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Partial Update LMS Algorithms
Mahesh Godavarti, Member, IEEE, and Alfred Hero, Fellow, IEEE

Abstract— Partial updating of LMS filter coefficients is an
effective method for reducing computational load and power con-
sumption in adaptive filter implementations. This paper presents
an analysis of convergence of the class of Sequential Partial
Update LMS algorithms (S-LMS) under various assumptions and
shows that divergence can be prevented by scheduling coefficient
updates at random, which we call the Stochastic Partial Update
LMS algorithm (SPU-LMS). Specifically, under the standard
independence assumptions, for wide sense stationary signals the
S-LMS algorithm converges in the mean if the step size parameter
µ is in the convergent range of ordinary LMS. Relaxing the
independence assumption it is shown that S-LMS and LMS
algorithms have the same sufficient conditions for exponential
stability. However, there exist non-stationary signals for which
the existing algorithms, S-LMS included, are unstable and do
not converge for any value of µ. On the other hand, under
broad conditions the SPU-LMS algorithm remains stable for non-
stationary signals. Expressions for convergence rate and steady
state mean-square error of SPU-LMS are derived. The theoretical
results of this paper are validated and compared by simulation
through numerical examples.

Index Terms— partial update LMS algorithms, random up-
dates, sequential algorithm, periodic algorithm, set-membership,
max partial update, exponential stability.

I. INTRODUCTION

T HE least mean-squares (LMS) algorithm is a popular
algorithm for adaptation of weights in adaptive beam-

formers using antenna arrays and for channel equalization to
combat intersymbol interference. Many other application areas
of LMS include interference cancellation, echo cancellation,
space time modulation and coding, signal copy in surveillance
and wireless communications. Although there exist algorithms
with faster convergence rates like RLS, LMS is popular
because of its ease of implementation and low computational
costs [18], [20], [25].

Partial updating of the LMS adaptive filter has been pro-
posed to reduce computational costs and power consump-
tion [13], [14], [22] which is quite attractive in the area of
mobile computing and communications. Many mobile com-
munication devices have applications like channel equalization
and echo cancellation that require the adaptive filter to have
a very large number of coefficients. Updating the entire
coefficient vector is costly in terms of power, memory, and
computation and is sometimes impractical for mobile units.

Two types of partial update LMS algorithms are prevalent
in the literature and have been described in [11]. They are
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referred to as the “Periodic LMS algorithm” and the “Sequen-
tial LMS algorithm”. To reduce computation needed during the
update part of the adaptive filter by a factor of P , the Periodic
LMS algorithm (P-LMS) updates all the filter coefficients
every P th iteration instead of every iteration. The Sequential
LMS (S-LMS) algorithm updates only a fraction of coeffi-
cients every iteration. Another variant referred to as “Max
Partial Update LMS algorithm” (Max PU-LMS) has been pro-
posed in [1], [9], [10]. Yet another variant known as the “set-
membership partial-update NLMS algorithm” (SMPU-NLMS)
based on data-selective updating appears in [8]. The algorithm
combines the ideas of set-membership normalized algorithms
with the ideas of partial update algorithms. These variants
have data dependent updating schedules and therefore can
have faster convergence, for stationary signals, than P-LMS
and S-LMS algorithms that have data independent updating
schedules. However, for non-stationary signals it is possible
that data dependent updating can lead to non-convergence.
This drawback is illustrated by comparing Max PU-LMS and
SMPU-NLMS to the regular LMS and proposed SPU-LMS
algorithms through a numerical example. SPU-LMS is similar
to P-LMS and S-LMS algorithms in the sense that it also uses
data independent updating schedules. Thus, while analytical
comparison to Max PU-LMS and SMPU-NLMS algorithms
would be interesting, comparisons are limited to S-LMS and
P-LMS.

In [11], for stationary signals, convergence conditions were
derived for the convergence of S-LMS under the assumption of
small step-size parameter (µ) which turned out to be the same
as those for the standard LMS algorithm. Here, bounds on
µ are obtained that hold for stationary signals and arbitrary
fixed sequence of partial updates. First, under the standard
independence assumptions, it is shown that for stationary
signals first order stability of LMS implies first order stability
of S-LMS. However, the important characteristic of S-LMS,
which is shared by P-LMS as well, is that the coefficients
to be updated at an iteration are pre-determined. It is this
characteristic which renders P-LMS and S-LMS unstable
for certain signals and which makes an alternative random
coefficient updating approach attractive.

In this paper, we propose a new partial update algorithm
in which the subset of the filter coefficients that are updated
each iteration is selected at random. The algorithm, referred to
as the Stochastic Partial Update LMS algorithm (SPU-LMS),
involves selection of a subset of size N

P coefficients out of P
possible subsets from a fixed partition of the N coefficients
in the weight vector. For example, filter coefficients can be
partitioned into even and odd subsets and either even or
odd coefficients are randomly selected to be updated in each
iteration. Conditions on the step-size parameter are derived
that ensure convergence in the mean and the mean square
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sense for stationary signals, for deterministic signals, and for
the general case of mixing signals.

Partial update algorithms can be contrasted against another
variant of LMS known as the Fast Exact LMS (FE-LMS)
[4]. Here also the updates are done every P th instead of
every iteration (P has to be much smaller than N , the filter
length, to realize any computational savings [4]). However,
the updates after every P th iteration result in exactly the
same filter as obtained from LMS with P updates done every
iteration. Therefore, the algorithm suffers no degradation with
respect to convergence when compared to the regular LMS. A
generalized version of Fast Exact LMS appears in [5] where
the Newton transversal filter is used instead of LMS.

When convergence properties are considered the FE-LMS
algorithm is more attractive than the PU-LMS algorithm.
However, PU-LMS algorithms become more attractive when
the available program and data memory is limited. The com-
putational savings in FE-LMS come at the cost of increased
program memory, whereas PU-LMS algorithms require negli-
gible increase in program size and in some implementations
might reduce the data memory required. Moreover, in FE-LMS
the reduction in number of execution cycles is offset by the
additional cycles needed for storing the data in intermediate
steps. Finally, the computational savings for the FE-LMS
algorithm are realized for a time-series signal. If the signal
happens to be the output of an array, that is the output of an
individual antenna is the input to a filter tap, then the method
employed in [4] to reduce computations no longer holds.

The main contributions of this paper can be summarized as
follows:

• For stationary signals and arbitrary sequence of updates
it is shown without the independence assumption, that S-
LMS has the same stability and mean-square convergence
properties as LMS.

• Signal scenarios are demonstrated for which the prevalent
partial update algorithms do not converge.

• A new algorithm is proposed, called the Stochastic Partial
Update LMS Algorithm (SPU-LMS), that is based on
randomizing the updating schedule of filter coefficients
that ensures convergence.

• Stability conditions for SPU-LMS are derived for station-
ary signal scenarios and it is demonstrated that the steady
state performance of the new algorithm is as good as that
of the regular LMS algorithm.

• A persistence of excitation condition for the convergence
of SPU-LMS is derived for the case of deterministic
signals and it is shown that this condition is the same
as for the regular LMS algorithm.

• For the general case of mixing signals it is shown that
the stability conditions for SPU-LMS are the same as
that of LMS. The method of successive approximation is
extended to SPU-LMS and the results used to show that
SPU-LMS does not suffer a degradation in steady state
performance.

• It is demonstrated through different examples that for
non-stationary signal scenarios, as might arise in echo
cancellation in telephone networks or digital commu-
nication systems, partial updating using P-LMS and S-

LMS might be undesirable as these are not guaranteed
to converge. SPU-LMS is a better choice because of its
guaranteed convergence properties.

The organization of the paper is as follows. First in Sec-
tion II, a brief description of the sequential partial update
algorithm is given. The algorithm is analyzed for the case of
stationary signals under independence assumptions in Section
II-A. The rest of the paper deals with the new algorithm.
A brief description of the algorithm is given in Section III
and its analysis in Sections III-A (uncorrelated input and
coefficient vectors), III-B (deteriministic signals) and III-C
(correlated input and coefficient vectors). It is shown that the
performance of SPU-LMS is very close to that of LMS in
terms of stability conditions and final mean squared error.
Section IV discusses the performance of the new algorithm
through analytical comparisons with the existing partial udpate
algorithms and also through numerical examples (Section IV-
A). In particular Section IV demonstrates, without the inde-
pendence assumption, the exponential stability and the mean-
square convergence analysis of S-LMS for stationary signals
and of P-LMS for the general case of mixing signals. Finally,
conclusions and directions for future work are indicated in
Section V.

II. SEQUENTIAL PU-LMS ALGORITHM

Let {xi,k} be the input sequence and let {wi,k} denote the
coefficients of an adaptive filter of odd length, N . Define

Wk = [w1,k w2,k . . . wN,k]T

Xk = [x1,k x2,k x3,k . . . xN,k]T

where the terms defined above are for the instant k and T
denotes the transpose operator. In addition, Let dk denote the
desired response. In typical applications dk is a known training
signal which is transmitted over a noisy channel with unknown
FIR transfer function.

In the stationary signal setting the offline problem is to
choose an optimal W such that

ξ(W ) = E [(dk − yk)(dk − yk)∗]
= E

[
(dk − WHXk)(dk − WHXk)∗

]
is minimized, where a∗ denotes the complex conjugate of a
and WH = (WT )∗ denotes the complex conjugate transpose
of W . The solution to this problem is given by

Wopt = R−1r (1)

where R = E[XkXH
k ] and r = E[d∗kXk]. The minimum

attainable mean square error ξ(W ) is given by

ξmin = E[dkd∗k] − rHR−1r.

For the following analysis, we assume that the desired
signal, dk satisfies the following relation1 [11]

dk = WH
optXk + nk (2)

1Note: the model assumed for dk is same as assuming dk and Xk are
jointly Gaussian sequences. Under this assumption dk can be written as dk =
W H

optXk + mk , where Wopt is as in (1) and mk = dk − W H
optXk . Since

E[mkXk] = E[Xkdk]−E[XkXH
k ]Wopt = 0 and mk and Xk are jointly

Gaussian we conclude that mk and Xk are independent of each other which
is same as model (2).
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where Xk is a zero mean complex circular Gaussian2 random
vector and nk is a zero mean circular complex Gaussian (not
necessarily white) noise, with variance ξmin, uncorrelated with
Xk.

Assume that the filter length N is a multiple of P . For
convenience, define the index set S = {1, 2, . . . , N}. Par-
tition S into P mutually exclusive subsets of equal size,
S1, S2, . . . , SP . Define Ii by zeroing out the jth row of
the identity matrix I if j /∈ Si. In that case, IiXk will have
precisely N

P non-zero entries. Let the sentence “choosing Si

at iteration k” stand to mean “choosing the weights with their
indices in Si for update at iteration k”.

