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Bayesian sparse image reconstruction.
Application to MRFM

Nicolas Dobigeon, Alfred O. Hero and Jean-Yves Tourneret

Abstract—This paper presents a Bayesian model to reconstruct
sparse images when the observations are obtained from linear
transformations and corrupted by an additive white Gaussian
noise. We propose an appropriate prior distribution for the
image to be estimated that takes into account the sparsity and
the positivity of the measurements. This prior is based on a
weighted mixture of a positive exponential distribution and a
mass at zero. The hyperparameters that are inherent of the
model are tuned automatically in an unsupervised way. They are
estimated in the fully Bayesian scheme, yielding a hierarchical
Bayesian model. To overcome the complexity of the resulting
posterior distribution, a Gibbs sampling strategy is derived to
generate samples asymptotically distributed according to the
posterior distribution of interest. These samples can then be
used to estimate the image to be recovered. As the posteriors
of the parameters are available, this algorithm provides more
information than other previously proposed sparse reconstruction
methods that only give a point estimate. The performance of the
proposed sparse reconstruction method is illustrated on synthetic
and real data provided by a new nanoscale magnetic resonance
imaging technique called MRFM.

Index Terms—Deconvolution, MRFM imagery, sparse repre-
sentation, Bayesian inference, MCMC methods.

I. INTRODUCTION

For several decades, image deconvolution has received
increasing interest in the literature [1], [2]. Deconvolution
mainly consists of reconstructing images from observations
provided by optical devices and may include denoising, deblur-
ring or restoration. The applications are numerous including
astronomy [3], medical imagery [4], remote sensing [5] and
photography [6]. More recently, a new imaging technology, so-
called Magnetic Resonance Force Microscopy (MRFM), has
been developed (see [7] and [8] for recent reviews). This non-
destructive method allows one to improve the detection sen-
sitivity of standard magnetic resonance imaging [9]. Because
of their potential atomic-level resolution1, the 2-dimensional
or 3-dimensional images resulting from this technology are
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characterized by their sparsity. Indeed, as the observed objects
are molecules, most of the image is empty space. In this
paper, a hierarchical Bayesian model is proposed to perform
reconstruction of such images.

Deconvolution of sparse signals or images has motivated
research for spectral analysis in astronomy [10], for seismic
signal analysis in geophysics [11], [12] or for deconvolution of
ultrasonic B-scans [13], among other examples. We propose
here a fully Bayesian model that is based on an appropri-
ate prior distribution for the unknown image. This prior is
composed of a weighted mixture of a standard exponential
distribution and a mass at zero. When the non-zero part of this
prior is chosen to be a centered normal distribution, this prior
reduces to a Bernoulli-Gaussian process. This distribution has
been widely used in the literature to build Bayesian estimators
for sparse deconvolution problems (see [14]–[18] or more
recently [19] and [20]). However, choosing a distribution with
heavier tail may improve the sparsity inducement of the prior.
Combining a Laplacian distribution with an atom at zero
results in the LAZE prior. This distribution has been used in
[21] to solve a denoising problem in a non-Bayesian quasi-
maximum likelihood estimation framework. In [22], [23], this
prior has also been used for sparse reconstruction of noisy
images. In this paper, a new prior composed of a mass at
zero and a single-sided exponential distribution is introduced.
The main motivation of choosing this prior is to take into
account the positivity and the sparsity of the pixels in the
image. The full Bayesian posterior can then be derived from
samples generated by Markov chain Monte Carlo (MCMC)
methods [24].

With the prior modeling introduced above, the results of the
sparse reconstruction critically depend on the parameters cho-
sen to define the mixture. Unfortunately, estimating the “hyper-
parameters” involved in the prior distribution described above
is a difficult task. Empirical solutions have been proposed in
[22], [23] to deal with this issue. When compared with other
standard methods, the results in [22], [23] are satisfactory at
low signal-to-noise ratios (SNR). At high SNRs, these methods
display increasingly biased estimation of the hyperparameters
that can lead to unstable results. In the Bayesian estimation
framework, two approaches are available to estimate these
hyperparameters. One approach couples MCMC methods to
an expectation-maximization (EM) algorithm or to a stochastic
EM algorithm [25], [26] to maximize a penalized likelihood
function. The second approach defines non-informative prior
distributions for the hyperparameters; introducing a second
level of hierarchy in the Bayesian formulation. This fully
Bayesian approach, adopted in this paper, has been suc-
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transformations and corrupted by an additive white Gaussian
noise. We propose an appropriate prior distribution for the
image to be estimated that takes into account the sparsity and
the positivity of the measurements. This prior is based on a
weighted mixture of a positive exponential distribution and a
mass at zero. The hyperparameters that are inherent of the
model are tuned automatically in an unsupervised way. They are
estimated in the fully Bayesian scheme, yielding a hierarchical
Bayesian model. To overcome the complexity of the resulting
posterior distribution, a Gibbs sampling strategy is derived to
generate samples asymptotically distributed according to the
posterior distribution of interest. These samples can then be
used to estimate the image to be recovered. As the posteriors
of the parameters are available, this algorithm provides more
information than other previously proposed sparse reconstruction
methods that only give a point estimate. The performance of the
proposed sparse reconstruction method is illustrated on synthetic
and real data provided by a new nanoscale magnetic resonance
imaging technique called MRFM.

Index Terms—Deconvolution, MRFM imagery, sparse repre-
sentation, Bayesian inference, MCMC methods.

I. INTRODUCTION

For several decades, image deconvolution has received
increasing interest in the literature [1], [2]. Deconvolution
mainly consists of reconstructing images from observations
provided by optical devices and may include denoising, deblur-
ring or restoration. The applications are numerous including
astronomy [3], medical imagery [4], remote sensing [5] and
photography [6]. More recently, a new imaging technology, so-
called Magnetic Resonance Force Microscopy (MRFM), has
been developed (see [7] and [8] for recent reviews). This non-
destructive method allows one to improve the detection sen-
sitivity of standard magnetic resonance imaging [9]. Because
of their potential atomic-level resolution1, the 2-dimensional
or 3-dimensional images resulting from this technology are
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characterized by their sparsity. Indeed, as the observed objects
are molecules, most of the image is empty space. In this
paper, a hierarchical Bayesian model is proposed to perform
reconstruction of such images.

Deconvolution of sparse signals or images has motivated
research for spectral analysis in astronomy [10], for seismic
signal analysis in geophysics [11], [12] or for deconvolution of
ultrasonic B-scans [13], among other examples. We propose
here a fully Bayesian model that is based on an appropri-
ate prior distribution for the unknown image. This prior is
composed of a weighted mixture of a standard exponential
distribution and a mass at zero. When the non-zero part of this
prior is chosen to be a centered normal distribution, this prior
reduces to a Bernoulli-Gaussian process. This distribution has
been widely used in the literature to build Bayesian estimators
for sparse deconvolution problems (see [14]–[18] or more
recently [19] and [20]). However, choosing a distribution with
heavier tail may improve the sparsity inducement of the prior.
Combining a Laplacian distribution with an atom at zero
results in the LAZE prior. This distribution has been used in
[21] to solve a denoising problem in a non-Bayesian quasi-
maximum likelihood estimation framework. In [22], [23], this
prior has also been used for sparse reconstruction of noisy
images. In this paper, a new prior composed of a mass at
zero and a single-sided exponential distribution is introduced.
The main motivation of choosing this prior is to take into
account the positivity and the sparsity of the pixels in the
image. The full Bayesian posterior can then be derived from
samples generated by Markov chain Monte Carlo (MCMC)
methods [24].

With the prior modeling introduced above, the results of the
sparse reconstruction critically depend on the parameters cho-
sen to define the mixture. Unfortunately, estimating the “hyper-
parameters” involved in the prior distribution described above
is a difficult task. Empirical solutions have been proposed in
[22], [23] to deal with this issue. When compared with other
standard methods, the results in [22], [23] are satisfactory at
low signal-to-noise ratios (SNR). At high SNRs, these methods
display increasingly biased estimation of the hyperparameters
that can lead to unstable results. In the Bayesian estimation
framework, two approaches are available to estimate these
hyperparameters. One approach couples MCMC methods to
an expectation-maximization (EM) algorithm or to a stochastic
EM algorithm [25], [26] to maximize a penalized likelihood
function. The second approach defines non-informative prior
distributions for the hyperparameters; introducing a second
level of hierarchy in the Bayesian formulation. This fully
Bayesian approach, adopted in this paper, has been suc-
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cessfully applied to signal segmentation [27]–[29] and semi-
supervised unmixing of hyperspectral imagery [30].

