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Abstract

We calculate the optimal guaranteed performance for a multiple-antenna wireless compound channel with
M antennas at the transmitter and N antennas at the receiver on a Rician fading channel with a static
specular component. The channel is modeled as a compound channel with a Rayleigh component and an
unknown rank-one deterministic specular component. The Rayleigh component remains constant over a block
of T symbol periods, with independent realizations over each block. The rank one deterministic component is
modeled as an outer product of two unknown deterministic vectors of unit magnitude. Under this scenario
to guarantee service it is required to maximize the worst case capacity (min-capacity). We show that for
computing min-capacity instead of optimizing over the joint density of T · M complex transmitted signals it
is sufficient to maximize over a joint density of min{T,M} real transmitted signal magnitudes. The optimal
signal matrix is shown to be equal to the product of three independent matrices, a T × T unitary matrix, a
T × M real nonnegative diagonal matrix and a M × M unitary matrix. We derive a tractable lower bound
to capacity for this model which is useful for computing achievable rate regions. Finally, we show that avg-
capacity computed under the assumption that the specular component is constant but, random with isotropic
distribution is equal to min-capacity. This mean that avg-capacity which in general has no practical meaning
for non-ergodic scenarios, has a coding theorem associated with it in this particular case.
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1 Introduction

Need for higher rates in wireless communications has never been greater than in the present. Due to this

need and the dearth of extra bandwidth available for communication multiple antennas have attracted

considerable attention [5, 6, 11, 14, 15]. Multiple antennas at the transmitter and the receiver provide

spatial diversity that can be exploited to improve spectral efficiency of wireless communication systems and

to improve performance.

Two kinds of models widely used for describing fading in wireless channels are Rayleigh and Rician

models. For wireless links in Rayleigh fading environment, it has been shown by Foschini et. al. [5, 6] and

Telatar [14] that with perfect channel knowledge at the receiver, for high SNR a capacity gain of min(M,N)

bits/second/Hz, where M is the number of antennas at the transmitter and N is the number of antennas

at the receiver, can be achieved with every 3 dB increase in SNR. The assumption of complete knowledge

about the channel might not be true in the case of fast mobile receivers and large number of transmit

antennas because of insufficient training. Marzetta and Hochwald [11] considered the case when neither the

receiver nor the transmitter has any knowledge of the fading coefficients. They consider a model where the

fading coefficients remain constant for T symbol periods and instantaneously change to new independent

realizations after that. They derive the structure of capacity achieving signal and also show that under this

model the complexity for capacity calculations is considerably reduced.

In contrast, the attention paid to Rician fading models has been fairly limited. Rician fading components

traditionally have been modeled as independent Gaussian components with a deterministic non-zero mean

[1, 3, 4, 9, 12, 13]. Farrokhi et. al. [4] used this model to analyze the capacity of a MIMO channel with

a specular component. They assume that the specular component is deterministic and unchanging and

unknown to the transmitter but, known to the receiver. They also assume that the receiver has complete

knowledge about the fading coefficients (i.e. has knowledge about the Rayleigh component as well). They

work with the premise that since the transmitter has no knowledge about the specular component the

signaling scheme has to be designed to guarantee a given rate irrespective of the value of the deterministic

specular component. They conclude that the signal matrix has to be composed of independent circular

Gaussian random variables of mean 0 and equal variance to maximize the rate.

Godavarti et. al [10] consider a non-conventional ergodic model for the case of Rician fading where

the fading channel consists of a Rayleigh component, modeled as in [11] and an independent rank-one
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isotropically distributed specular component. The fading channel is assumed to remain constant over a

block of T consecutive symbol periods but take a completely independent realization over each block. They

derive similar results on optimal capacity achieving signal structures as in [11]. They also establish a lower

bound to capacity that can be easily extended to the model considered in this paper. The model described in

[10] is applicable to a mobile-wireless link where both the direct line of sight component (specular component)

and the diffuse component (Rayleigh component) change with time.

