Min-Capacity of a Multiple-Antenna Wireless Channel in a Static Rician Fading Environment

MAHESH GODAVARTI, ALFRED O. HERO-III, THOMAS L. MARZETTA

July 6, 2003

Submitted to IEEE Transactions on Wireless Communications, July 2003

Abstract

We calculate the optimal guaranteed performance for a multiple-antenna wireless compound channel with M antennas at the transmitter and N antennas at the receiver on a Rician fading channel with a static specular component. The channel is modeled as a compound channel with a Rayleigh component and an unknown rank-one deterministic specular component. The Rayleigh component remains constant over a block of T symbol periods, with independent realizations over each block. The rank one deterministic component is modeled as an outer product of two unknown deterministic vectors of unit magnitude. Under this scenario to guarantee service it is required to maximize the worst case capacity (min-capacity). We show that for computing min-capacity instead of optimizing over the joint density of $T \cdot M$ complex transmitted signals it is sufficient to maximize over a joint density of min $\{T, M\}$ real transmitted signal magnitudes. The optimal signal matrix is shown to be equal to the product of three independent matrices, a $T \times T$ unitary matrix, a $T \times M$ real nonnegative diagonal matrix and a $M \times M$ unitary matrix. We derive a tractable lower bound to capacity for this model which is useful for computing achievable rate regions. Finally, we show that avg-capacity computed under the assumption that the specular component is constant but, random with isotropic distribution is equal to min-capacity. This mean that avg-capacity which in general has no practical meaning for non-ergodic scenarios, has a coding theorem associated with it in this particular case.

Keywords: capacity, compound channel, information theory, Rician fading, multiple antennas.

Corresponding author:

Mahesh Godavarti Ditech Communications, Inc. 825 E Middlefield Rd Mountain View, CA 94043. Tel: 650-623-1479. Fax: 650-564-9599. e-mail: mgodavarti@ditechcom.com.

¹Mahesh Godavarti is with Ditech Communications Inc., Mountain View. Alfred Hero is with the Dept of Electrical Engineering, the University of Michigan, Ann Arbor. Thomas L. Marzetta is with Bell Laboratories, Lucent Technologies, Murray Hill. This work was performed in part while M. Godavarti was a summer intern at the Mathematical Sciences Research Center, Bell Laboratories and in part while M. Godavarti was a Ph.D. candidate at the University of Michigan. Parts of this work were presented at ISIT 2001 held in Washington, D.C., USA

1 Introduction

Need for higher rates in wireless communications has never been greater than in the present. Due to this need and the dearth of extra bandwidth available for communication multiple antennas have attracted considerable attention [5, 6, 11, 14, 15]. Multiple antennas at the transmitter and the receiver provide spatial diversity that can be exploited to improve spectral efficiency of wireless communication systems and to improve performance.

Two kinds of models widely used for describing fading in wireless channels are Rayleigh and Rician models. For wireless links in Rayleigh fading environment, it has been shown by Foschini et. al. [5, 6] and Telatar [14] that with perfect channel knowledge at the receiver, for high SNR a capacity gain of min(M, N) bits/second/Hz, where M is the number of antennas at the transmitter and N is the number of antennas at the receiver, can be achieved with every 3 dB increase in SNR. The assumption of complete knowledge about the channel might not be true in the case of fast mobile receivers and large number of transmit antennas because of insufficient training. Marzetta and Hochwald [11] considered the case when neither the receiver nor the transmitter has any knowledge of the fading coefficients. They consider a model where the fading coefficients remain constant for T symbol periods and instantaneously change to new independent realizations after that. They derive the structure of capacity achieving signal and also show that under this model the complexity for capacity calculations is considerably reduced.

In contrast, the attention paid to Rician fading models has been fairly limited. Rician fading components traditionally have been modeled as independent Gaussian components with a deterministic non-zero mean [1, 3, 4, 9, 12, 13]. Farrokhi et. al. [4] used this model to analyze the capacity of a MIMO channel with a specular component. They assume that the specular component is deterministic and unchanging and unknown to the transmitter but, known to the receiver. They also assume that the receiver has complete knowledge about the fading coefficients (i.e. has knowledge about the Rayleigh component as well). They work with the premise that since the transmitter has no knowledge about the specular component the signaling scheme has to be designed to guarantee a given rate irrespective of the value of the deterministic specular component. They conclude that the signal matrix has to be composed of independent circular Gaussian random variables of mean 0 and equal variance to maximize the rate.

Godavarti et. al [10] consider a non-conventional ergodic model for the case of Rician fading where the fading channel consists of a Rayleigh component, modeled as in [11] and an independent rank-one isotropically distributed specular component. The fading channel is assumed to remain constant over a block of T consecutive symbol periods but take a completely independent realization over each block. They derive similar results on optimal capacity achieving signal structures as in [11]. They also establish a lower bound to capacity that can be easily extended to the model considered in this paper. The model described in [10] is applicable to a mobile-wireless link where both the direct line of sight component (specular component) and the diffuse component (Rayleigh component) change with time.

