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Optimal Simultaneous Detection and 
Estimation Under a False Alarm Constraint 

Bulent Baygun, Member, IEEE, and Alfred 0. Hero 111, Member, ZEEE 

Abstruct- This paper addresses the problem of finite sample 
simultaneous detection and estimation which arises when esti- 
mation of signal parameters is desired but signal presence is 
uncertain. In general, a joint detection and estimation algorithm 
cannot simultaneously achieve optimal detection and optimal 
estimation performance. In this paper we develop a multihy- 
pothesis testing framework for studying the tradeoffs between 
detection and parameter estimation (classification) for a finite 
discrete parameter set. Our multihypothesis testing problem is 
based on the worst case detection and worst case classification 
error probabilities of the class of joint detection and classification 
algorithms which are subject to a false alarm constraint. This 
framework leads to the evaluation of greatest lower bounds on 
the worst case decision error probabilities and a construction of 
decision rules which achieve these lower bounds. For illustration, 
we apply these methods to signal detection, order selection, and 
signal classification for a multicomponent signal in noise model. 
For two or fewer signals, an SNR of 3 dB and signal space 
dimension of AV = 10 numerical results are obtained which 
establish the existence of fundamental tradeoffs between three 
performance criteria: probability of signal detection, probability 
of correct order selection, and probability of correct classification. 
Furthermore, based on numerical performance comparisons be- 
tween our optimal decision rule and other suboptimal penalty 
function methods, we observe that Rissanen’s order selection 
penalty method is nearly min-max optimal in some nonasymp- 
totic regimes. 

Index Terms- Simultaneous decisions, fundamental tradeoffs, 
min-max criterion, order selection, signal classification, signal 
detection. likelihood ratio. 

I. INTRODUCTION 
ANY statistical decision problems in engineering ap- M plications fall into one of two categories: detection 

and point estimation. In the detection problem an observed 
random quantity may consist of “noise alone” or “signal 
masked by noise;” the objective is to decide if there is a 
signal in the observation subject to a constraint on false 
alarm. In the point estimation problem a signal which is 
known to be present in the observations has an unknown 
feature represented by a parameter; the objective is to decide 
on the parameter value. However, one frequently encounters 
applications where estimation has to be performed under 
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uncertainty of signal presence. These include applications 
such as fault detection and diagnosis in dynamical system 
control [24], target detection and direction finding with an 
array of sensors [27], image and speech segmentation [ 131, and 
digital communications [ 181. The associated decision problem 
is called simultaneous or joint detection and estimation. 

If we constrain the probability of false alarm to be equal 
to CY, one can consider two approaches to the design of 
decision rules for joint detection and estimation. The first is the 
simple coupled design strategy where detection performance 
is optimized under the false alarm constraint and the estimator 
is gated by this optimal detector. In this case, one can 
implement a conditionally optimal estimator which produces 
an estimate only if the optimal detector decides that the 
signal is present. While this uncoupled strategy guarantees 
optimal detection performance, in general there is no guarantee 
that the gated estimation performance will be acceptable. 
The second approach is the coupled design strategy where 
estimation performance is directly optimized under the false 
alarm constraint. As in the uncoupled design, the false alarm 
constraint prescribes a gated estimator. However, while this 
gating is optimal for estimation, unlike the uncoupled design 
it is generally not optimal for detection. Note that under 
both the coupled and uncoupled strategies the false alarm 
probabilities are identical. However, while in the uncoupled 
case the false alarms are generated in such a way as to 
minimize their impact on detection performance, in the cou- 
pled case these false alarms are generated to minimize their 
impact on estimation performance. The uncoupled strategy 
provides an upper bound on the detection performance while 
the coupled strategy provides an upper bound on estimation 
performance. By comparing the detectiodestimation perfor- 
mance of the uncoupled detection-optimal strategy to the 
detectiodestimation performance of the coupled estimation- 
optimal strategy we can study the fundamental tradeoff be- 
tween optimal detection and optimal estimation subject to a 
false alarm constraint. 

This paper provides a framework for studying the tradeoffs 
between detection and estimation based on the worst case 
detection and worst case estimation error probabilities of the 
class of simultaneous detection and estimation rules for a 
finite discrete parameter space. We then formulate and solve 
a constrained min-max multihypothesis testing problem with 
nonstandard cost structure. This gives the form for the optimal 
estimator and optimal detector and gives tight lower bounds 
on the worst case estimation and detection error probabilities 
which can be used to study tradeoffs. 
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To illustrate our results, we focus on the following mul- 
ticomponent signal in noise model. A measured waveform 
Y consists of either a compound signal in additive noise, 
or noise alone. If present, the signal is the sum of p ran- 
domly scaled waveforms (components), out of a possible N 
equal-power orthogonal waveforms {SI, . . . , S N }  which are 
known a priori. That is, the signal is known to lie in an N -  
dimensional subspace, called the signal space, whose basis is 
{ S1 , . . . , S N } .  Hence the observation model has the form 

Here both the number p and the identity (indices) of the p 
signal components {Sil,. . . . Si,} are unknown. Assume that 
it is known a priori that p is upper-bounded by some given 
constant P, P 5 N .  We define three related objectives: i) 
signal detection which is to decide if p > 0; ii) signal power 
estimation (order selection) which, if p > 0, is to specify 
the actual number p E (1, . . .  , P }  of signal components; 
and iii) signal component estimation (classification) which, if 
p = p ,  > 0, is to identify the p ,  signal components present. 
These objectives arise in a number of applications including 
telecommunications, harmonic retrieval, surveillance, and air- 
traffic control. 

In the context of the multicomponent signal model (l), our 
results yield the following structure for the optimal constrained 
rules. The optimal constrained classifier uses a set of 

M = f :  p = l  (:) 
likelihood ratios (one for each hypothesized set {Si, ,  . . . , Si,} 
of signal components, il, . . . , i, E { 1, . . . , N } ,  p = 1,. . . , P )  
to implement a weighted generalized-likelihood ratio test, with 
randomized threshold, followed by a weighted maximum- 
likelihood estimator. The optimal constrained order selector 
uses a set of P weighted averages of (r ) likelihood ratios, 
p = 1, . . . , P,  each average corresponding to a fixed number 
p of signal components. The optimal constrained detector 
compares a weighted average of all M likelihood ratios to 
a threshold. In each of the above three cases the weights and 
the detection threshold are determined by 1) the solution to a 
related nonlinear optimization problem; and 2) the false alarm 
constraint a. 

We show that the optimal constrained classifier in the 
multiple-component signal example (1) has an equivalent 
form: compare the maximum of the sum of the log-likelihood 
function and an optimal penalty function of p to a threshold 
and if the threshold is exceeded use this penalized log- 
likelihood to perform maximum-likelihood estimation. This 
penalized likelihood structure is closely related to Akaike’s 
AIC [27], and Rissanen’s MDL [19] order selection cri- 
teria. The common feature is that the optimal constrained 
classifier, AIC, and MDL all penalize the log-likelihood for 
overestimation of p .  Unlike the AIC and MDL penalties, 
the penalty associated with the optimal constrained classifier 
ensures optimal worst case estimation performance in the 
finite sample regime. Furthermore, this “optimal penalty” takes 

specific account of a false alarm constraint. We perform a 
numerical study in which we construct the optimal weight 
functions for optimal detection. order selection, and classi- 
fication, implement the optimal likelihood ratio tests, and 
analyze the relative performances for the case of p = 2 or 
fewer signal components. In this manner, we establish the 
existence of significant tradeoffs between optimal detection, 
optimal estimation, and optimal order selection. This study 
also establishes the remarkable result that the MDL order se- 
lection penalty is nearly optimal, in the sense of achieving the 
finite sample min-max constrained classification performance 
attained with our optimal penalty function, when SNR is 3 
dB, signal space dimension is N = 10, and the number of 
independent snapshots is between 18 and 26. 

