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ABSTRACT 2. PROBLEM FORMULATION

In this paper, we consider the problem of image reconstruction from
the noisy blurred version of an original image when the blurring op-
erator is partially known and the original image is sparse. Using
optimization transfer, we derive a novel iterative algorithm in closed-
form that incorporates both sparseness and partial knowledge of the
image. We demonstrate the performance of the algorithm using sim-
ulations.

Index Terms- Deconvolution, image reconstruction, sparse ma-
trices.

1. INTRODUCTION

Image deconvolution is a well-studied problem in image process-
ing [1]. The task at hand is that of obtaining an image from a noisy
blurred version. In the standard formulation of the problem, the blur-
ring operator is a linear convolution of the original image with a
known point spread function (PSF).

One modification of the original problem is considered when the
PSF associated with the blurring operator is only partially known.
Semi-blind reconstruction methods take advantage of partial knowl-
edge of the PSF and try to account for the mismatch between the
unknown true PSF to that of an approximated version of it based on
partial knowledge.

An additional modification of the original problem we consider
is when prior knowledge on the original image is available, specif-
ically, when the image at hand is sparse. Most of the pixels of a
sparse image are zero-valued and only a small number of its pix-
els are nonzero-valued. Sparseness of the image can occur not only
in the image domain but also in some transform domain. Sparsity
in the image domain occurs in molecular imaging and astronomy.
In [2], penalized expectation maximization (EM) is used to sepa-
rate the problem to iterative alternating steps of deconvolution and
denoising problems. A sparse solution is obtained in the wavelet
domain by adopting a sparsifying penalty. Additional references re-
lating to sparse reconstruction are deferred to Section 2.2.

In this paper, we consider the deconvolution problem when the
PSF of the blurring operator is partially known and the image is
sparse in the image domain. These assumption can easily be ex-
tended to sparseness in other domains (e.g., wavelet, Fourier). We
derive a novel iterative algorithm in closed-form as a solution to the
problem and demonstrate the performance of the algorithm using
simulations.

This work was partially supported by the ARO MURI grant W91 INF-
05- 1 -0403.

We consider the problem of reconstructing a sparse blurred image
in noise. First, we describe the non-sparse setup when some uncer-
tainty in the point PSF exists. Then, we extend the problem to the
sparse setting.

2.1. The Unconstrained Setup

We start with the following model

y = Hx+n, (1)
where the original image is denoted by x C IRE, the m x n blurring
matrix is denoted by H, the noise vector is denoted by n C Rm, and
the measured image is denoted by y C IRm. Note that when the lin-
ear blurring operator Hx describes a convolution, further structure
is imposed on the matrix H. When n is a zero-mean white Gaussian
noise vector, i.e., n - AJ(O, au21), the maximum likelihood (ML)
estimator of x is the minimizer of the following quadratic cost func-
tion

J(x) = lHx- yll, (2)
which is also the least squares (LS) criterion. Note that we use II * II
to denote the 12 norm * 112. Other norms will be written explicitly
(e.g., 1h: II II).

The 12-norm of a matrix C is given by IICII = max, IICsII/II sI.
In this paper, we consider the case when the matrix H is only par-
tially known and is given by H = Ho + EA, where A has a unity
12-norm:

IIAII <' 1, (3)
and thus IIH-HoIH < e. Therefore, the cost function in (2) can be
written as

J(x) = II(Ho + CA)x Y2, (4)
where A is unknown. To remove the dependence of the estimate of
x on A, we consider the minimax criterion, i.e., we look for x that
minimizes (4) for the worst case perturbation A so that J(x) is now

J(x) = max II(Ho +cEA)x _Y12, (5)

subject to (3). The criterion in (5) can be simplified to (IlHox
y + e x )2 [3, Ch. 6.4, p. 322], which is equivalent to