In [9], Godavarti et. al. consider the standard Rician fading model. The capacity calculated for the standard Rician fading model is a function of the specular component since the specular component is deterministic and known to both the transmitter and the receiver. The authors establish asymptotic results for capacity and conclude that beamforming is the optimum signaling strategy for low SNR whereas for high SNR the optimum signaling strategy is same as that for purely Rayliegh fading channels.

In this paper, we consider a quasi-static Rician model where the specular component is non-changing while the Rayleigh component is varying over time. The only difference between this model and the standard Rician fading model is that in this model the specular component is of single rank and is not known to the transmitter. We can also contrast the formulation here to that in [10] where the specular component is also modeled as stochastic and the ergodic channel capacity is clearly defined. In spite of a completely different formulation, we obtain surprisingly similar results as [10].

The channel model considered here is applicable to the case where the transmitter and receiver are fixed in space or are in motion but sufficiently far apart with a single direct path so that the specular component has single rank and is practically constant while the diffuse multipath component changes rapidly. Since the case where the transmitter has no knowledge about the specular component the transmitter can either maximize the worst case rate over the ensemble of values that the specular component can take or maximize the average rate by establishing a prior distribution on the ensemble. We address both approaches in this paper. Note that when the transmitter has no knowledge about the specular component, knowledge of it at the receiver makes no difference on the worst case capacity [2]. We however assume the knowledge as it makes it easier to analyze the fading channel.

Similar to [4] the specular component is an outer product of two vectors of unit magnitude that are nonchanging and unknown to the transmitter but known to the receiver. The difference between our approach and that of [4] is that in [4] the authors consider the channel to be known completely to the receiver. We assume that the receiver's extent of knowledge about the channel is limited to the specular component. That is, the receiver has no knowledge about the Rayleigh component of the model. Considering the absence of knowledge at the transmitter it is important to design a signal scheme that guarantees the largest overall rate for communication irrespective of the value of the specular component. This is formulated as the problem of determining the worst case capacity in Section 2. In Section 5 we consider the average capacity instead of worst case capacity and show that both formulations imply the same optimal signal structure and the same maximum possible rate. We prove the existence of a coding theorem corresponding to the worst case capacity for the fading model considered here in Section 6. In Section 7 we use the results derived in this paper to compute capacity regions for some Rician fading channels.

2 Signal Model and Problem Formulation

Let there be M transmit antennas and N receive antennas. We assume that the fading coefficients remain constant over a block of T consecutive symbol periods but are independent from block to block. Keeping that in mind, we model the channel as carrying a $T \times M$ signal matrix S over a $M \times N$ MIMO channel H, producing X at the receiver according to the model:

$$X = \sqrt{\frac{\rho}{M}}SH + W \tag{1}$$

where the elements, w_{tn} of W are independent circular complex Gaussian random variables with mean 0 and variance 1 ($\mathcal{CN}(0,1)$).

The MIMO Rician model for the matrix H is $H = \sqrt{1 - rG} + \sqrt{rNM\alpha\beta^{\dagger}}$ where G consists of independent $\mathcal{CN}(0,1)$ random variables and α and β are deterministic vectors of length M and N, respectively, such that $\alpha^{\dagger}\alpha = 1$ and $\beta^{\dagger}\beta = 1$. We assume α and β are known to the receiver. Since the receiver is free to apply a co-ordinate transformation by post multiplying X by a unitary matrix, without loss of generality we can take β to be identically equal to $[1 \ 0 \ \dots \ 0]^T$. We will sometimes write H as H_{α} to highlight the dependence of H on α . G remains constant for T symbol periods and takes on a completely independent realization every T^{th} symbol period.

The problem we are investigating is to find the distribution $p^*(S)$ that attains the maximum in the following maximization defining the worst case channel capacity

$$C^* = \max_{p(S)} I^*(X; S) = \max_{p(S)} \inf_{\alpha \in A} I^{\alpha}(X; S)$$

and also to find the maximum value, C^* .

$$I^{\alpha}(X;S) = \int p(S)p(X|S,\alpha\beta^{\dagger}) \log \frac{p(X|S,\alpha\beta^{\dagger})}{\int p(S)p(X|S,\alpha\beta^{\dagger}) \, dS} \, dSdX$$

is the mutual information between X and S when the specular component is given by $\alpha\beta^{\dagger}$ and $A \stackrel{\text{def}}{=} \{\alpha : \alpha \in \mathcal{C}^{M} \text{ and } \alpha^{\dagger}\alpha = 1\}$. Since A is compact the "inf" in the problem can be replaced by "min". For convenience we will refer to $I^{*}(X;S)$ as the *min-mutual information* and C^{*} as *min-capacity*.

