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Detection of the Number of Signals Using the
Benjamini-Hochberg Procedure

Pei-Jung Chung∗, Johann F. Böhme, Christoph F. Mecklenbräuker, Alfred O. Hero

Abstract— This work presents a novel approach to detect mul-
tiple signals embedded in noisy observations from a sensor array.
We formulate the detection problem as a multiple hypothesis
test. To control the global level of the multiple test, we apply the
false discovery rate (FDR) criterion proposed by Benjamini and
Hochberg. Compared to the classical familywise error rate (FWE)
criterion, the FDR-controlling procedure leads to a significant
gain in power for large size problems. In addition, we apply the
bootstrap technique to estimate the observed significance level
required by the FDR-controlling procedure. Simulations show
that the FDR-controlling procedure always provides higher prob-
ability of correct detection than the FWE-controlling procedure.
Furthermore, the reliability of the proposed test procedure is not
affected by the gain in power of the test.

Index Terms— array processing, detection, number of signals,
false discovery rate, multiple test, likelihood ratio, bootstrap

EDICS Category: SAM-SDET, SSP-DETC

I. INTRODUCTION

Determination of the number of signals embedded in noisy
sensor outputs is a key issue in array processing and related
applications [3]. Many high resolution methods, such as max-
imum likelihood (ML) approach or MUSIC, assume a known
number of signals. Performance of these estimators depend
strongly on this knowledge [11]. For example, when the
number of signals is incorrectly specified, favorite properties
such as consistency and efficiency of the ML estimator may
be no longer valid. In radar or geophysics, deciding how many
incoming waves is as important as estimating the associated
propagation parameters.

Traditional methods based on information theoretic criteria
such as Akaike’s information criterion (AIC) or Rissanen’s
minimum description length (MDL) [14], [25], [26], [28]
view this problem as model order selection. Another class of
methods [5], [27] uses hypothesis tests to decide how many
eigenvalues of the sample covariance matrix are equal. The
eigenstructure of the spatial correlation matrix is fundamental
to all these methods. Consequently, they are often sensitive to
signal coherence and low signal to noise ratio (SNR) with the
danger of a subspace swap.

For broadband signals, one may extend such narrowband
methods by using the focusing technique [19] to transform
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the sample covariance matrix of array outputs at various fre-
quencies to a common subspace. The aforementioned methods
developed for narrowband signals can be applied directly
after focusing. An alternative approach in [23] applies an
interpolation model suitable for Markov Chain Monte Carlo
(MCMC) procedures.

In this work, we consider a detection procedure based on
multiple testing with test statistics derived from the generalized
likelihood ratio (LR) principle [4], [21]. The proposed ap-
proach is suitable for both narrowband and broadband models.
When broadband signals are of interest, the combination of
information from different frequency bins follows naturally
from the asymptotic normality and independence of Fourier
transformed data [6]. At each test step, we compute the ML
estimate under the assumed number of signals and the corre-
sponding test statistic. In other words, our procedure jointly
estimates the number of signals and the parameters of interest.
Because the proposed test utilizes the same parameterization
as the ML method, it enjoys similar favorite features. The
experimental results from seismic measurements reported in
[7], [8] demonstrate superior performance of the generalized
LR test based approach in scenarios involving small numbers
of samples, low SNRs and coherent signals.

In the narrowband model, the ML estimation in the proposed
procedure is computationally more costly than the required
eigen-decomposition in most MDL type methods [14], [25],
[28]. However, in the broadband model,the focusing tech-
nique [19] or the MCMC approach [23] requires considerable
amount of computation. The computational complexity of our
method is moderate compared to [19], [23].

A major concern in multiple testing problems is the control
of type one errors. The detection procedure suggested in
[4], [7], [21] applied the Bonferroni-Holm procedure [17] to
control the classical familywise error-rate (FWE), the prob-
ability of erroneously rejecting any of the true hypotheses.
As the control of FWE requires each test to be conducted at a
significantly lower level, the Bonferroni-Holm procedure often
leads to conservative results. For the proposed procedure, this
implies that the ability to discover signals is reduced with
growing numbers of signals. To overcome this drawback, we
adopt the false discovery rate (FDR) criterion suggested by
Benjamini and Hochberg [1] to keep balance between type
one error control and power1. The difference between the
FWE and FDR-controlling procedure becomes more dramatic

1The power of a test is the probability of correctly rejecting the null
hypothesis.
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when the size of problems becomes larger [2]. Therefore, using
the FDR criterion can lead to a significant gain in power in
situations involving many signals. To ensure the desired FDR
level to be controlled by the Benjamini-Hochberg procedure,
we shall carefully examine the independence condition on the
test statistics as well.