The S-LMS algorithm is described as follows. At a given
iteration, k, one of the sets Si, i = 1, . . . , P , is chosen in a
pre-determined fashion and the update is performed. Without
loss of generality, it can be assumed that at iteration k, the
set Sk%P+1 is chosen for update, where k%P denotes the
operation “k modulo P ”.

wk+1,j =
{

wk,j + µe∗kxk,j if j ∈ Sk%P+1

wk,j otherwise

where ek = dk − WH
k Xk. The above update equation can be

written in a more compact form

Wk+1 = Wk + µe∗kIk%P+1Xk. (3)

In the special case of odd and even updates, P = 2, S1

consists of all odd indices and S2 of all even indices.
Define the coefficient error vector as

Vk = Wk − Wopt

which leads to the following coefficient error vector update
for S-LMS when k is even

Vk+1 = (I − µI1XkXH
k )Vk + µnkI1Xk,

and the following when k is odd

Vk+1 = (I − µI2XkXH
k )Vk + µnkI2Xk.

A. Analysis: Stationary Signals, Independent Input and Coef-
ficient Vectors

Assuming that dk and Xk are jointly WSS random se-
quences, we analyze the convergence of the mean coefficient
error vector E [Vk]. We make the standard assumptions that
Vk and Xk are independent of each other [3]. For regular full
update LMS algorithm the recursion for E [Vk] is given by

E [Vk+1] = (I − µR)E [Vk] (4)

where I is the N -dimensional identity matrix and R =
E

[
XkXH

k

]
is the input signal correlation matrix. The well

known necessary and sufficient condition for E[Vk] to con-
verge in (4) is given by [18]

ρ(I − µR) < 1

2A complex circular Gaussian random vector consists of Gaussian random
variables whose marginal densities depend only on their magnitudes. For more
information see [24, p. 198] or [21]

where ρ(B) denotes the spectral radius of B (ρ(B) =
max |λi(B)|). This leads to

0 < µ < 2/λmax(R) (5)

where λmax(R) is the maximum eigen-value of the input
signal correlation matrix R. Note that this need not translate to
be the necessary and sufficient condition for the convergence
of E[Vk] in actuality as (4) has been obtained under the
independence assumption which is not true in general.

Taking expectations under the same assumptions as above,
using the independence assumption on the sequences Xk, nk,
the independence assumption on Xk and Vk, we obtain when
k is even

E [Vk+1] = (I − µI1R)E [Vk]
E [Vk+2] = (I − µI2R)E [Vk+1]

and when k is odd

E [Vk+1] = (I − µI2R)E [Vk]
E [Vk+2] = (I − µI1R)E [Vk+1]

Simplifying the above two sets of equations we obtain for
even-odd S-LMS when k is even

E [Vk+2] = (I − µI2R)(I − µI1R)E[Vk] (6)

and when k is odd

E [Vk+2] = (I − µI1R)(I − µI2R)E[Vk]. (7)

It can be shown that under the above assumptions on Xk, Vk

and dk, the convergence conditions for even (ρ((I−µI2R)(I−
µI1R)) < 1) and odd update equations (ρ((I − µI1R)(I −
µI2R)) < 1) are identical. We therefore focus on (6). It will be
shown that if ρ(I−µR) < 1 then ρ((I−µI2R)(I−µI1R)) <
1.

Now, if instead of just two partitions of odd and even
coefficients (P = 2) there are any number of arbitrary
partitions (P ≥ 2) then the update equations can be similarly
written as above with P > 2. Namely,

E[Vk+P ] =
P∏

i=1

(I − µI(i+k)%P+1R)E[Vk]. (8)

Ii, i = 1, . . . , P is obtained from I , the identity matrix of
dimension N × N , by zeroing out some rows in I such that∑P

i=1 Ii = I .
We will show that for any arbitrary partition of any size

(P ≥ 2); S-LMS converges in the mean if LMS converges
in the mean. The case P = 2 follows as a special case.
The intuitive reason behind this fact is that both the mean
update equation for LMS, E[Vk+1] = (I − µR)E[Vk] and
the mean update equation for S-LMS, E[Vk+1] = (I −
µIk%P+1R)E[Vk], i = 1, . . . , P try to minimize the mean
squared error E[V H

k ]RE[Vk]. This error term is a quadratic
bowl in the E[Vk] co-ordinate system. Note that LMS moves
in the direction of the negative gradient −RE[Vk] by retaining
all the components of this gradient in the E[Vk] co-ordinate
system whereas S-LMS discards some of the components
at every iteration. The resulting direction, in which S-LMS
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updates its weights, obtained from the remaining components
can be broken into two components, one in the direction of
−RE[Vk] and one perpendicular to it. Hence, if LMS reduces
the mean squared error then so does S-LMS.

The result is stated formally in Theorem 2 and the following
theorem is used in proving the result.

Theorem 1: [19, Prob. 16, page 410] Let B be an arbitrary
N×N matrix. Then ρ(B) < 1 if and only if there exists some
positive definite N × N matrix A such that A − BHAB is
positive definite. Here ρ(B) denotes the spectral radius of B
(ρ(B) = max1,...,N |λi(B)|).

Theorem 2: Let R be a positive definite matrix of dimen-
sion N × N with ρ(R) = λmax(R) < 2 then ρ(

∏P
i=1(I −

IiR)) < 1 where Ii, i = 1, . . . , P are obtained by zeroing
out some rows in the identity matrix I such that

∑P
i=1 Ii = I .

Thus if Xk and dk are jointly wide sense stationary then S-
LMS converges in the mean if LMS converges in the mean.
Proof: Let x0 ∈ Cl N be an arbitrary non-zero vector of length
N . Let xi = (I − IiR)xi−1. Also, let P =

∏P
i=1(I − IiR).

First we will show that xH
i Rxi ≤ xH

i−1Rxi−1 −
αxH

i−1RIiRxi−1, where α = 1
2 (2 − λmax(R)) > 0.

xH
i Rxi = xH

i−1(I − RIi)R(I − IiR)xi−1

= xH
i−1Rxi−1 − αxH

i−1RIiRxi−1 −
βxH

i−1RIiRxi−1 + xH
i−1RIiRIiRxi−1

where β = 2 − α. If we can show βRIiR − RIiRIiR is
positive semi-definite then we are done. Now

βRIiR − RIiRIiR = βRIi(I − 1
β

R)IiR.

Since β = (1+λmax(R)/2) > λmax(R) it is easy to see that
I − 1

β R is positive definite. Therefore, βRIiR−RIiRIiR is
positive semi-definite and

xH
i Rxi ≤ xH

i−1Rxi−1 − αxH
i−1RIiRxi−1.

Combining the above inequality for i = 1, . . . , P , we note
that xH

P RxP < xH
0 Rx0 if xH

i−1RIiRxi−1 > 0 for at least
one i, i = 1, . . . , P . We will show by contradiction that is
indeed the case.

Suppose not, then xH
i−1RIiRxi−1 = 0 for all i, i =

1, . . . , P . Since, xH
0 RI1Rx0 = 0 this implies I1Rx0 = 0.

Therefore, x1 = (I − I1R)x0 = x0. Similarly, xi =
x0 for all i, i = 1, . . . , P . This in turn implies that
xH

0 RIiRx0 = 0 for all i, i = 1, . . . , P which is a contra-
diction since R(

∑P
i=1 Ii)R is a positive-definite matrix and

0 =
∑P

i=1 xH
0 RIiRx0 = xH

0 R(
∑P

i=1 Ii)Rx0 �= 0.
Finally, we conclude that

xH
0 PHRPx0 = xH

P RxP < xH
0 Rx0.

Since x0 is arbitrary we have R − PHRP to be positive
definite so that applying Theorem 1 we conclude that ρ(P) <
1.

Finally, if LMS converges in the mean we have ρ(I−µR) <
1 or λmax(µR) < 2. Which from the above proof is sufficient
for concluding that ρ(

∏P
i=1(I − µIiR)) < 1. Therefore, S-

LMS also converges in the mean.

Remark 1: Note that it is sufficient for Ii to be such that∑P
i=1 Ii is positive definite. That means that the subsets

updated at each iteration need not be mutually exclusive.
Remark 2: It is interesting to note that in the proof above

if:

1) we choose α = 1
2 (2−λmax(IiRIi)) > 0 and β = 2−α

for each i
2) we write βRIiR−RIiRIiR as βRIi(Ii− 1

βIiRIi)IiR

instead of as βRIi(I − 1
β R)IiR

then it can be shown that for stationary signals the sequential
algorithm enjoys a more lenient condition on µ for conver-
gence in the mean: 0 < µ < 2

maxi{λmax(IiRIi)} . This condition
is more lenient than that of regular LMS: 0 < µ < 2

λmax(R) .
With a little extra effort a tighter bound on the spectral

radius of
∏P

i=1(I − µIiR) can be demonstrated.
Theorem 3: Fix µ∗ < 2/λmax(R) and let Ii be such that∑P
i=1 Ii = I . Then there exists a constant 0 < αµ∗ dependent

only on µ∗ such that ρ(
∏P

i=1(I − µIiR)) is contained within
a circle of radius (1 − µαµ∗) for all 0 < µ < µ∗.

Proof: Let x0 ∈ Cl N be an arbitrary non-zero vector of
length N as before. Let xi = (I − µIiR)xi−1. and P(µ) =∏P

i=1(I − µIiR).
From the proof of Theorem 2, we have for i = 1, . . . , P

xH
i Rxi

≤ xH
i−1Rxi−1 − µ(1 − µ

λmax(R)
2

)xH
i−1RIiRxi−1

= xH
i−1Rxi−1 − µ(1 − µ

λmax(R)
2

)xH
i−1R

1/2R1/2 ·
IiR

1/2R1/2xi−1

≤ xH
i−1Rxi−1 − αiλ

∗
minµ(1 − µ

λmax(R)
2

)xH
i−1Rxi−1

≤ xH
i−1Rxi−1 − αiλmin(R)µ(1 − µ

λmax(R)
2

) ·
xH

i−1Rxi−1

with λ∗
min = min{λ(R1/2IiR

1/2) > 0} ≥ λmin(R) and

αi = (y′
i)

Hy′
i

xH
i−1Rxi−1

. y′
i = Pi(R1/2xi−1) where Pi(x) denotes the

projection of x onto the non-zero eigenspace of R1/2IiR
1/2.

Next, consider x̂i = R1/2xi, i = 0, 1, . . . , P . Then the
update equation for x̂i is x̂i = (I −R1/2IiR

1/2)x̂i−1. Let y′
i

be as before and yi = Pi(x̂0).
Let

zi = x̂i − x̂i−1 = −µR1/2IiR
1/2x̂i−1

then

zH
i zi ≤ µ2λ2

max(R)(y′
i)

Hy′
i = 4(y′

i)
Hy′

i.

