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ABSTRACT 

This work presents a novel approach to detect multiple sig- 
nals cmbeddcd in noisy obscrvations of a sensor array. We 
formulate ttie detection problem as a multiple hypothesis 
test. To control thc global level of the multiple test, we apply 
the false discovery rate (FDR) criterion recently suggested 
by Benjamini and Hochberg instead of the classical fami- 
lywise error rate (FWE) criterion. Thc proposed method is 
tested by thc simulated data. Results show that the FDR- 
controlling procedure is more powerful than the FWE- con- 
trolling procedure. The performance improvement is most 
significant tor a large number of signals and low SNRs. 

1. INTRODUCTION 

This work discusses signal detection using a multiplc hy- 
pothesis test. Estimating the number of signals embedded in 
noisy obscrvations is a key issue i n  array signal processing, 
harmonic retrieval, wireless communication and geophysi- 
cal application. 

Methods based on the information theoretic criterion and 
minimum description length (MDL) criterion were proposcd 
in  [XI 191. I n  [3][6], a multiple testing procedure was SUE- 

gested to determine the number of signals. I n  contrast to thc 
subspace based methods [8] [91, the test statistics i n  [3][61 
are derived from the likelihood ratios (LR). As pointed out 
in  [6 ] ,  the LR-based approach has a lower signal to noise 
ratio (SNR) threshold and a better performance in  simula- 
tion and real data processing. 

A major concern i n  multiple testing problems is the con- 
trol of type I errors. The detection procedure i n  [3] [6]  ap- 
plied the Bonferroni-Holm procedure [5] to control the global 
level of the test. The Bonferroni-Holm procedure controls 
the probability of committing any type I error in families of 
comparisons under simultaneous consideration. The con- 

trol of famitywise error-rate (FWE) often leads to conser- 
vativc results. To overcome this drawback, Bcnjamini and 
Hochberg suggest that the false discovery rate (FDR) may 
be the appropriate error rate to control in many applications 
[ l ] .  The Benjamini-Hochberg procedure was shown to bc 
much more powerful than comparable procedures that con- 
trol FWE. Motivated by its potential ofa gain in power, we 
apply the Benjamini-Hochbcrg procedure to our detection 
schcme. 

This paper is outlined as follows. We givc a brief de- 
scription of the signal model in the next section. Then we 
present the multiple test procedure for signal detection. Sec- 
tion 4 introduces the concept of f-alse discovery rate (FDR) 
and the Benjamini-Hochberg procedure. Simulation results 
are prcsented and discussed in scction 5. Our concluding 
remarks are given in  section 6. 

2. SIGNAL MODEL 

Consider an array of N sensors rcceives &I narrow band 
signals impinging from unknown directions 8= [SI,. . . , Only. 
The array observation vector z(i) ECNx' can be expressed 
as 

~ ( t )  = N(B) s ( t )  + n(t), t = 1 , 2 , .  . . , T (1) 

where the mth column of the matrix 

H ( 8 )  = [ d(ol),. . . I d ( B A f )  1 ( 2 )  

is the steering vector d(B,,) E U?"' associated with the 
signal arriving from the direction Qm. The signal wave- 
form s ( t )  = isl(t),. . . , . s ~ ~ ( t ) ~  E is considered as 
deterministic and unknown. Furthermore, the noise vector 
n(t) f CNx' is independent, identically complex normally 
distributed with zero mean and covariance matrix VI, where 
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U is the unknown noise spectral parameter and I is an iden- 
tity matrix with corresponding dimension. Based on the ob- 
servation { ~ ( t ) } : = ~ ,  our main interest is to determine the 

number of signals M .  with 

given by [6] 

7L1 = T(2 + T m ) ,  712 = T(21-, - 2m - rm-l) (7) 

T~ = dim(z(t)) = N ,  r ,  = dim(B,,) = 'm. (8) 

Since F,,(h,)'s distribution depends on r ,  and ~ ~ - 1 ,  the 
3. SIGNAL DETECTION USING A MULTIPLE 

HYPOTHESIS TEST 
respective dimension of the parameters 8, and f3,,+1, but 

tic is called pivotal if its distribution does not depend on the 
true value of the parameter. 

we suggest a multiple hypothesis to the lIum- not on the true parameter values, it is pivotal. A test st&- 
ber of signals. Let Adm,, denote the maximal number of 
sources. The following procedure detects one signal after 
another. More precisely, for 7n = 1, 

H1 

A1 

For in = 

H,  : 

A ,  : 

: Data contains only noise. 
s(t) = n(t) 

~ ( t )  = H1(el)sl(q +n( t )  
: Data contains at least 1 signals. 