Since the test statistics have no closed form distribution
function for broadband signals, we shall apply the bootstrap
technique to obtain the observed significance level, the p-
value, required by the FDR-controlling procedure.

This paper is organized as follows. We give a brief descrip-
tion about the signal model in the next section. The multiple
test procedure for signal detection is developed in section III.
Section IV introduces the idea of false discovery rate (FDR)
and the Benjamini-Hochberg procedure. In the subsequent
section we show that the condition required by the Benjamini-
Hochberg procedure is satisfied. The concepts of bootstrap and
the procedure for estimating p-values are illustrated in section
VI. Simulation results are presented and discussed in section
VII. Our concluding remarks are given in section VIII.

II. PROBLEM FORMULATION

Consider an array of n sensors receiving m broadband signals
emitted by far-field sources located at positions described by
their angles of arrival θm =[ θ1, . . . , θm ]T . We consider n to
be known and fixed, whereas m is an unknown non-negative
integer which is to be determined from the observed array
output data. The n-dimensional sensor array output x(t) is
modelled by the time-invariant linear convolution model,

x(t) =
∫ ∞

−∞
hm(t− τ ;θm)sm(τ) dτ + u(t) .

Here, hm(·; θm) is the n × m matrix of impulse responses
and its (i, j)th element links the ith element of x(·) to the
jth element of sm(·). The n-dimensional stochastic process u
models the additive noise. We assume that x(t) is bandlimited
and we sample at the Nyquist rate which we normalize to
one. The sensor array outputs x(t), (t = 0, . . . , T − 1) are
divided into K snapshots of length T ′ = T/K where K ≥ n.
The data in the kth observation snapshot is short-time Fourier-
transformed

Xk(ω) =
1√
T ′

T ′−1∑
t=0

x(t)e−jωt. (1)

For large number of samples T ′, the frequency domain data
is described approximately by the regression model [4], [6],

Xk(ω) = Hm(ω; θm)Sk
m(ω) + Uk(ω) (2)

where the matrix Hm(ω;θm) = [d1(ω) · · ·di(ω) · · ·dm(ω)]
∈ Cn×m consists of m plane-wave steering vectors with the
ith column di(ω) corresponding to the ith incoming wave
arriving from angle θi. The short-time Fourier transformed
signals and noise are denoted by Sk

m(ω) and Uk(ω) in Eq.(2),
respectively. In the following analysis, the signal waveform
Sk

m(ω) is considered to be unknown and deterministic. Uk(ω)
consists of spatially uncorrelated sensor noise with cavariance
matrix CU (ω) = ν(ω)I where ν(ω) is the unknown noise

spectral parameter and I is an identity matrix of corresponding
dimension2.

From the stochastic properties of the Fourier transform
[6], we know that the Fourier transformed data Xk(ω) is
characterized by asymptotic normality and independence.
More precisely, under the regularity conditions formulated
in Theorem 4.4.1 in [6], for large T and T ′, the following
properties hold.

1) The Fourier transformed data Xk(ωj), Xk′(ωj), where
ωj = 2πj

T , (k, k′ = 0, . . . ,K−1) are mutually indepen-
dent for k 6= k′ and all 0 ≤ j ≤ J − 1 < T ′.

2) Xk(ωj), Xk(ωj′), (j, j′ = 0, . . . , J − 1) are mutually
independent for ωj 6= ωj′ and all k.

3) Given the signal waveform Sk
m(ωj), Xk(ωj) is complex

normally distributed with mean Hm(ωj ;θm)Sk
m(ωj) and

covariance matrix CU (ωj) = ν(ω)I .

Properties (1) and (2) provide us a natural way to combine
information from different frequency bins and snapshots.
Furthermore, property (3) ensures the data’s normality with-
out additional assumption on noise. Based on the data set
{Xk(ωj), k = 1, . . . , K, j = 0, . . . , J − 1}, the problem
of central interest is to determine the number of signals m
embedded in the observations.

III. SIGNAL DETECTION USING A MULTIPLE HYPOTHESIS
TEST

We formulate the problem of detecting the number of
signals as a multiple hypothesis test. Let M < n denote the
maximal number of sources. The following procedure provides
an estimate m̂ for the number of signals.