The above formulation is justified for the Rician fading channel considered here because there exists a corresponding coding theorem which we prove in section 6. However, the existence of coding theorem can also be obtained from [2, chapter 5, pp. 172-178]. *Min-capacity* defined above is just the capacity of a *compound* channel. We will use the notation in this paper to briefly describe the concept of compound channels given in [2]. Let $\alpha \in A$ denote a candidate channel. Let $C^* = \max_{p(S)} \min_{\alpha} I^{\alpha}(X; S)$ and $P^*(e, n) = \max_{\alpha} P^{\alpha}(e, n)$ where $P^{\alpha}(e, n)$ is the maximum probability of decoding error for channel α when a code of length n is used. Then for every $R < C^*$ there exists a sequence of $(2^{nR}, n)$ codes such that

$$\lim_{n \to \infty} P^*(e, n) = 0.$$

It is also shown in [2, Prob. 13, p. 183] that *min-capacity* doesn't depend on the receiver's knowledge of the channel. Hence, it is not necessary for us to assume that the specular component is known to the receiver. However, we do so because it facilitates easier computation of *min-capacity* and *avg-capacity* in terms of the conditional probability distribution p(X|S).

3 Capacity Upper and Lower Bounds

Theorem 1 Min-capacity, C_H^* when the channel matrix H is known to the receiver but not to the transmitter is given by

$$C_H^* = TE \log \det \left[I_N + \frac{\rho}{M} H_{e_1}^{\dagger} H_{e_1} \right]$$
(2)

where $e_1 = [1 \ 0 \ \dots \ 0]^T$ is a unit vector in \mathcal{C}^M . Note that e_1 in (2) can be replaced by any $\alpha \in A$ without changing the answer.

Proof: First we note that for T > 1, given H the channel is memoryless and hence the columns of the input signal matrix S are independent of each other. That means the mutual information $I^{\alpha}(X;S) =$

 $\sum_{i=1}^{T} I^{\alpha}(X_i; S_i)$ where X_i and S_i denote the i^{th} row of X and S, respectively. The maximization over each term can be done separately and it is easily seen that each term will be maximized individually for the same density on S_i . That is $p(S_i) = p(S_j)$ for $i \neq j$ and $\max_{p(S)} I^{\alpha}(X; S) = T \max_{p(S_1)} I^{\alpha}(X_1; S_1)$. Therefore, WLOG we assume T = 1.

Given H the channel is an AWGN channel therefore, capacity is attained by Gaussian signal vectors. Let Λ_S be the input signal covariance. Since the transmitter doesn't know α , Λ_S can not depend on α and the *min-capacity* is given by

$$\max_{\Lambda_S: \operatorname{tr}\{\Lambda_S\} \le M} \mathcal{F}(\Lambda_S) = \max_{\Lambda_S: \operatorname{tr}\{\Lambda_S\} \le M} \min_{\alpha \in A} E \log \det \left[I_N + \frac{\rho}{M} H_{\alpha}^{\dagger} \Lambda_S H_{\alpha} \right]$$
(3)

where $\mathcal{F}(\Lambda_S)$ is implicitly defined in an obvious manner. First note that $\mathcal{F}(\Lambda_S)$ in (3) is a concave function of Λ_S (This follows from the fact that log det K is a concave function of K). Also, $\mathcal{F}(\Psi^{\dagger}\Lambda_S\Psi) = \mathcal{F}(\Lambda_S)$ for any $M \times M \Psi : \Psi^{\dagger}\Psi = I_M$ since $\Psi^{\dagger}\alpha \in A$ for any $\alpha \in A$ and G has i.i.d. zero mean complex Gaussian entries. Let $Q^{\dagger}DQ$ be the SVD of Λ_S then we have $\mathcal{F}(D) = \mathcal{F}(Q^{\dagger}DQ) = \mathcal{F}(\Lambda_S)$. Therefore, we can choose Λ_S to be diagonal. Moreover, $\mathcal{F}(P_k^{\dagger}\Lambda_S P_k) = \mathcal{F}(\Lambda_S)$ for any permutation matrix P_k , $k = 1, \ldots, M!$. Therefore, if we choose $\Lambda'_S = \frac{1}{M!} \sum_{k=1}^{M!} P_k^{\dagger} \Lambda_S P_k$ then by concavity and Jensen's inequality we have

$$\mathcal{F}(\Lambda_S') \ge \sum_{k=1}^{M!} \mathcal{F}(P_k^{\dagger} \Lambda_S P_k) = \mathcal{F}(\Lambda_S)$$

Therefore, we conclude that the maximizing input signal covariance Λ_S is a multiple of the identity matrix. It is quite obvious to see that to maximize the expression in (3) we need to choose $\operatorname{tr}\{\Lambda_S\} = M$ or $\Lambda_S = I_M$ and since $E \log \det[I_N + \frac{\rho}{M}H_{\alpha_1}^{\dagger}H_{\alpha_1}] = E \log \det[I_N + \frac{\rho}{M}H_{\alpha_2}^{\dagger}H_{\alpha_2}]$ for any $\alpha_1, \alpha_2 \in A$, (2) easily follows. \Box

By the data processing theorem additional information at the receiver doesn't decrease capacity. Therefore:

Proposition 1 An upper bound on the channel min-capacity when neither the transmitter nor the receiver has any knowledge about the channel is given by

$$C^* \le T \cdot E \log \det \left[I_N + \frac{\rho}{M} H_{e_1}^{\dagger} H_{e_1} \right]$$
(4)

Now, we establish a lower bound.