A.  Relation to Previous Work 

Optimal coupled design strategies for detection and estima- 
tion have been studied by only a few authors. Pioneering works 
along the lines of coupled design in simultaneous detection 
and estimation include the papers by Middleton and Esposito 
[14], [15], Fredriksen et al..  [7], and Birdsall and Gobien 
[3]. The common ground in each of these studies is the 
Bayesian viewpoint; that is, the parameters are assigned prior 
probabilities so that average performance can be optimized. 
Kelly et al.. [lo], [ l l ]  studied the problem of simultaneous 
detection and estimation using a combination of a generalized- 
likelihood ratio test and a maximum-likelihood classifier. 
They noted that this strategy is optimal only for certain 
cases; our work reinforces this point by specifying conditions 
for optimality of their strategy. Stuller [23] extended the 
generalized-likelihood ratio test approach to multiple com- 
posite hypothesis testing, by breaking the problem into a 
sequence of binary composite hypothesis tests. He provided 
rather stringent sufficient conditions for min-max optimality 
of this strategy, pointing out that the question of min-max 
optimality in the general case is yet to be investigated. The 
min-max multiple hypothesis testing strategy presented in our 
paper can also be interpreted as a sequence of binary composite 
hypothesis tests, thereby providing a link to Stuller’s paper and 
establishing the structure of optimal sequential binary tests. 

An outline of the paper is as follows. Section I1 introduces 
the statistical framework that will be used in this paper. Section 
I11 provides theoretical results whose proofs are contained 
in the Appendix. In Section V, we specialize the theory to 
three different problems: outlier detection and identification, 
detection and classification of a step change, and detection 
and parameter estimation of a multicomponent signal in noise. 

11. PROBLEM STATEMENT 

A parametric statistical experiment [9] is defined as the 
indexed probability space ( R , o ,  Po) where 0 is a parameter 
lying in a parameter space 0,  R is the set of possible outcomes 
of the experiment, is a sigma algebra consisting of subsets of 
R, and Po is a probability measure defined on o. The parameter 
space 0 summarizes all of the uncertainty in the probability 
model Po for the experiment. It is important to emphasize that 
6’ is a fixed nonrandom parameter. 
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Define the finite partition, called a ( J  + 1)-ary partition, 
{eo,. . . , O J }  of 0. For fixed B = etrue, denoted the “true 8,” 
let X be a random variable defined on Cl and taking values 
in a set X called the observation space. We assume that X 
has a probability density function fe(x) with respect to some 
dominating measure p.  Let etrue be contained in partition 
element 0j for a particular j E (0, . . . , J } .  The objective 
is to correctly decide on the partition element 0, containing 
etrue based on a realization X ( w )  = x of X .  We can express 
this classification problem in terms of testing between the J +  1 
exhaustive and mutually exclusive hypotheses [25] 

- H O :  X N f e ,  8 E 00 

When Btrue is contained in Oj the hypothesis fIj is said 
to be true and the other hypotheses are said to be false. In 
this case, I l j  is said to be the “true state of nature.” If the 
partition elements 00, . . . , O J  are single-point sets, then the 
hypotheses (2) are called simple hypotheses. Otherwise, if a 
partition element 01 consists of more than one point 6’ then 
specification of El ,  does not specify a unique distribution PO 
and El is called a composite hypothesis. A simple hypothesis 
will be identified by the absence of an underscore, e.g., Hl. 

We specialize our treatment to the case of a discrete pa- 
rameter space 0 with K + l elements denoted by indices 
(0;’. . K } .  We will assume that Oo corresponds to the set 
of K - M + 1 parameters 00 = (0, . . . , K - M }  where 
M is a positive integer less than or equal to K.  We identify 
two special partitions which will play an important role in the 
sequel. The binary partition, (00, 01} where O1 = ( K - M +  
1, . . . , K } .  which specifies a composite detection problem 

EO: xNfO, 6 ’ E ( o , ” . . K - h f }  
I&: X ~ f 0 ,  8 E { K - M + 1 , . . . , K }  (3) 

where Bo is called the null hypothesis and El is called 
the alternative hypothesis. The ( M  + 1)-ary partition, 
{ 00,01, . . . , OM}, where 01, . . . , Onf are the single-point 
sets ( K  - M + I}, . . . , { K } ,  respectively, specifies a joint 
detection-class~cation problem with simple alternatives: 

Eo: X ~ f 0 ,  6 ’ € ( 0 , . . . . K - M }  
H I :  X -  f0 .  B = K - M + l  

The primary difference between detection (3) and joint 
detection-classification (4) is that decision strategies for 
detection can only be penalized for erroneously deciding 
on the composite alternative El while decision strategies for 
joint detection-classification can bear an additional penalty for 
erroneous classification among the alternatives H1, . . . , H ~ z .  

The set of decision strategies for the general ( J  + l)-ary 
hypothesis testing problem (2) is specified by the set of test 
functions [25]. 

Definition 1: A test function 4 = [ 4 0 , . . . , 4 ~ ] ~  for the 
multiple hypotheses go, . . . , &-is a ( J  + 1)-dimensional 
vector function on X such that - 4(x) E [0, l](J+l) and 

J 

q$(x) = 1.vx E X. 
3 =O 

For a given realization X = x, 4](x) is the conditional 
probability of deciding E3. Consequently, 1 - 4](x) is the 
conditional probability of not deciding HJ and 43 (x) + &(x) 
is the conditional probability of deciding either KJ or H , .  
The summation condition 

J 

43(x) = 1 
3=0 

ensures that exactly one of Eo, . . . . fl, must be decided. 
Let 4 = [q50.q51,...,4~,~]~ be an arbitrary test function 

for testing among the hypotheses E,, H I ,  . . . , H M  . This test 
function defines a simultaneous detection-classification rule. 
Specifically, since detection is a binary decision between 
KO : 6’ E 00 and E,:  6’ E GO, where 

A 1  - 
o O = O - O O =  U O k  

k=l 

the first element 40 of - 4 specifies a binary test function - 4D 
for detection 

r i T  

On the other hand, define XE1 as the set of x for which 
& ( x )  # 1, that is, for X = 5 E X g 1  the decision E, 
occurs with nonzero probability. Then - 4 specifies an M-ary 
test function 4c on x H ~  for classification - 

where 43(x)/(l - & ( x ) )  is the conditional probability of 
classifying 6’ into 0, = {e,} given that X = z E X g 1 .  

Conversely, if a test function q5D = [@ ,1- @IT for detec- 
tion and a test function 4c = [G. . . . . 4EZlT for classification 
are available, a simultaneous detection-classification rule 4 = 
[40, . . . , 4 ~ ] ~  is easily constructed via the identification 

- 

- 4 = [4F, (1 - 4F)4?,. .. . (1 - 4 3 4 w  (7) 

We call 4 a “gated’ classification rule since the classification 
rule q5c isenabled by the detection rule 4: when 1 - 4: # 0, 
i.e., when signal detection can occur with nonzero probability. 

The average performance of a particular test function $ 
is determined by i) probability of false alarm Pe(FA); ii) 
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probability of miss Pe(M); and iii) probability of erroneous 
classijication PO ( E C )  

null hypothesis go can be reduced to an equivalent simple 
null hypothesis. Define the K-dimensional unit simplex CK 

Pe(FA) =Ee[l - 401, 0 E 0 0 ,  K 

Po ( M )  = Ee [401, 
Pe(EC) =&[I - 4rJ(e) l ,  0 $00 (8) 

CK = p E [o, l lK:  Cpj 1 1  {- j = O  
0 e eo 

where r ~ ( 0 )  E (0, . . . , J }  is the set partition function which 
takes the value j if 0 E Oj .  

We will be interested in those test functions whose false 
alarm probability Pe(FA) is less than or equal to a prespec- 
ified constant a E [0,1] [25]. 

Definition 2: A test function q5 is of level a if - 

(9) 

for a specified a E [0,1]. 
The classical Neyman-Pearson criterion of signal detection 
[12] states that it is desirable to minimize the miss prob- 
ability P e ( M ) , 0  $! 00, subject to the constraint (9). On 
the other hand, in terms of signal classification, minimizing 
Pe(EC), 0 e 00 is desirable. However, since Pe(M) and 
Pe(EC) generally vary as a function of 0,0-uniform mini- 
mization of these probabilities is in general impossible and a 
different approach must be taken. 