For m = 1,

H1 : Data contains only noise.
Xk(ωj) = Uk(ωj)

A1 : Data contains at least 1 signal.
Xk(ωj) = H1(ωj ; θ1)Sk

1(ωj) + Uk(ωj)

For m = 2, . . . , M

Hm : Data contains at most (m− 1) signals.
Xk(ωj) = Hm−1(ωj ; θm−1)Sk

m−1(ωj) + Uk(ωj)(3)

Am : Data contains at least m signals.
Xk(ωj) = Hm(ωj ;θm)Sk

m(ωj) + Uk(ωj) (4)

We use the subscript (m− 1) or m to emphasize the dimen-
sion of the steering matrix and the signal vector under null
hypothesis Hm or alternative Am. Let {i1, i2, . . . , ir} be an
arbitrary subset of {1, 2, . . . ,M} and suppose that among M
hypotheses, r are rejected, namely Hi1 ,Hi2 , . . . , Hir , then the
number of signals is determined by,

m̂ := max{i1, i2, . . . , ir}. (5)

Which hypotheses are to be rejected depends on the adopted
error criterion. In this work, we shall apply the Benjamini-
Hochberg procedure to control the false discovery rate.

2Extensions to spatially colored noise are discussed in Sec. III-A below.
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We apply the generalized likelihood ratio (LR) principle to
construct the test statistic Tm , (m = 1, . . . , M)

Tm = max
θm

L(θm) − max
θm−1

L(θm−1) (6)

where L(θm) and L(θm−1) denote the concentrated log-
likelihood function under Am and Hm , respectively. The
concentrated likelihoods depend on the non-linear parameters
(angles of arrival) only, whereas the linear parameters have
been eliminated by a closed-form optimization,

L(θm) =
1
J

J−1∑

j=0

log
(
tr[(I − P m(ωj ; θm))R̂(ωj)]

)
.

Here R̂(ωj) = 1
K

∑K
k=1 Xk(ωj)Xk(ωj)H represents a non-

parametric power spectral estimate of sensor outputs over K
snapshots3 and P i(ωj ; θi), (i = m, (m−1)) is the projection
matrix onto the column space of Hi(ωj ;θi). For m = 1, we
define P 0(·) = 0.

After some manipulations [4], [21], we obtain the following
generalized LR test statistic for testing Hm against Am

Tm =
1
J

J−1∑

j=0

Tm(ωj), (7)

Tm(ωj) = log

(
tr[(I − P m−1(ωj ; θ̂m−1))R̂(ωj)]

tr[(I − P m(ωj ; θ̂m))R̂(ωj)]

)

= log
(

1 +
n1

n2
Fm(ωj ; θ̂m)

)
, (8)

where θ̂i is the vector of ML estimates for all angles of arrival
assuming that i signals are present.

Under hypothesis Hm, the statistic

Fm(ωj ; θ̂m) =
n2

n1

tr[(P m(ωj ; θ̂m)− P m−1(ωj ; θ̂m−1))R̂(ωj)]

tr[(I − P m(ωj ; θ̂m))R̂(ωj)]
(9)

is asymptotically Fn1,n2–distributed with degrees of freedom
n1, n2, cf. Chapter 26 in [18]. For the single-frequency
case, J = 1, Eqs. (8) and (9) show the equivalence to the
narrowband F -test proposed by Shumway [24]. The statistic
(9) can be interpreted as an estimate for the SNR increase
induced by the mth signal. The mth signal is declared to be
detected if it is strong enough so that the statistic (9) exceeds
a given threshold.

If the parameters θm−1 and θm were known a priori, testing
Hm against Am is equivalent to testing the linear model
(3) against (4). The degrees of freedom could be obtained
as n1 = 2K, n2 = 2K(n − m). However, θm−1 and θm

are unknown and need to be estimated. Taking the estimated
nonlinear parameters into account, the degrees of freedom are
given by [21]

n1 = K(2 + rm), n2 = K(2n− 2m− rm) (10)

with rm = dim(θm) = 1 denoting the dimension of the
nonlinear parameter vector θm associated with the mth signal.

3(·)H denotes conjugate transpose.

The additional term rm is obtained through Taylor expansion
around the true parameter θm.

For certain types of wavefields, rm may be larger than
one. For instance, in seismic applications, the array geometry
is usually planar, and the source is often described by two
angular parameters, azimuth and elevation. In this setting,
rm = 2. In shallow ocean matched field applications with
a linear array, the source location is often characterized in
cylindrical coordinates. This results in rm = 2 or rm = 3
depending on the array’s ambiguity structure.

In the broadband case, a suitable closed-form expression for
the distribution of the test statistic Tm under Hm is unknown to
the authors. We shall use the bootstrap technique to overcome
this difficulty in Section VI.