In this paper, the response of the MRFM imaging device
is assumed to be known. This standard assumption makes
the sparse image reconstruction a non-blind deconvolution
problem that is a standard linear inverse problem [31]. The hie-
rarchical Bayesian formulation proposed here naturally intro-
duces an appropriate regularization for the ill-posed problem
where the hyperparameters are estimated in an unsupervised
scheme. Only a few works in the literature are dedicated to
reconstruction of MRFM image data [32]–[35]. In [36], several
techniques based on linear filtering or maximum-likelihood
principle have been proposed. Nevertheless, none of these
models and algorithms takes advantage of the sparse nature
of the image to be analyzed. More recently, Ting et al. has
introduced sparsity penalized reconstruction methods moti-
vated by MRFM applications [23]. The reconstruction problem
is decomposed into a deconvolution step and a denoising
step, yielding an iterative thresholding framework. However,
in [23], the hyperparameters are estimated via a heuristic
manner by applying the Stein’s unbiased risk estimator [37],
contrary to our fully Bayesian approach that allows them to be
marginalized. As it has been pointed out above, this ad hoc
hyperparameter choice can lead to unreliable results. More-
over, a full posterior analysis is not possible with the strategy
proposed in [23]. As a consequence, the parameter estimation
is only based on the peak of the penalized likelihood function,
whose research thanks to the EM algorithm can be subjected
to slow convergence and local maxima [38].

This paper is organized as follows. The deconvolution
problem is formulated in Section II. The hierarchical Bayesian
model are described in Section III. Section IV presents a
Gibbs sampler that allows one to generate samples distributed
according to the posterior of interest. Some simulation re-
sults, including comparison of performances, are presented in
Section V for MRFM. Our main conclusions are reported in
Section VII.

II. PROBLEM FORMULATION

Let X denote a l1 × . . . × ln unknown n-dimensional
pixelated image to be recovered (e.g. n = 2 or n = 3).
This image is available as a collection of P projections
y = [y1, . . . , yP ]T which follows the model:

y = T (κ,X) + n, (1)

where T (·, ·) stands for a bilinear function, n is a P × 1
dimension noise vector and κ is the kernel that characterizes
the response of the imaging device. Typical point spread
responses κ of MRFM tip can be found in [39] for horizontal
and vertical configurations. In (1), n is an additive Gaussian
noise sequence distributed according to n ∼ N

(
0, σ2IP

)
.

Note that in standard deblurring problems, the function
T (·, ·) represents the standard n-dimensional convolution op-
erator ⊗. In this case, the image X can be vectorized yielding
the unknown image x ∈ RM with M = P = l1l2 . . . ln. With
this notation, Eq. (1) can be rewritten:

y = Hx + n or Y = κ⊗X + N (2)

where y (resp. n) stands for the vectorized version of Y (resp.
N) and H is an P ×M matrix that describes convolution by
the psf κ.

The problem addressed in the following sections consists
of estimating x under sparsity and positivity constraints on x
given the observations y, the psf κ and the bilinear function2

T (·, ·).

III. HIERARCHICAL BAYESIAN MODEL

A. Likelihood function

The observation model defined in (1) and the Gaussian
properties of the noise sequence n yield:

f
(
y|x, σ2

)
=
(

1
2πσ2

)P
exp

(
−‖y − T (κ,x)‖2

2σ2

)
, (3)

where ‖·‖ denotes the standard `2 norm: ‖x‖2 = xTx.

B. Parameter prior distributions

The unknown parameter vector associated with the observa-
tion model defined in (1) is θ =

{
x, σ2

}
. In this section, we

introduce prior distributions for these two parameters; which
are assumed to be independent.

1) Image prior: First let consider the exponential distribu-
tion with shape parameter a > 0:

ga (xi) =
1
a

exp
(
−xi
a

)
1R∗+ (xi) , (4)

where 1E (x) is the indicator function defined on E:

1E (x) =
{

1, if x ∈ E,
0, otherwise. (5)

Choosing ga (·) as prior distributions for xi (i = 1, . . . ,M )
leads to a MAP estimator of x that corresponds to a maximum
`1-penalized likelihood estimate with a positivity constraint3.
Indeed, assuming the component xi (i = 1, . . . , P ) a priori
independent allows one to write the full prior distribution for
x = [x1, . . . , xM ]T :

ga (x) =
(

1
a

)M
exp

(
−
‖x‖1
a

)
1{x�0} (x) , (6)

where {x � 0} =
{
x ∈ RM ;xi > 0,∀i = 1, . . . ,M

}
and

‖·‖1 is the standard `1 norm ‖x‖1 =
∑
i |xi|. This estimator

has shown interesting sparse properties for Bayesian estima-
tion [41] and signal representation [42].

Coupling a standard probability density function (pdf) with
an atom at zero is another classical alternative to ensure
sparsity. This strategy has for instance been used for located
event detection [14] such as spike train deconvolution [11],
[17]. In order to increase the sparsity of the prior, we propose

2In the following, for sake of conciseness, the same notation T (·, ·) will
be adopted for the bilinear operations used on n-dimensional images X and
used on M × 1 vectorized images x.

3Note that a similar estimator using a Laplacian prior for xi (i = 1, . . . ,M )
was proposed in [40] for regression problems and is usually referred to as the
LASSO estimator but without positivity constraint.
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cessfully applied to signal segmentation [27]–[29] and semi-
supervised unmixing of hyperspectral imagery [30].

In this paper, the response of the MRFM imaging device
is assumed to be known. This standard assumption makes
the sparse image reconstruction a non-blind deconvolution
problem that is a standard linear inverse problem [31]. The hie-
rarchical Bayesian formulation proposed here naturally intro-
duces an appropriate regularization for the ill-posed problem
where the hyperparameters are estimated in an unsupervised
scheme. Only a few works in the literature are dedicated to
reconstruction of MRFM image data [32]–[35]. In [36], several
techniques based on linear filtering or maximum-likelihood
principle have been proposed. Nevertheless, none of these
models and algorithms takes advantage of the sparse nature
of the image to be analyzed. More recently, Ting et al. has
introduced sparsity penalized reconstruction methods moti-
vated by MRFM applications [23]. The reconstruction problem
is decomposed into a deconvolution step and a denoising
step, yielding an iterative thresholding framework. However,
in [23], the hyperparameters are estimated via a heuristic
manner by applying the Stein’s unbiased risk estimator [37],
contrary to our fully Bayesian approach that allows them to be
marginalized. As it has been pointed out above, this ad hoc
hyperparameter choice can lead to unreliable results. More-
over, a full posterior analysis is not possible with the strategy
proposed in [23]. As a consequence, the parameter estimation
is only based on the peak of the penalized likelihood function,
whose research thanks to the EM algorithm can be subjected
to slow convergence and local maxima [38].

This paper is organized as follows. The deconvolution
problem is formulated in Section II. The hierarchical Bayesian
model are described in Section III. Section IV presents a
Gibbs sampler that allows one to generate samples distributed
according to the posterior of interest. Some simulation re-
sults, including comparison of performances, are presented in
Section V for MRFM. Our main conclusions are reported in
Section VII.

II. PROBLEM FORMULATION

Let X denote a l1 × . . . × ln unknown n-dimensional
pixelated image to be recovered (e.g. n = 2 or n = 3).
This image is available as a collection of P projections
y = [y1, . . . , yP ]T which follows the model:

y = T (κ,X) + n, (1)

where T (·, ·) stands for a bilinear function, n is a P × 1
dimension noise vector and κ is the kernel that characterizes
the response of the imaging device. Typical point spread
responses κ of MRFM tip can be found in [39] for horizontal
and vertical configurations. In (1), n is an additive Gaussian
noise sequence distributed according to n ∼ N

(
0, σ2IP

)
.

Note that in standard deblurring problems, the function
T (·, ·) represents the standard n-dimensional convolution op-
erator ⊗. In this case, the image X can be vectorized yielding
the unknown image x ∈ RM with M = P = l1l2 . . . ln. With
this notation, Eq. (1) can be rewritten:

y = Hx + n or Y = κ⊗X + N (2)

where y (resp. n) stands for the vectorized version of Y (resp.
N) and H is an P ×M matrix that describes convolution by
the psf κ.

The problem addressed in the following sections consists
of estimating x under sparsity and positivity constraints on x
given the observations y, the psf κ and the bilinear function2

T (·, ·).

III. HIERARCHICAL BAYESIAN MODEL

A. Likelihood function

The observation model defined in (1) and the Gaussian
properties of the noise sequence n yield:

f
(
y|x, σ2

)
=
(

1
2πσ2

)P
exp

(
−‖y − T (κ,x)‖2

2σ2

)
, (3)

where ‖·‖ denotes the standard `2 norm: ‖x‖2 = xTx.

B. Parameter prior distributions

The unknown parameter vector associated with the observa-
tion model defined in (1) is θ =

{
x, σ2

}
. In this section, we

introduce prior distributions for these two parameters; which
are assumed to be independent.