The weights { b e } e E e ,  can be regarded as unit normalized 
weights on the null states of nature 0 E 00; the weights 
{qj}f,l can be regarded as unit normalized weights on 
the composite states of nature {Oj}&,; and the weights 
{ce/qj}ece, can be regarded as unit normalized weights on 
the states of nature 0 E Oj. 

Consider the following reduced hypotheses: 

111. CONSTRAINED MIN-MAx TESTS HAb): x f ib)  

For the purposes of establishing &uniform lower bounds on E l :  X N f e ,  0 E 01 

Pe(M) and Pe(EC) it makes sense to consider the form and 
performance of constrained min-max test functions of level 

of level a by 
a. Define the set Va of all test functions 4 = [$o,  . . . , 4 ~ ] ~  &: X N f e ,  0 E O J .  (16) - 

Note that relative to (2) the null hypothesis in (16) has been 
reduced to a simple null hypothesis. Define the expectation 
EA')[g(X)] of g (X)  under the simple hypothesis Hib) 

J 

j = O  

x H [O, l](Jfl), + j  = 1, 

Definition 3: A test function 4* = [4:, . ' .  , 4?lT is a 
constrained min-max test of level-a between the hypotheses 
Ho,...,HJ if 4* E D,, i.e. The following theorem is proven in the Appendix. 

- Theorem 1: For arbitrary b E CK-M+1, let - 

and if for any other test function 4 = [40, . . . , $J]* E D, 
be a constrained min-max test of level a for testing among 
the hypotheses (16) with simple null hypothesis Hib) .  If there 
exists a weight vector b = b* such that 

- 

max Eel1 - 4 f J ( e ) ]  5 max Ee[l - h J ( e ) ] .  weo eeeO (12) 

Observe that, if a constrained min-max test $* of level a 
can be found, the left-hand side of (12) provides& achievable max Ee[l - 4ib*)] = a (18) 

then q5*ef4@*) is a constrained min-max test of level a 
for testingamong the hypotheses (2) with composite null 
hypothesis E,. Furthermore, such a b* exists if 

e E e o  lower bound on the maximum error probability 

maxEe[l - 4 T J ( @ ) ]  eeoo 
of any level a test. 

The first step in deriving the form of constrained min-max 
tests - 4* for the hypotheses in (2) is to show that a composite Ehb*)[1 - & * ) I  = (19) 
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and b* is a "least favorable prior distribution" in the sense 
that for any other 4 E C K - M + ~  

[l - & * ) ( Z ) ] f p * ) ( z )  dp(x).  (20) 

The condition (18) says that for a specific b* the level (Y 

constrained min-max test 4@* ) for the reduced hypotheses 
(16) must also be of level for the original hypotheses (2). 
Under this condition Theorem 1 states that the composite null 
hypothesis I& can be reduced to simple null hypothesis Hi') 
by a b weighting of the f e  over 8 E 0 0 .  Once such a reduction 
is achieved we need merely consider constrained min-max 
tests for the hypotheses (16) with simple null hypothesis Hib) 
and then select appropriate b* to satisfy condition (18). The 
existence of a weight vector 4* which satisfies the sufficient 
conditions (19), (20) is related to the existence of a detector 
having constant false alarm rate (CFAR) [21]. 

The following theorem, proven in the Appendix, specifies 
the form of constrained min-max tests for the set of hypotheses 

Ho: x - fo 
x f ,9,  8 E 01 

H,:  x N f e ,  8 E O J  (21) 

where f o  is an arbitrary pdf, e.g., f o  = fib*). 
define yJ and f:') as in (14), (15). Let 

Theorem 2: Fix the level CY E [O. 11. For arbitrary c E C M ,  

and define the test function 

and for j = I , . . .  . J  

and j = j,,, I o .  else 

where X 2 0 and < E [O. 11 are functions of I: selected to 
satisfy the constraint on the false alarm probability 

Eo[l - 4 3  = a. (24) 

Then there exists a weight vector c = c*. called the "optimal 
weight vector," for which 

and 4*ef4(,*) defined by (22)-(25) is a constrained 
min-Gax test of level a for testing among the hypotheses 

Next we give a corollary which specifies the form of 
the constrained min-max tests for composite hypotheses 
E, . . . , 

Corollaly 1: Fix the level a E [0,1]. For arbitrary c E C M  
and b E C K - M + ~ ~  let f i" .qq3,  and f j c ) . j  = l , . . . . J  . be as 
defined in (13)-( 15). Let 

j,,, = arg max y3 fjG)(z) 

WO, HI , . . . , H J .  

by combining the results of Theorems 1 and 2. 

J > o  

and define the test function 

by the following assignments: 

and - 4(b,c*) is a constrained min-max test of level a for testing 
among the hypotheses (16) with simple null hypothesis Hib). 
Furthermore, if there exists a weight vector b = b* for which 

then $*~fq5(b*1c*)  defined by (26)-(30) is a constrained 
min-max test of level a for testing among the hypotheses 
(2) with composite null EO. 
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A simpler shorthand notation for the test (26)-(30) to be 
used in the sequel is 

which is read as: if the left-hand side exceeded the threshold 
A* then decide fIjmax where 

j,,,ef arg max{q; sJ(c*) (x)/f,$'*) ( X I ) .  

A*d'fA(b*, c*) 

3 > O  

In (31) the threshold is written as 

to emphasize its dependency on the optimal weights. The test 
(31) can be recognized as a weighted generalized likelihood 
test (GLRT) constructed with the weighted average densities 

fib*) = bZ; f e  
e m o  

and 

@EO, 

The test performs detection at a given level a and if Ho is 
rejected, it classifies in such a way as to select the hypoth- 
esis IJj,,, which maximizes the weighted likelihood ratio 

The next Corollary, proven in the Appendix, specifies 
sufficient conditions on the weight vectors b and such that 
the test 4(b,c) defined by (26)-(28) be a constrained min-max 
test. Assuch, it provides us with a verification condition as 
an alternative to the constructive definition (29), (30) of the 
weight vectors b* , c* , Q*. 

q ; ( f ; c * ) / f ( y * ) ) .  

Corollary 2: For arbitrary E CM and b E C K - A T + ~ ,  let 

be of the form given in (26)-(28). Suppose that there exist 
weight vectors c* E CM and b* E CK-M+1 and a constant 
V such that 

(32) (b' >G* 1 E0[1-4~ ] = a ,  V0 E 00 

and 

Ee[l - 4::(;)*)] = v, V0 $2 0 0  (33) 

Then 4*ef4(b*s*) is a constrained min-max test of level cy 

for testing TI,, . . . , ZY~. 
Corollary 2 states that the likelihood ratio test (31) is a 

constrained min-max test of level a provided one can find 
weights b,c such that i) the false alarm constraint 

E B [ ~  - 4ib'"'] 5 (Y 

is satisfied with equality uniformly for all elements B E 0 0 ;  

and ii) the probability of erroneous classification 

is constant over I9 $!! 00. Such a test is called an "equalizer 
rule" since it equalizes the decision error probabilities over 
the alternatives H ,  , . . . . H J .  

Combining Corollaries 1 and 2, the search for the con- 
strained min-max test consists of two steps: i) construct the 
test function 4(b,c) of (26)-(28); ii) vary 4 and c maintaining 
the false al& constraint for all I9 E 0 0  until equalization of 

E8[l - 4j4;f;)I. I9 $! 0 0  

is achieved. 
Corollary 1 provides a lower bound for the worst case 

probability of error of any other level-cy test function 4. The 
following corollary formalizes this point and will be used in 
the next section to assess the detection versus classification 
tradeoff for joint detection and estimation in the multiple- 
component signal model. 

Corollary 3: Fix the level a E [0,1]. Then for any level- 
a test function 4 = [40,....4JIT. its worst case error 
probability over 0-6 0 0  satisfies the lower bound 

where 4;J(e)  is as defined in (26)-(30). 

