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Abstract—This paper presents a 4 [shyesian model to reconstruct
sparse images when the observatlons are obtained from linear
ations and corrupted by an additive white Gaussian

transfq

< 3 based on a
weighted mixture of a positive exponential_distribution and a
mass at zero. The j[isjerparameters that 14k

medel are tuned automatlcally m—an—unsu-pemsed—way—'llhey—a-re

Bayesmn model. To overcome the complexnty of the
posterior distribution, a Gibbs sampling strategy is

he ples can ;
used to estimate the image to be recovered, posteriors
of jthe parameters are available—this algorlthm provides more
information than other previously proposed sparse reconstruction
methods that only give a point estimate. The performance of ghe
propesed sparse reconstructlon method is 1llustrated on synthetlc
and real data jpre byv—a-ne AROILeE 3
*magmg—teehnique—eal-led—l\mél—.

Index Terms—Deconvolution, MRFM imagery, sparse repre-
sentation, Bayesian inference, MCMC methods.

I. INTRODUCTION

For several decades, image deconvolution has received
increasing interest in the literature [1], [2]. Deconvolution
mainly consists of reconstructing images from observations
provided by optical devices and may include denoising, deblur-
ring or restoration. The applications are numerous including
astronomy [3], medical imagery [4], remote sensing [5] and
photography [6]. More recently, a new imaging technology, se-
called Magnetic Resonance Force Microscopy (MRFM), has
been developed (see [7] and [8] for recent reviews). This non-
destructive method allows one to improve the detection sen-
sitivity of standard magnetic resonance imaging [9]. Because
of gheir potential atomic-level resolution!, the 2-dimensional
or 3-dimensional images resulting from this technology are
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'Note that the current state of art of the MRFM technology allows one to
acquire images with nanoscale resolution. Indeed, several hundreds of nuclei
are necessary to get a detectable signal. However, atomic-level resolution
might be obtained in the future.

ity. Indeed, as the observed objects

are molecules, most of the image is empty space. In this

paper, a hierarchical Bayesian model is proposed to perform
reconstructlon of such i 1mages

g : ages has motivated
research FI. spectral analy51s in astronomy [10]x3p

seismic
signal analysis in geophysics [11 [12 deconvolution of
ultrasomc B-scans [13} 18], mples: We propose

ere a v Bayesian model that is based on_gfp1]appropri-
ate prior d1str1but10n for the unknown imagg[Psls prior is
composed of a weighted mixture of a standard exponential
distribution and a mass at zero. When the non-zero part of this
prior is chosen to be a centered normal distribution, this prior
reduces to a Bernoulli-Gaussian process. This distribution has
been widely used in the literature to build Bayesian estimators
for sparse deconvolution problems (see [14]-[18] or more
recently [19] and [20]). However, choosing a distribution with
heavier tail may improve the sparsity inducement of the prior.
Combining a Laplacian distribution with an atom at zero
results in the JLAZE prior. This distribution has been used in
[21] to solve a denoising problem in a non-Bayesian quasi-
maximum likelihood estimation framework. In [22], [23], this
prior has also been used for sparse reconstruction of noisy

images, fa—this—paper—a new prior composed of a mass at

zero and a single-sided exponential distribution is introducedg
T . e £ choosi b . Ko
account—the positivity and the sparsity of the pixels in the
image. [The full Bayesian posterior can then be derived from
samples generated by Markov chain Monte Carlo (MCMC)
methods [24].

septo-definethemidtureHafortantehrestimatinethe “hyper-

parameters> involved in the prior distribution described above

is g difficult task, Empirical _golutlons _pave-been proposed in

[22], [23] to deal with this issue.-Whenr-eompared—with-other
EE“E “{El H*EF}*SdS’ ﬂie iESH-]GS iﬁ [22 B [23 are S&Eisf&ete{y &E

. . . . ; ’
’.]g. el bi Ei 'E'gE]]
that-ean—-tead—to—unstable—resultsy In the Bayesian estimation

framework, two approaches are available to estimate these
hyperparameters. One approach couples MCMC methods to
an expectation-maximization (EM) algorithm or to a stochastic
EM algorithm [25], [26] to maximize a penalized likelihood
function. The second approach defines non-informative prior
distributions for the hyperparameters; introducing a second
level of hierarchy in the Bayesian formulation. This jfully
Bayesian approach, adopted in this paper, has been suc-
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cessfully apphed to signal segmentatlon [27]-[29] and semi-
al_imagery [30].

rarchical Bayes1an formulatlon proposed here Ji5

aedicated to

seheme; nlyafew WOTKS 1 ctiteratu E

reconstruction of MRFM image data [32]-[35]. In [36], several
techniques based on linear ﬁltermg maximum-likelihood

'nmplalave been proposed )

ef—t-he—ﬂﬂ-age—te—be—aﬂ-al-y-zed— More recently, Tlng et al. has

introduced sparsity penalized reconstruction methods
v MRFM gfispieations-[23]. The reconstruction problem
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/7T his paper is organized as follows. The deconvolutlon
problem is formulated in Section II. The hierarchical Bayesian
model described in Section III. Section IV presents a
Gibbs sampler that allows one to generate samples distributed
according to the posterior of interest. [ogre—simulation re-
sults, including gemparisen-of-performances; are presented in
Section V for MRFM. Our main conclusions are reported in
Section VIIL

II. PROBLEM FORMULATION

Let X denote a Iy X ... X [, unknown n-dimensional
p1xe1ated 1mage to be recovered (e.g. n = 2 or n = 3).
a collection of P projections