Also,

yi = Pi(x̂0) = Pi(
i−1∑
j=1

zj) + Pi(x̂i−1) =
i−1∑
j=1

Pi(zj) + y′
i

for i = 1, . . . , P . Next, denoting |z| for
√

zHz and making
use of the facts that x̂H

i x̂i = xH
i Rxi ≤ xH

0 Rx0 = x̂H
0 x̂0 and
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|P(zj)| ≤ |zj | we obtain for i = 1, . . . , P

|yi| ≤
i−1∑
j=1

|zj | + |y′
i| ≤ 2

i−1∑
j=1

|y′
j | + |y′

i|

= 2
i−1∑
j=1

√
αj |x̂i−1| + √

αi|x̂i|

≤ (2
P∑

j=1

√
αj)|x̂0|.

Therefore, atleast one of αj is greater than or equal
to 1

4P 3
λmin(R)
λmax(R) . Otherwise, λmin(R)x̂H

0 x̂0 ≤ x̂H
0 Rx̂0 ≤

λmax(R)
∑P

i=1 yH
i yi < λmin(R)x̂H

0 x̂0 which is a contradic-
tion.

Next, choosing αµ∗ = 1
8P 3 (1 − µ∗ λmax(R)

2 ) λ2
min(R)

λmax(R) and

noting that 1
4P 3 (1 − µλmax(R)

2 ) λ2
min(R)

λmax(R) > 2αµ∗ for all 0 <
µ < µ∗ we obtain

xH
P RxP ≤ (1 − µ2αµ∗)xH

j Rxj

≤ (1 − µαµ∗)2xH
0 Rx0

This leads to

(1 − µαµ∗)−2xH
P RxP ≤ xH

0 Rx0.

Finally, using Theorem 1, we conclude that ρ((1 −
µαµ∗)−1P(µ)) ≤ 1 or ρ(P(µ)) ≤ (1 − µαµ∗).

Remark 3: If we assume that R is block diagonal such that
R =

∑P
i=1 IiRIi with

∑P
i=1 Ii = I then an even tighter

bound on ρ(P(µ)) can be obtained. In this case, IiR = IiRIi

and P(µ) turns out to be simply

P∏
i=1

(I − µIiR) =
P∏

i=1

(I − µIiRIi)

= I − µ

P∑
i=1

IiRIi = I − µR.

III. STOCHASTIC PU-LMS ALGORITHM

The description of SPU-LMS is similar to that of S-LMS
(section II). The only difference is as as follows. At a given
iteration, k, for S-LMS one of the sets Si, i = 1, . . . , P is cho-
sen in a pre-determined fashion whereas for SPU-LMS, one
of the sets Si is sampled at random from {S1, S2, . . . , SP }
with probability 1

P and subsequently the update is performed.
i.e.

wk+1,j =
{

wk,j + µe∗kxk,j if j ∈ Si

wk,j otherwise
(9)

where ek = dk − WH
k Xk. The above update equation can be

written in a more compact form

Wk+1 = Wk + µe∗kIkXk (10)

where Ik now is a random matrix chosen with equal prob-
ability from Ii, i = 1, . . . , P (Recall that Ii is obtained by
zeroing out the jth row of the identity matrix I if j /∈ Si).

A. Analysis: Stationary Stochastic Signals, Independent Input
and Coefficient Vectors

For the stationary signal analysis of SPU-LMS the desired
signal dk, is assumed to satisfy the same conditions as in
Section II namely dk = WH

optXk + nk. In this section, we
make the usual assumptions used in the analysis of standard
LMS [3]: We assume that Xk is a Gaussian random vector and
that Xk and Vk = Wk − Wopt are independent. Ik and Xk

are independent of each other by definition. We also assume,
in this section for tractability, that R = E[XkXH

k ] is block
diagonal such that

∑P
i−1 IiRIi = R.

For convergence-in-mean analysis we obtain the following
update equation conditioned on a choice of Si.

E[Vk+1|Si] = (I − µIkR)E[Vk|Si]
= (I − µIiR)E[Vk|Si]

which after averaging over all choices of Si gives

E[Vk+1] = (I − µ

P
R)E[Vk]. (11)

To obtain the above equation we have made use of the fact
that the choice of Si is independent of Vk and Xk. Therefore,
µ has to satisfy 0 < µ < 2P

λmax
to guarantee convergence in

mean.
For the convergence-in-mean square analysis of SPU-LMS

the convergence of the error variance E[eke∗k] is studied
as in [20]. Under the independence assumptions we obtain
E[eke∗k] = ξmin + tr{RE[VkV H

k ]} where ξmin is as defined
earlier.

First, conditioned on a choice of Si, the evolution equation
of interest for tr{RE[VkV H

k ]} is given by

RE[Vk+1V
H
k+1|Si] = RE[VkV H

k |Si] − (12)

2µRIiRE[VkV H
k |Si] +

µ2IiRIiE[XkXH
k AkXkXH

k |Si] +
µ2ξminRIiRIi

where Ak = E[VkV H
k ]. Let Uk = QVk where Q satisfies

QRQH = Λ. Applying the definition of Uk to (12) we obtain
the equation

Gk+1 = (I − 2µ

P
Λ +

µ2

P
Λ2 +

µ2

P
Λ211T )Gk + (13)

µ2

P
ξminΛ21

where Gk is a vector of diagonal elements of ΛE[UkUH
k ] and

1 is an N × 1 vector of ones.
It is easy to obtain the following necessary and sufficient

conditions (following the procedure of [20]) for convergence
of E[VkV H

k ] from (12)

0 < µ < 2
λmax

(14)

η(µ) def=
∑N

i=1
µλi

2−µλi
< 1

which are independent of P and identical to that of LMS. As
pointed out in Section II-A the above conditions have been
obtained under the independence assumption that are not valid
in general.
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The integrated MSE difference [20]

J =
∞∑

k=0

[ξk − ξ∞] (15)

introduced in [12] is used as a measure of the convergence
rate and M(µ) = ξ∞−ξmin

ξmin
as a measure of misadjustment. It

is easily established that the misadjustment takes the form

M(µ) =
η(µ)

1 − η(µ)
(16)

which is the same as that of the standard LMS. Thus, we
conclude that random update of subsets has no effect on the
final excess mean-squared error.

Finally, it is straightforward to show (following the proce-
dure of [12]) that the integrated MSE difference is

J = P tr{[2µΛ − µ2Λ2 − µ2Λ211T ]−1(G0 − G∞)} (17)

which is P times the quantity obtained for standard LMS
algorithm. Therefore, we conclude that for block diagonal R,
random updating slows down convergence by a factor of P
without affecting the misadjustment. Furthermore, it can be
easily verified that a much simpler condition 0 < µ < 1

tr{R} ,
provides a sufficient region for convergence of SPU-LMS and
the standard LMS algorithm.

B. Analysis: Deterministic Signals

Here we follow the analysis for LMS, albeit extended to
complex signals, given in [25, pp. 140–143]. We assume that
the input signal Xk is bounded, that is supk(XH

k Xk) ≤ B <
∞ and that the desired signal dk follows the model

dk = WH
optXk

which is different from (2) in that dk is assumed to be perfectly
predictable from Xk.

Define Vk = Wk − Wopt and ek = dk − WH
k Xk.

Lemma 1: If µ < 2/B then e2
k → 0 as k → ∞. Here, {·}

indicates statistical expectation over all possible choices of Si,
where each Si is chosen randomly with equal probability from
{S1, . . . , SP }.

Proof: See Appendix I
For a positive definite matrix Ak, we say that Ak converges

exponentially fast to zero if there exists a γ, 0 < γ < 1 and a
positive integer K such that tr{Ak+K} ≤ (1 − γ)tr{Ak} for
all k. tr{A} denotes the trace of the matrix A.

Theorem 4: If µ < 2/B and the signal satisfies the follow-
ing persistence of excitation condition:
for all k, there exist K < ∞, α1 > 0 and α2 > 0 such that

α1I <

k+K∑
i=k

XiX
H
i < α2I (18)

then Vk
H

Vk → 0 and V H
k Vk → 0 exponentially fast.

Proof: See Appendix I
Condition (18) is identical to the persistence of excitation

condition for standard LMS [25]. Therefore, the sufficient con-
dition for exponential stability of LMS is enough to guarantee
exponential stability of SPU-LMS.

C. Analysis: Correlated Input and Coefficient Vectors

In this section, the performance of LMS and SPU-LMS is
analytically compared in terms of stability and misconvergence
when the uncorrelated input and coefficient signal vectors as-
sumption is invalid. Unlike the analysis in Section III-A where
the convergence analysis and the performance analysis could
be tackled with the same set of equations, here the stability and
performance analyses have to be done separately. For this we
employ the theory, extended here to circular complex random
variables, developed in [16] for stability analysis and [2] for
final mean-squared error analysis. Our analysis holds for the
broad class of signals which are φ-mixing. Mixing conditions
provide a very general and powerful way to describe the
rate of decay of the dependence between pairs of samples
as the sample times are moved farther apart. Such conditions
are much weaker than conditions on the rate of decay of
the autocorrelation function, which are restricted to second
order analysis and Gaussian processes. For this reason general
mixing conditions, such as the φ-mixing condition defined
in Appendix III, have been widely used in adaptive signal
processing and adaptive detection [2], [7], [16], [17], [23] to
analyze convergence of algorithms for dependent processes.
We adopt this framework in this paper (see Appendices II
and IV for detailed proofs and definitions) and summarize the
results in this section.

The analysis in Section III-A is expected to hold for small
µ even when the uncorrelated input and coefficient vectors
assumption is violated. It is, however, not clear for what values
of µ the results from Section III-A are valid. The current
section makes the dependence of the value of µ explicit and
concludes that stability and performance of SPU-LMS are
similar to that of LMS.

Result 1 (Stationary Gaussian Process): Let xk be a sta-
tionary Gaussian random process such that E[xkxk−l] = rl →
0 as l → ∞ and Xk = [xk xk−1 . . . xk−n+1] then for any
p ≥ 1, there exist constants µ∗ > 0, M > 0, and α ∈ (0, 1)
such that for all µ ∈ (0, µ∗] and for all t ≥ k ≥ 0

E

∥∥∥∥∥∥
t∏

j=k+1

(I − µIjXjX
H
j )

∥∥∥∥∥∥
p


1/p

≤ M(1 − µα)t−k

if and only if the input correlation matrix E[XkXH
k ] = Rxx,

is positive definite.
Proof: See Appendix II.

It is easily seen from the extension of [16] to complex sig-
nals that the LMS algorithm requires the same necessary and
sufficient conditions for convergence (Appendix II). Therefore,
the necessary and sufficient conditions for convergence of
SPU-LMS are identical to those of LMS.