In [9], Godavarti et. al. consider the standard Rician fading model. The capacity calculated for the

standard Rician fading model is a function of the specular component since the specular component is

deterministic and known to both the transmitter and the receiver. The authors establish asymptotic results

for capacity and conclude that beamforming is the optimum signaling strategy for low SNR whereas for high

SNR the optimum signaling strategy is same as that for purely Rayliegh fading channels.

In this paper, we consider a quasi-static Rician model where the specular component is non-changing

while the Rayleigh component is varying over time. The only difference between this model and the standard

Rician fading model is that in this model the specular component is of single rank and is not known to the

transmitter. We can also contrast the formulation here to that in [10] where the specular component is also

modeled as stochastic and the ergodic channel capacity is clearly defined. In spite of a completely different

formulation, we obtain surprisingly similar results as [10].

The channel model considered here is applicable to the case where the transmitter and receiver are fixed

in space or are in motion but sufficiently far apart with a single direct path so that the specular component

has single rank and is practically constant while the diffuse multipath component changes rapidly. Since

the case where the transmitter has no knowledge about the specular component the transmitter can either

maximize the worst case rate over the ensemble of values that the specular component can take or maximize

the average rate by establishing a prior distribution on the ensemble. We address both approaches in this

paper. Note that when the transmitter has no knowledge about the specular component, knowledge of it

at the receiver makes no difference on the worst case capacity [2]. We however assume the knowledge as it

makes it easier to analyze the fading channel.

Similar to [4] the specular component is an outer product of two vectors of unit magnitude that are non-

changing and unknown to the transmitter but known to the receiver. The difference between our approach

and that of [4] is that in [4] the authors consider the channel to be known completely to the receiver. We

assume that the receiver’s extent of knowledge about the channel is limited to the specular component. That
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is, the receiver has no knowledge about the Rayleigh component of the model. Considering the absence of

knowledge at the transmitter it is important to design a signal scheme that guarantees the largest overall rate

for communication irrespective of the value of the specular component. This is formulated as the problem

of determining the worst case capacity in Section 2. In Section 5 we consider the average capacity instead

of worst case capacity and show that both formulations imply the same optimal signal structure and the

same maximum possible rate. We prove the existence of a coding theorem corresponding to the worst case

capacity for the fading model considered here in Section 6. In Section 7 we use the results derived in this

paper to compute capacity regions for some Rician fading channels.

2 Signal Model and Problem Formulation

Let there be M transmit antennas and N receive antennas. We assume that the fading coefficients remain

constant over a block of T consecutive symbol periods but are independent from block to block. Keeping

that in mind, we model the channel as carrying a T × M signal matrix S over a M × N MIMO channel H,

producing X at the receiver according to the model:

X =
√

ρ

M
SH + W (1)

where the elements, wtn of W are independent circular complex Gaussian random variables with mean 0

and variance 1 (CN (0, 1)).

The MIMO Rician model for the matrix H is H =
√

1 − rG+
√

rNMαβ† where G consists of independent

CN (0, 1) random variables and α and β are deterministic vectors of length M and N , respectively, such that

α†α = 1 and β†β = 1. We assume α and β are known to the receiver. Since the receiver is free to apply

a co-ordinate transformation by post multiplying X by a unitary matrix, without loss of generality we can

take β to be identically equal to [1 0 . . . 0]T . We will sometimes write H as Hα to highlight the dependence

of H on α. G remains constant for T symbol periods and takes on a completely independent realization

every T th symbol period.

The problem we are investigating is to find the distribution p∗(S) that attains the maximum in the

following maximization defining the worst case channel capacity

C∗ = max
p(S)

I∗(X;S) = max
p(S)

inf
α∈A

Iα(X;S)
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and also to find the maximum value, C∗.

Iα(X;S) =
∫

p(S)p(X|S, αβ†) log
p(X|S, αβ†)∫

p(S)p(X|S, αβ†) dS
dSdX

is the mutual information between X and S when the specular component is given by αβ† and A
def= {α : α ∈

Cl Mandα†α = 1}. Since A is compact the “inf” in the problem can be replaced by “min”. For convenience

we will refer to I∗(X;S) as the min-mutual information and C∗ as min-capacity.