IV. DISCUSSION 

Remark 1: Define the ( K +  1)-dimensional probability vec- 
tor 

h 

Using the identities (1 3) and (IS), the constrained min-max 
test - 4* (31) is equivalent to: 

Now dividing numerator and denominator by 1 +A*  we obtain: 

Assume that 0 is a random variable taking values B O ,  . . . ,OAT 
in 0 with probabilities p; .  . . . . p i T .  Define an integer valued 
random variable J by J = j iff 19 E 0, (i.e., J = r ~ ( 0 ) ) .  
Then the random variable J has the prior distribution 

P ( J  = j )  = P(O E 0,) = p i  (36) 
BEQ, 
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and the posterior distribution 

BEOo 

Therefore, the constrained min-max test (35) is equivalent to 
the maximum a posteriori decision rule: Choose index j of 
H j  such that the posterior probability P ( J  = jlX) given by 
(37) is maximized over j .  This establishes that the constrained 
min-max test of level a is Bayes relative to a set of priors 
{ P i >  P I .  

Remark 2: If a = 1 in Corollary 1 then the constraint 

It is useful to compare the min-max optimal detector to the 
popular [26] ad hoc generalized likelihood ratio test (GLRT) 

Note that the GLRT (41) is not a min-max optimal detector 
except in the unlikely event that the ratio of maxeEeo f B  and 
maxBEe, f e  is equivalent to the ratio of weighted average 
densities in (40). 

Remark 4: Let J = M and let 01 , . . . , 0 J be single-point 
sets, i.e., simple alternatives. Specializing Corollary 1 to this 
case we obtain the constrained min-max classifier 

I \ 

> A*. (42) maxEe[I  - &] 5 cy. 

is satisfied for A = 0 and [ = 0 so that &,(X) = 0 w.p.1. with 

X. Let 01, . . . , 0 J be singleton sets so that the J alternative 
hypotheses are simple. In this case 

BEOO 

respect to any set Of probability densities {fe(.) ' E On If HO is simple then the constrained min-max classifier (42) 
is equivalent to the weighted generalized-likelihood ratio test 
and maximum-likelihood classifier (GLRT-MLC) 

.I 

x4;=1 
J=1 

and the test of Corollary 1 reduces to the min-max weighted 
maximum-likelihood estimator [6], i.e., d* = &*), where for 
all c E CJ 

1, 
0, otherwise 

if j = j,,, = arg max{cs fB(z)} 
Bgeo 

(38) 

for j = 1, . . . , J ,  and c* E CJ is a vector of nonnegative unit 
normalized weights which satisfy 

c f#p (z) = 

Remark3: For binary hypotheses J = 1,O = {00,01} 
and the constrained min-max test d* of Corollary 1 reduces 
to the well-known min-max detect& [12] 

BEOo 

Here :* E CM and b* E CK-I \ . I+~  are nonnegative unity 
normalized weights which are obtained from the solution of 
a nonlinear optimization problem, and the threshold A* and 
the randomization parameter [ are selected to meet the false 
alarm constraint with equality E B [ ~  - 401 = a,0 E 00. In 
the case of simple null and alternative hypotheses 00 and 01 
are singleton sets and the min-max detector reduces to the 
classical Neyman-Pearson test 

E1 

E O  
fe,(X)lfeo(X) A. 

(43) 

If the optimal weight vector turns out to be uniform (i.e., c* = 
[l/J, . . . ,l/J]) this is equivalent to the standard unweighted 
GLRT. 

Remark5: In Corollary 2 ,  we specified sufficient condi- 
tions such that 4(bic) defined by (26)-(28) be a constrained 
min-max test. More specifically, these conditions state that 
if q5(b,c) equalizes the decision error probabilities over all 
of the altematives I€, , . . . , H J  and over Eo, then it is a 
constrained min-max test. In some cases, equalization of 
all of the decision error probabilities is not possible. More 
specifically, equalization over the entire set 00 is not possible 
if the false a l m  probabilities for some parameter values 
in Oo always dominate the false alarm probabilities for the 
remaining parameter values in 0" , no matter what the weights 
are. Similarly, equalization over the entire set 0 - 0 0  is 
not possible if the classification error probabilities for some 
parameter values in 0 - 0 0  always dominate the classification 
error probabilities for the remaining parameter values in 0 - 
0 0 ,  no matter what the weights are. In fact, it can be shown 
[2] that equalization of only the dominating decision error 
probabilities provides a sufficient condition for optimality, 
provided the corresponding weight vectors assign zero weights 
for the remaining parameter values. 

Remark 6: The dimension of the weight space over which 
a search must be performed to determine the optimal weights 
is the sum of the number of simple altemative hypotheses 
plus the number of the simple hypotheses composing the null 
hypothesis. For a composite null hypothesis, this latter number 
can be very large which severely complicates the computation 
of the value function. An altemative approach is to compress 
the composite null hypothesis into a simple null hypothesis 
by applying invariance principles [20], thereby reducing the 
number of weights to be determined. These principles involve 
mapping the observations to a lower dimensional space via a 
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noninvertible transformation which renders the distribution of 
the resultant data set functionally independent of the unknown 
null hypothesis parameters. Such use of invariance principles 
was described in previous work [l]. The invariance approach 
has the advantage of simplifying the evaluation of the value 
function but usually at the expense of degradation of perfor- 
mance since it involves noninvertible transformations of the 
data [6]. 

Remark 7: In some applications it is possible to efficiently 
parameterize the weights and significantly reduce the number 
of unknowns in the weight space, facilitating the search for 
optimal weights satisfying the conditions of Corollary 2. One 
important case where such a reduction is possible is the case 
where the decision problem is permutation-invariant [2], in 
which case the distribution of the likelihood ratio is invariant 
to permutations in the indices of the hypotheses. We make use 
of a special type of permutation invariance in the multiple- 
component signal application treated in the next section. 

V. APPLICATIONS 

First we briefly discuss a simple application to changepoint 
joint detection and classification. 

A. Detection and Classijication of Changes in a Distribution 

Consider the vector X = [ X I .  . . . . X2wlT of independent 
random variables with a nominal marginal density ho(x) and 
an alternative "outlier" density hl ( x ) .  We say an outlier occurs 
when some X, ' s  have undergone a change in distribution 
from ho to hl. The objective is to detect and identify any 
outliers. The change detection and classification problem has 
been addressed in [17] and [ 5 ] .  It would be very interesting to 
compare the error performance of the algorithms proposed in 
these papers to the achievable lower bounds specified by our 
finite sample min-max decision rules described below. 

1) Point Change Problem: Also known as the slippage 
problem [6], in the point change problem there is at most one 
outlier in the vector X which can occur at indices 1. . . . , N .  
Let 8 denote the index 1. . . . . N where this outlier occurs. 
Thus we have the null hypothesis and the M = N alternative 
hypotheses 

N 

Ho: x - fo = I-p0(z,)  (no outliers) 

H1: x - f l  = h ( z 1 i  ho(G) ( 8  = 1 )  
2=1 

H N :  X - fM = hl(zn.)  n h o ( . ~ ~ )  (8 = N ) .  (44) 
a#N 

The weighted likelihood ratios are 

We will assume that the likelihood ratios have continuous 
distributions under HO so that randomization is not needed to 
achieve the false alarm constraint. Using (40) in Remark 3 we 

obtain the detection optimal (DO) decision rule for min-max 
testing for outliers 

where the threshold A D  and the weight vector cD are chosen 
such that the false alarm constraint is satisfied with equality 
(Eo[l - 4f] = cy) and the average miss probability 

A- 

B=1 
is maximized. Likewise the classification optimal (CO) rule 
for constrained min-max classification of 8 over { 1,  . . . , N }  
is obtained from (43) in Remark 4 as 

(47) 

where the threshold Xc and the weight vector sc are chosen 
such that the false alarm constraint is satisfied with equality 
(Eo[l - @] = a ) ,  and the average erroneous classification 
probability 

N 

B=1 

is maximized. 
The optimal weight vectors cD and cc are easily found 

by using the equalization condition for optimality given in 
Corollary 2. Let cD be given by the uniform weighting 

1;'. , N .  of the resulting detection rule (46) are simply 
computed as: 

Cf = . . . = C'D - - ( l / N ) .  The miss probabilities Pe(M) ,  8 = 

m 

Ee[4,D] = s_, So" - .)91(x) dx 

(independent of 0) (48) 

where y l  is the probability density function of the likeli- 
hood ratio h l (Xe ) /ho (Xe)  under He and SO is the cumu- 
lative distribution function of the sum of i.i.d. likelihood 
ratios {h l (X i ) /ho (X; ) }Z#e  under He. Similarly, let cy = 

probabilities Pe(EC), 0 = 1 , .  . . , N ,  of the resulting detec- 
tiodclassification rule (47) 

. . .  - - c$ = & and we obtain the erroneous classification 

Pe(EC) = E8[1 - 4 3  
00 

= 1 - LAC Go(x)N-lsl(.) dx 

(independent of 0) (49) 

where Go is the common cumulative distribution function of 
each of the N - 1 likelihood ratios h l ( X ; ) / h o ( X ; ) , i  # 8, 
under H B .  