The analysis in Result 1 validates the analysis in Section III-
A, for similar input signals, where the analysis was done under
the independence assumption. In both cases, we conclude that
necessary and sufficient condition for convergence is that the
covariance matrix be positive definite. Although, Section III-
A also gives some bounds on the step-size parameter µ, it is
known they are not very reliable as the analysis is valid only
for very small µ.
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The mean squared analysis on Vk
def= Wk − Wopt is based

on the analysis in [2] which follows the method of successive
approximation. The details of the extension of this method to
SPU-LMS are provided in Appendix IV. The analysis in this
section is performed by assuming that

dk = XH
k Wopt + nk.

The effectiveness of the method is illustrated in Results 2 and
3 where the steady state performance of the two algorithms
is compared for two simple scenarios where the independence
assumption is clearly violated.

Result 2 (i. i. d. Gaussian Process): Let Xk =
[xk xk−1 . . . xk−N+1]T where N is the length of the
vector Xk. {xk} is a sequence of zero mean i.i.d Gaussian
random variables. Let σ2 denote the variance of xk and σ2

v

denote the variance of nk. It is assumed that nk is a white
i.i.d. Gaussian noise. Then for LMS, we have

lim
k→∞

E[VkV H
k ] = µ2

[
σ2

v

2µ
I +

Nσ2σ2
v

4
I + Cµ1/2I

]
(19)

and for SPU-LMS, assuming N to be a multiple of P and sets
Si to be mutually exclusive, we have

lim
k→∞

E[VkV H
k ] = µ2

[
σ2

v

2µ
I +

(N+1)P−1
P σ2σ2

v

4
I + Cµ1/2I

]
.

Note that the constant C in the final mean square expression
for SPU-LMS is the same as that for LMS. Therefore, for
large N , it can be seen that SPU-LMS is marginally worse
than LMS in terms of misadjustment.
Proof: See Appendix IV-A.

It will be interesting to see how the results above compare
to the results obtained under the independence assumptions
analysis in Section III-A. From (13), we obtain the vector of
diagonal elements of limk→∞ E[VkV H

k ] Vd, to be

Vd = µ2

[
σ2

v

2µ
1 +

(N + 1)σ2σ2
v

4
1
]

+ O(µ4)1

for both LMS and SPU-LMS where 1 is an N × 1 vector of
ones. The analysis in this section gives

Vd = µ2

[
σ2

v

2µ
1 +

Nσ2σ2
v

4
1
]

+ O(µ3/2)1

for LMS and

Vd = µ2

[
σ2

v

2µ
1 +

(N+1)P−1
P σ2σ2

v

4
1

]
+ O(µ3/2)1

for SPU-LMS.
Result 3 (Spatially Uncorrelated Temporally Correlated Process):

Let Xk be given by

Xk = κXk−1 +
√

1 − κ2Uk

where Uk is a vector of circular Gaussian random variables
with unit variance. Here also, it is assumed that nk is a white
i.i.d. Gaussian noise with variance σ2

v . Then for LMS, we have

lim
k→∞

E[VkV H
k ] = µ2

[
σ2

v

2µ
I +

Nσ2
v

4
I + Cµ1/2I

]
(20)

and for SPU-LMS, assuming N to be a multiple of P and sets
Si to be mutually exclusive, we have

lim
k→∞

E[VkV H
k ] = µ2

[
σ2

v

2µ
I +

σ2

4
[N + 1 − 1

P
]I + Cµ1/2I

]
.

Here also, for large N , SPU-LMS is marginally worse than
LMS in terms of misadjustment.
Proof: See Appendix IV-B.

Here also, the results obtained above can be compared to
the results obtained from the analysis in Section III-A. From
(13), we obtain Vd, to be

Vd = µ2

[
σ2

v

2µ
1 +

(N + 1)σ2
v

4
1
]

+ O(µ4)1

for both LMS and SPU-LMS. The analysis in this section gives

Vd = µ2

[
σ2

v

2µ
1 +

Nσ2
v

4
1
]

+ O(µ3/2)1

for LMS and

Vd = µ2

[
σ2

v

2µ
1 + (N + 1 − 1

P
)
σ2

4
1
]

+ O(µ3/2)1

for SPU-LMS.
Therefore, the analysis in this section highlights differences

in the the convergence of LMS and SPU-LMS that would
not have been apparent from the analysis in Section III-A.
It can be noted that for small N the penalty for assuming
independence is not insignificant (especially for SPU-LMS).
However, for large N the independence assumption analysis
manages to yield reliable estimate even for larger values of µ
inspite of the assumption being clearly violated.

IV. DISCUSSION AND EXAMPLES

It is useful to compare the performance of the new algorithm
to those of the existing algorithms by performing the analyses
of Sections III-A, III-B and III-C on the periodic Partial
Update LMS Algorithm (P-LMS) and the sequential Partial
Update LMS Algorithm (S-LMS). To do that, we first need
the update equation for P-LMS which is as follows

Wk+P = Wk + µe∗kXk.

We begin with comparing the convergence-in-mean analysis
of the partial update algorithms. Combining P -iterations we
obtain for LMS Vk+P = (I − µR)P Vk, for P-LMS Vk+P =
(I−µR)Vk, for SPU-LMS Vk+P = (I− µ

P R)P Vk, and finally
for S-LMS (assuming R =

∑P
i=1 IiRIi) Vk+P = (I−µR)Vk.

Therefore, the rate of decay of all the partial update algorithms
is P times slower than that of LMS.

For convergence-in-mean square analysis of Section III-A
we will limit the comparison to P-LMS. The convergence of
Sequential LMS algorithm has been analyzed using the small
µ assumption in [11]. Under this assumption for stationary
signals, using the independence assumption, the conditions for
convergence turn out to be the same as that of SPU-LMS. For
P-LMS using the method of analysis described in [20] it can
be inferred that the conditions for convergence are identical to
standard LMS. That is (14) holds also for P-LMS. Also, the
misadjustment factor remains the same. The only difference
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between LMS and P-LMS is that the integrated MSE J (15)
for P-LMS is P times larger than that of LMS. Therefore,
we again conclude that the behavior of SPU-LMS and P-LMS
algorithms is very similar for stationary signals.

However, for deterministic signals the difference between
P-LMS and SPU-LMS becomes evident from the persistence
of excitation condition. The persistence of excitation condition
for P-LMS is [11]: for all k and for all j, 1 ≤ j < N/P , there
exist K < ∞, α1 > 0 and α2 > 0 such that

α1I <

(k+K)N/P+j∑
i=kN/P+j

XiX
H
i < α2I. (21)

Since any deteriministic signal satisfying (21) also satisfies
(18) but not vice-versa, it can be inferred that (21) is stricter
than that for SPU-LMS (18).

Taking this further, using the analysis in Appendix II, for
mixing signals, the persistence of excitation condition can
similarly be shown to be: there exists an integer K > 0
and a constant δ > 0 such that for all k ≥ 0 and for all
j, 1 ≤ j < N/P ,

(k+K)N/P+j∑
i=kN/P+j

E[XiX
H
i ] ≥ δI.

Here also, it can be seen that this condition is stricter than
that of SPU-LMS (25). In fact, in Section IV-A signals are
constructed, based on the persistence of excitation conditions
for SPU-LMS and P-LMS, for which P-LMS is guaranteed
not to converge whereas SPU-LMS will converge.

The analysis of Appendix II can be extended to S-LMS if
an additional requirement of stationarity is imposed on the
excitation signals. For such signals, it can be easily seen that
the necessary and sufficient conditions for statibility of LMS,
SPU-LMS and P-LMS are exactly the same and are sufficient
for exponential stability of S-LMS (details in Appendix III).

Also, applying the analysis of Appendix IV used to derive
Results 2 and 3 it can be easily seen that the final error covari-
ance matrix for P-LMS is same as that of LMS (expressions
(19) and (20)). Exactly the same results can be obtained for
S-LMS as well by combining the results of Appendix III with
the analysis in Appendix IV restricted to stationary φ-mixing
signals.

For non-stationary signals, the convergence of S-LMS is
an open question although analysis for some limited cyclo-
stationary signals has been performed in [15]. In this paper,
we show through simulation examples that this algorithm
diverges for certain non-stationary signals and therefore should
be employed with caution.

In summary, for stationary signals all three algorithms P-
LMS, S-LMS and SPU-LMS enjoy the same convergence
properties as LMS. It is for non-stationary signals that S-LMS
and P-LMS might fail to converge and it is for such signals
that the advantage of SPU-LMS comes to the fore. SPU-LMS
enjoys the same convergence properties as LMS, even for non-
stationary signals, in the sense that it is guaranteed to converge
for all signals that LMS converges for.

A. Numerical Examples

In the first two examples, we simulated an m-element
uniform linear antenna array operating in a multiple signal
environment. Let Ai denote the response of the array to the
ith plane wave signal:

Ai = [e−j( m
2 −m̃)ωi e−j( m

2 −1−m̃)ωi . . .

ej( m
2 −1−m̃)ωi ej( m

2 −m̃)ωi ]T

where m̃ = (m + 1)/2 and ωi = 2πD sin θi

λ , i = 1, . . . ,M . θi

is the broadside angle of the ith signal, D is the inter-element
spacing between the antenna elements and λ is the common
wavelength of the narrowband signals in the same units as D
and 2πD

λ = 2. The array output at the kth snapshot is given
by Xk =

∑M
i=1 Aisk,i + nk where M denotes the number of

signals, the sequence {sk,i} the amplitude of the ith signal and
nk the noise present at the array output at the kth snapshot.
The objective, in both the examples, is to maximize the SNR at
the output of the beamformer. Since the signal amplitudes are
random the objective translates to obtaining the best estimate
of sk,1, the amplitude of the desired signal, in the MMSE
sense. Therefore, the desired signal is chosen as dk = sk,1.
Example 1: In the first example (Figure 1), the array has 4
elements and a single planar waveform with amplitude, sk,1

propagates across the array from direction angle, θ1 = 0. The
amplitude sequence {sk,1} is a binary phase shifty keying
(BPSK) signal with period four taking values on {−1, 1} with
equal probability. The additive noise nk is circular Gaussian
with variance 0.25 and mean 0. In all the simulations for SPU-

s k

D=λ/π

x
1,k

x x
3,k

x
2,k 4,k

BPSK Signal,
=0Broadside angle 

4-element Uniform Array

kX  = A s  + nk k

d  = s k k

Fig. 1. Signal Scenario for Example 1

LMS, P-LMS, and S-LMS the number of subsets for partial
updating, P was chosen to be 4, that is a single coefficient is
updated at each iteration. It can be easily determined from (14)
that for Gaussian and independent signals the necessary and
sufficient condition for convergence of the update equations
for LMS and SPU-LMS under the independence assumptions
analysis is µ < 0.225. Figure 2 shows representative trajecto-
ries of the empirical mean-squared error for LMS, SPU-LMS,
P-LMS and S-LMS algorithms averaged over 100 trials for
µ = 0.01. All algorithms were found to be stable for the BPSK
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signals even for µ values greater than 0.225. It was only as
µ approached 0.32 that divergent behavior was observed. As
expected, LMS and SPU-LMS were observed to have similar
µ regions of convergence. It is also clear from Figure 2, that,
as expected, SPU-LMS, P-LMS, and S-LMS take roughly 4
times longer to converge than LMS.
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Fig. 2. Trajectories of MSE for Example 1

