that the unit energy SPR pulse p(t, u;, u3) is mono-
exponential over the time variable ¢ and spherically sym-
metric over the spatial variables u, us:

ptw) = { e p(llull), t>0 @)
= 0, t<0’

where [[u|| = /u] +ul, T, < T, and gp € 1. We will

assume that the detector intensity is constant over time

and has the form of a spherically symmetric spatial blur

function over u:

1
At w) = ZAllul)). (3)
The functional independence of A with respect to ¢ cor-
responds to imaging a stationary photon source while the
symmetry of A with respect to u corresponds to imaging

with a symmetric optical aperture. It is also assumed that
conditioned on 7, the integrated intensity A def f!A =
E[n|r] of N is functionally independent of r. This as-
sumption, called conditional energy invariance in [3], is
appropriate in cases where the average rate A is known a
priort and the spatial support {u € IR* : A(t,u — 7) > 0}
is contained in A for all 7.

Briefly stated, the estimation objective is to determine
the value of the vector parameter 7 based on the photo-

detector waveform output X given in (1). A relevant mea-
sure for the accuracy of an estimator 7(X) of 7 is the av-
erage of the component MSE’s:

MSE(X) ' 25 Bl(r: — 7(X))7) (4)

Note that MSE is related to the volume of the concentra-
tion ellipsoid E[(7 — 7)(7 — r)7).

3 Rate Distortion Lower Bounds
on MSE

In [4] a rate distortion bound on MSE were derived for a
more general parameter estimation problem than the lo-
calization problem considered here. This bound is expo-
nentially decreasing in the channel capacity C, associated
with the conditional probabilities governing the ”channel
output” X given the ”channel input” 7, and the entropy
function H(r) associated with the prior distribution of r.
As explained in [4], an exact expression for this bound
is intractable, requiring an expression for the joint den-
sities of the process X. To arrive at a tractable bound
we used the data processing inequality € < min{C},C,},
where Cy and C; are, respectively, the channel capacities
of a point process channel, mapping the source symbols 7
into the direct photon-detection data M, and a continu-
ous waveform channel, mapping M into the observations
X. We then showed that C; can be upper bounded by
the capacity C} of a Poisson channel with associated in-
tensity A and mark distribution f,, and C, can be upper
bounded by the capacity C3 of an additive Gaussian noise
channel whose output has the spatio-temporal covariance
function Kx(z,2,) = IK,(zy,2,) + %"5(51 ~ z3). Here
K,(z,,2,) is the covariance function of the signal compo-
nent s(t,u) e Z?:1 gip(t — ti,u — u;) of the observations
X. This gave the following rate distortion lower bound on
MSE defined in (4):

MSE(X) > B, as(X) & ﬁeﬂ(z)e- min{C{.C3)(5)

Application to Point Source Localization

Using the forms (2) and (3) for p(t,u) and A(t,u) given
in Sec. II, it can be shown [4] that (for r,,r, T — oo
and ry/r, — 1) the covariance function Ki(zy,2,) is ho-
mogeneous, i.e. K,(z),2,) = K,(z; — z,), and isotropic,
i.e. K,(z) depends only on the magnitude ||z]|, over the
spatio-temporal range of the observation z,,z, € I (Note
this does not imply the unreasonable properties that the
field X is either conditionally homogencous or condition-
ally isotropic given 7). For homogencous I, the theory
of Toeplitz forms provides a spectral domain description
of the capacity C3 in terms of the limiting capacity-per-

. —+ def . .
unit-volume €, = lim_ p_  C5/|1|, where |I| denotes
the volume of the set I. In particular:

cl = %]Z[ df dvydvs In (1 + E—(i”‘—"”) . (6)



where G, is the power spectral density associated with
K,(2):

Gi(f v, 11) (7

o0
=]f dtduldu2K,(t,ul,uz)e—jzw(;wu.u.-p.y,u,)_

-0

In the Fourier transform (7) f is temporal frequency and
Iy, vy are spatial frequencies. The limiting form (6) for the
normalized capacity Cj/|I| gives the large T and large r,
approximation:

C; =~ |I|C;, (8)
to be used in the sequel.
Under the assumed form (2) an integral identity can be
used to simplify (6) resulting in:

@:%/ﬂwr[1/1+é(r)~l]dr, 9)

where Q is the spherically-symmetric spatial signal-
spectrum computed as the 1-D Hankel transform of

K,(v) def K,(0,u) and v def [lz[|. For our problem @ has

the following form:
Qr) =

| P(r)?

(10)

2
K ~ A
. ]A(") - 'Q'F;Jl(Qm"o")fzJ )

A+
Myt o

In (10) P and A are the Hankel transforms of p(||ul)
and A(||u/|), /7 is the rms single-photon-response-to-noise
power ratio (SPRNR):

det 2(p1] + 02)
= —-—_No ,
Ji is the Bessel function of order 1, and, as before, A is the

integrated intensity.
Using (8) and (9) we thus have:

- Il & A
o5 zl—ﬁ’ifo r[\/l+Q(r)—l] dr.

where @ is given by (10). The approximation (11) is accu-
rate for large T" and r, and r,/r) ~ 1.