¥ =[y1,...,yp]" which follows the model:
y=T(k,X) +n, (1)
where T (-,-) stands for a bilinear function, n is a P x 1

dimension noise vector and « is the kernel that characterizes

the response of the imaging device. Fypicalpoint—spread
respenses & of MRIEM-tip-can-befound-in{39]Fforthorizental
and-vertical-eonfigurations: In (1), n is an additive Gaussian
noise sequence distributed according to n ~ A (0, 02Ip).
Note that in standard deblurring problems, the function
T (-,-) represents the standard n-dimensional convolution op-
erator ®. In this case, the image X can be vectorized yielding

the unknown image x € RM with M = P = [yl ...l,. With
this notation, Eq. (1) can be rewritten:
y=Hx+n or Y=k®X+N 2)

& [1sf Stem s unbiased risk estimator j|
5. o a s 2

where y (resp. n) stands for the vectorized version of Y (resp.
N) and H is an P x M matrix that describes convolution by
the psf k.

The problem addressed in the following sections consists
of estimating x under sparsity and positivity constraints on x

peeblem thatisastandard-Hncarinversseproblem 527 lhe h1e given the observations y, the psf x and the bilinear function?

III. HIERARCHICAL BAYESIAN MODEL
A. Likelihood function

The observation model defined in (1) and the Gaussian
properties of the noise sequence n yield:

P 2
1 ly =T (=, x)|
2\ _ )
f(ylx,0%) = (2%02> e = I 3)
where ||-|| denotes the standard /5 norm: ||x|* = x7'x.

B. Parameter prior distributions

The unknown parameter vector associated with the observa-
tion model defined in (1) is @ = {x, 02}. In this section, we
introduce prior distributions for these two parameters; which
are assumed to be independent.

1) Image prior: First let consider the exponential distribu-
tion with shape parameter a¢ > 0:

1 ZT;
a(Ti) = — —— ) Irs (@), 4
9o (2:) = —exp (=) I () )
where 1, (z) is the indicator function defined on E:
1, ifzeE,
1g (z) = { 0, otherwise. )
Choosing ¢, () as prior distributions for z; (i = 1,..., M)

leads to a MAP estimator of x that corresponds to a maximum
£1-penalized likelihood estimate with a positivity constraint®.
Indeed, assuming the component x; (: = 1,..., P) a priori
independent allows one to write the full prior distribution for

T
X =[z1,...,TMm]
nY X
w0 = (1) e (-EL)1n e, ©
where {x > 0} {xeRM;2z; >0,vi=1,...,M} and

||-||; is the standard ¢; norm |x||; = >, |=;|. This estimator
has shown interesting sparse properties for Bayesian estima-
tion [41] and signal representation [42].

Coupling a standard probability density function (pdf) with
an atom at zero is another elassieal alternative to ensure
sparsity. This strategy has for instance been used for located
event detection [14] such as spike train deconvolution [11],
[17]. In order to increase the sparsity of the prior, we propose

2In the following, for sake of conciseness, the same notation T (-, -) will
be adopted for the bilinear operations used on n-dimensional images X and
used on M x 1 vectorized images X.

3Note that a similar estimator using a Laplacian prior for z; (i = 1,..., M)
was proposed in [40] for regression problems and is usually referred to as the
LASSO estimator but without positivity constraint.
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III. HIERARCHICAL BAYESIAN MODEL

A. Likelihood function

The observation model defined in (1) and the Gaussian
properties of the noise sequence n yield:

P 2
1 ly =T (=, x)|
2\ _ )
f(ylx,0%) = (2%02> exp <_W )
where ||-|| denotes the standard /5 norm: ||x|* = x7'x.

B. Parameter prior distributions

The unknown parameter vector associated with the observa-
tion model defined in (1) is @ = {x, 02}. In this section, we
introduce prior distributions for these two parameters; which
are assumed to be independent.

1) Image prior: First let consider the exponential distribu-
tion with shape parameter a¢ > 0:

1 ZT;
a(Ti) = — —— ) Irs (@), 4
9o (2:) = —exp (=) I () )
where 1, (z) is the indicator function defined on E:
1, ifzeE,
1g (z) = { 0, otherwise. )
Choosing ¢, () as prior distributions for z; (i = 1,..., M)

leads to a MAP estimator of x that corresponds to a maximum
£1-penalized likelihood estimate with a positivity constraint®.
Indeed, assuming the component x; (: = 1,..., P) a priori
independent allows one to write the full prior distribution for

T
X =[z1,...,TMm]
nY X
w0 = (1) e (-EL)1n e, ©
where {x > 0} {xeRM;2z; >0,vi=1,...,M} and

||-||; is the standard ¢; norm |x||; = >, |=;|. This estimator
has shown interesting sparse properties for Bayesian estima-
tion [41] and signal representation [42].

Coupling a standard probability density function (pdf) with
an atom at zero is another aﬁieal alternative to ensure
sparsity. This strategy has for instance been used for located
event detection [14] such as spike train deconvolution [11],
[17]. In order to increase the sparsity of the prior, we propose

2In the following, for sake of conciseness, the same notation T (-, -) will
be adopted for the bilinear operations used on n-dimensional images X and
used on M x 1 vectorized images X.