The uniform weights cD and cc give the two decision rules 
for detection and detectiodclassification as, respectively 

%3maz 
> < 

NO 

NAD 

NXC. 
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Now for any cy E [0,1], since the likelihood ratios have 
continuous distribution under Ho, there exist positive thresh- 
olds A D  and Xc such that the false alarm probability of 
each of the above decision rules is equal to cy. Furthermore, 
since the above decision rules equalize PO (M) and PO (EC), 
respectively, Corollary 2 asserts that these two rules are in fact 
the DO and CO rules of level cy. 

The DO rule in (50) is a weighted average likelihood ratio 
test and is not equivalent to the generalized likelihood ratio 
test (GLRT). The CO rule in (50) is a thresholded maximum- 
likelihood classifier equivalent to the GLRT-MLC (43) and 
is identical to Ferguson's outlier discriminator [6]. Therefore, 
in this example, the GLRT-MLC rule is min-max optimal 
and attains the lower bound on the worst case erroneous 
classification probability. 

2 )  Step Change Problem: In the step change problem the 
objective is to detect a step change and estimate the time of 
change 6' in the marginal density of X i ,  i = 1, . . . , N ,  where 
it is hypothesized that Xi N ho, V i  5 6' and 

problem (25) which maximizes average probability of miss and 
erroneous classification, respectively. In general, the uniform 
weight assignment is not min-max for the step change problem 
and therefore, unlike for the point change problem, the GLRT- 
MLC is not an optimal joint detection estimation rule. 

An equivalent form for the CO decision rule (54) is to 
compare the running cusum statistic [16], [22] 

to a curved boundary In ($), 0 = 1, . . . , N .  If, as a function 
of 8, To(z) crosses the curved boundary at time 8 then a step 
change is declared. Otherwise, if no boundary crossing occurs 
over 6' = 1, . . . , N ,  Ho is decided. 

B. Detection, Order Selection, and ClassiJication 
for a Multicomponent Signal in Noise 

x, N hl , vz > 8, 6' E { 1, . . . , N } .  

Hence we must test between a null hypothesis and M = N - 1 
simple alternatives 

Here we consider the multicomponent signal in noise model 
(1) introduced in Section I. We have a set of N finite-energy 
orthonormal complex-valued signal components { sl, . . . , sN} 
each evolving over the time interval 

N 

Ho: x f o  = r I h O ( 4  [o ,T] .S ,d ' f {S , ( t ) :  t E [O,T]}. 
2 = 1  

N Available for measurement are L independent realizations 
H1: x - f l  = h o ( d  n hl(&) (snapshots) 

2 = 2  

Yk = {Yk(t) : f E [o. TI}. k = 1. ' '  ' , L.  

N-1 
Each waveform Yk is composed of either a sum of randomly 
scaled versions of p of the N signal components plus noise, or 
noise alone. We assume that the noise w k ( t )  is a wideband 
complex Gaussian process and that the alk's are i.i.d. zero- 
mean complex Gaussian random variables independent of the 
noise. We will also assume that an upper bound P on the 
number p of signal components is specified where P < N.  

H': "' = [ ho(x2)] hi(zN)' (51) 

The weighted likelihood ratios for these M+ 1 hypotheses are 

(52) 
N 

hi(Xz) 6' = 1,. . . , M .  CO - 

The DO rule obtained from (40) in Remark 3 has the form: 

where, similarly to the point change example, the threshold A D  
and the weight vector cD are chosen such that P ( F A )  = a 
and the weighted average of miss probabilities is maximized. 
The CO rule obtained from (43) in Remark 4 has the form: 

where the threshold Xc and the weight vector cc are chosen 
such that P ( F A )  = cy and the weighted average of erroneous 
classification probabilities is maximized. The equalization 
condition of Corollary 2 is difficult to apply for this example 
since the distribution of the likelihood ratio is not permutation 
invariant [2]. Thus the optimal weights cD and gc must be 
derived directly as the solution of the nonlinear optimization 

The integer p ,  taking any value in { O , . . . , P } ,  is unknown 
and, if p > 0, the signal indices il , . . . , i, taking any p distinct 
values in { 1,. . . , N }  are also unknown. The noise variance 
crk = 1 and the common variance 02 of the scaling factors 
{alk} are known. 

For each k let the continuowtime signal Yk be passed 
through an energy detector consisting of a bank of N matched 
filters with impulse responses Si(- t) , . . . , SN (4) followed 
by a modulus squared operation as shown in Fig. 1. The output 
of this energy detector is the statistic XI, = [XkI, . . . , XkN], 
where 

The statistical decisions will be based on the dimension L x N 
matrix statistic: 

X =  [X']. 
X L  
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SN(- t )  1 . l2 X k N  

Fig. 1 .  A bank of energy detectors for each of the signal components 
{ s1 ? , . . , SN } . 

It can be easily shown [2] that the Xki 's  are independent 
exponentially distributed random variables with parameters Pi, 

the value of Pi depending on the presence or absence of signal 
energy at the output of the ith matched filter 

. .  
h ( z )  = PlexP(-Plz)U(z),  2 = Z l , . . ' , i p  

ho(z) = Po exp (-Poz)u(z), 0.w. fX,,(X) = { 
(55)  

where U(.) is the unit step function, p 1  = l/y,Po = 1 ,  and 

The decision problem consists of three related objectives 
based on observation of X: i) signal detection, which is to 
decide if p > 0; ii) signal power estimation (order selection) 
which, if p > 0, is to specify p ;  and iii) signal component 
estimation (classification) which, if p = PO, is to identify the 
po indices i l  , . . . , i,, . 

For fixed p E { 1, . . . , P } ,  and for a given set of p indices 
i l l  . . . , i,, the signal components {qS i l  } have equal power 
02. Therefore, permutations of these components are indistin- 
guishable. There are thus (:) possible distinct arrangements 
of p signal components over N possible indices 1 ,  . . .  , N .  
Hence there are a total of 

y = 1+0,2. 

possible signal arrangements. We define the mapping between 
component indices 21, . . . , i,, p = 0, . . . , P,  and a scalar I9 as 
follows. For j = 1, . . . , N ,  let I91 be equal to a binary variable 
taking the value one if Sj is present, and zero otherwise. 
Define the N-element vector @ = [ 0 1 , . . . , 1 9 ~ ] T  as the the 
binary representation of the integer 

N 

o j 2 1 - 1 .  

j = 1  

Define the row vector $Ik as the sequence of integers 

/ N  N 

arranged in increasing order. Thus 

$o = 0, = [l, 2 , 4 , 8 , .  . . 2 ( N - 1 ) ] T  
$ = [3 ,5 ,6 ,9 ,  . . . , 2 ( N - 2 )  + 2 ( N - 1 ) ] T ,  . . . ,$Ip 
-2 

corresponding to p = 0 , 1 , 2  and P signal components, 
respectively. Finally, the mapping from the binary vector 
- I9 to the scalar parameter I9 is obtained by identifying 0 
as the successive indices 0, . . . , M of the M-element vec- 
tor [$o, $, , . . . , The hypotheses are defined as before: 
{ H e } E o .  Thus HO is the noise alone hypothesis (0 = p = 0), 
each of H I ,  . . . , H N  is a hypothesis that one of the N distinct 
arrangements of p = 1 signal components is present, each of 

is a hypothesis that one of the (:) distinct arrangements of 
p = 2 signal components are present, and so on. 