1) Image prior: First let consider the exponential distribu-
tion with shape parameter a > 0:

ga (xi) =
1
a

exp
(
−xi
a

)
1R∗+ (xi) , (4)

where 1E (x) is the indicator function defined on E:

1E (x) =
{

1, if x ∈ E,
0, otherwise. (5)

Choosing ga (·) as prior distributions for xi (i = 1, . . . ,M )
leads to a MAP estimator of x that corresponds to a maximum
`1-penalized likelihood estimate with a positivity constraint3.
Indeed, assuming the component xi (i = 1, . . . , P ) a priori
independent allows one to write the full prior distribution for
x = [x1, . . . , xM ]T :

ga (x) =
(

1
a

)M
exp

(
−
‖x‖1
a

)
1{x�0} (x) , (6)

where {x � 0} =
{
x ∈ RM ;xi > 0,∀i = 1, . . . ,M

}
and

‖·‖1 is the standard `1 norm ‖x‖1 =
∑
i |xi|. This estimator

has shown interesting sparse properties for Bayesian estima-
tion [41] and signal representation [42].

Coupling a standard probability density function (pdf) with
an atom at zero is another classical alternative to ensure
sparsity. This strategy has for instance been used for located
event detection [14] such as spike train deconvolution [11],
[17]. In order to increase the sparsity of the prior, we propose

2In the following, for sake of conciseness, the same notation T (·, ·) will
be adopted for the bilinear operations used on n-dimensional images X and
used on M × 1 vectorized images x.

3Note that a similar estimator using a Laplacian prior for xi (i = 1, . . . ,M )
was proposed in [40] for regression problems and is usually referred to as the
LASSO estimator but without positivity constraint.
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to use the following distribution derived from ga (·) as prior
distribution for xi:

f (xi|w, a) = (1− w)δ (xi) + wga (xi) , (7)

where δ (·) is the Dirac function. This prior is similar to
the LAZE distribution (Laplacian pdf and an atom at zero)
introduced in [21] and used, for example, in [22], [23] for
MRFM. However, the proposed prior in (7) allows one to take
into account the positivity of the pixel value to be estimated.
By assuming the components xi to be a priori independent
(i = 1, . . . ,M ), the following prior distribution is obtained
for x:

f (x|w, a) =
M∏
i=1

[(1− w)δ (xi) + wga (xi)] . (8)

Introducing the index subsets I0 = {i;xi = 0} and I1 =
I0 = {i;xi 6= 0} allows one to rewrite the previous equation
as follows:

f (x|w, a) =

[
(1− w)n0

∏
i∈I0

δ (xi)

][
wn1

∏
i∈I1

ga (xi)

]
,

(9)
with nε = card {Iε}, ε ∈ {0, 1}. Note that n0 = M − n1

and n1 = ‖x‖0 where ‖·‖0 is the standard `0 norm ‖x‖0 =
# {i;xi 6= 0}.

2) Noise variance prior: A conjugate inverse-Gamma dis-
tribution with parameters ν

2 and γ
2 is chosen as prior distribu-

tion for the noise variance [43, Appendix A]:

σ2|ν, γ ∼ IG
(ν

2
,
γ

2

)
. (10)

In the following, ν will be fixed to ν = 2 and γ will be an
hyperparameter to be estimated (see [28], [30], [44]).

C. Hyperparameter priors

The hyperparameter vector associated with the previous
prior distributions is Φ = {a, γ, w}. Obviously, the accuracy
of the proposed Bayesian model depends on the values of
these hyperparameters. If prior knowledge, e.g. mean number
of the non-zero pixels, is available, these parameters can be
tuned manually to their actual values. However, in practical
situations, such prior information is not available. In this case,
as outlined in Section I, these hyperparameters can be esti-
mated directly from the data. Priors for these hyperparameters,
sometimes referred to as “hyperpriors” are detailed below.

1) Hyperparameter a: A conjugate inverse-Gamma distri-
bution is assumed for hyperparameter a:

a|α ∼ IG (α0, α1) , (11)

with α = [α0, α1]T . The fixed hyperparameters α0 and α1

have been chosen to obtain a vague prior: α0 = α1 = 10−10

(see for example [45] for a similar choice).
2) Hyperparameter γ: Non informative Jeffreys’ prior [46],

[47] is assumed for hyperparameter γ:

f (γ) ∝ 1
γ

1R+ (γ) . (12)

Fig. 1. DAG for the parameter priors and hyperpriors (the fixed hyperpa-
rameters appear in dashed boxes).

3) Hyperparameter w: A conjugate beta distribution with
fixed hyperparameters ω1 and ω0 is chosen as prior distribution
for w:

w|ω ∼ B (ω1, ω0) , (13)

with ω = [ω0, ω1]T and where B (a, b) denotes the Beta
distribution with parameters (a, b). Note that by choosing
ω0 = ω1 = 1, the Beta distribution reduces to the uniform
distribution on [0, 1], which gives the least informative prior.

Assuming that the individual hyperparameters are indepen-
dent the full hyperparameter prior distribution for Φ can be
expressed as:

f (Φ|α,ω) = f (w) f (γ) f (a)

=
wω1−1 (1− w)ω0−1

awγB (ω1, ω0)
1[0,1] (w) 1R+ (a) 1R+ (γ) ,

(14)

with B (ω1, ω0) = Γ(ω1)Γ(ω0)
Γ(ω1+ω0) , where Γ(·) denotes the Gamma

function.

D. Posterior distribution

The posterior distribution of {θ,Φ} can be computed as
follows:

f (θ,Φ|y,α,ω) ∝ f (y|θ) f (θ|Φ) f (Φ|α,ω) , (15)

with
f (θ|Φ) = f (x|a,w) f

(
σ2|γ

)
, (16)

where f (y|θ) and f (Φ|α,ω) have been defined in (3) and
(14). This hierarchical structure, represented on the directed
acyclic graph (DAG) in Fig. 1, allows one to integrate out
the parameter σ2 and the hyperparameter vector Φ in the full
posterior distribution (15), yielding:

f (x|y,α,ω) ∝ B (ω1 + n1, ω0 + n0)

‖y − T (κ,x)‖P
Γ (n1 + α0)

[‖x‖1 + α1]n1+α0
.

(17)

where, as defined in paragraph III-B1, n1 = ‖x‖0 and n0 =
M − ‖x‖0.

The next section presents an appropriate Gibbs sampling
strategy [24] that allows ones to generate samples distributed
according to the posterior distribution f (x|y,α,ω).

1

2
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IV. A GIBBS SAMPLING STRATEGY
FOR SPARSE IMAGE RECONSTRUCTION

We propose in this section a Gibbs sampling strategy
that allows one to generate samples

{
x(t)

}
t=1,...

distributed
according to the posterior distribution in (17). As simulating
directly according to (17) is a difficult task, it is much
more convenient to generate samples distributed according to
the joint posterior f

(
x, σ2|y,α,ω

)
. The main steps of this

algorithm are detailed in subsections IV-A and IV-B (see also
Algorithm 1 below).

ALGORITHM 1:

Gibbs sampling algorithm for sparse image reconstruction

• Initialization:
– Sample parameter x(0) from pdf in (9),
– Sample parameters σ̃2(0) from the pdf in (10),
– Set t← 1,

• Iterations: for t = 1, 2, . . . , do
1. Sample hyperparameter w(t) from the pdf in (19),
2. Sample hyperparameter a(t) from the pdf in (20),
3. For i = 1, . . . ,M , sample parameter x(t)

i from pdf in
(21),

4. Sample parameter σ̃2(t) from the pdf in (24),
5. Set t← t+ 1.

A. Generation of samples according to f
(
x
∣∣σ2,y,α,ω

)
To generate samples distributed according to

f
(
x
∣∣σ2,y,ω

)
, it is very convenient to sample according to

f
(
x, w, a

∣∣σ2,y,ω
)

in the following 3-step procedure.
1) Generation of samples according to f (w |x,ω ): Using

(9), the following result can be obtained:

f (w |x,ω ) ∝ (1− w)n0+ω0−1wn1+ω1−1, (18)

where n0 and n1 have been defined in paragraph III-B1.
Therefore, generation of samples according to f (w |x,ω ) is
achieved as follows:

w |x,ω ∼ Be (ω1 + n1, ω0 + n0) . (19)

2) Generation of samples according to f (a |x,α ): Look-
ing at the joint posterior distribution (15), it yields:

a |x,α ∼ IG (‖x‖0 + α0, ‖x‖1 + α1) . (20)

3) Generation of samples according to f
(
x
∣∣w, a, σ2,y

)
:

The prior chosen for xi (i = 1, . . . ,M ) yields a poste-
rior distribution of x that is not closed form. However, the
posterior distribution of each component xi (i = 1, . . . ,M )
conditionally upon the others can be easily derived. Indeed
straightforward computations detailed in Appendix A yield:

f
(
xi|w, a, σ2,x−i,y

)
∝ (1− wi)δ (xi)

+ wiφ+

(
xi|µi, η2

i

)
,

(21)

where x−i stands for the vector x whose ith component has
been removed and µi and η2

i are given in Appendix A. In

(21), φ+

(
·,m, s2

)
stands for the pdf of the truncated Gaussian

distribution defined on R∗+ with hidden parameters equal to
mean m and variance s2:

φ+

(
x,m, s2

)
=

1
C (m, s2)

exp

[
− (x−m)2

2s2

]
1R∗+ (x) ,

(22)
with

C
(
m, s2

)
=

√
πs2

2

[
1 + erf

(
m√
2s2

)]
. (23)

The form in (21) specifies xi|w, a, σ2,x−i,y as a Bernoulli-
truncated Gaussian variable with parameter

(
wi, µi, η

2
i

)
. Ap-

pendix C presents an algorithm that can be used to generate
samples distributed according to this distribution.