3Note that a similar estimator using a Laplacian prior for z; (i = 1,..., M)
was proposed in [40] for regression problems and is usually referred to as the
LASSO estimator but without positivity constraint.
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to use the following distribution derived from g, () as prior
distribution for z;:

f(zilw,a) = (1 —w)d (x;) + wg, (z;), @)

where § (-) is the Dirac function. This prior is similar to
the LAZE distribution (Laplacian pdf and an atom at zero)
introduced in [21] and used, for example, in [22], [23] for
MRFM. However, the proposed prior in (7) allows one to take
into account the positivity of the pixel value to be estimated.
By assuming the components x; to be a priori independent
(¢ =1,...,M), the following prior distribution is obtained
for x:
M
J (lw,a) = [TI(1 = w)d (@) +wga ()] (®)

=1

_ Introducing the index subsets Zg = {i;z; = 0} and Z; =
Zo = {i;x; # 0} allows one to rewrite the previous equation
as follows:

f (x|w,a) = [(1 —w)™ ] 5(%)1 [w" I1 v« (xi)] 7

i€Zo i€
©)
with n. = card {Z.}, ¢ € {0,1}. Note that ng = M — ng
and n; = ||x||, where [-||, is the standard £, norm ||x||, =

#{i;z; # 0}

2) Noise variance prior: A conjugate inverse-Gamma dis-
tribution with parameters § and 3 is chosen as prior distribu-
tion for the noise variance [43, Appendix A]:

2 vy
9 ~ I (77 7) .
oy ~16(35
In the following, v will be fixed to ¥ = 2 and v will be an
hyperparameter to be estimated (see [28], [30], [44]).

(10)

C. Hyperparameter priors

The hyperparameter vector associated with the previous
prior distributions is ® = {a,~y,w}. Obviously, the accuracy
of the proposed Bayesian model depends on the values of
these hyperparameters. If prior knowledge, e.g. mean number
of the non-zero pixels, is available, these parameters can be
tuned manually to their actual values. However, in practical
situations, such prior information is not available. In this case,
as outlined in Section I, these hyperparameters can be esti-
mated directly from the data. Priors for these hyperparameters,
sometimes referred to as “hyperpriors” are detailed below.

1) Hyperparameter a: A conjugate inverse-Gamma distri-
bution is assumed for hyperparameter a:

alae ~IG (g, 1),

(1)

with o = [ao,al]T. The fixed hyperparameters ag and o
have been chosen to obtain a vague prior: ag = oy = 10719
(see for example [45] for a similar choice).

2) Hyperparameter y: informative Jeffreys’ prior [46],
[47] is assumed for hyperparameter ~:

f(7) o %lm () (12)

wo w1 e (651
w a i SV
X 0'2
Fig. 1. DAG for the parameter priors and hyperpriors (the fixed hyperpa-

rameters appear in dashed boxes).

3) Hyperparameter w: A conjugate beta distribution with
fixed hyperparameters w; and wy is chosen as prior distribution
for w:

wlw ~ B (wy,wo), (13)

with w = [wo,w1]” and where B(a,b) denotes the Beta
distribution with parameters (a,b). Note that by choosing
wo = wi = 1, the Beta distribution reduces to the uniform
distribution on [0, 1], which gives the least informative prior.

Assuming that the individual hyperparameters are indepen-
dent the full hyperparameter prior distribution for ® can be
expressed as:

f(@la,w) = f(w) f(7)f(a)
B w1 (1 - w)wo_1

awyB (w1, wp)

1[071] (w) 1+ (CL) 1p+ (7) )

(14)
with B (wy,wp) = %
function.

, where I'(+) denotes the Gamma

D. Posterior distribution

The posterior distribution of {8, ®} can be computed as
follows:

(6, ®ly,a,w) < f(y]0) f (6]®) f (®|a,w),
with

15)

f(01®) = f (x|a,w) f (o°]7), (16)

where f (y|@) and f (®|a,w) have been defined in (3) and
(14). This hierarchical structure, represented on the directed
acyclic graph (DAG) in Fig. 1, allows one to integrate out
the parameter o2 and the hyperparameter vector ® in the full
posterior distribution (15), yielding:

B(W1+TL1,WO+TLO) P(TL1+OLQ)
f (X|y’ a,w) X P ni+aoao
ly =T (e, x)lI" [lIx[l, + i
a7
where, as defined in paragraph III-B1, n; = ||x[|, and ng =
M — (x|,

The next section presents_an appropriate Gibbs sampling
strategy [24] that allows on to generate samples distributed
according to the posterior distribution f (x|y, o, w).
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IV. A GIBBS SAMPLING STRATEGY
FOR SPARSE IMAGE RECONSTRUCTION

i [1his section gp]Gibbs sampling strategy

, [Sleners mples {x(t)} distributed
accordmg to the posterior dlStI‘lbuthIl in (17). As simulating
directly according to (17) is a difficult task, it is much
more convenient to generate samples distributed according to
the joint posterior f (x,02|y, o, w). The main steps of this
algorithm are detailed in subsections IV-A and IV-B (see also
Algorithm 1 below).

ALGORITHM 1:

Gibbs sampling algorithm for sparse image reconstruction

« Initialization:
— Sample parameter x©) from pdf in (9),
— Sample parameters 72O from the pdf in (10),
— Sett <+ 1,
o Iterations: for t = 1,2,..., do
1. Sample hyperparameter w® from the pdf in (19),
2. Sample hyperparameter a® from the pdf in (20),
3. Fori=1,..., M, sample parameter xzw from pdf in
1),
4. Sample parameter 52® from the pdf in (24),
5. Sett«—t—+1.