Furthermore, using results of (3], the capacity C} is equal
to the information divergence d(\, X) between two spatial
intensities A and X:

Cp = d(), ) &f f f A()In ;—%@,
J u

(11)

(12)

where X(u) in (12) is constant over the spatial domain A:

A
X(u)={ rap, 1€ 4

Combining ‘all of the above results the rate distortion
bound (5) takes the form:

Braip(X)

(13)

o.w.

(14)
A(x)
Jgﬂe_ﬂ ARt gyt 7> Y,
xre :
14l o= [T [V14Qe) 1] ar
2re !

7<%
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where 7, is a SPRNR threshold determined by the condi-
tion C{ = C3 in (5). Specifically, v, is the solution T =7,
of the equation:

./:[ /\(E)In-.;.%dgz %_/DMP[M‘“IJdr,

when the solution exists. Note that this solution does not
exist when the spatial filter response approaches a delta
function, i.e. Tp,0, — 0, corresponding to perfect ob-
servation of the photon arrivals. In this case, since C;
becomes unbounded, C} is always less than C'3, and hence
min{C},C3} = C?, for all ¥ > 0. Therefore, when per-
fect photon observations are available, v, = 0 and the
lowerbound (14) is identical to the direct detection bound
Brais(M) = [A|/(2me) exp(—C7). Note also that the lower
bound (14) separates MSE performance into two SPRNR
regimes: the photon-noise-limited regime (y > v,); and
the thermal-noise-limited regime (7 £ 7). In the photon-
noise-limited regime B, 44(X) decreases exponentially as a
function of the information divergence d(\, X) which mea-
sures the difference between the blur function A(u) and
(1) (13). The closer A(u) is to the uninformative uniform
intensity A(u), the poorer becomes the estimator MSE. On
the other hand, in the thermal-noise-limi ted-regime regime
Brain(X) decreases exponentially in the rms deviation be-
tween the Hankel transform A of the blur function A[2l])

and the Hankel transform -—A-7J1(27rr,,r) of the uniform

2xr,

(15)

intensity X(||u||). Observe also that the maximum value
of Brai(X) is the “entropy power” jleH() = [Al/(27e)
which is approximately equal to the a priori variance of s
and 7.

Gaussian Beam Model

Finally we specialize to the following spatially symmetric
Gaussian blur function and SPR, models:

A m"-{-u2
).(ul,ug) = s 3¢ 75
2roy
1 [
p(lﬁ,u?) = '—36_ 275 .
no}

Using (12) it can be shown that:

4] ] |

P
2measy

ct :Am[ (16)

Furthermore @ can be shown to have an explicit non-
integral form not reproduced here.

4 Numerical Results

It is easily verified that the bound (5) depends on the
parameters ry,v,,0,,0x, Ty, T, iy, 04, N, only through the
a priort variance [A|/(27¢) and through the ratios r1/re,
o/0p, Ox[0p, T/T,, and v = 2(u® + ¢2)/N,. We numeri-
cally evaluated the bound for a continuous CCD array with
the following parameters: r; = r, = 16em, o, = lem,
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ox = dem, Ty = 0.5sec, T' = lsec, ¥ = 0.001. These pa-
rameter values were chosen to correspond to a compact
CCD star tracking telescope with small-aperture optics
and full-well integrate-and-dump CCD readout.

In Fig. 2 we show a plot of the SPRNR threshold Yo 88 a
function of the total count rate A. Note that Yo I8 approx-
imately constant for A < 200 and increases approximately
linearly in A for A > 300. In Fig. 3 a plot of the rate
distortion bound is given as a function of A. Also shown
for comparison is the classical Cramer-Rao bound which
was computed in (2] for the perfectly observable photon
counting regime. It was shown in [4] that this CR bound
remains a valid lower bound for the imperfect observation
model considered in this paper. The MSE curves in Fig. 3
are plotted on a log-linear scale and are normalized by the
a priori variance of ;. Based on Figure 2 we make the fol-
lowing conclusions. First, unlike B, which converges to
the theoretically maximum MSE equal to the a priori vari-
ance of 7y, B, diverges to infinity as A goes to zero. This
reflects the fact that the CR bound is not strictly valid for a
uniform prior density since such a prior is not differentiable
on the boundary of the disk. Second, the rate distortion
lower bound is significantly tighter than the CR bound over
the range 0 < A < 1800. This range is relevant for imag-
ing weak optical sources. Third, our results indicate that
only 300 photons are theoretically required to achieve the
diffraction limited resolution (10Logo? = —15dB) while
fewer than 1200 photons are required to resolve source po-
sition to within 1/50-th of the diffraction limit (—48dB).
An interesting topic for further study is the possible con-
struction of position estimators which can come close to
achieving the performance limits predicted in this study.
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Figure 1: Snapshot of X at time ¢ € [0, 7] for low magni-
tude cylindrical photon intensity \.
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Figure 2: The SPRNR threshold v, as a function of count
rate A
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Figure 3: The rate distortion lower bound B4 and the
Cramer-Rao lower bound B, on MSE