J(x) = lHox- yll +Ellxll. (6)
The criterion in (6) is a combination of the 12-norm of two quanti-
ties. The first quantity is the 12-norm of the error between the obser-
vations and their model based on the approximated forward operator
Ho. The second quantity is the 12-norm of the solution and it offers
regularization of the solution. Note that when e > 0, the criterion
in (6) uses the norm and not the squared norm and therefore is not
quadratic.
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2.2. The Sparse Setup

Often a sparse solution is of interest. Such a solution has the property
that only few of the elements of x are nonzero valued. Define the lo
measure as

m

llXllo = E: I(xi :74 0),
i=l

(7)

where I(.) is the indicator function. With the lo-constraint on x, the
problem of finding the optimal sparse image from the image blurred
by a partially unknown blurring operator is given by

min lHox- yll + llxll s.t. llxl0 < p.
x

(8)

equivalent to minimization of lHox Y112 subject to ||X|12 = E,
known as Tikhonov regularization [3, p. 306]. Using Lagrange mul-
tipliers, the problem becomes

x = arg min IIHox Y112 + A lXI12,
which has the following solution

x = (HoHo + AI) -iHoy.

(1 1)

(12)

Since we are looking for the optimal solution over all values of E,
we therefore allow for all values of A > 0 and thus the problem is
reduced to the scalar minimization problem:

min II(Ho(H4Ho + Al) -1H -I)Y

This problem poses several difficulties. First, it is a combinatorial
problem with possibly an exponential number of potential solutions.
The number of possible solutions is (n). Next, the problem in (8)
is not convex, since {x: x II0 < p} is not a convex set. There-
fore, solutions to (8) based on gradient or iterative methods are not
guaranteed to converge to the global optimum.

Under certain conditions (on matrix Ho), the non-convex lo-
constraint can be replaced by the convex 11-constraint to yield the
same solution. This concept is known as convex relaxation. The
lI-constrained formulation of the problem is given by

minIlHox- yl +EJJxJJ s.t. llxlll < (9)

When e = 0, the problem reduces to a quadratic minimization sub-
ject to an 11 constraint. This problem is a convex problem and is
addressed in [4,5]. An iterative solution to the problem is presented
in [6]. In [7], least angle regression is presented as a computationally
efficient algorithm that provides the solution using the same com-
plexity of the least squares solution, i.e., when no sparseness con-
straint is present.

When e > 0, the criterion in (6) is no longer quadratic. However,
it still preserves the convexity property. Convexity can be verified by
obtaining the Hessian of the criterion in (6). The Hessian of the first
term Hox y is given by

&2|lHox -yl
&x&xT

Ho Ho Ho eeTHo
0 0~~~ 0Ilell Ilelle
T T

H0(I_ lee )Ho

Ilell - '
(10)

where e = Hox -y. To verify that the matrix in (10) is positive
semi-definite refer to [8]. Similarly, the Hessian of the second term
llx is positive semi-definite. This is trivial as llx is a special case
of lHx- yll with H = I and y = 0.

3. ALGORITHMS

In the following, we recall the solution to the non-sparse problem
and derive an iterative solution to the problem in (9), which incorpo-
rates a sparse constraint.

3.1. Non-Sparse Solution - Tikhonov Regularization

To minimize (6), we would like to find the optimal solution for each
set SE = {x lxll|2 = E, x C IRF} (i.e., for every E) indepen-
dently, and then find E that yields the overall optimal solution. For
each set SE, 6 IXII is constant and therefore minimization of (6) is

+6E (Ho Ho + Al) -HoY (13)

The solution to (13) in terms of A is a function of 6, Ho, and y.
This problem involves finding the roots of a 4m-degree polynomial.
Often, e is not available and one can use alternative methods to find
the parameter A (e.g., SURE based algorithm in [9]).