Proposition 2 A lower bound on min-capacity when the transmitter has no knowledge about H and the receiver has no knowledge about G is given by

$$C^* \geq C_H^* - NE \left[\log_2 \det \left(I_T + (1-r) \frac{\rho}{M} S S^{\dagger} \right) \right]$$
(5)

$$\geq C_{H}^{*} - NM \log_{2}(1 + (1 - r)\frac{\rho}{M}T)$$
(6)

Proof: Proof is a slight modification of the proof of Theorem 3 in [10] therefore, only the essential steps will be shown here.

First note that,

$$I^{\alpha}(X;S) = I(X;S|\alpha)$$

= $I(X;S,H|\alpha) - I(X;H|S,\alpha)$
= $I(X;H|\alpha) + I(X;S|H,\alpha) - I(X;H|S,\alpha)$
 $\geq I(X;S|H,\alpha) - I(X;H|S,\alpha)$

where the last inequality follows from the fact that $I(X; H|\alpha) \ge 0$. Therefore,

$$C^*(X;S) \ge \max_{p(S)} \min_{\alpha} [I(X;S|H,\alpha) - I(X;H|S,\alpha)]$$

We obtain the lower bound by observing that the seond term can be upper bounded by

$$NE\left[\log_2 \det\left(I_T + (1-r)\frac{\rho}{M}SS^{\dagger}\right)\right]$$

and the first time can be maximized by choosing p(S) such that the elements of S are independent $\mathcal{CN}(0,1)$ random variables.

Notice that the second term in right hand side of the lower bound is

$$NE\left[\log_2 \det\left(I_T + (1-r)\frac{\rho}{M}SS^{\dagger}\right)\right]$$

instead of $NE\left[\log_2 \det\left(I_T + \frac{\rho}{M}SS^{\dagger}\right)\right]$ which occurs in the lower bound derived for the model in [10]. The second term I(X; H|S), is the mutual information between the output and the channel given the transmitted signal. In other words this is the information carried in the transmitted signal about the channel. Therefore, the second term in the lower bound can be viewed as a penalty term for using part of the available rate for training in order to learn the channel. When r = 1 or when the channel is purely specular we see that the penalty term for training goes to zero. This makes perfect sense because the specular component is known to the receiver and the penalty for learning the specular component is zero in the current model as contrasted to the model in [10].

Combining (4) and (6) gives us the following

Corollary 1 The normalized min-capacity, $C_n^* = C^*/T$ in bits per channel use as $T \to \infty$ is given by

$$C_n^* = E \log \det \left[I_N + \frac{\rho}{M} H_{e_1}^{\dagger} H_{e_1} \right]$$

Note that this is same as the capacity when the receiver knows H, so that as $T \to \infty$ perfect channel estimation can be performed.

4 Properties of capacity achieving signals

In this section, we derive the optimum signal structure for achieving *min-capacity*. The optimization is being done under the power constraint $E[tr{SS^{\dagger}}] \leq TM$.

Lemma 1 $I^*(X;S)$ as a functional of p(S) is concave in p(S).

Proof: First we note that $I^{\alpha}(X;S)$ is a concave functional of p(S) for every $\alpha \in A$. Let $I^*(X;S)_{p(S)}$ denote $I^*(X;S)$ evaluated using p(S) as the signal density. Then,

$$I^{*}(X;S)_{\delta p_{1}(S)+(1-\delta)p_{2}(S)} = \min_{\alpha \in A} I^{\alpha}(X;S)_{\delta p_{1}(S)+(1-\delta)p_{2}(S)}$$

$$\geq \min_{\alpha \in A} [\delta I^{\alpha}(X;S)_{p_{1}(S)} + (1-\delta)I^{\alpha}(X;S)_{p_{2}(S)}]$$

$$\geq \delta \min_{\alpha \in A} I^{\alpha}(X;S)_{p_{1}(S)} + (1-\delta)\min_{\alpha \in A} I^{\alpha}(X;S)_{p_{2}(S)}$$

$$= \delta I^{*}(X;S)_{p_{1}(S)} + (1-\delta)I^{*}(X;S)_{p_{2}(S)}$$

Lemma 2 For any $T \times T$ unitary matrix Φ and any $M \times M$ unitary matrix Ψ , if p(S) generates $I^*(X;S)$ then so does $p(\Phi S \Psi^{\dagger})$.