Example 2: In the second example, we consider an 8-
element uniform linear antenna array with one signal of
interest propagating at angle θ1 and 3 interferers propagating
at angles θi, i = 2, 3, 4. The array noise nk is again mean
0 circular Gaussian but with variance 0.001. Signals are

D=λ/π 4-element Uniform Linear Array

Broadside angle =

Broadside angle =

Broadside angle 

−π/4

Cyclostationary BPSK type Interferer, s

s Cyclostationary BPSK type Interferer,

BPSK Signal,s 1,k

3,k

2,k

k
d  = s k 1,k

1X  = A  s   + A   s    + A   s    + n2 2,k k1,k 3 3,k

π/6

=π/4

Fig. 3. Signal Scenario for Example 2

generated, such that sk,1 is stationary and sk,i, i = 2, 3, 4
are cyclostationary with period four, which make both S-
LMS and P-LMS non-convergent. All the signals were chosen
to be independent from time instant to time instant. First,
we found signals for which S-LMS doesn’t converge by

the following procedure. Make the small µ approximation
I−µ

∑P
i=1 IiE[Xk+iX

H
k+i] to the transition matrix

∏P
i=1(I−

µIiE[Xk+iXk+i]) and generate sequences sk,i, i = 1, 2, 3, 4
such that

∑P
i=1 IiE[Xk+iX

H
k+i] has roots in the negative left

half plane. This ensures that I − µ
∑P

i=1 IiE[Xk+iX
H
k+i] has

roots outside the unit circle. The sequences found in this
manner were then verified to cause the roots to lie outside
the unit circle for all µ. One such set of signals found was:
sk,1 is equal to a BPSK signal with period one taking values in
{−1, 1} with equal probability. The interferers, sk,i, i = 2, 3, 4
are cyclostationary BPSK type signals taking values in {−1, 1}
with the restriction that sk,2 = 0 if k % 4 �= 1, sk,3 = 0 if
k % 4 �= 2 and sk,4 = 0 if k % 4 �= 3. Here a % b stands for
a modulo b. θi, i = 1, 2, 3, 4 are chosen such that θ1 = 1.0388,
θ2 = 0.0737, θ3 = 1.0750 and θ4 = 1.1410. These signals
render the S-LMS algorithm unstable for all µ.

The P-LMS algorithm also fails to converge for the signal
set described above irrespective of µ and the choice of θ1, θ2,
θ3, and θ4. Since P-LMS updates the coefficients every 4th

iteration it sees at most one of the three interfering signals
throughout all its updates and hence can place a null at atmost
one signal incidence angle θi. Figure 4 shows the envelopes
of the e2

k trajectories of S-LMS and P-LMS for the signals
given above with the representative value µ = 0.03. As can be
seen P-LMS fails to converge whereas S-LMS shows divergent
behavior. SPU-LMS and LMS were observed to converge for
the signal set described above when µ = 0.03.
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Fig. 4. Trajectories of MSE for Example 2

Example 3: In the third example, consider a 4-tap fil-
ter (N = 4) with a time series input, that is Xk =
[xk xk−1 xk−2 xk−3]T . The input, the filter coefficients and
the desired output are all real valued. In this example, the goal
is to reconstruct the transmitted BPSK signal sk, from the
received signal xk at the receiver using a linear filter. xk is a
distorted version of sk when sk passes through a linear channel
with transfer function given by 1

1+0.4z−1−0.26z−2−0.2z−3 . The
receiver noise nk is a zero mean Gaussian noise with variance
0.01. sk is a signal with symbol duration of 4 samples. The
desired output dk, is now simply given by dk = sk. The update
is such that one coefficient is updated per iteration, i.e. P = 4.
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In this case, the coefficient error variance is plotted rather than
the mean squared error as this is a better indication of system
performance. Figure 5 shows the trajectories of coefficient-
error variance for LMS, SPU-LMS, P-LMS and S-LMS for
a representative value of µ = 0.01, respectively. As can be
seen P-LMS and S-LMS fail to converge whereas LMS and
SPU-LMS do converge.
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Fig. 5. Trajectories of MSE for LMS, SPU-LMS, P-LMS and S-LMS for
Example 3

Example 4: In the fourth example, we show a non-stationary
signal for which Max PU-LMS and SMPU-NLMS algorithms
do not converge. For algorithmic details of these two algo-
rithms and their analysis refer to [8]. The two algorithms can
be made to not converge by first constructing deteriministic
signals for which their behavior is the same as that of S-LMS
and then finding a candidate among such signals for which
S-LMS diverges.

Consider a 4-tap filter with time series input Xk = Sk =
[sk sk−1 sk−2 sk−3]T . The goal in this example is to obtain
the best estimate of Wopt = [1 0.4 − 0.26 − 0.204] from
dk = WT

optXk + nk and Xk where nk is a Gaussian random
variable with zero mean and variance of 0.01. The update is
such that one coefficient is updated per iteration, i.e. P = 4. sk

is chosen to be a deteriministic sequence of the following form
sk = bk%4 where {b0, b1, b2, b3} is a fixed sequence satisfying
|b0| < |b1| < |b2| < |b3|. Such a restriction on sk and bk

ensures that SMPU-NLMS in updating only one coefficient
per iteration ends up updating the coefficients in a sequential
manner. For this signal, Max PU-LMS also updates the coef-
ficients in a sequential manner and its behavior is exactly that
of S-LMS. The values bk, k = 0, . . . , 3 were chosen such that∑4

i=1 IiS4∗k+i+2S
T
4∗k+i+2 for all k has eigenvalues in the left

half plane. That means that the small µ approximation of the
S-LMS update matrix

∏4
i=1(I − µIiS4∗k+i+2S

T
4∗k+i+2) has

eigenvalues outside the unit circle. For such input signals there
is a good likelihood that SMPU-NLMS will diverge along
with S-LMS and Max PU-LMS. A signal for which the three
algorithms have been observed to diverge has b0 = 0.1924,
b1 = −0.5364, b2 = −0.5521 and b3 = 0.6087.

Here also, the coefficient error variance is plotted rather
than the mean squared error. Figures 6 and 7 show the

trajectory of coefficient-error variance for MAX PU-LMS for
a representative value of µ = 0.01 and for SMPU-NLMS
for a representative value of γ = 0.01 (for description of γ
refer to [8]), respectively. Figure 8 shows the corresponding
trajectories for LMS and SPU-LMS again for a representative
value of µ = 0.01. As can be seen Max PU-LMS and SMPU-
NLMS fail to converge while SPU-LMS and LMS do.
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Fig. 6. Trajectory of MSE for Max PU-LMS for Example 4
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Fig. 7. Trajectory of MSE for SMPU-NLMS for Example 4

V. CONCLUSION AND FUTURE WORK

In this paper, the sequential partial update LMS algorithm
has been analyzed and a new algorithm based on randomiza-
tion of filter coefficient subsets for partial updating of filter
coefficients has been proposed.

For S-LMS, stability bounds on step-size parameter µ for
wide sense stationary signals have been derived. It has been
shown that if the regular LMS algorithm converges in mean
then so does the sequential LMS algorithm for the general
case of arbitrary but fixed ordering of the sequence of partial
coefficient updates. Relaxing the assumption of independence,
for stationary signals, stability and second order (mean square
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Fig. 8. Trajectories of MSE for LMS and SPU-LMS for Example 4

convergence) analysis of S-LMS has been performed. The
analysis was used to establish that S-LMS has similar behavior
as LMS.

In the context of non-stationary signals the poor conver-
gence properties of S-LMS and Periodic LMS have been
demonstrated and as a result a new algorithm SPU-LMS with
better performance has been designed. For SPU-LMS the
conditions on step-size for convergence-in-mean and mean-
square were shown to be equivalent to those of standard LMS.
It was verified by theory and by simulation that LMS and
SPU-LMS have similar regions of convergence. It was also
shown that the Stochastic Partial Update LMS algorithm has
the same performance as P-LMS and S-LMS for stationary
signals but, can have superior performance for some cyclo-
stationary and deterministic signals. It was also demonstrated
that the randomization of filter coefficient updates doesn’t
increase the final steady state error as compared to the regular
LMS algorithm.

The idea of random choice of subsets proposed in this paper
can be extended to include arbitrary subsets of size N

P and not
just subsets from a particular partition. No special advantage
is immediately evident from this extension though.

In the future, tighter bounds on the convergence rate of the
mean update equation of S-LMS for stationary signals can be
established for the general case of input correlation matrix R.
Necessary and sufficient conditions for the convergence of the
algorithm for the general case of mixing-signals still need to
be derived. These can be addressed in the future.

In addition, it can be investigated whether performance
analysis of Max PU-LMS and SMPU-NLMS algorithms men-
tioned in Section I can be performed using the techniques
employed in this paper. Special emphasis should be laid on
non-stationary signal performance because as has been shown
through a numerical example these algorithms can diverge for
such signals.

APPENDIX I
PROOFS OF LEMMA 1 AND THEOREM 4

Proof of Lemma 1: First note that ek = −V H
k Xk. Next,

consider the Lyapunov function Lk+1 = V H
k+1Vk+1 where {·}

is as defined in Lemma 1. Averaging the following update
equation for V H

k+1Vk+1

V H
k+1Vk+1 = V H

k Vk − µtr{VkV H
k XkXH

k Ii} −
µtr{VkV H

k IiXkXH
k } +

µ2tr{VkV H
k XkXH

k IiXkXH
k }

over all possible choices of Si, i = 1, . . . , P we obtain

Lk+1 = Lk − µ

P
tr{VkV H

k Xk(2 − µXkXH
k )XH

k }.
Since supk(XH

k Xk) ≤ B < ∞ the matrix (2I − µXkXH
k )−

(2I − µBI) is positive definite. Therefore,

Lk+1 ≤ Lk − µ

P
(2 − µB)tr{VkV H

k XkXH
k }.

Since µ < 2/B

Lk+1 ≤ Lk − tr{VkV H
k XkXH

k }
Noting that e2

k = tr{VkV H
k XkXH

k } we obtain

Lk+1 +
k∑

l=0

e2
k ≤ L0

since L0 < ∞ we have e2
k = O(1/k) and limk→∞ e2

k = 0
Before proving Theorem 4 we need Lemmas 2 and 3. We

reproduce the proof of Lemma 2 from [25] using our notation
because this enables us to understand the proof of Lemma 3
better.