3.2. Sparse Solution

The solution we present in this section provides a generalization of
the solution in Section 3.1 by incorporating sparseness. In [6], an
iterative solution to (9) when e = 0 is obtained using optimization
transfer. Optimization transfer works in the following way. Denote
the optimality criterion by F(x). Let Q(x, x') be a non-negative
function, i.e., Q(x, x') > 0. Furthermore, Q(x, x') = 0 for x = x'.
Consider the following iteration:

,(n+l) argminF(x) + Q(x,x(n)).
x

(14)

For any x, we have

F(X(n+i)) + Q(x(n±i),x(n)) < F(x) + Q(x,x( ). (15)
Substituting x = x(n) in (15) and recognizing that Q(x, x(n)) on
the right hand side (RHS) is zero for x = x(n), we obtain

F(x(n+l)) + Q(x(n+l), x(n) K< F(X(n))
Since Q(x(n+l), x(n)) > 0, we have

F(x(n+l)) < F(x(n).)

(16)

(17)

This method guarantees that F(x(,n)) is a non-increasing function of
n. If Q(x, x') satisfies Q(x, x') > 0 for x :7 x', then F(x(n)) is a
decreasing function of n.

Similar to the approach in Section 3.1, we consider solving for a
strict 12 constraint, i.e., IIXI12 = E and then optimizing the solution
over E. The problem in (9) including the strict 12-constraint can be
phrased as

min lHox- yll, s.t. ||X|12 = E and llxlll = L,

which is equivalent to

minF(x) F(x) = lHox Y112 + Al x +A2+ i2lXll, (18)

subject to |x l12 = E and x I 1 = L. Denote the largest singular
value of Ho by s. Let

Q(x, x') S llx -x'l -IlHo(x -x') l2
(x -x)T(s21-HTHo)(x - x). (19)
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Since s is the largest singular value of Ho, (s21 -HTHo) is a pos-
itive semi-definite matrix and thus Q(x, x') satisfies: Q(x, x') > 0
and Q(x, x') = 0 for x = x'. Since the criterion in (9) is convex,
convergence to the global solution is achievable. Substituting F(x)
from (18) and Q(x) from (19) into (14) and simplifying, we obtain

,(n+l) = argmin(AI + 82)XT x-2xT(n) + A211x 1I, (20)
x

where v( = + Ho(y Hox(n)). The minimization in
(20) can be implemented by minimizing w.r.t each xi independently

xi = arg min(A, + s2)x2 _2xiv( + A2 xi (21)
Xi

The solution to (21) is given by

i ) f\21( 2+>\) (vi) (s + Al)) (22)

where

f6(() = sgn(2 ))I(ll > 2 (23)

is known as the soft-threshold function. Let Ho = Ho0s, the solu-
tion can be written compactly as

xi ) = oZf6([x(n) + HoT(ys H_xO(n))]i), (24)

where a < I and 6 = 2 We would like to point out
that in [10] an iterative algorithm similar to (24) was derived based
on an lp constraint (p < 1).

Finally, one can find the optimal values for 6 and o by evaluating
our criterion over o and 6. If e is unknown and -y in (9) is arbitrarily
chosen, obtaining the optimal values for o and 6 is not obvious. As
in Section 3.1, other criteria can be used to determine o and 6 based
on the data (e.g., SURE based algorithm in [9]).

the PSF corresponding to H and adding zero mean white Gaussian
noise with standard deviation of a = 0.2.

First, we investigate our algorithm by computing the sum of
squared error (SSE) jx-xll 2 as a function of the parameters of
the algorithm o, 6. To obtain x, we run our algorithm with 10, 000
iterations. We fix 6 at 0.005, and vary oz. Figure 2 depicts the SSE
vs. 1 -o on a logarithmic scale. We observe that the SSE reaches
a minimum around oz 0.99. At this value the SSE is approxi-
mately 9.5. When o - 1, the SSE is approximately 15.5. The
value a = 1 corresponds to A1 = 0 or e = 0, which is the case
where the algorithm is not trying to correct for the mis-modeling
error. The difference in the resulting SSE is obviously significant.
Thus appropriately accounting for the mis-modeling error yields an
improved performance in terms of SSE.