Using the result (55) we have: 
L N  

k = l  i=l 
L N 

k = l  i = 2  

L N - I  

k = l  i = l  i = 3  

The likelihood ratios can be expressed in the form [21 

where lL = [ l ,  . . . , 1IT is an L-vector of 1's and 
N 

~(8) = 0i 
i=l  

is the number p of signal components under hypothesis He. 

Remark 3 has the form 
The detection optimal (DO) rule obtained from (40) in 

the order selection optimal (OSO) rule obtained from Theorem 
2 has the form: 

and the classification optimal (CO) rule obtained from (43) in 
Remark 4 has the form: 
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The weights for the OS0 and CO rules can be found by 
choosing and cc to equalize the probabilities of incorrect 
order selection and incorrect classification, respectively, asso- 
ciated with the likelihood ratio tests (59) and (60), as indicated 
by Corollary 2. On the other hand, the miss probabilities of 
the DO rule (58) cannot be equalized for any choice of the 
weights { C O }  [2] and the optimal weight vector must be found 
in the manner outlined in Remark 5. In particular, it can 
be shown that the optimal weight vector { C O }  equalizes the 
miss probabilities for 1 5 0 5 N (single signal component) 
and assigns zero weights for X < 0 5 M (multiple signal 
components). 

Denote the optimal weights generically as cz(* = “D,” or 
“0,” or “C”). In [2], it is shown that due to the equal power 
signal component assumption, the distribution of the likelihood 
ratios (56) is invariant to permutations of the indices i l , .  . . . i, 
for any fixed p in the sense that for any permutation matrix T 
operating on e, the ordered set { f g / f o } ,  has the same joint 
distribution under He as the joint distribution of { f ~ ~ / f ~ } @  
under HTB.  This implies that the optimal weights {c ; }  for 
(58)-(60) are constant for fixed p and satisfy [2] 

e;; = 

where yi E [O. l1.p = L,....P . and 

P 

$4. 
p=l  

The relation (61) corresponds to a significant reduction (from 

M = f :  p = l  (:) 
to E‘) in the number of weights to be determined and greatly 
simplifies the search for the min-max constrained decision 
rules and associated lower bounds on detection, order selec- 
tion, and classification error probability. 

1) An Optimal Order Selection Rule for Class$cation: Us- 
ing the q; weight specification (61), the classification optimal 
rule (60) has the following equivalent form: 

where as defined above 
1V 

i=l  

is the number of signal components subsumed by hypothesis 
He. The form (62) establishes that the CO rule incorporates 

an order selection penalty 

which is added to the log-likelihood function In f ~ / f o  for clas- 
sification. It is the equal power signal components assumption 
that makes the optimal penalty depend solely on the hypothe- 
sized number of signal components. In the general case, where 
the signal components can have unequal power, the min-max 
optimum penalty g ( p , 0 )  = lncf depends on the specific 
signal component indices assumed under He. For comparison, 
consider the unweighted GLRT-MLC for which g ( p )  is a 
constant independent of p ,  Akaike’s AIC for which g ( p )  = -p ,  
and Rissanen’s MDL for which g ( p )  = - ( p / 2 )  In L where L 
is the number of snapshots. Unlike the CO penalty function, 
the GLRT-MLC, AIC, and MDL penalty functions are not 
min-max optimal for constrained classification. On the other 
hand, while the CO penalty function typically depends on 
the parameters of the likelihood ratio distribution through the 
solution to the difficult maximization problem (25), these other 
penalty functions can be specified independently of any such 
parameters. Under certain asymptotic conditions, however, the 
CO penalty function also becomes independent of the process 
parameters. The following proposition establishes this fact. 

Proposition 1: Let the optimal weights {q,”},’=, satisfy for 
all fixed p > 0 

where p is a finite constant. Then 

r i  

Pro08 Expressing 

using the large N Stirling approximation In ( f )  % p In N 
and the boundedness of b, it is obvious that as N + x 
the right-hand side of (65) becomes: -(1 + P)pln N .  Since 
CO = q p / (  8) 5 1 for all N > 0 this limit is less than or equal 
to zero. 

Proposition 1 shows that even if the weights (4 ,”)  decay to 
zero as N + CO, as long as the rate of decay is not too high, 
p = 0 and the CO penalties converge to g ( p )  = -pln N .  

2)  Numerical Comparisons: Here we quantify the perfor- 
mance of the DO, OSO, and CO rules (58)-(60) to study the 
tradeoffs between detection, order selection, and estimation. 

Since classification is performed over the finest partition 
of the parameter space 0, the CO rule (60) specifies order 
selection and signal detection rules which are optimal for 
min-max classification. For example, when CO makes a 
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decision that the signal components are at bins i l ,  . . . , i p  it 
also specifies “signals detected” ( p  > 0) and “exactly p signal 
components present.” From (60) we see that the CO rule 
performs “classification optimal” order selection as: 

and the CO rule performs “classification optimal” signal 
detection as 

On the other hand, in addition to providing an optimal order 
selection rule, the OS0 rule (59) also specifies an “order 
selection optimal” detection rule 

Note that the OS0 rule does not itself specify a post-order- 
selection classifier while the DO rule does not specify a 
post-detection order-selector or classifier. 

To assess the impact of imposing classification optimality 
on best achievable detection performance and best achievable 
order selection performance we evaluate the difference be- 
tween CO detector and DO detector error probabilities, and 
the difference between CO order selector and OS0 order 
selector error probabilities. Since the DO detector and the OS0 
order selector are optimal for detection and order selection, 
respectively, these differences are always nonnegative, the 
differences corresponding to performance losses associated 
with requiring classification optimality. 

We also investigated the classification optimality of the 
strategies of gating an (unconstrained) conditionally min-max 
classifier with an OS0 order selector and DO detector called 
the OSO-gated classification rules and the DO-gated classifi- 
cation rules, respectively. While in the case of DO gating there 
is a single conditionally min-max classifier, which classifies 
all signal indices given that the DO rule declares signals to be 
present, in the case of OS0 gating there are P conditionally 
min-max classifiers, each one classifiying the indices of the 
number p of signals decided upon by the OS0 rule. Applying 
Theorem 2 it is seen that the conditionally min-max classifiers 
are of the form of weighted maximum-likelihood estimators 
(38). Since all signal components have equal power, it can be 
shown [2] that for each p the OSO-gated conditionally min- 
max classifier is an unweighted maximum-likelihood estimator 
of 0 over the (r) configurations of p signals over N bins, 
while the DO-gated conditionally min-max classifier is a 
weighted maximum-likelihood estimator of 6 over all 

p = l  f: (:) 
possible configurations of 1, . . . , P signals over N bins. 

Using numerical integration and simulations we evaluated 
the performance of the classification optimal rule, order se- 
lection optimal rule, and detection optimal rule for the case 

TABLE I 
WORST CASE PERFORMANCE COMPARISONS 

FOR L = 4. .\- = lo.*, = 3 .  cy = 0.1 

DO I 0.70 I 0.68 1 0.41 

where P = 2, i.e. where it is a priori known that there 
can be at most two signal components. The false alarm and 
erroneous classification probabilities of the CO rules were 
computed analytically [2], while the remaining decision error 
probabilities were determined via simulations. For each simu- 
lation, a complex Gaussian 4 x 10 observation matrix X was 
generated corresponding to L = 4 independent realizations 
and N = 10 possible orthogonal signal component indices. 
The signal-to-noise power ratio per observation per signal 
was set to y - 1 = 2(+ 3 dB). The false alarm probability 
was constrained to cy = 0.1. Successive columns of Table I 
show the worst case erroneous classification (EC) probabil- 
ity max,goo P,(EC), worst case erroneous order selection 
(EOS) probability maxego, P,(EOS), and worst case miss 
(M) probability max,eeo P,(M) for the CO, OSO, and DO 
rules. Since CO minimizes nlaxeeeo Pe(EC), OS0 minimizes 
max,geo P,(EOS), and DO minimizes maxeeo, P,(M), the 
diagonal entries, 0.59,0.52, and 0.41, of Table I provide us 
with respective lower bounds on the worst case erroneous clas- 
sification probability, erroneous order selection probability, 
and miss probability which apply to any identically constrained 
( P ( F A )  = a )  decision rule. 