Lemma 2: [25, Lemma 6.1 p. 143-144] Let Xk satisfy the
persistence of excitation condition in Theorem 4. let

Πk,k+D =
{ ∏k+D

l=k (I − µ
P XlX

H
l ) if D ≥ 0

1 if D < 0

and

Gk =
K∑

l=0

ΠH
k,k+l−1Xk+lX

H
k+lΠk,k+l−1

where K is as defined in Theorem 4 then Gk−ηI is a positive
definite matrix for some η > 0 and ∀k.

Proof: Proof is by contradiction. Suppose not then for some
vector ω such that ωHω = 1 we have ωHGkω ≤ c2 where c
is any arbitrary positive number.

Then∑K
l=0 ωHΠH

k,k+l−1Xk+lX
H
k+lΠk,k+l−1ω ≤ c2 ⇒

ωHΠH
k,k+l−1Xk+lX

H
k+lΠk,k+l−1ω ≤ c2 for 0 ≤ l ≤ K.

Choosing l = 0 we obtain ωHXkXH
k ω ≤ c2 or ‖ωHXk‖ ≤

c.
Choosing l = 1 we obtain

‖ωH(I − µ

P
XkXH

k )Xk+1‖ ≤ c.

Therefore,

‖ωHXk+1‖ ≤ ‖ωH(I − µ

P
XkXH

k )Xk+1‖
+

µ

P
‖ωHXk‖‖XH

k Xk+1‖
≤ c +

µ

P
Bc = c(1 + 2/P ).
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Choosing l = 2 we obtain

‖ωH(I − µ

P
XkXH

k )(I − µ

P
Xk+1X

H
k+1)Xk+2‖ ≤ c.

Therefore,

‖ωHXk+2‖ ≤ ‖ωH(I − µ

P
XkXH

k ) ·
(I − µ

P
Xk+1X

H
k+1)Xk+2‖

+
µ

P
‖ωHXkXH

k Xk+2‖
+

µ

P
‖ωHXk+1X

H
k+1Xk+2‖

+
µ2

P 2
‖ωHXkXH

k Xk+1X
H
k+1Xk+2‖

≤ O(c).

Proceeding along similar lines we obtain ‖ωHXk+l‖ ≤ Lc
for l = 0, . . . ,K where L is some constant. This implies
ωH

∑k+K
l=k XlX

H
l ω ≤ (K + 1)L2c2. Since c is arbitrary we

obtain that ωH
∑k+K

l=k XlX
H
l ω < α1 which is a contradiction.

Lemma 3: Let Xk satisfy the persistence of excitation con-
dition in Theorem 4. let

Pk,k+D =
{ ∏k+D

l=k (I − µIlXlX
H
l ) if D ≥ 0

1 if D < 0

where Il is a random masking matrix chosen with equal
probability from {Ii, i = 1, . . . , P} and let

Ωk =
K∑

l=0

ΠH
k,k+l−1Xk+lXH

k+lΠk,k+l−1

where K is as defined in Theorem 4 and {·} is the average
over randomly chosen Il then Ωk − γI is a positive definite
matrix for some γ > 0 and ∀k.

Proof: Proof is by contradiction. Suppose not then for some
vector ω such that ωHω = 1 we have ωHΩkω ≤ c2 where c
is any arbitrary positive number.

Then∑K
l=0 ωH PH

k,k+l−1Xk+lXH
k+lPk,k+l−1 ω ≤ c2 ⇒

ωH PH
k,k+l−1Xk+lXH

k+lPk,k+l−1 ω ≤ c2 for 0 ≤ l ≤ K.

Choosing l = 0 we obtain ωHXkXH
k ω ≤ c2 or ‖ωHXk‖ ≤

c.
Choosing l = 1 we obtain

ωH (I − µXkXH
k Ik)Xk+1XH

k+1(I − µIkXkXH
k ) ω ≤ c2.

Therefore,

ωHXk+1X
H
k+1ω − µ

P
ωHXkXH

k Xk+1X
H
k+1ω

− µ

P
ωHXk+1X

H
k+1XkXH

k ω+

µ2

P
ωHXkXH

k

[
P∑

i=0

IiXk+1X
H
k+1Ii

]
XkXH

k ω ≤ c2.

Now

‖ωHXkXH
k Xk+1X

H
k+1ω‖ ≤ ‖ωHXk‖‖Xk‖ ·

‖XH
k+1Xk+1‖‖ω‖

≤ cB3/2

and

‖ωHXkXH
k

[
P∑

i=0

IiXk+1X
H
k+1Ii

]
XkXH

k ω‖ ≤ c2PB2.

Therefore, ωHXk+1X
H
k+1ω = O(c) which implies

‖ωHXk+1‖ = O(c1/2). Proceeding along the same lines we
obtain ‖ωHXk+1‖ = O(c1/L) for l = 0, . . . ,K for some
constant L. This implies ωH

∑k+K
l=k XlX

H
l ω = O(c2/L).

Since c is arbitrary we obtain that ωH
∑k+K

l=k XlX
H
l ω < α1

which is a contradiction.
Now, we are ready to Prove Theorem 4.
Proof of Theorem 4: First, we will prove the convergence

of V
H

k V k. We have V k+1 = (I − µ
P XkXH

k )V k. Proceeding

as before, we obtain the following update equation for V kV
H

k

V
H

k+K+1V k+K+1 =

V
H

k+KV k+K − 2
µ

P
V

H

k+KXk+KXH
k+KV k+K

+
µ2

P 2
V

H

k+KXk+KXH
k+KXk+KXH

k+KV k+K

≤ V
H

k+KV k+K − µ

P
V

H

k+KXk+KXH
k+KV k+K .

The last step follows from the fact that µ < 2/B. Using the
update equation for Vk repeatedly, we obtain

V
H

k+K+1V k+K+1 ≤ V
H

k V k − µ

P
V

H

k GkV k.

From Lemma 2 we have,

V
H

k+K+1V k+K+1 ≤ (1 − µ

P
η)V

H

k V k

which ensures exponential convergence of tr{V kV
H

k }.
Next, we prove the convergence of V H

k Vk. First, we have
the following update equation for tr{VkV H

k }
tr{Vk+K+1V H

k+K+1} ≤ tr{Vk+KV H
k+K} − (22)

µ

P
tr{Xk+KXH

k+KVk+KV H
k+K}.

Using (22) and also

Vk+1V H
k+1 = (I − µIkXkXH

k )VkV H
k (I − µXkXH

k Ik)

repeatedly, we obtain the following update equation

tr{Vk+K+1V H
k+K+1} ≤ tr{VkV H

k } − tr{ΩkVkV H
k }.

From Lemma 3 we have

tr{Vk+K+1V H
k+K+1} ≤ (1 − µγ)tr{VkV H

k }
which ensures the exponential convergence of tr{VkV H

k }.

APPENDIX II
STABILITY ANALYSIS FOR MIXING SIGNALS

The results in this section are an extension of analysis in
[16] to SPU-LMS with complex input signals. Notations are

the same as those used in [16]. Let ‖A‖ def= {∑i,j |a|2ij}1/2 =
‖A‖F be the Frobenius norm of the matrix A. This is
identical to the definition used in [2]. Note that in [16],

‖A‖ def= {λmax(AAH)}1/2 = ‖A‖S is the spectral norm
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of A. Since for a m × n matrix A, ‖A‖S ≤ ‖A‖F ≤
max{m,n}‖A‖S the results in [16] could as well have been
stated with the definition used here.

A process εk is said to be φ-mixing if there is a function
φ(l) such that φ(l) → 0 as l → ∞ and

sup
A∈Mk

−∞(X),B∈M∞
k+l

(ε)

|P (B|A) − P (B)| ≤ φ(l),

∀m ≥ 0, k ∈ (−∞,∞) where Mj
i (ε), −∞ ≤ i ≤ j ≤ ∞ is

the σ-algebra generated by {εk}, i ≤ k ≤ j.
Let Xk be the input signal vector generated from the

following process

Xk =
∞∑

j=−∞
A(k, j)εk−j + ψk (23)

with
∑∞

j=−∞ supk ‖A(k, j)‖ < ∞. {ψk} is a d-dimensional
deterministic process, and {εk} is a general m-dimensional
φ-mixing sequence. The weighting matrices A(k, j) ∈ Rd×m

are assumed to be deterministic.
Define the index set S = {1, 2, . . . , N} and Ii as in section

III. Let Ij be a sequence of i.i.d d×d masking matrices chosen
with equal probability from Ii, i = 1, . . . , P .

Then, we have the following theorem which is similar to
Theorem 2 in [16].

Theorem 5: Let Xk be defined by (23) in Appendix III with
{εk} a φ-mixing sequence such that it satisfies for any n ≥ 1
and any increasing integer sequence j1 < j2 < . . . < jn

E

[
exp

(
β

n∑
i=1

‖εji
‖2

)]
≤ M exp(Kn) (24)

where β, M , and K are positive constants. Then for any p ≥ 1,
there exist constants µ∗ > 0, M > 0, and α ∈ (0, 1) such that
for all µ ∈ (0, µ∗] and for all t ≥ k ≥ 0

E

∥∥∥∥∥∥
t∏

j=k+1

(I − µIjXjX
H
j )

∥∥∥∥∥∥
p


1/p

≤ M(1 − µα)t−k

if and only if there exists an integer h > 0 and a constant
δ > 0 such that for all k ≥ 0

k+h∑
i=k+1

E[XiX
H
i ] ≥ δI. (25)

Proof: The proof is just a slightly modified version of the
proof of Theorem 2 derived in Section IV of [16, pp. 763-
769]. The modification takes into account that Fk in [16] is
Fk = XkXH

k whereas it is Fk = IkXkXH
k in the present

context.
Note that Theorem 2 in [16] can be stated as a corollary

to Theorem 5 by setting Ij = I for all j. Also, note that
Condition (25) has the same form as Condition (18).

For Result 1, which is just a special case of Theorem 5, it
is enough [16] to observe that

1) Gaussian Xk is obtained from (23) by choosing Ak = 0
and ψk = 0 for all k and εk to be Gaussian

2) Gaussian signal sequence as described in Result 1 is a
phi-mixing sequence

3) Gaussian signals satisfy the condition in (24).

4) For stationary signals, E[XiX
H
i ] = Rxx for all values

of i. Therefore, the following condition:

• there exists an integer h > 0 and a constant δ > 0
such that for all k ≥ 0

k+h∑
i=k+1

E[XiX
H
i ] ≥ δI (26)

simply translates to Rxx being positive definite.