2,. . . , Mm,, 

Data conlains at most (nz - I )  signals. 

4 q  = ~wL-l(QTl-I>srn-l(t) + n(t) 

4 t )  = Hm(Q,)sn,(t) + n(t) 

Data contains at least in signals. 

From eq. (5) it is easy to see that the LR test is equiva- 
lent to the F-test proposed by Shumway [7]. The F-test uses 
F,(O,,) i n  testing H ,  against ATn. Given (ut - 1) sig- 
nals, whether a further signal exists is decided by whether 
the estimated increase in SNR is large enough. 

(3 
4. CONTROL OF FALSE DISCOVERY RATE 

Thc control of type one error is an important issue in mul- 
tiple inferences. A type one error occurs when the null hy- 
pothesis H,,, is wrongly rejected. The traditional concern 
in  multiple hypothesis problems has been about controlling 
the probability of erroncously rejecting any of the true null  
hypotheses, the familywise error-rate (FWE). Given a ccr- 

(4) 

The steering matrix and signal vector arc given by HTn (e,) 
= [d(B1), . . . ,d(Bm)] and sln(t) = [ s l ( t ) , .  . .,s,(t)JT, re- 
spec tively. 

Based on the likelihood ratio (LR) principle, we obtain 
the test statistics T,n(6,n), (771 = 1,. . . , M?,,,,) as fdows .  

where k = C:=iz(t)~(t)~ and'P(i ,)  is thc projec- 
tion matrix onto the subspace spanned by the columns of 
Hm(&). When ni = I, we define PO( . )  = 0. b,  repre- 
sents the ML estimate assuming that m signals are present 
in the observation. 

Under hypothesis H,, the statistic 

is F,,,,,-distributed. Taking the effect of the nonlinear pa- 
rameter ern into account, the degrees of freedom n ~ ,  n~ are 

tain significance levcl cy, the control of FWE requires each 
of the M tests to be conducted at a lower level. For ex- 
ample, the significance level of each test is  given by a/M 
in the classical Bonferroni procedure. When the number of 
tests increases, the power of the Bonferroni-type procedures 
[5] that control t he  FWE is substantidly rcduced. 

To keep the balance between type one error control and 
power, Benjamini and Hochberg introduced a new criterion 
into the multiplc comparison problem, the false discovery 
rate (FDR)[l]. The FDR is delined as the expected propor- 
tion of errors among the rejected hypotheses. If all null hy- 
potheses { H I ,  H2,. . . , Hhg}  are true, the FDR-controlling 
procedure controls the traditional FWE. But when many hy- 
potheses are rejccted, an erroneous rejection i s  not as cru- 
cial for drawing conclusion from thc whole family of tests, 
the FDR is a desirable error rate to control. In practice, the 
difference between the FDR- and FWE-controlling proce- 
dures becomes more dramatic when'the size of the problem 
is larger [ 2 ] .  

Assume that among the 114 tested hypotheses {H1, H2, 
. . . , HA['), nto are true null  hypotheses. Let { p l ,  p z ,  . . . , p ~ l }  
be the pvalues (observed significance values) correspond- 
ing to the test statistics {TI ,  Tj,. . . , TA[}.  By definition, 
p ,  = 1 - PH,,(T,,) where PH,, is the distribution func- 
tion under H,. Benjamini and Hochberg showed that when 
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(I) the test statistics are independent or (2) the joint distri- 
bution of the test statistics is positive regression dependent 
on the subset of the test statistics corresponding to the true 
null hypotheses, the foIlowing procedure controIs the FDR 
at level Q . ,mo/M 5 q [ 11 I21. 

The Benjamini Hochberg Procedure 

Define 

(9) 

and reject H(1) . . . H(a,. When no such k exists, reject no 
hypothesis. 

If the test statistics do not ensure dependency or pos- 
itive dependency, the above procedure is conducted with 
q' = p/(C:Ll $) instead of q in eq. (9) to control the FDR 
at the same  level [Z] [43. Note that using q' which is smaller 
than y will induce a loss in power. 