A. Generation of samples according to f (x !02, y, o, w)

To generate  samples  distributed according to
|a Y, w ) it is very convenient to sample according to
f X, W, a }a Y, w ) in the following 3-step procedure.
1) Generation of samples according to f (w|x,w): Using
(9), the following result can be obtained:

fwlx,w) oc (1 —w)rotwolymter—l (18)
where ny and n; have been defined in paragraph III-BI.
Therefore, generation of samples according to f (w|x,w) is
achieved as follows:

w|x,w ~ Be(wy + ny,wo + no) - (19)

2) Generation of samples according to f (a|x,a): Look-
ing at the joint posterior distribution (15), it yields:

alx,a ~IG (|lx[lo + ao, [Ix[l, +a1). (20)

3) Generation of samples according to f (x |w,a, ag,y):
The prior chosen for z; ( = 1,...,M) yields a poste-
rior distribution of x that is not closed form. However, the
posterior distribution of each component x; (: = 1,..., M)
conditionally upon the others can be easily derived. Indeed
straightforward computations detailed in Appendix A yield:

x (1 —w;)d (x;)
+ wi¢+ (xi|,ui7 7712) 5

where x_; stands for the vector x whose ith component has
been removed and p; and n? are given in Appendix A. In

. 2 )
f(xl\w,a,a ,sz,y) (21)

(21), ¢4 (+,m, s?) stands for the pdf of the truncated Gaussian
distribution defined on R’ with hidden parameters equal to

mean m and variance s2:
1 T —m)?
¢+(a:,m8)—c( 2)expl—( 252)]1]}{1@)’
(22)
with
2
C (m,s2) = % [1 + erf (\/ZLQ)] . @)
s

The form in (21) specifies ;|w,a,0?,x_;,y as a Bernoulli-
truncated Gaussian variable with parameter (w;, yi;, 7). Ap-
pendix C presents an algorlthm that can be used to generate
samples € o is distribution.

To summarize, generating samples distributed according to
f(x|w,0% a,,y) can be performed by updating the coor-
dinates of x successively using M Gibbs moves (requiring
generation of Bernoulli-truncated Gaussian variables).

B. Generation of samples according to f (02 %, y)

Samples are generated as the following way:

2
2|XyNIg< Iy -7 >||>_ o1
V. SIMULATION ON SYNTHETIC IMAGES
TABLE I
PARAMETERS USED TO COMPUTE THE MRFM PSF.
Parameter
Value

Description Name
Amplitude of external magnetic field Bext 9.4 x 10 G
Value of B, in the resonant slice Bhres 1.0 x 10* G
Radius of tip Ro 4.0 nm
Distance from tip to sample d 6.0 nm
Cantilever tip moment m 4.6 x 105 emu
Peak cantilever oscillation oscillation Tpk 0.8 nm
Maximum magnetic field gradient G'max 125

N
o
L]

=)
L}

Fig. 2.
estimated.

Left: Psf of the MRFM tip. Right: unknown sparse image to be



Page: 4

Subject: Replacement Text

Date: 9/17/2008 12:58:34 PM

@ Number: 1 Author: vmuser
In

@ Number: 2 Author: vmuser

Subject: Inserted Text Date: 9/17/2008 12:58:36 PM

we describe the

Subject: Replacement Text

Date: 9/17/2008 12:58:41 PM

Number: 3 Author: vmuser
@for

\ﬂ Number: 4 Author: vmuser

Subject: Replacement Text

Date: 9/17/2008 12:58:44 PM

generating

@ Number: 5 Author: vmuser

Subject: Replacement Text

Date: 9/17/2008 12:58:54 PM

from



A. Reconstruction of 2-dimensional image

In this subsection, a 32 x 32 synthetic image, depicted in
Fig. 2 (right), is simulated using the prior in (9) with parameter
a = 1 and w = 0.02. In this figure and in the following
ones, white pixels stands for identically null values. A general
analytical derivation of the psf of the MRFM tip has been
given in [39] and is explained in [23]. Following this model,
a 10 x 10 2-dimensional convolution kernel, represented in
Fig. 2 (left), has been generated when the physical parameters
are tuned to the values gathered in Table I. The corresponding
matrix H introduced in (2) is of size 1024 x 1024. The
observed measurements y, depicted in Fig. 2 (right) are of size
P = 1024. These observations are corrupted by an additive
Gaussian noise with two different variances 0? = 1.2 x 10~}
and 02 = 1.6 x 1073, corresponding to signal-to-noise ratios
SNR = 2dB and SNR = 20dB respectively.

1) Simulation results: The observations are processed by
the proposed algorithm that consists of Nyc = 2000 iterations
of the Gibbs sampler with N,; = 300 burn-in iterations. Then
the MAP estimator of the unknown image x is computed by

g[fmong X = {x®} the generated sample
that maximizes the posterior d1str1but10n in (17):

Xmap = argmax f (x|y)
xERf

~ argmax [ (x]y).
xeX
These estimates are deplcted in Flg 3 for the two levels of
noise con51dered

(25)

Fig. 3.
20dB). Bottom, left (resp. right): reconstructed image for SNR = 2dB (resp.
20dB).

Top, left (resp. right): noisy observations for SNR = 2dB (resp.

Moreover, as the proposed algorithm generates samples
distributed according to the posterior distribution in (17), these
samples can be used to compute the posterior distributions of
each parameter. As examples, the posterior distributions of the
hyperparameters a and w, as well as the noise variance o2,
are shown in Fig. 4, 5 and 6. These estimated distributions are
in good agreement with the aetua)j[1slues of these parameters

f(aly)
o
PO
TT———
faly)
o
AN

Fig. 4. Posterior distribution of hyperparameter a (left: SNR = 2dB, right:
SNR = 20dB).

m 100 ﬁ\

60 / 80
/ \
§40 / Y % 60
40 |
20 / . // \\
oL/ N . oL~ \\
0 0.02 0.04 0.06 0 0.02 0.04 0.06
W w

Fig. 5. Posterior distribution of hyperparameter w (left: SNR = 2dB, right:
SNR = 20dB).