The important observation from Table I is that requiring 
classification optimality necessarily entails a loss in order se- 
lection performance: the worst case erroneous order selection 
probability of the classification optimal rule is 0.56; in relative 
terms this is (0.56 - 0.52)/0.52 = 7.69% above the order 
selection lower bound. This result indicates that order selec- 
tion optimality and classification optimality are not generally 
simultaneously achievable. Conversely, requiring order selec- 
tion optimality under the uncoupled design strategy entails a 
loss in classification performance: the worst case erroneous 
classification probability of the order selection optimal rule is 
0.62; in relative terms this is (0.62 - 0.59)/0.59 = 5.08% 
above the classification lower bound. Furthermore, requiring 
detection optimality under the uncoupled design strategy en- 
tails a significant loss in classification performance and order 
selection performance: the worst case erroneous classification 
probability of the detection optimal rule ((3.1) entry, 0.70) is 
(0.70 - 0.59)/0.59 = 18.64% above the classification lower 
bound, and its worst case erroneous order selection probability 
( (3 ,2)  entry, 0.68) is (0.68 - 0.52)/0.52 = 30.77% above the 
order selection lower bound. These results are an indication 
that the commonly used uncoupled design approach can se- 
verely sacrifice order selection and classification performance. 
On the other hand, requiring classification optimality or order 
selection optimality entails only very little performance loss 
in detection performance: the worst case miss probabilities of 
the classification optimal and the order selection optimal rules 
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TABLE I1 
RELATIVE PERFORMANCE LOSSES FOR L = 4, A\- = 10. -1 = 3 .  0 = 0.1 

classification order selection detection 

7.69% 2.44% 

2.44% 

DO 18.64% 30.77% 

'. solid line: CO 

--.-: GLRT 

5 1 0  15 2 0  ;s L 
Fig. 2. Worst case misclassification probabilities of the classification optimal 
rule, unweighted GLRT, AIC, and MDL as a function of number of snapshots 
L . S  = lo.-, = 2 . 0  = 0.1. 

both are (0.42-0.41)/0.41 = 2.44% above the detection lower 
bound. These relative performance losses are summarized in 
Table 11. 

We also evaluated the loss in performance due to using 
a suboptimal order selection penalty function g ( p ) .  Fig. 2 is 
a plot, as a function of the number of snapshots L, of the 
associated worst case erroneous classification probabilities for: 
the optimal penalty 

the uniform (ML) penalty g(p) = 0, the Akaike AIC 
penalty g ( p )  = -p, and the Rissanen MDL penalty 
y(p) = - ( p / 2 )  In L. The worst case classification performance 
is lower-bounded by the classification performance using our 
optimal penalty (solid line). Observe that the MDL penalty 
is near optimal for large L while the AIC is near optimal 
for small L with both curves lying at most 0.1 above the 
lower bound. On the other hand, the uniform penalty function, 
corresponding to the unweighted GLRT-MLC rule, entails a 
significant loss in performance over most of the range of L 
studied; e.g., as high as 0.25 above the lower bound. 

APPENDIX 

Proof of Theorem I 
is obviously of level CY 

for testing among the composite hypotheses Eo, . . . ,E,.  To 
prove that 4* = 4('*) is a constrained min-max test of level 
a ,  we need70 verify that for any other test function q5 of level 

By the assumption (18), 4* = 

- 

a with respect to the composite null hypothesis Eo 

Recall that by definition 4* = 4@*) minimizes the worst 
case classification error prGbabili6 r r i a x ~ g ~ ~  EO [ 1 - 4TJ (811 

among all test functions of level cy for the hypotheses 
Hib*), E,. . . . , H J .  It will therefore suffice to show that any 
test function - 4 of level cy for the hypotheses Eo, E, ,  . . . , & 
is also of level LY for the hypotheses Hib*) .  E, ,  . . . , H J .  Since 
Ee[l - 401 5 a for all 0 E 0 0 ,  we have 

(1 - $bo(x))f;b*)(5) dp(z) 

This shows that 4 is of level N also with respect to the simple 
null hypothesis HA" and therefore cannot have smaller worst 
case classification error than 4@* I. 

AS for the sufficient condition for existence of b*, we use 
the following: 

- 

B E O o  

= a  (71) 

where the last two lines follow directly from the assumed 
condition (20) and (19), respectively. 

Proof of Theorem 2 
The proof mainly consists of establishing three facts: Exis- 

tence of the test function &* E V, defined by the relations 
(22)-(25), existence of a min-max strategy, the min-max 
property of q5*. We start by showing the existence of 4*. 

Existencef - $* E V, : By using the defining equations 
(22) and (23), we can readily verify that - 4(c) satisfies 

- (6s )  E [O. 1](J+1). vc E C M  

and 
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We next show that i) for any fixed c, there exist X > 0 and 
( E [O, I], both functions of c, such that the false alarm 
constraint given by (24) is satisfied and, ii) a maximizing 
weight vector c* exists that maximizes (25) over CM. But 
given assertion i), assertion ii) (and thus the existence of $*) 
follows directly due to the fact that the convex set Chf-is 
compact. Hence it remains to justify assertion i). 

For j = 1,. .. , J ,  define 

If fo 0, define Lj to be unbounded. Let 

F ( z ) e f P o ( { x  : L j m a x ( X )  < z } ) ,  v z  E R 

where 

Then using the definition of - 4 ,  we can express the false alarm 
constraint in (24) as 

F ( X )  + EPo({X: LJn, , , (X)  = A}) = 1 - a. (72) 

It follows from the left continuity and monotonicity of the 
function F ( z )  that there exists a point z = X such that 
F ( X )  5 1 - a and F(X+) > 1 - a, where F(X+) denotes the 
right limit of F at A,  i.e. 

F(X+) = ;$F(z).  

Now if F ( z )  is continuous at A, then 

Po({X:  LImax(X) = A>) = 0 

and F ( X )  = 1 - a so the constraint (24) is satisfied for any 
(. If, on the other hand, F ( z )  is not continuous at A. then 

P o ( { X :  LJn,*,,(X) = A}) = F(X+) - F(X) > o  

< = (1 - a - F ( X ) ) / F ( X + )  - F ( X ) ) .  

and we can satisfy (24) by choosing 

This establishes the existence of a decision rule - 4* E D, that 
satisfies (22)-(24). 

We now proceed to the proof of the existence of a min-max 
strategy. 

Existence of a Min-Max Strategy: We must show that there 
exists a decision rule - 4* E D, that achieves the infimum value 

To prove this, we will use the method of risk sets [6]. 

incurred by using the test function - 4 
Define the risk function R(B.4) as the probability of error 

R(fl,$)'ffEB[l - ~ T J ( B ) ] .  (74) 

In terms of the risk function, the min-max problem in (73) 
can be written as 

(75) 

Now observe that from the definition of C M  we have 

To conclude that the min-max problem on the right-hand 
side of (76) admits a solution, we will need to use the 
min-max theorem [6, sec. 2.9, Theorem 11, which dictates 
that a min-max strategy exists if the risk set relevant to the 
problem is convex and compact. The relevant risk set in this 
case is the constrained risk set S, defined below. 

sa'f{[Yo,.'. : Y M I T  : Y O  = W,@. 0 E 0,  yo I a ) .  (77) 

s ~ f { [ y o l - ' , y M ] T : y O  = R ( B , $ j ) , B E @ ) .  