Proof: 1) Note that $p(\Phi X | \Phi S) = p(X | S)$, therefore $I^{\alpha}(X; \Phi S) = I^{\alpha}(X; S)$ for any $T \times T$ unitary matrix Φ and all $\alpha \in A$.

2) We have, $\Psi \alpha \in A$ for any $\alpha \in A$ and any $M \times M$ unitary matrix Ψ . Therefore, if $I^*(X;S)$ achieves its minimum value at $\alpha_0 \in A$ then $I^*(X;S\Psi^{\dagger})$ achieves its minimum value at $\Psi \alpha_0$ because $I^{\alpha}(X;S) = I^{\Psi \alpha}(X;S\Psi^{\dagger})$ for $\alpha \in A$ and Ψ an $M \times M$ unitary matrix.

Combining 1) and 2) we get the lemma.

Lemma 3 The min-capacity achieving signal distribution, p(S) is unchanged by any pre- and post- multiplication of S by unitary matrices of appropriate dimensions.

Proof: We will show that for any signal density $p_0(S)$ generating min-mutual information I_0^* there exists a density $p_1(S)$ generating $I_1^* \ge I_0^*$ such that $p_1(S)$ is invariant to pre- and post- multiplication of S by unitary matrices of appropriate dimensions. By Lemma 2, for any pair of permutation matrices, Φ $(T \times T)$ and Ψ $(M \times M)$ $p_0(\Phi S \Psi^{\dagger})$ generates the same min-mutual information as p(S). Define $u_T(\Phi)$ to be the isotropically random unitary density function of a $T \times T$ unitary matrix Φ . Similarly define $u_M(\Psi)$. Let $p_1(S)$ be a mixture density given as follows

$$p_1(S) = \int \int p_0(\Phi S \Psi^{\dagger}) u(\Phi) u(\Psi) \ d\Phi d\Psi$$

It is easy to see that $p_1(S)$ is invariant to any pre- and post- multiplication of S by unitary matrices and if I_1^* is the *min-mutual information* generated by $p_1(S)$ then from Jensen's inequality and concavity of $I^*(X;S)$ we have $I_1^* \ge I_0^*$.

Corollary 2 $p^*(S)$, the optimal min-capacity achieving signal density lies in $\mathcal{P} = \bigcup_{I>0} \mathcal{P}_I$ where

$$\mathcal{P}_I = \{ p(S) : I^{\alpha}(X; S) = I \quad \forall \alpha \in A \}$$
(7)

Proof: Follows immediately from Lemma 3 because any signal density that is invariant to pre- and postmultiplication of S by unitary matrices generates the same mutual information $I^{\alpha}(X;S)$ irrespective of the value of α .

Theorem 2 The signal matrix that achieves min-capacity can be written as $S = \Phi V \Psi^{\dagger}$, where Φ and Ψ are $T \times T$ and $M \times M$ isotropically distributed matrices independent of each other, and V is a $T \times M$ real, nonnegative, diagonal matrix, independent of both Φ and Ψ .

Proof: From the singular value decomposition (SVD) we can write $S = \Phi V \Psi^{\dagger}$, where Φ is a $T \times T$ unitary matrix, V is a $T \times M$ nonnegative real diagonal matrix, and Ψ is an $M \times M$ unitary matrix. In general, Φ , V and Ψ are jointly distributed. Suppose S has probability density $p_0(S)$ that generates min-mutual information I_0^* . Let Θ_1 and Θ_2 be isotropically distributed unitary matrices of size $T \times T$ and $M \times M$ independent of S and of each other. Define a new signal $S_1 = \Theta_1 S \Theta_2^{\dagger}$, generating min-mutual information I_1^* . Now conditioned on Θ_1 and Θ_2 , the min-mutual information generated by S_1 equals I_0^* . From the concavity of the min-mutual information as a functional of p(S), and Jensen's inequality we conclude that $I_1^* \ge I_0^*$.

Since Θ_1 and Θ_2 are isotropically distributed $\Theta_1 \Phi$ and $\Theta_2 \Psi$ are also isotropically distributed when conditioned on Φ and Ψ respectively. This means that both $\Theta_1 \Phi$ and $\Theta_2 \Psi$ are isotropically distributed making them independent of Φ , V and Ψ . Therefore, S_1 is equal to the product of three independent matrices, a $T \times T$ unitary matrix Φ , a $T \times M$ real nonnegative matrix V and an $M \times M$ unitary matrix Ψ .

Now, we will show that the density p(V) on V is unchanged by rearrangements of diagonal entries of V. There are min $\{M!, T!\}$ ways of arranging the diagonal entries of V. This can be accomplished by preand post-multiplying V by appropriate permutation matrices, P_{Tk} and P_{Mk} , $k = 1, \ldots, \min\{M!, T!\}$. The permutation doesn't change the *min-mutual information* because ΦP_{Tk} and ΨP_{Mk} have the same density functions as Φ and Ψ . By choosing an equally weighted mixture density for V, involving all min $\{M!, T!\}$ arrangements we obtain a higher value of *min-mutual information* because of concavity and Jensen's inequality. This new density is invariant to the rearrangements of the diagonal elements of V.