A. Spatially colored noise

If the noise is spatially correlated, i.e., CU (ω) 6= ν(ω)I ,
we expect a performance degradation if the proposed detection
procedure is applied as described in Section III. It is relatively
straightforward to extend the proposed method by generalizing
to a noise covariance matrix ν(ω)J(ω) where J(ω) is a known
Hermitian positive-definite (and, hence, of full-rank) matrix,
suitably normalized to tr(J(ω)) = n. When the signal model
is extended in this way and the log-likelihoods are evaluated
then we see that this amounts to extending the test procedure
by a pre-whitening step. The corresponding test statistics are
computed from the whitened sensor array output. The short-
time Fourier transformed sensor array output (2) is linearly
transformed via the whitening filter J(ω)−1/2 so that the noise
of the transformed data X̃

k
(ω) = J(ω)−1/2Xk(ω) becomes

spatially white. The matrix J(ω)−1/2 denotes the inverse of
a suitably chosen square root of the positive definite matrix
J(ω).

The generalisation to superposed noise covariance models
with several parameters, e.g.

ν1(ω)I +
U∑

`=2

ν`ωJ `(ω)

is possible, but cumbersome.

IV. CONTROL OF FALSE DISCOVERY RATE

The control of type one error is an important issue in
multiple inferences. A type one error occurs when the null
hypothesis Hm is wrongly rejected. The traditional concern
in multiple hypothesis problems has been about controlling
the probability of committing any type one error in families
of simultaneous comparisons. The control of this familywise
error-rate (FWE) usually requires each of the M tests to be
conducted at a lower level. For example, given a significance
level α, the significance level of each test is given by α/M
in the classical Bonferroni procedure. When the number of
tests increases, the power of the the FWE-controlling proce-
dures such as Bonferroni-type procedures [17] is substantially
reduced.

The false discovery rate (FDR), suggested by Benjamini
and Hochberg [1], is a completely different point of view
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for considering the errors in multiple testing. The FDR is
defined as the expected proportion of errors among the rejected
hypotheses. Suppose that among the M tested hypotheses
{H1,H2, . . . , HM}, m0 are true null hypotheses. The number
of hypotheses rejected is denoted by R. This observable
random variable R can be decomposed R = V + S, where V
is the number of incorrectly rejected null hypotheses and S is
the number of correctly rejected hypotheses. In terms of these
random variables, the FWE is P (V > 0), the probability of
making any type one error. The proportion of errors committed
by falsely rejecting null hypotheses can be viewed through
V/R. Let Q be the unobservable random quotient,

Q =
{ V/R if R > 0,

0 otherwise. (11)

The FDR is simply E(Q) , the expected error rate. The
Benjamini-Hochberg Procedure proposed in [1] calls for con-
trolling the FDR at a desired level q, while maximizing E(R).
As noted in [1], if all null hypotheses {H1,H2, . . . , HM} are
true, the FDR-controlling procedure controls the traditional
FWE. But when many hypotheses are rejected, indicating
that many hypotheses are not true, an erroneous rejection is
not as crucial for drawing conclusion from the whole family
of tests. In many applications, it has been argued that the
FDR is the more appropriate error rate to control [2]. The
difference between FWE- and FDR-controlling procedure is
more significant when the size of problems becomes larger. In
the proposed detection scheme, large size problem means the
maximal number of signals, M , is large. Such M ’s are typical
in a wireless multipath propagation environment [12].

Let {p1, p2, . . . , pM} denote the p-values corresponding
to the test statistics {T1, T2,. . . , TM} and p(1) ≤ p(2) ≤
. . . ≤ p(M) denote the ordered p-values corresponding
to the hypotheses {H(1),H(2),. . .,H(M)} and test statistics
{T(1),T(2),. . ., T(M)}. By definition, pm = 1 − PHm(Tm)
where PHm is the distribution function under the null
hypothesis Hm. Benjamini and Hochberg showed that when
the test statistics corresponding to the true null hypotheses
are independent, the following procedure controls the FDR at
level q ·m0/M ≤ q [1].

The Benjamini Hochberg Procedure

Define
k = max

{
m : p(m) ≤

m

M
q
}

(12)

and reject H(1) . . . H(k). If no such k exists, reject no
hypothesis.

Remark 1 If the test statistics do not ensure dependency
or positive dependency, the above procedure is conducted
with q′ = q/(

∑M
i=1

1
i ) instead of q to control the FDR at

the same level [2]. Since q′ is smaller than q, the modified
Benjamini-Hochberg procedure will induce a loss in power.
As the independence condition required by the Benjamini-
Hochberg procedure is satisfied in the proposed multiple test,
we shall use the original version (12) to control the FDR. The
resulting test procedure is summarized in Table 1.