The above formulation is justified for the Rician fading channel considered here because there exists a

corresponding coding theorem which we prove in section 6. However, the existence of coding theorem can also

be obtained from [2, chapter 5, pp. 172-178]. Min-capacity defined above is just the capacity of a compound

channel. We will use the notation in this paper to briefly describe the concept of compound channels given in

[2]. Let α ∈ A denote a candidate channel. Let C∗ = maxp(S) minα Iα(X;S) and P ∗(e, n) = maxα Pα(e, n)

where Pα(e, n) is the maximum probability of decoding error for channel α when a code of length n is used.

Then for every R < C∗ there exists a sequence of (2nR, n) codes such that

lim
n→∞P ∗(e, n) = 0.

It is also shown in [2, Prob. 13, p. 183] that min-capacity doesn’t depend on the receiver’s knowledge

of the channel. Hence, it is not necessary for us to assume that the specular component is known to the

receiver. However, we do so because it facilitates easier computation of min-capacity and avg-capacity in

terms of the conditional probability distribution p(X|S).

3 Capacity Upper and Lower Bounds

Theorem 1 Min-capacity, C∗
H when the channel matrix H is known to the receiver but not to the transmitter

is given by

C∗
H = TE log det

[
IN +

ρ

M
H†

e1
He1

]
(2)

where e1 = [1 0 . . . 0]T is a unit vector in Cl M . Note that e1 in (2) can be replaced by any α ∈ A without

changing the answer.

Proof: First we note that for T > 1, given H the channel is memoryless and hence the columns of the

input signal matrix S are independent of each other. That means the mutual information Iα(X;S) =
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∑T
i=1 Iα(Xi;Si) where Xi and Si denote the ith row of X and S, respectively. The maximization over each

term can be done separately and it is easily seen that each term will be maximized individually for the same

density on Si. That is p(Si) = p(Sj) for i �= j and maxp(S) Iα(X;S) = T maxp(S1) Iα(X1;S1). Therefore,

WLOG we assume T = 1.

Given H the channel is an AWGN channel therefore, capacity is attained by Gaussian signal vectors. Let

ΛS be the input signal covariance. Since the transmitter doesn’t know α, ΛS can not depend on α and the

min-capacity is given by

max
ΛS :tr{ΛS}≤M

F(ΛS) = max
ΛS :tr{ΛS}≤M

min
α∈A

E log det
[
IN +

ρ

M
H†

αΛSHα

]
(3)

where F(ΛS) is implicitly defined in an obvious manner. First note that F(ΛS) in (3) is a concave function of

ΛS (This follows from the fact that log detK is a concave function of K). Also, F(Ψ†ΛSΨ) = F(ΛS) for any

M × M Ψ : Ψ†Ψ = IM since Ψ†α ∈ A for any α ∈ A and G has i.i.d. zero mean complex Gaussian entries.

Let Q†DQ be the SVD of ΛS then we have F(D) = F(Q†DQ) = F(ΛS). Therefore, we can choose ΛS to

be diagonal. Moreover, F(P †
kΛSPk) = F(ΛS) for any permutation matrix Pk, k = 1, . . . , M !. Therefore, if

we choose Λ′
S = 1

M !

∑M !
k=1 P †

kΛSPk then by concavity and Jensen’s inequality we have

F(Λ′
S) ≥

M !∑
k=1

F(P †
kΛSPk) = F(ΛS)

Therefore, we conclude that the maximizing input signal covariance ΛS is a multiple of the identity matrix.

It is quite obvious to see that to maximize the expression in (3) we need to choose tr{ΛS} = M or ΛS = IM

and since E log det[IN + ρ
M H†

α1
Hα1 ] = E log det[IN + ρ

M H†
α2

Hα2 ] for any α1, α2 ∈ A, (2) easily follows. �

By the data processing theorem additional information at the receiver doesn’t decrease capacity. There-

fore:

Proposition 1 An upper bound on the channel min-capacity when neither the transmitter nor the receiver

has any knowledge about the channel is given by

C∗ ≤ T · E log det
[
IN +

ρ

M
H†

e1
He1

]
(4)

Now, we establish a lower bound.