To summarize, generating samples distributed according to
f
(
x
∣∣w, σ2, a, ,y

)
can be performed by updating the coor-

dinates of x successively using M Gibbs moves (requiring
generation of Bernoulli-truncated Gaussian variables).

B. Generation of samples according to f
(
σ2 |x,y

)
Samples are generated as the following way:

σ2 |x,y ∼ IG

(
P

2
,
‖y − T (κ,x)‖2

2

)
. (24)

V. SIMULATION ON SYNTHETIC IMAGES

TABLE I
PARAMETERS USED TO COMPUTE THE MRFM PSF.

Parameter
Value

Description Name

Amplitude of external magnetic field Bext 9.4× 103 G

Value of Bmag in the resonant slice Bres 1.0× 104 G

Radius of tip R0 4.0 nm

Distance from tip to sample d 6.0 nm

Cantilever tip moment m 4.6× 105 emu

Peak cantilever oscillation oscillation xpk 0.8 nm

Maximum magnetic field gradient Gmax 125

Fig. 2. Left: Psf of the MRFM tip. Right: unknown sparse image to be
estimated.

1 2

3 4
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A. Reconstruction of 2-dimensional image
In this subsection, a 32 × 32 synthetic image, depicted in

Fig. 2 (right), is simulated using the prior in (9) with parameter
a = 1 and w = 0.02. In this figure and in the following
ones, white pixels stands for identically null values. A general
analytical derivation of the psf of the MRFM tip has been
given in [39] and is explained in [23]. Following this model,
a 10 × 10 2-dimensional convolution kernel, represented in
Fig. 2 (left), has been generated when the physical parameters
are tuned to the values gathered in Table I. The corresponding
matrix H introduced in (2) is of size 1024 × 1024. The
observed measurements y, depicted in Fig. 2 (right) are of size
P = 1024. These observations are corrupted by an additive
Gaussian noise with two different variances σ2 = 1.2× 10−1

and σ2 = 1.6× 10−3, corresponding to signal-to-noise ratios
SNR = 2dB and SNR = 20dB respectively.

1) Simulation results: The observations are processed by
the proposed algorithm that consists of NMC = 2000 iterations
of the Gibbs sampler with Nbi = 300 burn-in iterations. Then
the MAP estimator of the unknown image x is computed by
keeping among X =

{
x(t)

}
t=1,...,NMC

the generated sample
that maximizes the posterior distribution in (17):

x̂MAP = argmax
x∈RM

+

f (x|y)

≈ argmax
x∈X

f (x|y) .
(25)

These estimates are depicted in Fig. 3 for the two levels of
noise considered. It can be noticed that the estimated image
is very similar to the actual image, even with a low SNR.

Fig. 3. Top, left (resp. right): noisy observations for SNR = 2dB (resp.
20dB). Bottom, left (resp. right): reconstructed image for SNR = 2dB (resp.
20dB).

Moreover, as the proposed algorithm generates samples
distributed according to the posterior distribution in (17), these
samples can be used to compute the posterior distributions of
each parameter. As examples, the posterior distributions of the
hyperparameters a and w, as well as the noise variance σ2,
are shown in Fig. 4, 5 and 6. These estimated distributions are
in good agreement with the actual values of these parameters
for the two SNR levels.

Fig. 4. Posterior distribution of hyperparameter a (left: SNR = 2dB, right:
SNR = 20dB).

Fig. 5. Posterior distribution of hyperparameter w (left: SNR = 2dB, right:
SNR = 20dB).

Fig. 6. Posterior distribution of hyperparameter σ2 (left: SNR = 2dB, right:
SNR = 20dB).

The posterior distributions of four different pixels are de-
picted in Fig. 7. These posteriors are also in agreement with
the actual values of these pixels that are represented in dotted
red line in these figures.

2) Comparison of reconstruction performances: The results
provided by the proposed method have been compared with
those provided by methods that also estimate the hyperpa-
rameters automatically. Firstly, the techniques proposed in
[22], [23] are based on EM algorithms that perform empirical
estimation of the unknown hyperparameters. Therein, two
empirical Bayesian estimators, denoted Emp-MAP-Lap and
Emp-MAP-LAZE, based on a Laplacian or a LAZE prior
respectively, are studied. Here we compare the estimators of
[22], [23] to the MMSE estimator and the MAP estimator
under the model and the algorithm presented in Sections III
and IV. The MMSE estimator of the unknown parameter x is
obtained by an empirical averaging over the last Nr = 1700
outputs of the sampler according to:

x̂MMSE = E [x|y]

≈ 1
Nr

Nr∑
t=1

x(Nbi+t).
(26)
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6

Fig. 7. Posteriors distributions of the non-zero values of x for SNR = 20dB,
(actual values are depicted with dotted red lines).

Finally, the results are compared with the estimator provided
by a standard Landweber algorithm [48].

The proposed comparison is conducted with respect to
several measures of performance. First let e = x − x̂ denote
the reconstruction error when x̂ is the estimator of the image
x to be recovered. To measure the performance of the sparse
reconstruction, criteria inspired by [23] have been used: the
`0, `1 and `2-norms of e to measure the accuracy of the
reconstruction and the `0-norm of the estimator x̂ to measure
its sparsity. Moreover, as noticed in [23], small non-zero values
of the pixel are usually not distinguishable from exactly zero
values by a human being. Following this remark, a less strict
measure of sparsity than the `0-norm has been introduced. This
measure4, denoted ‖·‖δ , is the number of components that are
less than a given threshold δ:

‖x̂‖δ =
M∑
i=1

1x̂i<δ (x̂i) ,

‖e‖δ =
M∑
i=1

1ei<δ (ei) .

(27)

It what follows, δ has been chosen as δ = 10−2 ‖x‖∞. To
summarize, the following criteria have been computed for the
image in paragraph V-A1 for two levels of SNR: ‖e‖0, ‖e‖δ ,
‖e‖1, ‖e‖2, ‖x̂‖0 and ‖x̂‖δ .

Table II gathers the six performance measures for the
five different studied algorithms. It clearly appears that the
proposed Bayesian method outperforms the others in the `1
or `2-norm evaluations of the error reconstruction, whatever
the estimator chosen (MAP or MMSE). This can be easily
explained by the accurate estimation of the hyperparameters
thanks to the introduced hierarchical model. It also appears
that an MMSE estimation of the unknown image yields to a
non sparse estimator in a `0-norm sense. This can be explained
by a very weak posterior probability of having non-zero value

4The introduced measure of sparsity is denoted ‖·‖δ . However, it has to
be mentioned that is not a norm.

for each pixel. A less draconian decision, by using the sparsity
measure ‖·‖δ for instance, can overcome this drawback, as
shown in the Table. Finally, the MAP estimator seems to be a
very powerful estimator for the sparse reconstruction problem
as it seems to balance the sparsity of the solution and the
minimization of the reconstruction error. However, it has to
be noticed that MMSE estimation contains more information
than a point estimation and can be useful to derive confidence
intervals.

TABLE II
RECONSTRUCTION PERFORMANCES FOR DIFFERENT SPARSE

DECONVOLUTION ALGORITHMS.

Method
Error criterion

‖e‖0 ‖e‖δ ‖e‖1 ‖e‖2 ‖x̂‖0 ‖x̂‖δ
SNR = 2dB

Landweber 1024 990 339.76 13.32 1024 990

Emp-MAP-Lap 18 17 14.13 4.40 0 0

Emp-MAP-LAZE 60 58 9.49 1.44 55 55

Proposed MMSE 1001 30 3.84 0.72 1001 27

Proposed MAP 19 16 2.38 0.81 13 13

SNR = 20dB

Landweber 1024 931 168.85 6.67 1024 931

Emp-MAP-Lap 33 18 1.27 0.31 28 23

Emp-MAP-LAZE 144 19 1.68 0.22 144 27

Proposed MMSE 541 5 0.36 0.11 541 16

Proposed MAP 19 7 0.39 0.13 16 16

B. Reconstruction of undersampled 3-dimensional images

In this subsection, some simulation results are presented
to illustrated the performance of the algorithm when applied
on undersampled 3D images. First, a 24 × 24 × 6 image is
generated such as 4 pixels have non-zero values in each z
slice. The resulting data is depicted in Fig. 8 (right) and Fig. 10
(top). This image to be recovered is assumed to be convolved
with a 5×5×3 kernel that is represented in Fig. 8 (right). The
resulting convolved image is depicted in Fig. 9 (left). However,
the actually observed image is assumed to be an undersampled
version of this image. More precisely, the sampling rates are
assumed to be dx = 2, dy = 3 dz = 1 respectively in the 3
dimensions. Consequently the observed 3D image, shown in
Fig. 9, is of size 12× 8× 6. Finally, an i.i.d. Gaussian noise
with σ = 0.02 is added following the model in (1). Note that
under these assumptions, the application T (·, ·) can be split
into two standard operations following the composition:

T (κ,X) = gdx,dy,dz
(κ⊗X) , (28)

where gdx,dy,dz (·) stands for the undersampling function.
The proposed Bayesian algorithm is used to perform the

sparse reconstruction. The number of Monte Carlo runs has
been fixed to NMC = 2000 with Nbi = 200 burn-in iterations.
The MAP estimator has been chosen as the reconstructed
image estimate since it outperforms the MMSE ones (as
explained in paragraph V-A2). This MAP estimator, depicted
in Fig. 10 (bottom), is quite satisfactory given the problem
difficulty introduced by the undersampling.
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Fig. 7. Posteriors distributions of the non-zero values of x for SNR = 20dB,
(actual values are depicted with dotted red lines).