100 6000

NI =

4000

= = |
& ‘ <& 3000 (
= 40 =
) 2000 )
20 / 1000 ) \
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Fig. 6. Posterior distribution of hyperparameter o2 (left: SNR = 2dB, right:
SNR = 20dB).

The posterior distributions of four dlfferent pixels are de—
picted in Fig. 7. These posteriors are a Anereeieny
the actual values of these pixels that are represented tted
red ling[gh these figures.

2 ) Comparlson of reconstruction performances the—resu-l-ts

[22] [23] are based on algorlthms that perform empirical
estimation of the unknown hyperparameters. Therein, two
empirical Bayesian estimators, denoted Emp-MAP-Lap and
Emp-MAP-LAZE, based on a Laplacian or a LAZE prior
respectively, a sekiedd Tjerewe—compare—the—estne

L N 0 NMAP _ectimata
5 S g = atofr—ahd ato

andTV—The SE gstimator of the unknown parameter x is
obtained by ket empirical averaging over the last NV, = 1700
outputs of the grshpler according to:

Xvmse = B [X|}’]

' 1 NT
~ (Npi+t)
C N, ;X '

(26)
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TABLE I
RECONSTRUCTION PERFORMANCES FOR DIFFERENT SPARSE
DECONVOLUTION ALGORITHMS.

Fig. 7. Posteriors distributions of the non-zero values of x for SNR = 20dB,
(actual values are depicted with dotted red lines).

-
11
12th the estimator provided

tandard Landweber algonthm [48]
15 5
severa performanceJtg e = x — X denote
the reconstruction error when X is the estimator of the image

X to be recovered. j

116

of the

by, ¢1 and #9-norms of

measur acc

A

Method Error criterion

lel, Tlells llell,  llell, %o IIxlls

SNR = 2dB
Landweber 1024 990 339.76  13.32 1024 990
Emp-MAP-Lap 18 17 14.13 4.40 0 0
Emp-MAP-LAZE 60 58 9.49 1.44 55 55
Proposed MMSE 1001 30 3.84 0.72 1001 27
[“Roposed MAP 19 16 238 081 13 13

J SNR = 20dB
Landweber 1024 931  168.85 6.67 1024 931
Emp-MAP-Lap 33 18 1.27 0.31 28 23
Emp-MAP-LAZE 144 19 1.68 0.22 144 27
Proposed MMSE 541 0.36 0.11 541 16
Proposed MAP 19 0.39 0.13 16 16

reconstructiony[7[ the £o-norm of the estlmator H. measurg g

its sparsity. Mereever-asneticed in [23], small non-zero values

of the pixel are usually not distinguishable from exactly zero

values by a human being. FeHowing—this—remark, a less strict
measure of sparsity than the £y-norm has-been-introduced—This

less than a given threshold d:

M
||)A(||6 = Z 1£i<5 (jz
=1

" 27
lells = > Lei<s (ei)-
i=1
It what follows, J has been chosen as 6 = 1072 ||x||

summarize, the following criteria have been computed for the
image in paragraph V-Al for two levels of SNR: |le||,, [le]|s
lelly. llelly. %]y and [%]l5.

Table II gathers the six performance measures for the
five different studied—algorithms, it—eleafl-y—appeafs—ﬂﬁt—ehe
proposed Bayesian method| outperforms the others in ghe ¢4
or {y-norm gvaluations—efthe—error reconstruction,—whatever
the-estimator—choser—(MAP—-or-MMSE): [Fhis—ean—be—easily
explained-by—the—aeceurate—estimation—otthehyperpararmeters
that-an MMSE estimation of the unknown image prields—te-—a
non sparse estimator in g-¢o-norm sense. This gan-be-explained
by—a-very grealy posterior probability of havirg non-zero value

4The introduced measure of sparsity is denoted ||-||s. However, it has to
be mentioned that is not a norm.

B. Reconstruction of undersampled 3-dimensional images

_&n this subsection, geﬂ&e—ﬁmu}&&eﬂ—feﬁﬂes—afe—pfesemed

eﬂ—&ndefsampled—SD—&n&ges— Flrst a 24 X 24 X 6 1mage is

generated such as 4 pixels have non-zero values in each z
slice. The resulting data is depicted in Fig. 8 (right) and Fig. 10
(top). This image to be recovered is assumed to be convolved
with a 5 x5 x 3 kernel that is represented in Fig. 8 (right). The
resulting convolved image is depicted in Fig. 9 (left). However,
the actually observed image is pssumed-to-be-an undersampled
version of this image. More precisely, the sampling rates are
assumed to be d, = 2, d, = 3 d, = 1 respectively in the 3
dimensions. Consequently the observed 3D image, shown in
Fig. 9, is of size 12 x 8 x 6. Finally, an i.i.d. Gaussian noise
with ¢ = 0.02 is added following the model in (1). Note that
under these assumptions, the application T (-,-) can be split
into two standard operations following the composition:

T(k,X) = 9d,,d,.d. (k@ X), (28)

where g4, a,.4. (-) stands for the undersampling function.

Thepropeged Bayesian algorithm is used to perform the
sparse reconstructiony The number of Monte Carlo runs fas

been fixed to NMC = 2000 with Nb1 = 200 burn-in iterations.
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Fig. 7. Posteriors distributions of the non-zero values of x for SNR = 20dB,
(actual values are depicted with dotted red lines).
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several measares—of performanc%Fifst—}e% e = x — X denote
the reconstruction error when X is the estimator of the image
x to be recovered. Fo-measure-the-performance-oi-the-sparse
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fy, ¢1 and {y-norms of ¢ te measurg the accuracy of the
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in [23] small non-zero values

measure?, denoted ||-|| 5, fzghe number of‘qpoﬂen%s that are

less than a given threshold 6:

M
||)A(||6 = Z 1£i<5 (jz
=1

" 27
lells = > Lei<s (i)
i=1
It what follows, J has been chosen as 6 = 1072 ||x||

summarize, the following criteria have been computed for the
image in paragraph V-Al for two levels of SNR: |le||,, [le]|s

llelly> llello. 1%llo and [[x][s.