Remark 2 In the sequentially rejective Bonferroni-Holm pro-
cedure [17], the ordered p(m) is compared with α/(M−m+1)
where α is the desired FWE level. Given the same desired
FDR and FWE level, i.e. q = α, it is easy to verify that
q · (m/M) > α · (1/(M −m + 1)). Thus the FDR-controlling
procedure should lead to more powerful results than the FWE-
controlling procedure.
Remark 3 In practice, the proposed multiple test can be
implemented in a sequential manner as in [21]. The detection
procedure starts with m = 1. If H1 is rejected, one signal
is declared to be detected and the procedure goes to m = 2.
Once Hm is retained, the procedure stops and (m− 1) signal
are declared to be detected. Such implementations assume
implicitly that the p-values are in an ascending order, i.e.
p1 ≤ p2 ≤ . . . ≤ pm . However, this assumption is not
proved yet and does not always happen with finite samples.
Consequently, the sequential implementation results in a lower
probability of detection.

Input: Fourier transformed data {Xk(ωj), k =
1, . . . , K, j = 0, . . . , J − 1}

maximal number of signals M , desired
FDR level q .

1) for m = 1, . . . , M

a) Find the ML estimate θ̂m

b) Compute the statistics
Tm(ω0), . . . , Tm(ωJ−1)

c) Apply the bootstrap procedure (Table
2) to find pm

end
2) Apply the Benjamini Hochberg procedure

(12) to the sorted p-values
p(1) ≤ p(2) ≤ · · · ≤ p(M)

and reject hypotheses H(1) . . .H(k).
3) Determine the number of signals by

m̂ = max{i1, i2, . . . , ik}
where i1, i2, . . . , ik are the original indices
of the rejected hypotheses.

Output: the estimated number of signals m̂.

Table 1: Multiple Hypothesis Tests for Detection of the Number of Signals

V. INDEPENDENCE OF TEST STATISTICS

In the following, we shall show that the test statistics under
null hypotheses Hm , (m = 1, . . . , M) are independent. This
ensures that the FDR of the proposed test (3) is controlled
by the Benjamini-Hochberg procedure. The following result
from [18], [20] regarding properties of beta distribution plays
a key role in our proof.

Result 1. Let X2
1 , X2

2 , . . . X2
k be a sample of mutually inde-

pendent random variates where X2
j follows a χ2

νj
distribution
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with νj degrees of freedom (j = 1, 2, . . . , k). Then

V 2
1 = X2

1/(X2
1 + X2

2 )
V 2

2 = (X2
1 + X2

2 )/(X2
1 + X2

2 + X2
3 )

...
V 2

(k−1) = (X2
1 + . . . + X2

k−1)/(X2
1 + . . . + X2

k)
(13)

are mutually independent random variables, each with a beta
distribution with parameters (p, q), denoted by B(p, q). The
parameters p, q for V 2

j are 1
2

∑j
i=1 νi , 1

2νj+1 respectively.

Theorem 1. The test statistics Tm, (m = 1, . . . , M) defined
by eq. (7) corresponding to the true null hypotheses are
mutually independent.

Proof: The test statistic Tm = 1
J

∑J−1
j=0 Tm(ωj) consists of J

frequency bins with

Tm(ωj) = − log Qm(ωj), (m = 1, . . . , M) (14)

and

Qm(ωj) =

(
tr[(I − P m(ωj ; θ̂m))R̂(ωj)]

tr[(I − P m−1(ωj ; θ̂m−1))R̂(ωj)]

)
. (15)

According to the asymptotic properties of Fourier transformed
data, Xk(ωj), (j = 0, . . . , J − 1) are independent. Therefore,
Tm(ωj), (j = 0, . . . , J − 1) are independent for ωi 6= ωj .
We need only to consider whether at each frequency bin ωj ,
the statistics Tm(ωj) under Hm are independent. Furthermore,
Tm(ωj) and Qm(ωj) are related through a monotone function,
independence of the Qm(ωj) implies independence of the
Tm(ωj).