Finally, the results are compared with the estimator provided
by a standard Landweber algorithm [48].

The proposed comparison is conducted with respect to
several measures of performance. First let e = x − x̂ denote
the reconstruction error when x̂ is the estimator of the image
x to be recovered. To measure the performance of the sparse
reconstruction, criteria inspired by [23] have been used: the
`0, `1 and `2-norms of e to measure the accuracy of the
reconstruction and the `0-norm of the estimator x̂ to measure
its sparsity. Moreover, as noticed in [23], small non-zero values
of the pixel are usually not distinguishable from exactly zero
values by a human being. Following this remark, a less strict
measure of sparsity than the `0-norm has been introduced. This
measure4, denoted ‖·‖δ , is the number of components that are
less than a given threshold δ:

‖x̂‖δ =
M∑
i=1

1x̂i<δ (x̂i) ,

‖e‖δ =
M∑
i=1

1ei<δ (ei) .

(27)

It what follows, δ has been chosen as δ = 10−2 ‖x‖∞. To
summarize, the following criteria have been computed for the
image in paragraph V-A1 for two levels of SNR: ‖e‖0, ‖e‖δ ,
‖e‖1, ‖e‖2, ‖x̂‖0 and ‖x̂‖δ .

Table II gathers the six performance measures for the
five different studied algorithms. It clearly appears that the
proposed Bayesian method outperforms the others in the `1
or `2-norm evaluations of the error reconstruction, whatever
the estimator chosen (MAP or MMSE). This can be easily
explained by the accurate estimation of the hyperparameters
thanks to the introduced hierarchical model. It also appears
that an MMSE estimation of the unknown image yields to a
non sparse estimator in a `0-norm sense. This can be explained
by a very weak posterior probability of having non-zero value

4The introduced measure of sparsity is denoted ‖·‖δ . However, it has to
be mentioned that is not a norm.

for each pixel. A less draconian decision, by using the sparsity
measure ‖·‖δ for instance, can overcome this drawback, as
shown in the Table. Finally, the MAP estimator seems to be a
very powerful estimator for the sparse reconstruction problem
as it seems to balance the sparsity of the solution and the
minimization of the reconstruction error. However, it has to
be noticed that MMSE estimation contains more information
than a point estimation and can be useful to derive confidence
intervals.

TABLE II
RECONSTRUCTION PERFORMANCES FOR DIFFERENT SPARSE

DECONVOLUTION ALGORITHMS.

Method
Error criterion

‖e‖0 ‖e‖δ ‖e‖1 ‖e‖2 ‖x̂‖0 ‖x̂‖δ
SNR = 2dB

Landweber 1024 990 339.76 13.32 1024 990

Emp-MAP-Lap 18 17 14.13 4.40 0 0

Emp-MAP-LAZE 60 58 9.49 1.44 55 55

Proposed MMSE 1001 30 3.84 0.72 1001 27

Proposed MAP 19 16 2.38 0.81 13 13

SNR = 20dB

Landweber 1024 931 168.85 6.67 1024 931

Emp-MAP-Lap 33 18 1.27 0.31 28 23

Emp-MAP-LAZE 144 19 1.68 0.22 144 27

Proposed MMSE 541 5 0.36 0.11 541 16

Proposed MAP 19 7 0.39 0.13 16 16

B. Reconstruction of undersampled 3-dimensional images

In this subsection, some simulation results are presented
to illustrated the performance of the algorithm when applied
on undersampled 3D images. First, a 24 × 24 × 6 image is
generated such as 4 pixels have non-zero values in each z
slice. The resulting data is depicted in Fig. 8 (right) and Fig. 10
(top). This image to be recovered is assumed to be convolved
with a 5×5×3 kernel that is represented in Fig. 8 (right). The
resulting convolved image is depicted in Fig. 9 (left). However,
the actually observed image is assumed to be an undersampled
version of this image. More precisely, the sampling rates are
assumed to be dx = 2, dy = 3 dz = 1 respectively in the 3
dimensions. Consequently the observed 3D image, shown in
Fig. 9, is of size 12× 8× 6. Finally, an i.i.d. Gaussian noise
with σ = 0.02 is added following the model in (1). Note that
under these assumptions, the application T (·, ·) can be split
into two standard operations following the composition:

T (κ,X) = gdx,dy,dz
(κ⊗X) , (28)

where gdx,dy,dz (·) stands for the undersampling function.
The proposed Bayesian algorithm is used to perform the

sparse reconstruction. The number of Monte Carlo runs has
been fixed to NMC = 2000 with Nbi = 200 burn-in iterations.
The MAP estimator has been chosen as the reconstructed
image estimate since it outperforms the MMSE ones (as
explained in paragraph V-A2). This MAP estimator, depicted
in Fig. 10 (bottom), is quite satisfactory given the problem
difficulty introduced by the undersampling.
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Fig. 7. Posteriors distributions of the non-zero values of x for SNR = 20dB,
(actual values are depicted with dotted red lines).

Finally, the results are compared with the estimator provided
by a standard Landweber algorithm [48].

The proposed comparison is conducted with respect to
several measures of performance. First let e = x − x̂ denote
the reconstruction error when x̂ is the estimator of the image
x to be recovered. To measure the performance of the sparse
reconstruction, criteria inspired by [23] have been used: the
`0, `1 and `2-norms of e to measure the accuracy of the
reconstruction and the `0-norm of the estimator x̂ to measure
its sparsity. Moreover, as noticed in [23], small non-zero values
of the pixel are usually not distinguishable from exactly zero
values by a human being. Following this remark, a less strict
measure of sparsity than the `0-norm has been introduced. This
measure4, denoted ‖·‖δ , is the number of components that are
less than a given threshold δ:

‖x̂‖δ =
M∑
i=1

1x̂i<δ (x̂i) ,

‖e‖δ =
M∑
i=1

1ei<δ (ei) .

(27)

It what follows, δ has been chosen as δ = 10−2 ‖x‖∞. To
summarize, the following criteria have been computed for the
image in paragraph V-A1 for two levels of SNR: ‖e‖0, ‖e‖δ ,
‖e‖1, ‖e‖2, ‖x̂‖0 and ‖x̂‖δ .

Table II gathers the six performance measures for the
five different studied algorithms. It clearly appears that the
proposed Bayesian method outperforms the others in the `1
or `2-norm evaluations of the error reconstruction, whatever
the estimator chosen (MAP or MMSE). This can be easily
explained by the accurate estimation of the hyperparameters
thanks to the introduced hierarchical model. It also appears
that an MMSE estimation of the unknown image yields to a
non sparse estimator in a `0-norm sense. This can be explained
by a very weak posterior probability of having non-zero value

4The introduced measure of sparsity is denoted ‖·‖δ . However, it has to
be mentioned that is not a norm.

for each pixel. A less draconian decision, by using the sparsity
measure ‖·‖δ for instance, can overcome this drawback, as
shown in the Table. Finally, the MAP estimator seems to be a
very powerful estimator for the sparse reconstruction problem
as it seems to balance the sparsity of the solution and the
minimization of the reconstruction error. However, it has to
be noticed that MMSE estimation contains more information
than a point estimation and can be useful to derive confidence
intervals.

TABLE II
RECONSTRUCTION PERFORMANCES FOR DIFFERENT SPARSE

DECONVOLUTION ALGORITHMS.