Next, using the setting in the previous paragraph, we would like
to visually compare the resulting reconstructions at oz 1 and at
oz = 0.99. Figure 5 presents the sparse reconstruction by (24) with
oz 1 and 6 = 0.005. Figure 6 presents the sparse reconstruction
by (24) with oz = 0.99 and 6 = 0.005. We make the following
observations:

* Figure 5 presents pixels with larger values in the location of
the original nonzero coefficients. Figure 6 presents pixels
with smaller values in the location of the original nonzero co-
efficients. Since the 12-norm constraint E x in (9) is present
only in the reconstruction yielding Fig. 6, pixels values in
general are smaller than those in Fig. 5 since the 12 constraint
tends to reduce the magnitude of the solution.

* The number of nonzero coefficients in Fig. 5 is smaller than
that in Fig. 6. The additional 12-norm constraint present in the
reconstruction in Fig. 6 yields in general results that are less
sparse.

We make the conclusion that the algorithm in (24) with oz < 1 yields
a more conservative reconstruction as compared with the case of oz
1.

4. SIMULATIONS

In this section, we investigate the performance of the algorithm pre-
sented in Section 2 by simulation using Matlab'. The algorithm
in (24) is given in matrix/vector format. While in our derivations
we use vectors to represent both the original image and the noisy
blurred image, the algorithm we derived can be easily applied to
two-dimensional images by representing the images as vectors. The
operator Hx corresponds to a two-dimensional convolution of the
PSF associated with H and the image associated with x. Similarly,
the operator HTy corresponds to a two-dimensional convolution of
the PSF associated with H flipped along both axes with the image
associated with y.

We generate the original image (represented by x) as a 32 x 32
image with all but 10 zero valued pixels (see Fig. 3). By a ran-
dom permutation, we select the positions of the 10 nonzero values
and their values are all 1. The PSF corresponding to the matrix H
and the PSF corresponding to its approximation Ho are presented
in Fig. 1(a) and Fig. 1(b), respectively. The circular PSF we adopt
for the simulation (Fig. 1(a)) is an idealized two-dimensional mag-
netic resonance force microscopy (MRFM) PSF (one in which the
cantilever is an ideal cylindrical spindle with symmetric stiffness co-
efficient). This differs from the PSF in [11] only in that the can-
tilever is modeled as a flattened spindle that has higher stiffness for
motion along perpendicular to the flat edge. The resulting image y
(see Fig. 4) is generated by convolving the original image x with

(a) The true PSF H. (b) The approximate PSF Ho.

Fig. 1. The true and approximate PSFs

5. CONCLUSIONS AND FUTURE WORK

We presented a formulation of the deconvolution problem when the
original image is sparse and the PSF of the blurring operator is only
partially known. We derived a novel iterative solution to the problem
based on optimization transfer. Using simulations, we illustrated the
behavior of the algorithm in two cases: when mis-modeling is as-
sumed and when no mis-modeling is assumed. When mis-modeling
is present, the algorithm that assumes mis-modeling achieves a smaller
SSE. Future work remaining to be addressed is the determination of
the parameters of the algorithm (i.e., o and 6).
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Fig. 2. The SSE of the image reconstructed using (24) with 6

0.005 vs. oz.
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Fig. 3. The original sparse image. This image has 10 nonzero-valued
pixels and their positions are selected by a random permutation.

Fig. 5. The reconstructed image using (24) with o = 1, 6 = 0.005
and the PSF in Fig. 1(b). SSE= 15.5.
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0.99, 6Fig. 6. The reconstructed image using (24) with oc
0.005, and the PSF in Fig. 1(b). SSE= 9.5.
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Fig. 4. The noisy blurred image. This image generated by convolv-
ing the image in Fig. 3 with the PSF in Fig. 1(a) and adding zero

mean white Gaussian noise with standard deviation of 0.2.
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