Now we show that under null hypothesis, Qm(ωj) are in-
dependent beta distributed random variables. The term tr[(I−
P m(ωj ; θ̂m))R̂(ωj) ] appearing in (15) can be decomposed
as

tr[(I−P m(ωj ; θ̂m))R̂(ωj) ] = ν(ωj)[ Y 2
M (ωj)+Y 2

M−1(ωj)+. . .+Y 2
m(ωj) ]

(16)
where

Y 2
m(ωj) =

1
ν(ωj)

tr[(P m+1(ωj ; θ̂m+1)− P m(ωj ; θ̂m))R̂(ωj) ],

(m = 1, . . . , M − 1)

Y 2
M (ωj) =

1
ν(ωj)

tr[(I − P M (ωj ; θ̂M ))R̂(ωj) ]

are asymptotically independent and χ2
νm

(νm ∈ N) dis-
tributed under null hypotheses. The denominator tr[(I −
P m−1(ωj ; θ̂m−1))R̂(ωj) ] can be decomposed in a similar
manner. From (15) and (16), we have

Qm(ωj) =
[ Y 2

M (ωj) + Y 2
M−1(ωj) + . . . + Y 2

m(ωj) ]
[ Y 2

M (ωj) + Y 2
M−1(ωj) + . . . + Y 2

m(ωj) + Y 2
m−1(ωj) ]

.

(17)

According to Result 1, for the independent random variables
Y 2

m(ωj), (m = 1, . . . ,M), each with central χ2
νm

distribution, the random variables Q1(ωj), . . . , QM (ωj)
are mutually independent, each with beta distribution. The
independence of Tm(ωj) follows immediately. Because of
frequency independence, Tm are also independent under Hm.
¤

Remark Theorem 1 is valid for J = 1. Therefore, the FDR-
controlling procedure can be applied to the narrowband signals
directly. Since the null hypothesis distribution is completely
specified by the Fn1,n2 distribution, the p-values can be
determined without bootstrap procedure.

VI. THE BOOTSTRAP TEST

The bootstrap is a powerful technique for estimating confi-
dence interval or testing hypothesis when conventional meth-
ods are not valid. It requires little prior knowledge on the
data model [13], [15], [29]. More importantly, it provides
accurate estimation of probability distribution when only few
data samples are available. The key idea behind bootstrap is
that, rather than repeating the experiment, one obtains the
samples by reassignment of the original data samples. We
start with general bootstrap procedures and apply them to the
proposed detection procedure.

A. General concept

Let Z = {z1, z2, . . . , zJ} be an i.i.d. sample set from a
completely unspecified distribution F with ϑ denoting an
unknown parameter, such as the mean or variance, of F . The
goal of the following procedure is to construct the distribution
of an estimator ϑ̂ derived from Z .

The bootstrap principle

1. Given a sample set Z = {z1, z2, . . . , zJ}
2. Draw a bootstrap sample Z∗ = {z∗1 , z∗2 , . . . , z∗J}

from Z by resampling with replacement.

3. Compute the bootstrap estimate ϑ̂∗ from Z∗.
4. Repeat 2. and 3. to obtain B bootstrap estimates

ϑ̂∗1, ϑ̂∗2, . . . , ϑ̂∗B .

5. Approximate the distribution of ϑ̂ by that of ϑ̂∗.

In step 2., a pseudo random number generator is used to
draw a random sample of J values, with replacement, from
Z . A possible bootstrap sample might look like Z∗ =
{z10, z8, z8, . . . , z2}. Given the sample set Z , the bootstrap
procedure can be easily adapted to calculate a confidence
interval of ϑ̂ or construct a hypothesis test.

For the problem testing the hypothesis H0 : ϑ = ϑ0 against
A0 : ϑ 6= ϑ0 , we define the test statistic as

T̂ =
|ϑ̂− ϑ0|

σ̂
(18)
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where σ̂ =
√

σ̂2 and σ̂2 denotes an estimator of the variance of
ϑ̂. The inclusion of σ̂ guarantees T̂ is asymptotically pivotal.
Given a significance level α, the bootstrap test computes the
threshold tα based on the bootstrap approximation for the
distribution of T̂ under H0.

In the Benjamini-Hochberg procedure, the observed sig-
nificance level, denoted by p , rather than the threshold tα
is needed. We use bootstrap samples to estimate the p-value
through the following relation [15],

p̂ = P
( |ϑ̂∗ − ϑ̂|

σ̂∗
≥ |ϑ̂− ϑ0|

σ̂

)
. (19)

where P (·) represents the probability that the bootstrap esti-
mates larger than the normalized test statistic T̂ . The square
root of variance, σ∗, can be obtained through direct com-
putation or nested bootstrap [29]. In the bootstrap sample
T̂ ∗ = |ϑ̂∗−ϑ̂|

σ̂∗ , we use ϑ̂ instead of ϑ0 to have good power
properties. Originally, eq. (19) is used to construct confidence
interval. Here we apply it to obtain p-values.