Method
Error criterion

‖e‖0 ‖e‖δ ‖e‖1 ‖e‖2 ‖x̂‖0 ‖x̂‖δ
SNR = 2dB

Landweber 1024 990 339.76 13.32 1024 990

Emp-MAP-Lap 18 17 14.13 4.40 0 0

Emp-MAP-LAZE 60 58 9.49 1.44 55 55

Proposed MMSE 1001 30 3.84 0.72 1001 27

Proposed MAP 19 16 2.38 0.81 13 13

SNR = 20dB

Landweber 1024 931 168.85 6.67 1024 931

Emp-MAP-Lap 33 18 1.27 0.31 28 23

Emp-MAP-LAZE 144 19 1.68 0.22 144 27

Proposed MMSE 541 5 0.36 0.11 541 16

Proposed MAP 19 7 0.39 0.13 16 16

B. Reconstruction of undersampled 3-dimensional images

In this subsection, some simulation results are presented
to illustrated the performance of the algorithm when applied
on undersampled 3D images. First, a 24 × 24 × 6 image is
generated such as 4 pixels have non-zero values in each z
slice. The resulting data is depicted in Fig. 8 (right) and Fig. 10
(top). This image to be recovered is assumed to be convolved
with a 5×5×3 kernel that is represented in Fig. 8 (right). The
resulting convolved image is depicted in Fig. 9 (left). However,
the actually observed image is assumed to be an undersampled
version of this image. More precisely, the sampling rates are
assumed to be dx = 2, dy = 3 dz = 1 respectively in the 3
dimensions. Consequently the observed 3D image, shown in
Fig. 9, is of size 12× 8× 6. Finally, an i.i.d. Gaussian noise
with σ = 0.02 is added following the model in (1). Note that
under these assumptions, the application T (·, ·) can be split
into two standard operations following the composition:

T (κ,X) = gdx,dy,dz
(κ⊗X) , (28)

where gdx,dy,dz (·) stands for the undersampling function.
The proposed Bayesian algorithm is used to perform the

sparse reconstruction. The number of Monte Carlo runs has
been fixed to NMC = 2000 with Nbi = 200 burn-in iterations.
The MAP estimator has been chosen as the reconstructed
image estimate since it outperforms the MMSE ones (as
explained in paragraph V-A2). This MAP estimator, depicted
in Fig. 10 (bottom), is quite satisfactory given the problem
difficulty introduced by the undersampling.
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Fig. 10. Top: slices of the sparse image to be recovered. Bottom: slices of the estimated sparse image.

Fig. 8. Left: 24× 24× 6 unknown image to be recovered. Right: 5× 5× 3
kernel modeling the psf.

VI. APPLICATION ON REAL MRFM IMAGES

The 3-dimensional real data used in this section have been
initially presented in [35] to illustrate the nanometer spatial
resolution of MRFM. The observed sample consists of a
collection of Tobacco mosaic virus particles that are divided
into a whole segment and others fragments. The map of the
signal is computed from the measured proton distribution and
the 3-dimensional psf following the protocol described in [35]
and [49]. The resulting scan data are depicted in Figure 11
(top) for four different distances between the MRFM tip and
the sample: d = 24nm, d = 37nm, d = 50nm and d = 62nm.
Each of these x-y slices is of size 60× 32.

These experimental data are undersampled, i.e. the spatial
resolution of the MRFM tip, and therefore the psf function, is
finer than the resolution of the observed slices. Consequently,
these data have been deconvolved taking into account the
oversampling rates defined by dx = 3, dy = 2 and dz = 3
in the three directions. The MAP estimate of the unknown

Fig. 9. Left: 24×24×6 regularly sampled convolved image. Left: 12×8×6
undersampled observed image.

image is computed after NMC = 1000 (with Nbi = 200) of the
proposed Bayesian algorithm initialized with the output of one
Landweber iteration. Three horizontal slices of the estimated
image5 is depicted in Figure 12. A 3-dimensional view of the
estimated profile of the virus fragments is also available in
Figure 13. The MMSE estimates of the parameters introduced
in Section III are σ̂2

MMSE = 0.10, âMMSE = 1.9 × 10−12 and
ŵMMSE = 1.4× 10−2.

To illustrate the performance of the proposed deconvolu-
tion algorithm, the data reconstructed from the estimated 3-
dimensional image are depicted in Figure 11 (bottom). These
figures are clearly in good agreement with the observed
data (top). Moreover, to evaluate the convergence speed, the
reconstruction error is represented in Figure 14 as a function
of the iterations for the proposed Bayesian and the Landweber
algorithms. It clearly appears that the convergence rate of our

5Note that most part of the estimated 3 dimensional image is empty space
due to the very localizated position of the imaged data.
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Fig. 11. Top: experimental scan data. Bottom: scan data computed from the proposed Bayesian reconstruction.

Fig. 12. Three horizontal slices of the estimated image.

Fig. 13. 3-dimensional view of the estimated profile of the Tobacco virus
fragments.

algorithm is significantly better than the Landweber algorithm.

Fig. 14. Error reconstructions as functions of the iteration number for the
proposed algorithm (continuous blue line) and Landweber algorithm (dotted
red line).

VII. CONCLUSIONS

This paper presented a Bayesian sampling algorithm for
solving deconvolution of sparse images corrupted by additive
Gaussian noise. A Bernoulli-truncated exponential distribution
was proposed as prior distribution for the sparse image to be
recovered. The hyperparameters of the model were estimated
in a fully Bayesian scheme by choosing prior distributions
for them and by integrating them out from the full posterior
distribution. An efficient Gibbs sampler allowed one to gener-
ate samples distributed according to this posterior distribution.
The derived Bayesian estimators outperformed significantly
the estimators classically used to solve sparse reconstruction
problems. This was mainly due to a performing estimation of
the hyperparameters via the proposed hierarchical model.
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POSTERIOR DISTRIBUTION f
(
xi
∣∣w, a, σ2,x−i,y

)
The posterior distribution of each component xi (i =

1, . . . ,M ) conditionally upon the others is linked to the
likelihood function (3) and the prior distribution (7) via the
Bayes’ paradigm:

f
(
xi|w, a, σ2,x−i,y

)
∝ f

(
y|x, σ2

)
f (xi|w, a) . (29)

This distribution can be easily derived by decomposing x on
the standard orthonormal basis

B = {u1, . . . ,uM} , (30)

where ui is the ith column of the M ×M identity matrix.
Indeed, let decompose

x = x̃i + xiui, (31)

where x̃i is the vector x whose ith element has been replaced
by 0. Then the linear property of the operator T (κ, ·) allows
one to state:

T (κ,x) = T (κ, x̃i) + xiT (κ,ui) . (32)

Consequently, (29) can be rewritten

f
(
xi|w, a, σ2,x−i,y

)
∝ exp

(
−‖ei − xihi‖

2

2σ2

)
×
[
(1− w)δ (xi) +

w

a
exp

(
−xi
a

)
1R∗+ (xi)

]
,

(33)

where6 {
ei = y − T (κ, x̃i) ,
hi = T (κ,ui) .

(34)

An efficient way to compute ei within the Gibbs sampler
scheme is reported in Appendix B. Then, straightforward
computations similar to those in [11] and [50, Annex B] yield
to the following distribution:

f
(
xi|w, a, σ2,x−i,y

)
∝ (1− wi)δ (xi)

+ wiφ+

(
xi|µi, η2

i

)
,

(35)

with 
η2
i =

σ2

‖hi‖2
,

µi = η2
i

(
hTi ei
σ2
− 1
a

)
,

(36)

and 
ui =

w

a
C
(
µi, η

2
i

)
exp

(
µ2
i

2η2
i

)
,

wi =
ui

ui + (1− w)
.

(37)

The distribution in (35) is a Bernoulli-truncated Gaussian
distribution with hidden mean µi and hidden variance η2

i .

6It can be noticed that, for deblurring applications, hi is also the ith column
of the matrix H introduced in (2).

APPENDIX B
FAST RECURSIVE COMPUTATIONS

FOR SIMULATING ACCORDING TO f
(
x
∣∣w, a, σ2,y

)
In the Gibbs sampling strategy presented in Section IV,

the main computationally expensive task is the generation
of samples distributed according to f

(
xi
∣∣w, a, σ2,x−i,y

)
.

Indeed, the evaluation of the hidden mean and hidden variance
in (36) of the Bernoulli-truncated Gaussian distribution may be
really costly, especially when the bilinear application T (·, ·)
is not easily computable. In this appendix, an appropriate
recursive strategy is proposed to make this Gibbs move faster.
More precisely, we describe how to update efficiently the
coordinate i of the vector x at iteration t of the Gibbs sampler.

Let x(t,i−1) denote the current Monte Carlo state of the
unknown vectorized image x (i = 1, . . . ,M ):

x(t,i−1) =
[
x

(t)
1 , . . . , x

(t)
i−1, x

(t−1)
i , x

(t−1)
i+1 , . . . , x

(t−1)
M

]T
.

(38)
with, by definition, x(t,0) = x(t−1,M). Updating x(t,i−1)

consists of drawing x(t)
i according to the Bernoulli-truncated

Gaussian distribution f
(
xi

∣∣∣w, a, σ2,x(t,i−1)
−i ,y

)
in (21)

with:

x(t,i−1)
−i =

[
x

(t)
1 , . . . , x

(t)
i−1, x

(t−1)
i+1 , . . . , x

(t−1)
M

]T
. (39)

The proposed strategy to simulate efficiently according to
(21) is based on the following property.