5 Average Capacity Criterion

In this section, we will investigate how much worse the worst-case performance is compared to the average performance. To find the average performance, we maximize $I_E(X; S) = E_{\alpha}[I^{\alpha}(X; S)]$, where I^{α} is as defined earlier and E_{α} denotes expectation over $\alpha \in A$ under the assumption that all α are equally likely. That is, under the assumption that α is unchanging over time, isotropically random and known to the receiver. Note that this differs from the model considered in [10] where the authors consider the case of a piecewise constant, time varying, i.i.d. specular component.

Therefore, the problem can be stated as finding $p_E(S)$ the probability density function on the input signal S that achieves the following maximization

$$C_E = \max_{p(S)} E_{\alpha}[I^{\alpha}(X;S)]$$
(8)

and also to find the value C_E . We will refer to $I_E(X; S)$ as avg-mutual information and C_E as avg-capacity.

We will show that the signal density $p^*(S)$ that attains C^* also attains C_E . For that we need to establish the following Lemmas. We omit the proofs for lack of space and also because the proofs are very similar to the proofs in Section 4. **Lemma 4** $I_E(X; S)$ is a concave functional of the signal density p(S)

Lemma 5 For any $T \times T$ unitary matrix Φ and any $M \times M$ unitary matrix Ψ , if p(S) generates $I_E(X;S)$ then so does $p(\Phi S \Psi^{\dagger})$.

Proof: We want to show if p(S) generates $I_E(X;S)$ then so does $p(\Phi S \Psi^{\dagger})$. Now since the density function of α , $p(\alpha) = \frac{\Gamma(M)}{\pi^M} \delta(\alpha^{\dagger} \alpha - 1)$ we have

$$I_E(X;S) = \frac{\pi^M}{\Gamma(M)} \int I^{\alpha}(X;S) \ d\alpha$$

Note that $I^{\alpha}(X; \Phi S) = I^{\alpha}(X; S)$ Therefore,

$$\begin{split} I'_E(X;S) &= \frac{\pi^M}{\Gamma(M)} \int I^{\alpha}(X;\Phi S \Psi^{\dagger}) \ d\alpha \\ &= I^{\alpha}(X;S \Psi^{\dagger}) \ d\alpha \end{split}$$

Also note that $I^{\Psi\alpha}(X; S\Psi^{\dagger}) = I^{\alpha}(X; S)$ which means $I^{\Psi^{\dagger}\alpha}(X; S) = I^{\alpha}(X; S\Psi^{\dagger})$. Therefore,

$$I'_{E}(X;S) = \frac{\pi^{M}}{\Gamma(M)} \int I^{\Psi^{\dagger}\alpha}(X;S) \, d\alpha$$
$$= \frac{\pi^{M}}{\Gamma(M)} \int I^{\omega}(X;S) \, d\omega$$
$$= I_{E}(X;S)$$

where the last two equalities follow from the transformation $\omega = \Psi^{\dagger} \alpha$ and the fact the Jacobian of the transformation is equal to 1.

Lemma 6 The avg-capacity achieving signal distribution, p(S) is unchanged by any pre- and post- multiplication of S by unitary matrices of appropriate dimensions.

Corollary 3 $p^*(S)$, the optimal avg-capacity achieving signal density lies in $\mathcal{P} = \bigcup_{I>0} \mathcal{P}_I$ where \mathcal{P}_I is as defined in (7).

Based on the last corollary we conclude that for a given p(S) in \mathcal{P} we have $I^*(X;S) = \min_{\alpha \in A} I^{\alpha}(X;S) = E_{\alpha}[I^{\alpha}(X;S)] = I_E(X;S)$. Therefore, the maximizing densities for C_E and C^* are the same and also $C_E = C^*$. Therefore, designing the signal constellation with the objective of maximizing the worst case performance is not more pessimistic than maximizing the average performance.

6 Coding Theorem for Min-capacity

To make this paper self-sufficient, we will prove the following theorem that is specific to the compound channel considered here. To understand the theorem the reader is not required to know the material in [2].

Theorem 3 For the quasi-static Rician fading model, for every $R < C^*$ there exists a sequence of $(2^{nR}, n)$ codes with codewords, m_i^n , $i = 1, ..., 2^{nR}$, satisfying the power constraint such that

$$\lim_{n \to \infty} \sup_{\alpha} P_{e_{\alpha,n}} = 0$$

where $P_{e\alpha,n} = \max_{i=1}^{2^{nR}} P_e(m_i^n, \alpha)$ and $P_e(m_i)$ is the probability of incorrectly decoding the messages m_i when the channel is given by H_{α} .