To show that S, is both convex and compact we proceed as 
follows. Consider the unconstrained risk set S defined by 

From [6, sec. 1.7, Lemma 11, the set S is convex. Furthermore, 
since S is the convex hull of the risk set of nonrandomized 
decision rules, which in this case is finite and thus compact, it 
follows from [6, sec. 2.4, Theorem 21 that S is also compact. 
Now note that the constrained risk set S, is the intersection 
of S and the closed half-plane {yo = R(O,4) 5 a} .  Hence 
the convexity and compactness of the constrained risk set S,. 

Therefore, by the min-max theorem cited above, the func- 
tion 

1 cBR(Bi $1 
O B 0 0  

possesses a saddle point over c E C M  and $ E Va 

(78) 

and there exists an admissible min-max decision rule with an 
associated "least favorable distribution" over the alternatives. 
Furthermore, due to the existence of a test function achieving 
the infimum over Do, we can change infimum to minimum 
over Da. 

The Min-Max Property of - $*: We must now show that, for 
fixed c. the decision rule 4(c) defined by the relations (22)-(24) 
achieves the following minimum: 

since, by (78), (76), (75), and the defining relation (25) of the 
weight vector c*, this will be equivalent to - -  4* = 4("*) being 
a constrained min-max test. 

For an arbitrary test function - 4 E V,, let 

P($)'f coR(H,$). 
OB% 

We will show that p ( 4 )  - - ~ ( 4 ' " ) )  - 2 0. Using the definition 
of risk (74) and the definition of the hypothetical pdfs {f:')} 
(15), the identities 

J 

4 0 = 1 - c  4j 
3=1 
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and 

the expression for the expectation 

and the false alarm constraint EO[&,] 2 1 - a ,  we can write 
the following lower bound on the difference p ( 4 )  - ~ ( 4 ( ~ ) ) :  

- - 

since - 4 k ( z ) $ h G ) ( X )  5 0.v.c E X, the first term in (82) is 
nonnegative. 

For the integrals over XI, observe that Vz E X I ,  4LG)(z) = 
0 for IC # j,,,, IC = 0. . . .  . J , and qJmaxfJ:ix(x) - 

qJf jc) (z)  2 0. Thus we have 

+ & J' [e fJS) (z 1 - A fo (z) 1 (4:"' (z 140 (. 

-A(z)4iS)(4) dP(Z) .  (80) 2 k1 [~Js,'"(.c) - Afo(z) l (4y440(4 

and 
J=1 

3=1 
To see that the right-hand side of (80) is nonnegative, we will 
consider the following partition of 

and 2 0. (84) 

- 4g(441c)(4)dP(T) 

X: Xo = {x E X : maxL,(z) < A }  = J,, [%maxf:::x (J) - ~fot~)14!"x (z)4o(z)44z) 
J > O  

XI = {z E X: maxLJ(z)  2 A}. 

Now we write each integral over X in the right-hand side of 
(80) as the sum of two integrals, over each of the Xz's ,  z = 0 , 1  

This concludes the proof of (79). 

with (75), we obtain 
J > O  Now substituting (79) in (78) and using (76) in conjunction 

rmin max R(B, 4) = Inax ceR(S ,c)  (85) 
- CECA4 - Beeo $ E V ~ B B O ~  - 2 J\ [qkfL' ) (z )  - q ~ f J ( ) ( ~ ) 1 ~ ~ ~ ) ( ~ ) ~ ~ ( 5 )  

k , j = l  which, by the definition of the risk functions, given in (74), 

(81) Proof of corollary I 

and By Theorem 2, 4* = 4@*,G*) is a constrained 
min-max test of l eve ra  for testing among the hypotheses 
HA''), If1 , . . . , I f J .  Furthermore, if condition (30) holds, 
i.e., if 4* is of level a: also with respect to the composite 
hypotheses I f o ,  . . . , I f J ,  then the condition ( 1 8) of Theorem 
1 is satisfied. In this case, 4* is also a constrained min-max 
test of level N for testing among the composite hypotheses 

2 / [njf,'"'x) - ~ f 0 ( 4 1 ( 4 ~ c ) ( ~ ) 4 0 ( z )  
J=1 X 

- 4;(+#)IS)(4)444 

j = 1  - HO, .. . ,ET. 

Now, by the defining (22) and (23), q5LG'(z) vanishes on 
XO for IC > 0. Therefore, the first term in (81) is zero and, 

so that 4* is of level N for testing between the composite 
hypotheses Eo, . . . , E J .  Let 4 be an arbitrary level cy test - 
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for testing among the composite hypotheses Eo, . . . , &. To 
establish minmaxity, we need to show the following: 

m=Ee[l  - $ T , ( q l  I maxEe[l  - $+,(e)]. well weo 

[4] L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone, Classijication 
and Regression Trees. 

[5] J. Deshayes and D. Picard, “Off-line statistical analysis of change-point 
models using non-parametric and likelihood methods,” in Detection 
of Abrupt Changes in Signals and Systems, A. Benveniste and M. 

Pacific Grove: Wadsworth, 1984. 

(87) 

We have directly from (33) 
Basseville, Eds. 

[6] T. S .  Ferguson, Mathematical Statistics: A Decision Theoretic Approach. 
New York: SpringerIVerlag, 1977, pp. 103-168. 

Orlando, FL: Academic Press, 1967. 
[7] A. Fredriksen, D. Middleton, and D. Vandelinde, “Simultaneous sig- 

nal detection and estimation under multiple hypotheses,” IEEE Trans. 
Inform. Theory, vol. IT-18, no. 5, pp. 76C768, Nov. 1972. 

[8] A. 0. Hero and J. K. Kim, “Simultaneous signal detection and clas- 
sification under a false alarm constraint,” in Proc. IEEE ICASSP-90 

[9] 1. A. Ibragimov and R. Z. Has’minskii, Statistical Estimation: Asymp- 

[IO] E. J. Kelly, I. S .  Reed, and W. Root, “The detection of radar echoes in 
noise I,” J.  SIAM, vol. 8,  no. 2, pp. 309-341, June 1960. 

[ 1 I] -, “The detection of radar echoes in noise 11,” J.  SIAM, vol. 8, no. 
3, pp. 481-505, Sept. 1960. 

[I21 E. L. Lehmann, Testing Statistical Hypotheses. Pacific Grove, CA: 

[I31 N. Merhav and Y. Epbraim, “A Bayesian classification approach with 
application to speech recognition,” IEEE Trans. Sig.  Process., vol. 39, 
no. 10, pp. 2157-2166, Oct. 1991. 

[ 141 D. Middleton and R. Esposito, “Simultaneous optimum detection and 
estimation of signals in noise,” IEEE Trans. Inform. Theory, vol. IT-14, 
no. 3, pp. 4344l4, May 1968. 

[I51 -, “New results in the theory of simultaneous optimum detection 

c;Ee[l - df,(e)] = max Ee[l - $;,(e)] = v. weo 

On the other hand, it can be shown (see (79) in the proof of 
Theorem 2) that $* satisfies 

(88) 
we0 

- (Albuqerque, NM Apr. 1990). 

c P e [ l -  $f,(e)l I c P e [ l -  $ T J ( e ) ] .  (89) totic Theory. New York Springer-Verlag, 1981. 
Beeo woo 

Combining (88) and (89) we obtain 

maxEe[l  - $;,(e)] I 
weo Wadsworth, 1991. 

C P e [ 1  - $ T J ( e ) ]  

5 maxE@[l - $ T J ( e ) ]  (90) . 
weo 

@eoo 
which establishes (87). 

Proof of Corollary 3 
Let $ be an arbitrary level CY test for testing among the com- 

posite Eypotheses go, . . . , E,. Since $* defined by (26)-(30) 
is a constrained min-max test of level (Y for the same hypothe- 
ses, by definition the following inequality is satisfied: 

maxEe[l - dTJ(e)1 L maxEe[l  - $:J(e)l. (91) weo woo 
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