Property: Given the quantity T
(
κ,x(0)

)
and

the vectors {hi}i=1,...,M , simulating according to

f
(
xi

∣∣∣w, a, σ2,x(t,i)
−i ,y

)
can be performed without resorting

to the bilinear application T (·, ·).

Proof : Simulating according to (21) mainly requires to
compute the vector ei introduced by (34):

ei = y − T
(
κ, x̃(t,i−1)

i

)
, (40)

with

x̃(t,i−1)
i =

[
x

(t)
1 , . . . , x

(t)
i−1, 0, x

(t−1)
i+1 , . . . , x

(t−1)
M

]T
. (41)

Moreover, by using the decomposition in (31) and by exploit-
ing the linear property of T (κ, ·), the vector T

(
κ, x̃(t,i−1)

i

)
in the right-hand side of (40) can be rewritten as:

T
(
κ, x̃(t,i−1)

i

)
= T

(
κ,x(t,i−1)

)
− x(t−1)

i hi, (42)

where hi has been introduced in (34). Consequently, to prove
the property, we have to demonstrate that the vector series{
T
(
κ,x(t,k)

)}
k=1,...,M

can be computed recursively without
using T (·, ·). Assume that T

(
κ,x(t,i−1)

)
is available at this

stage of the Gibbs sampling and that x(t)
i has been drawn. The

new Monte Carlo state is then:

x(t,i) =
[
x

(t)
1 , . . . , x

(t)
i−1, x

(t)
i , x

(t−1)
i+1 , . . . , x

(t−1)
M

]T
. (43)

1
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Similarly to (42), the vector T
(
κ,x(t,i)

)
can be decomposed

as follows:

T
(
κ,x(t,i)

)
= T

(
κ, x̃(t,i−1)

i

)
+ x

(t)
i hi. (44)

Therefore, combining (42) and (44) allow one to state:

T
(
κ,x(t,i)

)
= T

(
κ,x(t,i−1)

)
+
(
x

(t)
i − x

(t−1)
i

)
hi.

�

As a conclusion, the bilinear application T (·, ·) has only to
be used at the very beginning of the algorithm to evaluate
T
(
κ,x(0)

)
and the vectors {hi}i=1,...,M . The resulting sim-

ulation scheme corresponding to step 3 of Algorithm 1 is
detailed in Algorithm 2.

ALGORITHM 2:

Efficient simulation according to f
(
x
∣∣w, a, σ2,y

)
For i = 1, . . . ,M, update the ith coordinate of the vector

x(t,i−1) =
[
x

(t)
1 , . . . , x

(t)
i−1, x

(t−1)
i , x

(t−1)
i+1 , . . . , x

(t−1)
M

]T
via the following steps:

1. compute ‖hi‖2,
2. set T

(
κ, x̃

(t,i−1)
i

)
= T

(
κ,x(t,i−1)

)
− x(t−1)

i hi,

3. set ei = x− T
(
κ, x̃

(t,i−1)
i

)
,

4. compute µi, η2
i and wi as defined in (36) and (37),

5. draw x
(t)
i according to (21),

6. set x(t,i) =
[
x

(t)
1 , . . . , x

(t)
i−1, x

(t)
i , x

(t−1)
i+1 , . . . , x

(t−1)
M

]T
,

7. set T
(
κ,x(t,i)

)
= T

(
κ, x̃

(t,i−1)
i

)
+ x

(t)
i hi.

APPENDIX C
SIMULATION ACCORDING TO A

BERNOULLI-TRUNCATED GAUSSIAN DISTRIBUTION

This appendix presents a general scheme to generate ran-
dom variables distributed according to a Bernoulli-truncated
Gaussian distribution with parameters

(
w,m, s2

)
whose pdf

is:

f
(
x|λ,m, s2

)
= (1− λ) δ(x)

+
λ

C (m, s2)
exp

[
− (x−m)2

2s2

]
1R∗+ (x)

where C
(
m, s2

)
has been defined in (23). This generation can

be conducted by using an auxiliary binary variable ε following
the strategy detailed in Algorithm 3.

In the algorithm presented above, Ber (·) and N+ (·, ·)
denote the Bernoulli and the positive truncated Gaussian
distributions respectively. In step 2, generation of samples
distributed according to the truncated Gaussian distribution can
be achieved by using an appropriate accept-reject procedure
with different instrumental distributions [51]–[53].

ALGORITHM 3:

Simulation according to
a Bernoulli-truncated Gaussian distribution

1. generate ε according to ε ∼ Ber (λ),

2. set
{
x = 0, if ε = 0;
x ∼ N+

(
m, s2

)
, if ε = 1.

ACKNOWLEDGEMENTS

The authors would like to thank M. Ting for providing the
code to generate point spread functions of MRFM tip and for
interesting suggestions regarding this work. The authors are
also very grateful to Dr. Dan Rugar who provided the real
data used in Section VIas well as a valuable feedback about
this paper.

REFERENCES

[1] H. Andrews and B. Hunt, Digital Image Restoration. Englewood Cliffs,
NJ: Prentice-Hall, 1977.

[2] J. C. Russ, The image processing handbook, 5th ed. Boca Raton, FL:
CRC Press, 2006.

[3] J.-L. Starck and F. Murtagh, Astronomical Image and Data Analysis,
2nd ed. Berlin Heidelberg: Springer-Verlag, 2006.

[4] P. Sarder and A. Nehorai, “Deconvolution methods for 3-D fluorescence
microscopy images,” IEEE Signal Processing Magazine, vol. 23, no. 3,
pp. 32–45, May 2006.

[5] S. E. Reichenbach, D. E. Koehler, and D. W. Strelow, “Restoration and
reconstruction of AVHRR images,” IEEE Trans. Geosci. and Remote
Sensing, vol. 33, no. 4, pp. 997–1007, July 1995.

[6] F. S̆roubek and J. Flusser, “Multichannel blind iterative image restora-
tion,” IEEE Trans. Image Processing, vol. 12, no. 9, pp. 1094–1106,
Sept. 2003.

[7] D. Mounce, “Magnetic resonance force microscopy,” IEEE Instr. Meas.
Magazine, vol. 8, no. 2, pp. 20–26, June 2005.

[8] S. Kuehn, S. A. Hickman, and J. A. Marohn, “Advances in mechanical
detection of magnetic resonance,” J. Chemical Physics, vol. 128, no. 5,
Feb. 2008.

[9] D. Rugar, R. Budakian, H. J. Mamin, and B. W. Chui, “Single spin
detection by magnetic resonance force microscopy,” Nature, vol. 430,
pp. 329–332, July 2004.

[10] S. Bourguignon, H. Carfantan, and J. Idier, “A sparsity-based method
for the estimation of spectral lines from irregularly sampled data,” IEEE
J. Sel. Topics Signal Processing, vol. 1, no. 4, Dec. 2007.

[11] Q. Cheng, R. Chen, and T.-H. Li, “Simultaneous wavelet estimation and
deconvolution of reflection seismic signals,” IEEE Trans. Geosci. and
Remote Sensing, vol. 34, no. 2, pp. 377–384, March 1996.

[12] O. Rosec, J.-M. Boucher, B. Nsiri, and T. Chonavel, “Blind marine seis-
mic deconvolution using statistical MCMC methods,” IEEE J. Ocean.
Eng., vol. 28, no. 3, pp. 502–512, July 2003.

[13] T. Olofsson and E. Wennerström, “Sparse deconvolution of B-scan
images,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control, vol. 54, no. 8,
Aug. 2007.

[14] J. J. Kormylo and J. M. Mendel, “Maximum likelihood detection and
estimation of Bernoulli-Gaussian processes,” IEEE Trans. Inf. Theory,
vol. 28, no. 3, pp. 482–488, May 1982.

[15] J. Idier and Y. Goussard, “Stack algorithm for recursive deconvolution of
Bernoulli-gaussian processes,” IEEE Trans. Signal Processing, vol. 28,
no. 5, pp. 67–79, Sept. 1990.

[16] M. Lavielle, “Bayesian deconvolution of Bernoulli-Gaussian processes,”
Signal Processing, vol. 33, no. 1, pp. 67–79, July 1993.

[17] F. Champagnat, Y. Goussard, and J. Idier, “Unsupervised deconvolution
of sparse spike trains using stochastic approximation,” IEEE Trans.
Signal Processing, vol. 44, no. 12, pp. 2988–2998, Dec. 1996.

[18] A. Doucet and P. Duvaut, “Bayesian estimation of state-space models
applied to deconvolution of Bernoulli-Gaussian processes,” Signal Pro-
cessing, vol. 57, no. 2, pp. 147–161, March 1997.