Proposition 2 A lower bound on min-capacity when the transmitter has no knowledge about H and the

receiver has no knowledge about G is given by

C∗ ≥ C∗
H − NE

[
log2 det

(
IT + (1 − r)

ρ

M
SS†

)]
(5)

6



≥ C∗
H − NM log2(1 + (1 − r)

ρ

M
T ) (6)

Proof: Proof is a slight modification of the proof of Theorem 3 in [10] therefore, only the essential steps will

be shown here.

First note that,

Iα(X;S) = I(X;S|α)

= I(X;S,H|α) − I(X;H|S, α)

= I(X;H|α) + I(X;S|H,α) − I(X;H|S, α)

≥ I(X;S|H,α) − I(X;H|S, α)

where the last inequality follows from the fact that I(X;H|α) ≥ 0. Therefore,

C∗(X;S) ≥ max
p(S)

min
α

[I(X;S|H,α) − I(X;H|S, α)]

We obtain the lower bound by observing that the seond term can be upper bounded by

NE
[
log2 det

(
IT + (1 − r)

ρ

M
SS†

)]

and the first time can be maximized by choosing p(S) such that the elements of S are independent CN (0, 1)

random variables. �

Notice that the second term in right hand side of the lower bound is

NE
[
log2 det

(
IT + (1 − r)

ρ

M
SS†

)]

instead of NE
[
log2 det

(
IT + ρ

M SS†)] which occurs in the lower bound derived for the model in [10]. The

second term I(X;H|S), is the mutual information between the output and the channel given the transmitted

signal. In other words this is the information carried in the transmitted signal about the channel. Therefore,

the second term in the lower bound can be viewed as a penalty term for using part of the available rate for

training in order to learn the channel. When r = 1 or when the channel is purely specular we see that the

penalty term for training goes to zero. This makes perfect sense because the specular component is known to

the receiver and the penalty for learning the specular component is zero in the current model as contrasted

to the model in [10].

Combining (4) and (6) gives us the following
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Corollary 1 The normalized min-capacity, C∗
n = C∗/T in bits per channel use as T → ∞ is given by

C∗
n = E log det

[
IN +

ρ

M
H†

e1
He1

]

Note that this is same as the capacity when the receiver knows H, so that as T → ∞ perfect channel

estimation can be performed.

4 Properties of capacity achieving signals

In this section, we derive the optimum signal structure for achieving min-capacity. The optimization is being

done under the power constraint E[tr{SS†}] ≤ TM .

Lemma 1 I∗(X;S) as a functional of p(S) is concave in p(S).

Proof: First we note that Iα(X;S) is a concave functional of p(S) for every α ∈ A. Let I∗(X;S)p(S) denote

I∗(X;S) evaluated using p(S) as the signal density. Then,

I∗(X;S)δp1(S)+(1−δ)p2(S) = min
α∈A

Iα(X;S)δp1(S)+(1−δ)p2(S)

≥ min
α∈A

[δIα(X;S)p1(S) + (1 − δ)Iα(X;S)p2(S)]

≥ δ min
α∈A

Iα(X;S)p1(S) + (1 − δ)min
α∈A

Iα(X;S)p2(S)

= δI∗(X;S)p1(S) + (1 − δ)I∗(X;S)p2(S)

�

Lemma 2 For any T × T unitary matrix Φ and any M × M unitary matrix Ψ, if p(S) generates I∗(X;S)

then so does p(ΦSΨ†).

Proof: 1) Note that p(ΦX|ΦS) = p(X|S), therefore Iα(X; ΦS) = Iα(X;S) for any T × T unitary matrix Φ

and all α ∈ A.