APPENDIX III
S-LMS STABILITY ANALYSIS FOR STATIONARY MIXING

SIGNALS

The results in this section are an extension of analysis
in [16] to S-LMS with stationary complex input signals.
Notations are the same as those used in Appendix II. Let εk,
Xk, ψk and A(k, j) be as defined in Appendix II.

In this section, we will place an additional restriction of
stationarity on εk. Define the index set S = {1, 2, . . . , N}
and Ii as in section III. Then Theorem 3 means that Fi =
Ii%P+1XiX

H
i satisfies the following property of averaged

exponential stability.
Lemma 4: Let Fi = Ii%P+1XiX

H
i then Fi is averaged

exponentially stable. That is, there exist constants µ∗ > 0,
M > 0, and α > 0 such that for all µ ∈ (0, µ∗] and for all
t ≥ k ≥ 0∥∥∥∥∥∥

t∏
j=k+1

(I − µE[Fj ])

∥∥∥∥∥∥ =

∥∥∥∥∥∥
t∏

j=k+1

(I − µIj%P+1R)

∥∥∥∥∥∥
≤ M(1 − µα)t−k

Proof: From Theorem 3, we know that there exist µ∗ > 0,
M0 > 0 and γ > 0 such that for all t, k > 0∥∥∥∥∥∥

k+tP∏
j=k+1

(I − µIj%P+1R)

∥∥∥∥∥∥ ≤ M0(1 − µγ)t.

Note that

‖I − µIj%P+1R‖ ≤ ‖I‖ + µ‖Ij%P+1‖‖R‖ ≤ M ′

for some M ′ > 0 and for all µ ∈ (0, µ∗] and j = 1, . . . , P .
Let λ = (1 − µγ)1/P then∥∥∥∥∥∥

k+tP+l∏
j=k+1

(I − µIj%P+1R)

∥∥∥∥∥∥ ≤ M0λ
tP+l(M ′)l/λl.

Noting that 0 < µγ < 1 we have

(1 − µγ)1/P =
(
1 − µ

P
γ + O((µγ)2))

)
< (1 − µα)

for some α > 0. This leads to∥∥∥∥∥∥
t∏

j=k+1

(I − µIj%P+1R)

∥∥∥∥∥∥ ≤ M(1 − αµ)t−k

where M = M0 max{1, (M ′/λ∗)P } and λ∗ = (1− µ∗γ)1/P .
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Using Lemma 4 and following the analysis of [16] we have
the following theorem which is similar to Theorem 2 in [16].

Theorem 6: Let Xk be defined by (23) with {εk} a station-
ary φ-mixing sequence such that it satisfies for any n ≥ 1

E
[
exp

(
βn‖εk‖2

)] ≤ M exp(Kn) (27)

where β, M , and K are positive constants. Then for any p ≥ 1,
there exist constants µ∗ > 0, M > 0 and α ∈ (0, 1) such that
for all µ ∈ (0, µ∗] and for all t ≥ k ≥ 0
E

∥∥∥∥∥∥
t∏

j=k+1

(I − µIj%P+1XjX
H
j )

∥∥∥∥∥∥
p


1/p

≤ M(1 − αµ)t−k

if Rxx = E[XjX
H
j ] is positive definite.

The corresponding result for LMS obtained from the exten-
sion of the analysis in [16] to complex signals is:

Result 4 (LMS Stability: Stationary Process): Let Xk be
defined by (23) with {εk} a stationary φ-mixing sequence such
that it satisfies for any n ≥ 1

E
[
exp

(
βn‖εk‖2

)] ≤ M exp(Kn) (28)

where β, M , and K are positive constants. Then for any p ≥ 1,
there exist constants µ∗ > 0, M > 0 and α ∈ (0, 1) such that
for all µ ∈ (0, µ∗] and for all t ≥ k ≥ 0

E

∥∥∥∥∥∥
t∏

j=k+1

(I − µXjX
H
j )

∥∥∥∥∥∥
p


1/p

≤ M(1 − αµ)t−k

if and only if Rxx = E[XjX
H
j ] is positive definite.

Therefore, exponential stability of LMS implies exponential
stability of S-LMS.

The application of Theorem 6 to Xk obtained from a time-
series signal is illustrated below.

Result 5 (Stationary Gaussian Process): Let xk be a sta-
tionary Gaussian random process such that E[xkxk−l] = rl →
0 as l → ∞ and Xk = [xk xk−1 . . . xk−n+1] then for any
p ≥ 1, there exist constants µ∗ > 0, α ∈ (0, 1) and M > 0
such that for all µ ∈ (0, µ∗] and for all t ≥ k ≥ 0
E

∥∥∥∥∥∥
t∏

j=k+1

(I − µIj%P+1XjX
H
j )

∥∥∥∥∥∥
p


1/p

≤ M(1 − αµ)t−k

if the input correlation matrix E[XkXH
k ] = Rxx, is positive

definite.

APPENDIX IV
PERFORMANCE ANALYSIS FOR MIXING SIGNALS

The results in this section are an extension of analysis in
[2] to SPU-LMS with complex signals. The results enable us
to predict the steady state behaviour of SPU-LMS without the
standard uncorrelated input and coefficient vectors assumption
employed in Section III-A. Moreoever, the two lemmas in
this section state that the error terms for LMS and SPU-LMS
are bounded above by the same constants. These results are
very useful for comparison of steady state errors of SPU-LMS
and LMS in the sense that the error terms are of the same

magnitude. A couple of examples using the analysis in this
section was presented in Section III-C as Results 2 (details in
Appendix IV-A) and 3 (details in Appendix IV-B) where the
performance of SPU-LMS and LMS was compared for two
different scenarios.

We begin the mean square error analysis by assuming that

dk = XH
k Wopt + nk.

Then we can write the evolution equation for the tracking error

Vk
def= Wk − Wopt as

Vk+1 = (I − µPkXkXH
k )Vk + µXknk

where Pk = I for LMS and Pk = Ik for SPU-LMS.
In general Vk obeys the following inhomogeneous equation

δk+1 = (I − µFk)δk + ξk, δ0 = 0

δk can be represent by a set of recursive equations as follows

δk = J
(0)
k + J

(1)
k + . . . + J

(n)
k + H

(n)
k

where the processes J
(r)
k , 0 ≤ r < n and H

(n)
k are described

by

J
(0)
k+1 = (I − µF̄k)J (0)

k + ξk;J (0)
0 = 0

J
(r)
k+1 = (I − µF̄k)J (r)

k + µZkJ
(r−1)
k ;

J
(r)
k = 0, 0 ≤ k < r

H
(n)
k+1 = (I − µFk)H(n)

k + µZkJ
(n)
k ;

H
(n)
k = 0, 0 ≤ k < n

where Zk = Fk − F̄k and F̄k is an appropriate deterministic
process, usually chosen as F̄k = E[Fk]. In [2] under appro-
priate conditions it was shown that there exists some constant
C < ∞ and µ0 > 0 such that for all 0 < µ ≤ µ0, we have

sup
k≥0

‖H(n)
k ‖p ≤ Cµn/2.

Now, we modify the definition of weak dependence as
given in [2] for circular complex random variables. The theory
developed in [2] can be easily adapted for circular random
variables using this definition. Let q ≥ 1 and X = {Xn}n≥0

be a (l × 1) matrix valued process. Let β = (β(r))r∈N be
a sequence of positive numbers decreasing to zero at infinity.
The complex process X = {Xn}n≥0 is said to be (δ, q)-weak
dependent if there exist finite constants C = {C1, . . . , Cq},
such that for any 1 ≤ m < s ≤ q and m-tuple k1, . . . , km

and any (s − m)-tuple km+1, . . . , ks, with k1 ≤ . . . ≤ km <
km + r ≤ km+1 ≤ . . . ≤ ks, it holds that

sup
∣∣∣cov

(
fk1,i1(X̃k1,i1) · . . . · fkm,im

(X̃km,im
),

fkm+1,im+1(X̃km+1,im+1) · . . . · fks,is
(X̃ks,is

)
)∣∣∣ ≤ Csβ(r)

where the supremum is taken over the set
{1 ≤ i1, . . . , is ≤ l, fk1,i1 , fk2,i2 . . . fkm,im

} and X̃n,i

denotes the i-th component of Xn − E(Xn). The set of
functions fn,i() that the sup is being taken over are given by
fn,i(X̃n,i) = X̃n,i and fn,i(X̃n,i) = X̃∗

n,i.
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Define N (p) from [2] as follows

N (p) =
{

ε :
∥∥∥∑t

k=s Dkεk

∥∥∥
p
≤ ρp(ε)

(∑t
k=s |Dk|2

)1/2

∀0 ≤ s ≤ t and ∀D = {Dk}k∈N

(q × l) deterministic matrices

}

where ρp(ε) is a constant depending only on the process ε and
the number p.

Fk can be written as Fk = PkXkXH
k where Pk = I for

LMS and Pk = Ik for SPU-LMS. It is assumed that the
following hold true for Fk. For some r, q ∈ N , µ0 > 0 and
0 < α < 1/µ0

• F1(r, α, µ0): {Fk}k≥0 is is Lr-exponentially stable. That
is, 

E

∥∥∥∥∥∥
t∏

j=k+1

(I − µFj)

∥∥∥∥∥∥
r


1/r

≤ M(1 − µα)t−k

• F2(α, µ0): {Fk}k≥0 is is averaged exponentially stable.
That is,∥∥∥∥∥∥

t∏
j=k+1

(I − µE [Fj ])

∥∥∥∥∥∥ ≤ M(1 − µα)t−k

Conditions F3 and F4 stated below are trivially satisfied
for Pk = I and Pk = Ik.

• F3(q, µ0): supk∈N supµ∈(0,µ0] ‖Pk‖q < ∞ and
supk∈N supµ∈(0,µ0] |E[Pk]| < ∞

• F4(q, µ0): supk∈N supµ∈(0,µ0] µ
−1/2‖Pk − E[Pk]‖q <

∞
The excitation sequence ξ = {ξk‖k≥0 [2] is assumed to be

decomposed as ξk = Mkεk where the process M = {Mk}k≥0

is a d× l matrix valued process and ε = {εk}k≥0 is a (l × 1)
vector-valued process that verifies the following assumptions

• EXC1: {Mk}k∈Z is Mk
0(X)-adapted3 and Mk

0(ε) and
Mk

0(X) are independent.
• EXC2(r, µ0): supµ∈(0,µ0] supk≥0 ‖Mk‖r < ∞, (r >

0, µ0 > 0)
• EXC3(p, µ0): ε = {εk}k∈N belongs to N (p), (p >

0, µ0 > 0)

The following theorems from [2] are relevant.
Theorem 7 (Theorem 1 in [2]): Let n ∈ N and let q ≥ p ≥

2. Assume EXC1, EXC2(pq/(q − p), µ0) and EXC3(p, µ0).
For a, b, α > 0, a−1 + b−1 = 1, and some µ0 > 0, assume in
addition F2(α, µ0), F4(aqn, µ0) and

• {Gk}k≥0 is (β, (q + 2)n) weakly dependent and
∑

(r +
1)((q+2)n/2)−1β(r) < ∞

• supk≥0 ‖Gk‖bqn < ∞
Then, there exists a constant K < ∞ (depending on β(k),

k ≥ 0 and on the numerical constants p, q, n, q, b, µ0, α but

3A sequence of random variables, Xi is called adapted with respect to a
sequence of σ-fields Fi if Xi is Fi measurable [6].

not otherwise on {Xk}, {εk} or on µ), such that for all 0 <
µ ≤ µ0, for all 0 ≤ r ≤ n

sup
s≥1

‖J (r)
s ‖p ≤ Kρp(ε) sup

k≥0
‖Mk‖pq/(q−p)µ

(r−1)/2.