1 2
3 4 5

6

7

89

10

11

12

13

14

15

16
17



 
Page: 10

Number: 1 Author: vmuser Subject: Cross-Out Date: 9/17/2008 1:22:14 PM 
 
 
Number: 2 Author: vmuser Subject: Cross-Out Date: 9/17/2008 1:22:22 PM 
 
 
Number: 3 Author: vmuser Subject: Replacement Text Date: 9/17/2008 1:22:17 PM 
The
 
Number: 4 Author: vmuser Subject: Replacement Text Date: 9/17/2008 1:22:19 PM 
function
 
Number: 5 Author: vmuser Subject: Inserted Text Date: 9/17/2008 1:22:25 PM 
needs 
 
Number: 6 Author: vmuser Subject: Inserted Text Date: 9/17/2008 1:22:28 PM 
Gibbs sampling 
 
Number: 7 Author: vmuser Subject: Cross-Out Date: 9/17/2008 1:22:30 PM 
 
 
Number: 8 Author: vmuser Subject: Pencil Date: 9/17/2008 1:23:40 PM 
 
 
Number: 9 Author: vmuser Subject: Replacement Text Date: 9/17/2008 1:22:39 PM 
shown 
 
Number: 10 Author: vmuser Subject: Sticky Note Date: 9/17/2008 1:23:55 PM 
Consider making Dan Rugar a co-author (I should be last on the list)
 
Number: 11 Author: vmuser Subject: Replacement Text Date: 9/17/2008 1:22:50 PM 
describes how we
 
Number: 12 Author: vmuser Subject: Replacement Text Date: 9/17/2008 1:23:09 PM 
Monte Carlo draws from this density can be obtained
 
Number: 13 Author: vmuser Subject: Replacement Text Date: 9/17/2008 1:23:12 PM 
shown
 
Number: 14 Author: vmuser Subject: Replacement Text Date: 9/17/2008 1:23:22 PM 
Algorithm 3
 
Number: 15 Author: vmuser Subject: Cross-Out Date: 9/17/2008 1:23:25 PM 
 
 
Number: 16 Author: vmuser Subject: Replacement Text Date: 9/17/2008 1:23:29 PM 
generated
 
Number: 17 Author: vmuser Subject: Cross-Out Date: 9/17/2008 1:23:33 PM 
 
 



11

[19] S. Bourguignon and H. Carfantan, “Bernoulli-Gaussian spectral analysis
of unevenly spaced astrophysical data,” in Proc. IEEE Workshop on Stat.
Signal Processing (SSP), Bordeaux, France, July 2005, pp. 811–816.

[20] C. Févotte, B. Torrésani, L. Daudet, , and S. J. Godsill, “Sparse linear
regression with structured priors and application to denoising of musical
audio,” IEEE Trans. Audio, Speech, Language Processing, vol. 16, no. 1,
pp. 174–185, Jan. 2008.

[21] I. M. Johnstone and B. W. Silverman, “Needles and straw in haystacks:
empirical Bayes estimates of possibly sparse sequences,” Ann. Stat.,
vol. 32, no. 4, pp. 1594–1649, 2004.

[22] M. Ting, R. Raich, and A. O. Hero, “Sparse image reconstruction using
sparse priors,” in Proc. IEEE Int. Conf. Image Processing (ICIP), Oct.
2006, pp. 1261–1264.

[23] M. Y. Ting, “Signal processing for magnetic resonance force mi-
croscopy,” Ph.D. dissertation, Univ. of Michigan, Ann Arbor, MI, May
2006.

[24] C. P. Robert and G. Casella, Monte Carlo Statistical Methods. New
York: Springer-Verlag, 1999.

[25] M. Lavielle and E. Lebarbier, “An application of MCMC methods for
the multiple change-points problem,” Signal Processing, vol. 81, no. 1,
pp. 39–53, Jan. 2004.

[26] E. Kuhn and M. Lavielle, “Coupling a stochastic approximation version
of EM with an MCMC procedure,” ESAIM Probab. Statist., vol. 8, pp.
115–131, 2004.

[27] N. Dobigeon, J.-Y. Tourneret, and J. D. Scargle, “Joint segmentation
of multivariate astronomical time series: Bayesian sampling with a
hierarchical model,” IEEE Trans. Signal Processing, vol. 55, no. 2, pp.
414–423, Feb. 2007.

[28] N. Dobigeon, J.-Y. Tourneret, and M. Davy, “Joint segmentation of
piecewise constant autoregressive processes processes by using a hierar-
chical model and a Bayesian sampling approach,” IEEE Trans. Signal
Processing, vol. 55, no. 4, pp. 1251–1263, April 2007.

[29] N. Dobigeon and J.-Y. Tourneret, “Joint segmentation of wind speed and
direction using a hierarchical model,” Comput. Stat. & Data Analysis,
vol. 51, no. 12, pp. 5603–5621, Aug. 2007.

[30] N. Dobigeon, J.-Y. Tourneret, and C.-I Chang, “Semi-supervised linear
spectral unmixing using a hierarchical Bayesian model for hyperspectral
imagery,” IEEE Trans. Signal Processing, vol. 56, no. 7, pp. 2684–2695,
July 2008.

[31] M. Bertero and P. Boccacci, Introduction to Inverse Problems in Imag-
ing. Bristol, UK: Institute of Physics Publishing, 1998.

[32] S. Chao, W. M. Dougherty, J. L. Garbini, and J. A. Sidles, “Nanometer-
scale magnetic resonance imaging,” Review Sci. Instrum., vol. 75, no. 5,
pp. 1175–1181, April 2004.

[33] O. Zuger and D. Rugar, “Magnetic resonance detection and imaging
using force microscope techniques,” J. Appl. Phys., vol. 75, no. 10, pp.
6211–6216, May 1994.

[34] O. Zuger, S. T. Hoen, C. S. Yannoni, and D. Rugar, “Three-dimensional
imaging with a nuclear magnetic resonance force microscope,” J. Appl.
Phys., vol. 79, no. 4, pp. 1881–1884, Feb. 1996.

[35] C. L. Degen, M. Poggio, H. J. Mamin, C. T. Rettner, and D. Rugar,
“Nanoscale magnetic resonance imaging,” Proc. Nat. Academy of Sci-
ence, 2008, submitted.

[36] P. C. Hammel, D. V. Pelekhov, P. E. Wigen, T. R. Gosnell, M. M. Midzor,
and M. L. Roukes, “The Magnetic-Resonance Force Microscope: A new
tool for high-resolution, 3-D, subsurface scanned probe imaging,” Proc.
IEEE, vol. 91, no. 5, pp. 789–798, May 2003.

[37] C. M. Stein, “Estimation of the mean of a multivariate normal distri-
bution,” The Annals of Statistics, vol. 9, no. 6, pp. 1135–1151, Nov.
1981.

[38] J. Diebolt and E. H. S. Ip., “Stochastic EM: method and application,”
in Markov Chain Monte Carlo in Practice, W. R. Gilks, S. Richardson,
and D. J. Spiegelhalter, Eds. London: Chapman & Hall, 1996, pp.
259–273.

[39] J. Mamin, R. Budakian, and D. Rugar, “Point response function of an
MRFM tip,” IBM Research Division, Tech. Rep., Oct. 2003.

[40] R. Tibshirani, “Regression shrinkage and selection via the LASSO,” J.
Roy. Stat. Soc. Ser. B, vol. 58, no. 1, pp. 267–288, 1996.

[41] S. Alliney and S. A. Ruzinsky, “An algorithm for the minimization of
mixed l1 and l2 norms with application to Bayesian estimation,” IEEE
Trans. Signal Processing, vol. 42, no. 3, pp. 618–627, March 1994.

[42] R. Gribonval and M. Nielsen, “Sparse representations in unions of
bases,” IEEE Trans. Inf. Theory, vol. 49, no. 12, pp. 3320–3325, Dec.
2003.

[43] C. P. Robert, The Bayesian Choice: from Decision-Theoretic Motiva-
tions to Computational Implementation, 2nd ed., ser. Springer Texts in
Statistics. New York: Springer-Verlag, 2007.

[44] E. Punskaya, C. Andrieu, A. Doucet, and W. Fitzgerald, “Bayesian curve
fitting using MCMC with applications to signal segmentation,” IEEE
Trans. Signal Processing, vol. 50, no. 3, pp. 747–758, March 2002.

[45] S. J. Godsill and P. J. W. Rayner, “Statistical reconstruction and analysis
of autoregressive signals in impulsive noise using the Gibbs sampler,”
IEEE Trans. Speech, Audio Proc., vol. 6, no. 4, pp. 352–372, July 1998.

[46] H. Jeffreys, “An invariant form for the prior probability in estimation
problems,” Proc. of the Royal Society of London. Series A, vol. 186, no.
1007, pp. 453–461, 1946.

[47] ——, Theory of Probability, 3rd ed. London: Oxford University Press,
1961.

[48] L. Landweber, “An iteration formula for Fredholm integral equations of
the first kind,” Amer. J. Math., vol. 73, no. 3, pp. 615–624, July 1951.

[49] C. L. Degen, M. Poggio, H. J. Mamin, C. T. Rettner, and D. Rugar,
“Nanoscale magnetic resonance imaging. Supplementary information,”
Proc. Nat. Academy of Science, 2008, submitted.
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