2) We have, Ψα ∈ A for any α ∈ A and any M × M unitary matrix Ψ. Therefore, if I∗(X;S) achieves

its minimum value at α0 ∈ A then I∗(X;SΨ†) achieves its minimum value at Ψα0 because Iα(X;S) =

IΨα(X;SΨ†) for α ∈ A and Ψ an M × M unitary matrix.

Combining 1) and 2) we get the lemma. �
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Lemma 3 The min-capacity achieving signal distribution, p(S) is unchanged by any pre- and post- multi-

plication of S by unitary matrices of appropriate dimensions.

Proof: We will show that for any signal density p0(S) generating min-mutual information I∗0 there exists

a density p1(S) generating I∗1 ≥ I∗0 such that p1(S) is invariant to pre- and post- multiplication of S by

unitary matrices of appropriate dimensions. By Lemma 2, for any pair of permutation matrices, Φ (T × T )

and Ψ (M × M) p0(ΦSΨ†) generates the same min-mutual information as p(S). Define uT (Φ) to be the

isotropically random unitary density function of a T × T unitary matrix Φ. Similarly define uM (Ψ). Let

p1(S) be a mixture density given as follows

p1(S) =
∫ ∫

p0(ΦSΨ†)u(Φ)u(Ψ) dΦdΨ

It is easy to see that p1(S) is invariant to any pre- and post- multiplication of S by unitary matrices and if I∗1

is the min-mutual information generated by p1(S) then from Jensen’s inequality and concavity of I∗(X;S)

we have I∗1 ≥ I∗0 . �

Corollary 2 p∗(S), the optimal min-capacity achieving signal density lies in P = ∪I>0PI where

PI = {p(S) : Iα(X;S) = I ∀α ∈ A} (7)

Proof: Follows immediately from Lemma 3 because any signal density that is invariant to pre- and post-

multiplication of S by unitary matrices generates the same mutual information Iα(X;S) irrespective of the

value of α. �

Theorem 2 The signal matrix that achieves min-capacity can be written as S = ΦV Ψ†, where Φ and Ψ

are T × T and M × M isotropically distributed matrices independent of each other, and V is a T × M real,

nonnegative, diagonal matrix, independent of both Φ and Ψ.

Proof: From the singular value decomposition (SVD) we can write S = ΦV Ψ†, where Φ is a T × T unitary

matrix, V is a T × M nonnegative real diagonal matrix, and Ψ is an M × M unitary matrix. In general,

Φ, V and Ψ are jointly distributed. Suppose S has probability density p0(S) that generates min-mutual

information I∗0 . Let Θ1 and Θ2 be isotropically distributed unitary matrices of size T × T and M × M

independent of S and of each other. Define a new signal S1 = Θ1SΘ†
2, generating min-mutual information

I∗1 . Now conditioned on Θ1 and Θ2, the min-mutual information generated by S1 equals I∗0 . From the
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concavity of the min-mutual information as a functional of p(S), and Jensen’s inequality we conclude that

I∗1 ≥ I∗0 .

Since Θ1 and Θ2 are isotropically distributed Θ1Φ and Θ2Ψ are also isotropically distributed when

conditioned on Φ and Ψ respectively. This means that both Θ1Φ and Θ2Ψ are isotropically distributed

making them independent of Φ, V and Ψ. Therefore, S1 is equal to the product of three independent

matrices, a T × T unitary matrix Φ, a T ×M real nonnegative matrix V and an M ×M unitary matrix Ψ.

Now, we will show that the density p(V ) on V is unchanged by rearrangements of diagonal entries of

V . There are min{M !, T !} ways of arranging the diagonal entries of V . This can be accomplished by pre-

and post-multiplying V by appropriate permutation matrices, PTk and PMk, k = 1, . . . ,min{M !, T !}. The

permutation doesn’t change the min-mutual information because ΦPTk and ΨPMk have the same density

functions as Φ and Ψ. By choosing an equally weighted mixture density for V , involving all min{M !, T !} ar-

rangements we obtain a higher value of min-mutual information because of concavity and Jensen’s inequality.