The bootstrap procedure for estimating p-values

1. Resampling: Draw a bootstrap sample Z∗.
2. Compute the bootstrap statistic

T̂ ∗ = |ϑ̂∗−ϑ̂|
σ̂∗ .

3. Repeat 1. and 2. to obtain B bootstrap statistics.

4. Ranking: T̂ ∗(1) ≤ T̂ ∗(2) ≤ . . . ≤ T̂ ∗(B)

5. Choose L so that

T̂ ∗(L−1) ≤ T̂ ≤ T̂ ∗(L) . . . ≤ T̂ ∗(B).

Estimate the observed p-value by p̂ = L/B.

B. Application to multiple signal detection

To apply the bootstrap principle, we recall that the test statistic
Tm in (7) is the sample mean of J samples

zj = log
(

1 +
n1

n2
Fm(ωj ; θ̂m)

)
, (j = 0, . . . , J − 1). (20)

Because of asymptotic independence between various fre-
quency bins, the random variables Fm(ωj ; θ̂m) in (20)
are asymptotically independent, identically Fn1,n2 -distributed.
Therefore, {z0, . . . , zJ−1} are i.i.d. samples from the random
variable

Zm = log
(

1 +
n1

n2
Fm

)
, (21)

with Fm being Fn1,n2-distributed. Note that n1, n2 are func-
tions of m and must be computed for each Hm by the formula
(10).

Furthermore, under Hm , Zm is beta-distributed B(p, q)
with parameters p = n2/2, q = n1/2 . The mean and variance
of Zm, denoted by µm, σ2

m, respectively, are determined by
n1, n2 through the following equation [22],

µm = Ψ(
n1

2
+

n2

2
)−Ψ(

n2

2
), (22)

σ2
m = Ψ′(

n2

2
)−Ψ′(

n1

2
+

n2

2
) (23)

where Ψ(s) = (log Γ(s))′ and Ψ′(s) represent the first
derivative of logarithm of the gamma function and Ψ(s),
respectively4.

Based on the above observations, we reformulate the hy-
pothesis test (3) as a two-sided test

Hm : E[Zm] = µm

Am : E[Zm] 6= µm .

Clearly, the test statistic Tm = 1
J

∑J−1
j=0 zj is a natural

estimator for E[Zm]. For each hypothesis Hm, we apply the
bootstrap procedure for estimating p-values to obtain pm.

Input: Tm , Z = { Tm(ω0), Tm(ω1), . . . , Tm(ωJ−1) },
degrees of freedom n1, n2.

Initialization: Compute µm, σ2
m by (22), (23).

µ̂m = Tm , T̂ = |µ̂m−µm|
σm

.
Bootstrap: 1) Resampling: Draw a bootstrap sample Z∗.

2) Compute the bootstrap statistic

T̂ ∗ = |µ̂∗m−µ̂m|
σ̂∗m

.

3) Repeat 1) and 2) to obtain B bootstrap statistics.

4) Ranking: T̂ ∗(1) ≤ T̂ ∗(2) ≤ . . . ≤ T̂ ∗(B)

5) Choose L so that

T̂ ∗(L−1) ≤ T̂ ≤ T̂ ∗(L) . . . ≤ T̂ ∗(B).

Estimate the observed p-value by p̂ = L/B.
Output: pm = p̂

Table 2: The bootstrap procedure for estimating pm corresponding to the test statistic Tm.
σ̂∗m can be obtained by direct computation or nested

bootstrap sampling.

VII. SIMULATIONS

We demonstrate performance of the proposed algorithm
by numerical experiments. A uniform linear array of 15
sensors with inter-element spacings of half a wavelength λ/2
is used. The wavelength is defined by λ = v/f0 where v
represents the propagation velocity and f0 is a pre-selected
reference frequency. In the following, we apply the proposed
multiple test to narrowband and broadband data generated
pseudo-randomly by m = 3, 8, and 12 uncorrelated signal
sources. The noise is complex normally distributed with zero
mean and covariance matrix ν(ω)I . In additional to the FDR
criterion, we apply the sequentially rejective Bonferroni-Holm
procedure [17] to control the FWE level. The FDR and FWE

4Ψ, Ψ′ are also known as polygamma functions.
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are controlled at level q = 0.1 and α = 0.1, respectively. Each
experiment performs 100 trials.