Table II g the six performance measures for the
five different algorithms[aJssHearly—appes
proposed Bavesian methoi.tperfor 46khe othe 61
or /5-norm oRstry

that-an MMSE estimation of the unknown image prields—te-—a

non sparse estimator in g-¢o-norm sense. This gan-be-explained
by—a-very grealy posterior probability of havirg non-zero value

4The introduced measure of sparsity is denoted ||-||s. However, it has to
be mentioned that is not a norm.

Method Error criterion

lel, Tlells llell,  llell, %o IIxlls

SNR = 2dB
Landweber 1024 990 339.76  13.32 1024 990
Emp-MAP-Lap 18 17 14.13 4.40 0 0
Emp-MAP-LAZE 60 58 9.49 1.44 55 55
Proposed MMSE 1001 30 3.84 0.72 1001 27
[“Roposed MAP 19 16 238 081 13 13

J SNR = 20dB
Landweber 1024 931  168.85 6.67 1024 931
Emp-MAP-Lap 33 18 1.27 0.31 28 23
Emp-MAP-LAZE 144 19 1.68 0.22 144 27
Proposed MMSE 541 0.36 0.11 541 16
Proposed MAP 19 0.39 0.13 16 16

B. Reconstruction of undersampled 3-dimensional images

ses: First, a 24 X 24 X 6 1mage is
generated such as 4 plxels have non-zero values in each z
slice. The resulting data is depicted in Fig. 8 (right) and Fig. 10
(top). This image to be recovered is assumed to be convolved
with a 5 x5 x 3 kernel that is represented in Fig. 8 (right). The
resulting convolved image is depjicted in Fig. 9 (left). However,
the actually observed image is'Ha} r undersampled
version of this image. More precisely, the sampling rates are
assumed to be d, = 2, d, = 3 d, = 1 respectively in the 3
dimensions. Consequently the observed 3D image, shown in
Fig. 9, is of size 12 x 8 x 6. Finally, an i.i.d. Gaussian noise
with ¢ = 0.02 is added following the model in (1). Note that
under these assumptions, the application T (-,-) can be split
into two standard operations following the composition:

T (k,X) = gd,,dy.d. (k@ X),

4. (+) stands for the undersampling function2
deellls7yesian algorithm is used to perform the

(28)

sparse reconstructiong[sghe number of Monte Carlo runs jas
been fixed to NMC = 2000 with Np; = 200 burn-in iterations.
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Fig. 7. Posteriors distributions of the non-zero values of x for SNR = 20dB,
(actual values are depicted with dotted red lines).

with the estimator provided
tandard Landweber algonthm [48]y
wit 0
several measares—of performanc%Fifst—}e% e = x — X denote
the reconstruction error when X is the estimator of the image
x to be recovered. Fo-measure-the-performance-oi-the-sparse
recppstrrehor—erteri—inspired—by{ 23 havebeen—used: the

fy, ¢1 and {y-norms of ¢ te measurg the accuracy of the
reconstructionj and the £y-norm of the estimator Xj-te measurg_

its sparsity. Mereever-asneticed in [23], small non-zero values

of the pixel are usually not distinguishable from exactly zero

values by a human being. FeHowing—this—remark, a less strict
measure of sparsity than the £y-norm has-been-introduced—This

less than a given threshold d:

M
||)A(||6 = Z 1£i<5 (jz
=1

" 27
lells = > Lei<s (ei)-
i=1
It what follows, J has been chosen as 6 = 1072 ||x||

summarize, the following criteria have been computed for the
image in paragraph V-Al for two levels of SNR: |le||,, [le]|s
llelly> llello. I%llo and [[x][s.

Table II gathers the six performance measures for the

five different studied—algorithms, it—eleafl-y—appeafs—ﬂﬁt—ehe
proposed Bayesian method| outperforms the others in ghe ¢4

or ég -norm _gvaluations—of—the—errorreconstruction;,—whatever

3 MMSE estlmatli n of the unknown 1mage
h N

non sparse estimator in'ggsp-norm sense._This geg]

E :
by-a-very sk [eoJsterior probability of ﬁmg non-zero value

4The introduced measure of sparsity is denoted ||-||s. However, it has to
be mentioned that is not a norm.

_for-each pixel-Alessdraconian-deeision;by-using-the sparsity

measure |-||; for—instance—ean—overcome—this—drawbaeck—as
sheown-in-the Table. Hinally—the MAP estimator seems—te-be-a

very-powerful-estimatorforthesparse—reconstruetionproblem
as—it seems to balance the sparsity of the solution and the
minimization of the reconstruction error. However, j—has—o

be-noticed-that MMSE estimation gentains—mere—information
thepa-potatestimaticnaidcanbeusellto-deriveconfidenee
tervats,

TABLE II

RECONSTRUCTION PERFORMANCES FOR DIFFERENT SPARSE
DECONVOLUTION ALGORITHMS.