Theorem 8 (Theorem 2 in [2]): Let p ≥ 2 and let a, b, c >
0 such that 1/a + 1/b + 1/c = 1/p. Let n ∈ N . Assume
F1(a, α, µ0) and

• sups≥0 ‖Zs‖b < ∞
• sups≥0 ‖J (n+1)

s ‖c < ∞
Then there exists a constant K′ < ∞ (depending on the
numerical constants a, b, c, α, µ0, n but not on the process {εk}
or on the stepsize parameter µ), such that for all 0 < µ ≤ µ0,

sup
s≥0

‖H(n)
s ‖p ≤ K ′ sup

s≥0
‖J (n+1)

s ‖c.

We next show that if LMS satisfies the assumptions above
(assumptions in section 3.2 in [2]) then so does SPU-LMS.
Conditions F1 and F2 follow directly from Theorem 5. It is
easy to see that F3 and F4 hold easily for LMS and SPU-LMS.

Lemma 5: The constant K in Theorem 7 calculated for
LMS can also be used for SPU-LMS.

Proof: Here all that is needed to be shown is that if LMS
satisfies the conditions (EXC1), (EXC2) and (EXC3) then so
does SPU-LMS. Moreover, the upper bounds on the norms for
LMS are also upper bounds for SPU-LMS. That easily follows
because MLMS

k = Xk whereas MSPU−LMS
k = IkXk and

‖Ik‖ ≤ 1 for any norm ‖ · ‖.
Lemma 6: The constant K′ in Theorem 8 calculated for

LMS can also be used for SPU-LMS.
Proof: First we show that if for LMS sups≥0 ‖Zs‖b < ∞

then so it is for SPU-LMS. First, note that for LMS we can
write ZLMS

s = XsX
H
s − E[XsX

H
s ] whereas for SPU-LMS

ZSPU−LMS
s = IsXsX

H
s − 1

P
E[XsX

H
s ]

= IsXsX
H
s − IsE[XsX

H
s ] +

(Is − 1
P

I)E[XsX
H
s ]

That means ‖ZSPU−LMS
s ‖b ≤ ‖Is‖b‖ZLMS

s ‖b +
‖Is − 1

P I‖b‖E[XsX
H
s ]‖b. Therefore, since

sups≥0 ‖bE[XsX
H
s ]‖b < ∞ and sups≥0 ‖ZLMS

s ‖b < ∞ we
have

sup
s

‖ZSPU−LMS
s ‖b < ∞.

Since all conditions for Theorem 2 have been satisfied by SPU-
LMS in a similar manner the constant obtained is also the
same.

A. I.I.D Gaussian Input Sequence

In this section, we assume that Xk =
[xk xk−1 . . . xk−N+1]T where N is the length of the
vector Xk. {xk} is a sequence of zero mean i.i.d Gaussian
random variables. We assume that wk = 0 for all k ≥ 0. In
that case

Vk+1 = (I − µPkXkXH
k )Vk + µXknk with

V0 = −Wopt,0 = Wopt
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where for LMS we have Pk = I and Pk = Ik in case of
SPU-LMS. We assume nk is a white i.i.d. Gaussian noise
with variance σ2

v . We see that since the conditions (24) and
(25) are satisfied for theorem 5 both LMS and SPU-LMS are
exponentially stable. In fact both have the same α exponent
of decay. Therefore, conditions F1 and F2 are satisfied.

We rewrite Vk = J
(0)
k +J

(1)
k +J

(2)
k +H

(2)
k . Choosing F̄k =

E[Fk] we have E[PkXkXH
k ] = σ2I in the case of LMS and

1
P σ2I in the case of SPU-LMS. By Theorems 7 and 8 and
Lemmas 5 and 6 we can upperbound both |J(2)

k | and |H(2)
k |

by exactly the same constants for LMS and SPU-LMS. In
particular, there exists some constant C < ∞ such that for all
µ ∈ (0, µ0], we have

sup
t≥0

∣∣∣E[J (1)
t (J (2)

t + H
(2)
t )H ]

∣∣∣ ≤ C‖X0‖r(r+δ)/δρ
2
r(v)µ1/2

sup
t≥0

∣∣∣E[J (0)
t H

(2)
t ]

∣∣∣ ≤ Cρr(v)‖X0‖r(r+δ)/δµ
1/2.

Next, for LMS we concentrate on

J
(0)
k+1 = (1 − µσ2)J (0)

k + µXknk

J
(1)
k+1 = (1 − µσ2)J (1)

k + µ(σ2I − XkXH
k )J (0)

k

and for SPU-LMS we concentrate on

J
(0)
k+1 = (1 − µ

P
σ2)J (0)

k + µIkXknk

J
(1)
k+1 = (1 − µ

P
σ2)J (1)

k + µ(
σ2

P
I − IkXkXH

k )J (0)
k .

After tedious but straightforward calculations (follwing the
procedure in [2]), we obtain for LMS

lim
k→∞

E[J (0)
k (J (0)

k )H ] = µ2

[
σ2

v

µ(2 − µσ2)
I

]
lim

k→∞
E[J (0)

k (J (1)
k )H ] = 0

lim
k→∞

E[J (0)
k (J (2)

k )H ] = 0

lim
k→∞

E[J (1)
k (J (1)

k )H ] = µ2

[
Nσ2σ2

v

(2 − µσ2)2
I

]

= µ2

[
Nσ2σ2

v

4
I + O(µ)I

]
which yields limk→∞ E[VkV H

k ] =
µ2

[
σ2

v

2µI + Nσ2σ2
v

4 I + O(µ1/2)I
]

and for SPU-LMS we
obtain

lim
k→∞

E[J (0)
k (J (0)

k )H ] = µ2

[
σ2

v

µ(2 − µ
P σ2)

I

]

lim
k→∞

E[J (0)
k (J (1)

k )H ] = 0

lim
k→∞

E[J (0)
k (J (2)

k )H ] = 0

lim
k→∞

E[J (1)
k (J (1)

k )H ] = µ2

[
(N+1)P−1

P σ2σ2
v

(2 − µ
P σ2)2

I

]

= µ2

[
(N+1)P−1

P σ2σ2
v

4
I + O(µ)I

]

which yields limk→∞ E[VkV H
k ] =

µ2

[
σ2

v

2µI +
(N+1)P−1

P σ2σ2
v

4 I + O(µ1/2)I
]

.

B. Temporally Correlated Spatially Uncorrelated Array Out-
put

In this section we consider Xk given by

Xk = κXk−1 +
√

1 − κ2Uk

where Uk is a vector of circular Gaussian random variables
with unit variance. Similar to Appendix IV-A, we rewrite Vk =
J

(0)
k +J

(1)
k +J

(2)
k +H

(2)
k . Since, we have chosen F̄k = E[Fk]

we have E[PkXkXH
k ] = I in the case of LMS and 1

P I in the
case of SPU-LMS. Again, conditions F1 and F2 are satisfied
because of Theorem 5. By [2] and Lemmas 1 and 2 we can
upperbound both J

(2)
k and H

(2)
k by exactly the same constants

for LMS and SPU-LMS. By Theorems 7 and 8 and Lemmas
5 and 6 we have that there exists some constant C < ∞ such
that for all µ ∈ (0, µ0], we have

sup
t≥0

∣∣∣E[J (1)
t (J (2)

t + H
(2)
t )H ]

∣∣∣ ≤ C‖X0‖r(r+δ)/δρ
2
r(v)µ1/2

sup
t≥0

∣∣∣E[J (0)
t H

(2)
t ]

∣∣∣ ≤ Cρr(v)‖X0‖r(r+δ)/δµ
1/2.

Next, for LMS we concentrate on

J
(0)
k+1 = (1 − µ)J (0)

k + µXknk

J
(1)
k+1 = (1 − µ)J (1)

k + µ(I − XkXH
k )J (0)

k

and for SPU-LMS we concentrate on

J
(0)
k+1 = (1 − µ

P
)J (0)

k + µIkXknk

J
(1)
k+1 = (1 − µ

P
)J (1)

k + µ(
1
P

I − IkXkXH
k )J (0)

k .

After tedious but straighforward calculations (following the
procedure in [2]), we obtain for LMS

lim
k→∞

E[J (0)
k (J (0)

k )H ] = µ2

[
σ2

v

µ(2 − µ)
I

]

lim
k→∞

E[J (0)
k (J (1)

k )H ] = −µ2

[
κ2σ2

vN

2(1 − κ2)
I + O(µ)I

]

lim
k→∞

E[J (0)
k (J (2)

k )H ] = µ2

[
κ2σ2

vN

4(1 − κ2)
I + O(µ)I

]

lim
k→∞

E[J (1)
k (J (1)

k )H ] = µ2

[
(1 + κ2)σ2

vN

4(1 − κ2)
I + O(µ)I

]
which leads to limk→∞ E[VkV H

k ] =
µ2

[
σ2

v

2µI + Nσ2
v

4 I + O(µ1/2)I
]

and for SPU-LMS we
obtain

lim
k→∞

E[J (0)
k (J (0)

k )H ] = µ2

[
σ2

v

µ(2 − µ
P )

I

]

lim
k→∞

E[J (0)
k (J (1)

k )H ] = −µ2

[
κ2σ2

vN

2(1 − κ2)P
I + O(µ)I

]

lim
k→∞

E[J (0)
k (J (2)

k )H ] = µ2

[
κ2σ2

vN

4(1 − κ2)P
I + O(µ)I

]

lim
k→∞

E[J (1)
k (J (1)

k )H ] = µ2

[
σ2

v

4
[
N

P

1 + κ2

1 − κ2
+

(N + 1)
P − 1

P
]I + O(µ)I

]
which leads to limk→∞ E[VkV H

k ] =
µ2

[
σ2

v

2µI + σ2

4 [N + 1 − 1
P ]I + O(µ1/2)I

]
.
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