Proof: Proof follows if we can show that $P_{e\alpha,n}$ is bounded above by the same Gallager error exponent [7, 8] irrespective of the value of α . That follows from the following lemma (Lemma 7).

The intuition behind the existence of a coding theorem is that the *min-capacity* C^* achieving signal density is such that the mutual information, C^* , between the output and the input is the same irrespective of any particular realization of the channel H_{α} . Therefore, any codes generated from the random coding argument designed to achieve rates up to C^* for any particular channel H_{α} achieve rates up to C^* for all H_{α} .

For Lemma 7, we first need to briefly describe the Gallager error exponents [7, 8] for the quasi-static Rician fading channel. For a system communicating at a rate R the upper bound on the maximum probability of error is given as follows

$$P_{e\alpha,n} \le \exp\left(-n \max_{p(S)} \max_{0 \le \gamma \le 1} \left[E_0(\gamma, p(S), \alpha) - \gamma R \log 2\right]\right)$$

where n is the length of the codewords in the codebook used and $E_0(\gamma, p(S), \alpha)$ is as follows

$$E_0(\gamma, p(S), \alpha) = -\log \int \left[\int p(S) p(X|S, \alpha)^{\frac{1}{1+\gamma}} dS \right]^{\gamma} dX$$

where S is the input to the channel and X is the observed output and

$$p(X|S,\alpha) = \frac{e^{-\operatorname{tr}\{[I_T + (1-r)\frac{\rho}{M}SS^{\dagger}]^{-1}(X - \sqrt{\rho r N}S\alpha\beta^{\dagger})(X - \sqrt{\rho r N}S\alpha\beta^{\dagger})^{\dagger}\}}}{\pi^{TN}\operatorname{det}^{N}[I_T + (1-r)\frac{\rho}{M}SS^{\dagger}]}$$

where β is simply $[1 \ 0 \ \dots \ 0]^{\tau}$. Maximization over γ in the error exponent yields a value of γ such that $\frac{\partial E_0(\gamma, p(S), \alpha)}{\partial \gamma} = R$. Note that for $\gamma = 0$, $\frac{\partial E_0(\gamma, p(S), \alpha)}{\partial \gamma} = I^{\alpha}(X; S)$ [7, 8] where the mutual information has been evaluated when the input is p(S). If p(S) is the *min-capacity* achieving density, $p^*(S)$ then $\frac{\partial E_0(\gamma, p^*(S), \alpha)}{\partial \gamma} = C^*$. For more information refer to [7, 8].

Lemma 7 The $E_0(\gamma, p^*(S), \alpha)$ for the quasi-static Rician fading model is independent of α .

Proof: First, note that

$$p^*(S) = p^*(S\Psi^{\dagger})$$

for any $M \times M$ unitary matrix Ψ . Second,

$$E_{0}(\gamma, p^{*}(S), \alpha) = -\log \int \left[\int p^{*}(S)p(X|S, \alpha)^{\frac{1}{1+\gamma}} dS \right]^{\gamma} dX$$

$$= -\log \int \left[\int p^{*}(S\Psi^{\dagger})p(X|S\Psi^{\dagger}, \alpha)^{\frac{1}{1+\gamma}} dS \right]^{\gamma} dX$$

$$= -\log \int \left[\int p^{*}(S)p(X|S, \Psi^{\dagger}\alpha)^{\frac{1}{1+\gamma}} dS \right]^{\gamma} dX$$

$$= E_{0}(\gamma, p^{*}(S), \Psi^{\dagger}\alpha)$$

where the second equation follows from the fact that Ψ is a unitary matrix and its Jacobian is equal to 1 and the third equation follows from the fact that $p(X|S\Psi^{\dagger}, \alpha)^{\frac{1}{1+\gamma}} = p(X|S, \Psi^{\dagger}\alpha)^{\frac{1}{1+\gamma}}$. Since Ψ is arbitrary we obtain that $E_0(\gamma, p^*(S), \alpha)$ is independent of α .

7 Numerical Results

Plotting the upper and lower bounds on *min-capacity* leads to similar conclusions as in [10] except for the fact when r = 1 the upper and lower bounds coincide.

In Figure 1 we plot the *min-capacity* upper lower bounds as a function of the Rician parameter r. We see that the change in capacity is not drastic for low SNR as compared to larger SNR values. Also, from Figure 2 we conclude that this change in capacity is more prominent for larger number of antennas. We also conclude that for a purely specular channel increasing the number of transmit antennas has no effect on the capacity. This is due to the fact that with a rank-one specular component, only beamforming SNR gains can be exploited, no multiplexing gains are possible.