This new density is invariant to the rearrangements of the diagonal elements of V . �

5 Average Capacity Criterion

In this section, we will investigate how much worse the worst-case performance is compared to the average

performance. To find the average performance, we maximize IE(X;S) = Eα[Iα(X;S)], where Iα is as defined

earlier and Eα denotes expectation over α ∈ A under the assumption that all α are equally likely. That

is, under the assumption that α is unchanging over time, isotropically random and known to the receiver.

Note that this differs from the model considered in [10] where the authors consider the case of a piecewise

constant, time varying, i.i.d. specular component.

Therefore, the problem can be stated as finding pE(S) the probability density function on the input signal

S that achieves the following maximization

CE = max
p(S)

Eα[Iα(X;S)] (8)

and also to find the value CE . We will refer to IE(X;S) as avg-mutual information and CE as avg-capacity.

We will show that the signal density p∗(S) that attains C∗ also attains CE . For that we need to establish

the following Lemmas. We omit the proofs for lack of space and also because the proofs are very similar to

the proofs in Section 4.
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Lemma 4 IE(X;S) is a concave functional of the signal density p(S)

Lemma 5 For any T × T unitary matrix Φ and any M × M unitary matrix Ψ, if p(S) generates IE(X;S)

then so does p(ΦSΨ†).

Proof: We want to show if p(S) generates IE(X;S) then so does p(ΦSΨ†). Now since the density function

of α, p(α) = Γ(M)
πM δ(α†α − 1) we have

IE(X;S) =
πM

Γ(M)

∫
Iα(X;S) dα

Note that Iα(X; ΦS) = Iα(X;S) Therefore,

I ′E(X;S) =
πM

Γ(M)

∫
Iα(X; ΦSΨ†) dα

= Iα(X;SΨ†) dα

Also note that IΨα(X;SΨ†) = Iα(X;S) which means IΨ†α(X;S) = Iα(X;SΨ†). Therefore,

I ′E(X;S) =
πM

Γ(M)

∫
IΨ†α(X;S) dα

=
πM

Γ(M)

∫
Iω(X;S) dω

= IE(X;S)

where the last two equalities follow from the transformation ω = Ψ†α and the fact the Jacobian of the

transformation is equal to 1. �

Lemma 6 The avg-capacity achieving signal distribution, p(S) is unchanged by any pre- and post- multipli-

cation of S by unitary matrices of appropriate dimensions.

Corollary 3 p∗(S), the optimal avg-capacity achieving signal density lies in P = ∪I>0PI where PI is as

defined in (7).

Based on the last corollary we conclude that for a given p(S) in P we have I∗(X;S) = minα∈A Iα(X;S) =

Eα[Iα(X;S)] = IE(X;S). Therefore, the maximizing densities for CE and C∗ are the same and also

CE = C∗. Therefore, designing the signal constellation with the objective of maximizing the worst case

performance is not more pessimistic than maximizing the average performance.
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6 Coding Theorem for Min-capacity

To make this paper self-sufficient, we will prove the following theorem that is specific to the compound

channel considered here. To understand the theorem the reader is not required to know the material in [2].

Theorem 3 For the quasi-static Rician fading model, for every R < C∗ there exists a sequence of (2nR, n)

codes with codewords, mn
i , i = 1, . . . , 2nR, satisfying the power constraint such that

lim
n→∞ sup

α
Peα,n = 0

where Peα,n = max2nR

i=1 Pe(mn
i , α) and Pe(mi) is the probability of incorrectly decoding the messages mi when

the channel is given by Hα.

Proof: Proof follows if we can show that Peα,n is bounded above by the same Gallager error exponent

[7, 8] irrespective of the value of α. That follows from the following lemma (Lemma 7). �

The intuition behind the existence of a coding theorem is that the min-capacity C∗ achieving signal

density is such that the mutual information, C∗, between the output and the input is the same irrespective

of any particular realization of the channel Hα. Therefore, any codes generated from the random coding

argument designed to achieve rates up to C∗ for any particular channel Hα achieve rates up to C∗ for all

Hα.