The unmodified Benjamini Hochberg procedure (9) is 
used i n  our implementation. Eq. (6) shows that given the 
estimated noise, tr[(I  - PTn(8r,z))k], the numcrator which 
is charactcrizcd by thc difference between the two projec- 
tion matrices, P,n(8,) and Pm-l(Q,,z-l), is independent 
from the other test statistics. We belicve that it is possible 
to prove independency or positive dependency of the test 
statistics. Therefore, the unmodified Benjamhi Hochberg 
procedure should be able to conirol the FDR in the sug- 
geslcd multiple test. 

5. SIMULATION 

We [cst the proposed algorithms by numerical experiments. 
The narrow band signals gcnerated by sources of different 
strengths are reccived by a uniformly linear array of 15 sen- 
sors with inter-element spacings of half a wavclcngth. Each 
expcrinient performs 200 trials. The number of snapshots is 
given by T = 15, 50. For comparison, the simulated data is 
applied to the Bonferroni-Holm procedure [SJ as well. The 
sequentially rejective Bonferroni-Holm procedure keeps the 
FWE at the same level cy as the classical Bonferroni test but 
is more powerful than it. The significance levei of each test 
is given by a/(M + 1 -na). We use q = 0.05 and a = 0.05 
in  the simulation. 

In the first experiment, we consider three sourccs lo- 
catcd at 8 = [12" 36' 45"] . The SNR, which is de- 
fined as 10 log(si ( t )2/u) ,  i = 1,.  . . , 711 ,  varies from -15 
to 10 dB in a 1 dB step. The SNR differences = [-2 0 11 
dB. Fig. 1 shows the number of detected sources averaged 
over 200 trials vs SNR. i n  general, more signals are de- 
tected at higher SNRs. The FDR-controlling procedure has 

an overall higher number o f  detected signals than the FWE- 
controlling procedure. While both algorithms behave al- 
most identically at T = 50, the FDR-controlling procedure 
performs slightly better at T = 15. 

In thz second experiment, the signals are generated by 
6 sources located at B = [12" 21" 36" 45" 56" 64'1 with 
SNR differences = [-2 0 0 1 2 - 11 dB. From fig. 2 
we can observe that the Benjamini-Hochberg procedure al- 
ways detects more signals than the Bonferroni-Holm proce- 
dure. The Benjamini-Hochberg procedure has a larger gain 
in power at T = 15 than at T = 50. 

In the third experiment, we consider M = 12 signals. 
The SNR varies from -30 to 20 dB in  a 2 dB step. Results 
obtained from T = 15 and T = 50 are presented in figs. 
3 and 4, respectively. The FDR-controlling proccdure al- 
ways outperforms the FWExontrolling procedure. i n  the 
IOW SNR region, -30 to -10 dB, the difference between 
these two approaches is larger than in the high SNR region. 

Comparing thc three experiments, we concludc that the 
FDR- and FWE-controlling proccdures have a similar per- 
formance when the number of signals is small but differ 
from each other when the number of signals increases. As 
predicted in  the theory, the FDR-controlling procedure is 
prefcrnble to the FWE-controlling procedure as the size of 
the problem grows. 

6. CONCLUSION 

This work discusses signal detection using a multiple hy- 
pothesis test under 3 n  FDR consideration of Benjamini and 
Hochberg. Comparcd to the classical FWE criterion, the 
FDR criterion leads to more powerful tests and controls the 
errors at a reasonablc level. Wc expect that average overes- 
timation of thc number of signals would be improved by the 
FDR-controlling procedure because i t  is designed to do so. 
Simulation shows that the proposed multiple hypothesis test 
provides good results at low SNRs and small numbers of 
snapshots. The FDR-controlling approach performs better 
than the WE-controlling approach. Distinction bctween 
these two approaches becomes significant for a large num- 
ber of signals and low SNRs. We will provide additional 
examples and details in  a future publication. 
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Fig. 2. Number of detected signals. 0 = [W 2Io 36'45' 56' 6 4 O ] .  
SNR = [-15 : 1 : IO] dB. SNR diffeirtncrs = [-'2 0 0 1 2 - 11 dB, 
number of snapshots T = 15, 50. 
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Fig. 3. Nuinber of detected signals. h.1 = 12. SNK = [-30 : 2 : 201 
dB. nutnber of snapshots T = 15. 
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Fig. 4. Number of detected signals. hf = 12, SNR = [-SO : 2 : 201 
dB, number of snapshots T = 50. 
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