Method Error criterion

lel, Tlells llell,  llell, %o IIxlls

SNR = 2dB
Landweber 1024 990 339.76  13.32 1024 990
Emp-MAP-Lap 18 17 14.13 4.40 0 0
Emp-MAP-LAZE 60 58 9.49 1.44 55 55
Proposed MMSE 1001 30 3.84 0.72 1001 27
[“Roposed MAP 19 16 238 081 13 13

J SNR = 20dB
Landweber 1024 931  168.85 6.67 1024 931
Emp-MAP-Lap 33 18 1.27 0.31 28 23
Emp-MAP-LAZE 144 19 1.68 0.22 144 27
Proposed MMSE 541 0.36 0.11 541 16
Proposed MAP 19 0.39 0.13 16 16

B. Reconstruction of undersampled 3-dimensional images

_&n this subsection, geﬂ&e—ﬁmu}&&eﬂ—feﬁﬂes—afe—pfesemed

en—&ndefsampled—SD—&n&ges— Flrst a 24 X 24 X 6 1mage is

generated such as 4 pixels have non-zero values in each z
slice. The resulting data is depicted in Fig. 8 (right) and Fig. 10
(top). This image to be recovered is assumed to be convolved
with a 5 x5 x 3 kernel that is represented in Fig. 8 (right). The
resulting convolved image is depicted in Fig. 9 (left). However,
the actually observed image is pssumed-to-be-an undersampled
version of this image. More precisely, the sampling rates are
assumed to be d, = 2, d, = 3 d, = 1 respectively in the 3
dimensions. Consequently the observed 3D image, shown in
Fig. 9, is of size 12 x 8 x 6. Finally, an i.i.d. Gaussian noise
with ¢ = 0.02 is added following the model in (1). Note that
under these assumptions, the application T (-,-) can be split
into two standard operations following the composition:

T(k,X) = 9d,,d,.d. (k@ X), (28)

where g4, a,.4. (-) stands for the undersampling function.

Thepropeged Bayesian algorithm is used to perform the
sparse reconstructiony The number of Monte Carlo runs

been fixed to NMC = 2000 with Nb1 = 200 burn-in 1terat10ns
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VI. APPLICATION ON REAL MRFM IMAGES

resolution—of—MREM: The observed sample consists of a
collection of Tobacco mosaic virus particles that are divided
into a whole gizlment g fragments. The g
stepal4s computed from the measured proton drstrlbutron and
the 3-dimensional psf following the protocol described in [35]
and [49]. The resulting scan data are depicted in Figure 11
(top) for four different distances between the MRFM tip and
the sample: d = 24nm, d = 37nm, d = 50nm and d = 62nm.
Each of these x-y slices is of size 60 X 320

These experimental data are undersampled, i.e. the spatial
resolution of the MRFM tip, and therefore the psf function, is
finer than the resolution of the observed slices. Consequently,
these data have been deconvolved taking into account the
oversampling rates defined by d, = 3, dy =2 and d, = 3
in the three directions. The MAP estimate of the unknown

y y

Fig. 9. Left: 24 X 24 x 6 regularly sampled convolved image. Left: 12X 8 x 6
undersampled observed image.

image is computed Nyc = 1000 (with Ny; = 200) (5] the
proposed Bayesian algorithmy[g)itialized with the output of g7le
Landweber iteratiorl@" hree horizontal slices of the estimated
image’ i ig [iopicted in Figure 12. A 3-dimensional view of the
estimated proﬁle of the virus fragments is a ‘
Figure 13. The MMSE estimates of the parameters 1ntroduced
in Section III are 6y = 0.10, dvmse = 1.9 x 107!2 and
WMmMSE = 1.4 X 1072,

reconstruction error is represented in Figure 14 as a functron
of the iterations for the proposed Bayesian and the Landweber
algorithms. i [22ht the convergence rate of our

SNote that most part of the estimated 3 dimensional image is empty space
due to the very localizated position of the imaged data.
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Fig. 11. Top: experimental scan data. Bottom: scan data computed from the proposed Bayesian reconstruction.
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VII. CONCLUSIONS
This paper presented a jphyesian [henpli g algorithm for
i ationaf-sparse j[sjages corrupted by additive
Gaussian noise. A Bernoulli-truncated exponential distribution
was proposed as prior distribution for the sparse image to be

ecovered. The ffg]perparameters of the model were

distribution._An efficient Gibbs sampler golew
ate samples according to this posterior distribution.
The derived Bayesian estimators jfi1jperformed—significas

Fig. 13. 3-dimensional view of the estimated profile of the Tobacco virus
fragments.

APPENDIX A
DERIVATION OF THE CONDITIONAL

algorithm is significantly better than the Landweber algorithm.
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Our approach was implemented on real MRFM data to form a 3D image of a tobacco virus. Future work will include extension of the proposed method to other sparse bases,
inclusion of uncertain point spread functions, and investigation of molecular priors.



POSTERIOR DISTRIBUTION f (z; |w,a,0% x_;,y)

The posterior distribution of each component x; (i =
1,..., M) conditionally upon the others is linked to the
hkehhood functlon (3) and the prior distribution (7) via the

f ($i|w7aa027x—i7}’) X f (y|X702) f(xi|w7a) . (29)

This distribution can be easily derived by decomposing x on
the standard orthonormal basis
(30)

IB:{ul,...,u]\/[}7

where u; is the ith column of the M x M identity matrix.
Indeed, let decompose
X:ii+xiui7 (31)
where X; is the vector x whose ¢th element has been replaced
by 0. Then the linear property of the operator T (k, -) allows
one to state:
T(k,x)

=T (k,%;) +z;T (r,u;). (32)

Consequently, (29) can be rewritten

le; — @hy*
f (xi‘ﬂhavgzax—i»}’) X exp (lgl)
20 (33)
w €Z;
X [(1 —w)d (x;) + - XD <_E) Ir: (%‘)} )

where®

{ein(n,ii), (34)

hj, = T(n,ui) .