For Lemma 7, we first need to briefly describe the Gallager error exponents [7, 8] for the quasi-static

Rician fading channel. For a system communicating at a rate R the upper bound on the maximum probability

of error is given as follows

Peα,n ≤ exp
(
−nmax

p(S)
max

0≤γ≤1
[E0(γ, p(S), α) − γR log 2]

)

where n is the length of the codewords in the codebook used and E0(γ, p(S), α) is as follows

E0(γ, p(S), α) = − log
∫ [∫

p(S)p(X|S, α)
1

1+γ dS

]γ

dX

where S is the input to the channel and X is the observed output and

p(X|S, α) =
e−tr{[IT +(1−r) ρ

M SS†]−1(X−
√

ρrNSαβ†)(X−
√

ρrNSαβ†)†}

πTN detN [IT + (1 − r) ρ
M SS†]

.

where β is simply [1 0 . . . 0]τ . Maximization over γ in the error exponent yields a value of γ such that

∂E0(γ,p(S),α)
∂γ = R. Note that for γ = 0, ∂E0(γ,p(S),α)

∂γ = Iα(X;S) [7, 8] where the mutual information has been
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evaluated when the input is p(S). If p(S) is the min-capacity achieving density, p∗(S) then ∂E0(γ,p∗(S),α)
∂γ =

C∗. For more information refer to [7, 8].

Lemma 7 The E0(γ, p∗(S), α) for the quasi-static Rician fading model is independent of α.

Proof: First, note that

p∗(S) = p∗(SΨ†)

for any M × M unitary matrix Ψ. Second,

E0(γ, p∗(S), α) = − log
∫ [∫

p∗(S)p(X|S, α)
1

1+γ dS

]γ

dX

= − log
∫ [∫

p∗(SΨ†)p(X|SΨ†, α)
1

1+γ dS

]γ

dX

= − log
∫ [∫

p∗(S)p(X|S,Ψ†α)
1

1+γ dS

]γ

dX

= E0(γ, p∗(S),Ψ†α)

where the second equation follows from the fact that Ψ is a unitary matrix and its Jacobian is equal to 1

and the third equation follows from the fact that p(X|SΨ†, α)
1

1+γ = p(X|S,Ψ†α)
1

1+γ . Since Ψ is arbitrary

we obtain that E0(γ, p∗(S), α) is independent of α. �

7 Numerical Results

Plotting the upper and lower bounds on min-capacity leads to similar conclusions as in [10] except for the

fact when r = 1 the upper and lower bounds coincide.

In Figure 1 we plot the min-capacity upper lower bounds as a function of the Rician parameter r. We

see that the change in capacity is not drastic for low SNR as compared to larger SNR values. Also, from

Figure 2 we conclude that this change in capacity is more prominent for larger number of antennas. We also

conclude that for a purely specular channel increasing the number of transmit antennas has no effect on the

capacity. This is due to the fact that with a rank-one specular component, only beamforming SNR gains

can be exploited, no multiplexing gains are possible.

8 Conclusions

We have proposed another tractable model for Rician fading channel different from the one in [10] but, along

the lines of [4]. We were able to analyze this channel and derive some interesting results on optimal signal
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Figure 1: Capacity upper and lower bounds as the channel moves from purely Rayleigh to purely Rician
fading
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Figure 2: Capacity upper and lower bounds as the channel moves from purely Rayleigh to purely Rician
fading
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structure. We were also able to show that the optimization effort is over a much smaller set of parameters

than the set originally started with. We were also able to derive a lower bound that is useful since the

capacity is not in closed form.

Finally, we were able to show that the approach of maximizing the worst case scenario is not overly

pessimistic in the sense that the signal density maximizing the worst case performance also maximizes the

average performance and the capacity value in both formulations turns out to be the same. The average

capacity being equal to the worst case capacity can also be interpreted in a different manner: we have shown

that the average capacity criterion is a quality of service guaranteeing capacity.
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