8 Conclusions

We have proposed another tractable model for Rician fading channel different from the one in [10] but, along the lines of [4]. We were able to analyze this channel and derive some interesting results on optimal signal

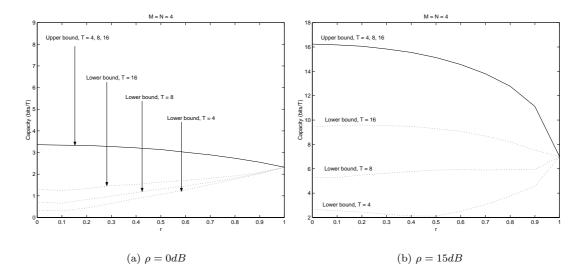


Figure 1: Capacity upper and lower bounds as the channel moves from purely Rayleigh to purely Rician fading

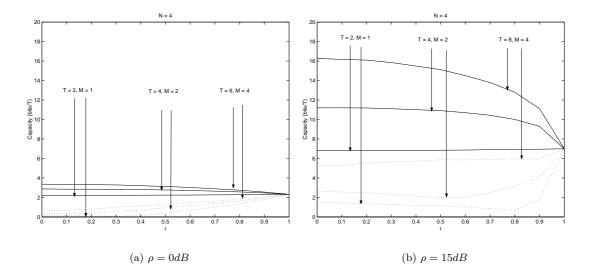


Figure 2: Capacity upper and lower bounds as the channel moves from purely Rayleigh to purely Rician fading

structure. We were also able to show that the optimization effort is over a much smaller set of parameters than the set originally started with. We were also able to derive a lower bound that is useful since the capacity is not in closed form.

Finally, we were able to show that the approach of maximizing the worst case scenario is not overly pessimistic in the sense that the signal density maximizing the worst case performance also maximizes the average performance and the capacity value in both formulations turns out to be the same. The average capacity being equal to the worst case capacity can also be interpreted in a different manner: we have shown that the average capacity criterion is a quality of service guaranteeing capacity.

References

- N. Benvenuto, P. Bisaglia, A. Salloum, and L. Tomba, "Worst case equalizer for noncoherent HIPERLAN receivers," *IEEE Trans. on Communications*, vol. 48, no. 1, pp. 28–36, January 2000.
- [2] I. Csiszár and J. Kőrner, Information Theory: Coding Theorems For Discrete Memoryless Systems, New York and NY: Academic Press, 1981.
- [3] P. F. Driessen and G. J. Foschini, "On the capacity formula for multiple input-multiple output wireless channels: A geometric interpretation," *IEEE Trans. on Communications*, vol. 47, no. 2, pp. 173–176, February 1999.
- [4] F. R. Farrokhi, G. J. Foschini, A. Lozano, and R. A. Valenzuela, "Link-optimal space-time processing with multiple transmit and receive antennas," *IEEE Communication Letters*, vol. 5, no. 3, pp. 85–87, Mar 2001.
- [5] G. J. Foschini, "Layered space-time architecture for wireless communication in a fading environment when using multiple antennas," *Bell Labs Technical Journal*, vol. 1, no. 2, pp. 41–59, 1996.
- [6] G. J. Foschini and M. J. Gans, "On limits of wireless communications in a fading environment when using multiple antennas," Wireless Personal Communications, vol. 6, no. 3, pp. 311–335, March 1998.
- [7] R. G. Gallager, Information Theory and Reliable Communication, Wiley, New York, 1968.
- [8] R. G. Gallager, "A simple derivation of the coding theorem and some applications," *IEEE Trans. on Inform. Theory*, vol. 11, no. 1, pp. 3–18, Jan. 1965.

- M. Godavarti and A. O. Hero-III, "Multiple antenna capacity in a deterministic Rician fading channel," Submitted to IEEE Trans. on Info. Theory, 2001.
- [10] M. Godavarti, T. Marzetta, and S. S. Shitz, "Capacity of a mobile multiple-antenna wireless link with isotropically random Rician fading," *Submitted to IEEE Trans. on Information Theory*, 2001.
- [11] T. L. Marzetta and B. M. Hochwald, "Capacity of a mobile multiple-antenna communication link in Rayleigh flat fading channel," *IEEE Trans. on Inform. Theory*, vol. 45, no. 1, pp. 139–157, Jan 1999.
- [12] S. Rice, "Mathematical analysis of random noise," Bell Systems Technical Journal, vol. 23, , 1944.
- [13] V. Tarokh, N. Seshadri, and A. R. Calderbank, "Space-time codes for high data rate wireless communication: Performance criterion and code construction," *IEEE Trans. on Communications*, vol. 44, no. 2, pp. 744–765, March 1998.
- [14] I. E. Telatar, "Capacity of multi-antenna Gaussian channels," European Transactions on Telecommunications, vol. 10, no. 6, pp. 585–596, Nov/Dec 1999.
- [15] L. Zheng and D. N. C. Tse, "Packing spheres in the Grassmann manifold: A geometric approach to the non-coherent multi-antenna channel," *IEEE Trans. on Inform. Theory*, vol. 48, no. 2, pp. 359–383, Feb 2002.