An efficient way to compute e; within the Gibbs sampler
scheme is reported in Appendix B. Then, straightforward
computations similar to those in [11] and [50, Annex B] yield
to the following distribution:

f (.’EZ"U}, a, 027 X iy Y)

x (1 —w;)d (x;)

(35)
+ wi¢+ (SC,L|,LL“ 7712) )
with
2
o
"
’ 36
2 (h?et 1) ( )
Hi =My \ — 5~ — — |
o a
and
w 2
u, = —C (ui,vﬁ) exp <21%2> ’
a ; 37)

Uj
Wy = ————————.
u; + (1 —w)

The distribution in (35) is a Bernoulli-truncated Gaussian
distribution with hidden mean p; and hidden variance 7?.

61t can be noticed that, for deblurring applications, h; is also the ith column
of the matrix H introduced in (2).

APPENDIX B
FAST RECURSIVE COMPUTATIONS
FOR SIMULATING ACCORDING TO f (x |w,a,0?,y)

In the Gibbs sampling strategy presented in Section IV,
the main computationally expensive task is the generation
of samples distributed according to f (z;|w,a,0% x_;,y).
Indeed, the evaluation of the hidden mean and hidden variance
in (36) of the Bernoulli-truncated Gaussian distribution may be
costly, especially when the bilinear application 7T (-, -)
is not easily computable. In this appendix, an appropriate
recursive strategy is proposed to gapke-this Gibbs g .
Shore—pre 5 e efﬁ01ently

coordinate ¢ of the vector x at iteration ¢ of the Gibbs sampler
Let x(*~1) denote the current Monte Carlo state of the

unknown vectorized image x (+ = 1,..., M):
. T
w(ti=1) — {xﬁ”,.-.7 Et)p Z(t 1) gt+—11)7.'.,zg\t4—1) )
(38)
with, by definition, x(*0 = x(t=LM) Updating x(*¢—1)

consists of drawing xl(t) according to the Bernoulli-truncated

Gaussian distribution f(xZ w,a,az,x(_t;»i_l),y> in (21)
with:
T
x®i=Y = [gt),...7 =0, 511”,...,30%7”} (39)

The proposed strategy to simulate efficiently according to
(21) is based on the following property.

Property:  Given the quantity T (K,, X(O)) and
the vectors {h;},_, ,,, simulating according to
f (mz w,a,0? x( ) ),y) can be performed without g7petti
to the bilinear gg} g T (-, ).

Proof: Simulating according to (21) mainly requires to
compute the vector e; introduced by (34):

y— T(m (b 1))’ (40)
with
- T
D) _ [xgt)’ L 5”1707335111)’ . 7335\71)} 41)

Moreover, by using the decomposition in (31) and by exploit-
ing the linear property of T (k,-), the vector T ( k, x(t =1

in the right-hand side of (40) can be rewritten as:
T (R’ igt,z’—l)) -7 (K’ X(mfl))

where h; has been introduced in (34). Consequently, to prove
the property, we have to demonstrate that the vector series
{T (n, x(t’k)) }k:Lm’M can be computed recursively without
using 7' (-, -). Assume that 7" (k,x*11)) is available at this
stage of the Gibbs sampling and that xgt) has been drawn. The
new Monte Carlo state is then:

— 2"V, (42)

VR (43)

"a7,1717

x<tﬂ'>:[x<f>,, MO0 x%;l)}T
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Similarly to (42), the vector T' (k,x(*?) can be decomposed
as follows:

T (kxt) =7 (,x50) 42l @)
Therefore, combining (42) and (44) allow one to state:
T (,{)X(t,i)) - T (Kl7x(t,i—1)) + (xl(t) _ xl(_tfl)) h,.
|

§ !ﬂﬁ—only 5]
be used at the very beginning of the 30r1thm to evaluate
T (k,x%)) and the vectors {h;},_; . The resulting sim-
ulation corresponding to step 3 of Algorithm 1 is

Holtatted in Algorithm 2.
ALGORITHM 2:
Efficient simulation according to f (x |w,a,0%,y)
For ¢« =1,..., M, update the ¢th coordinate of the vector

(t-1)

x(t7171> = {wgt)7 R Et)17

T
(tfl) (t—1)

via the following steps:

1. compute |

2 set T (s, %" V) = 7 (s, x®70) — a2l D,

3. sete; =x—T (n, 5(5“71)

4. compute p;, n7 and w; as defined in (36) and (37),

5. draw xﬁt according to (21),

6. set x(t) = [x@, AL NS 1",
7. set T (n, x“’“) =T (fq,igt’“lg + xgt)hi.

APPENDIX C
SIMULATION ACCORDING TO A
BERNOULLI-TRUNCATED GAUSSIAN DISTRIBUTION

This appendix g generate ran-
dom variables distributed accordmg to a Bernoulli-truncated
Gaussian distribution with parameters (w, m, s ) whose pdf
is:

f(z[A,m,s*) = (1—)\)d(z)
+C'(TT>1\782)6XP 7% l]Rjr (Z‘)

where C' (m, s?) has been defined in (23). ,
be-conducted by us1ng an auxiliary binary varlable € followmg

the strategy in Algorithm 3.

: ve, Ber (-) and N'* (-,-)
denote the Bernoulh and the pos1t1 e truncated Gaussian
distributions respectively. In step 2, samples
d1str1buted according to the truncated Gauss1an distribution can

by using an appropriate accept-reject procedure
instrumental distributions [51]-[53].

ALGORITHM 3:

Simulation according to
a Bernoulli-truncated Gaussian distribution

1. generate € according to £ ~ Ber (A),

) setd T 0, if e =0;
’ z~ Nt (m,s%), ife=1
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