A. narrowband signals

1) Comparison with the MDL approach: In the narrow-
band case, we use the MDL criterion [26] as a benchmark.
Similar to the proposed method, the performance of [26] is not
affected by fully correlated signals. The MDL criterion derived
in [26] differs from other information theoretic approaches
[14], [25], [28] in that it exploits the nonzero eigenvalues
λ1 ≥ . . . ≥ λm of the n × n noise covariance matrix
R̂N (θ̂i) = (I − P i(ω; θ̂i))R̂(ω)(I − P i(ω; θ̂i)) rather than
the m smallest eigenvalues of the sample covariance matrix
R̂(ω). This is the key to its robustness against signal coher-
ence. The number of signals is determined by minimizing the
following function of m ( [26], Eq. (22.b))

MDL(m) = K(n−m) log

(
1

n−m

∑n−m
i=1 λi

(Πn−m
i=1 λi)

1
n−m

)
+

1
2
m(2n−m+1) log K.

(24)
The first term is a measure for the spherical equality of the
eigenvalues. The second term is a penalty function that avoids
overestimation of model order. The test statistic (9) of the
proposed multiple testing procedure relies on the estimated
increase in SNR while (24) depends on the equality of the
estimated noise eigenvalues. Since the ML estimate θ̂i is re-
quired to compute R̂N (θ̂i), the computational cost associated
with the criterion MDL(m) is comparable to that associated
with the test statistic (8).

2) Signals of equal strengths: In the first experiment, the
narrowband signals are generates by m = 3 sources located
at θ = [−30◦ 20◦ 24◦] relative to the broadside of the array.
All signal sources are of equal strengths. The signal to noise
ratio (SNR), defined as 10 log

(|Sm(ω)|2/ν(ω)
)
, varies from

−10 to 6 dB in 1 dB step. The number of snapshots K = 30.
Note that two sources are located closely to each other. The
maximum number of signals M is set to be 4.

Fig. 1 shows the empirical probability of correct detection
versus SNR. By correct detection we mean that the estimated
number of signals equals the true number of signals, i.e.
m̂ = m. All three curves go to 100% as SNR increases.
The FDR-controlling procedure performs slightly better than
the FWE-controlling procedure in the threshold region −10
to −4 dB. From −4 dB on, both methods achieve almost
100% probability of correct detection. At −4 dB, the MDL
approach has only 25% probability of correct detection. It
requires 4 dB more than the other two procedures to provide
100% probability of correct detection.

In the second experiment, the number of signals is increased
to m = 8. The maximum number of signals M is set to be
9. All signal sources are well separated except two located
at [ 20◦ 24◦]. The results are depicted in Fig. 2. Because
the number of signals is increased, all three methods require
higher SNR to achieve the same performance. Since larger
m implies more hypotheses, the difference between the FDR-
and FWE-controlling procedures becomes more significant in

the region from −10 to −4 dB. At −8 dB, one can observe
a difference as large as 10%. Although the gap between
the MDL approach and the multiple test based approaches
is reduced in the second experiment, its SNR threshold still
remains much higher than the other procedures. For 90% of
correct detection, both multiple test based methods require −5
dB SNR, but the MDL approach requires −1 dB SNR.

In the third experiment, we increase the number of signals
to m = 12 which is slightly smaller than the number of
sensors n = 15. The maximum number of signals M is set
to be 13. Two sources remain closely located at [ 20◦ 24◦].
From Fig. 3, we observe that this relatively large number of
signals leads to a significantly higher SNR threshold. Clearly,
the FDR-controlling procedure leads to the best performance.
As expected, the difference between the FDR- and FWE-
controlling procedure is most significant among these three
experiments as the number of hypotheses is the largest.
Although the threshold region comes closer to those of the
multiple test based procedures, the MDL approach has an
overall lower probability of correct detection. In particular,
the FDR-controlling procedure has more than 30% higher
probability of correct detection at SNR= 14 dB.

3) Signals of various strengths: The simulations discussed
previously are carried out with signals of equal strengths. We
repeat these experiments with signals of various strengths. For
m = 3, the SNR difference of the signals is [−2 1 0] dB
where 0 dB corresponds to the reference signal. For m = 8,
three sources differ from the reference signal by −2, −1, 1
dB, respectively. For m = 12, four signals from the reference
signal by −2, −1, 1, 2 dB, respectively.

Numerical results show that all three algorithms behave sim-
ilarly to Figs. 1, 2 and 3. Table I summaries samples taken in
the threshold regions. Compared to signals of equal strengths,
the probability of correct detection is slightly reduced. In all
experiments, the FDR-controlling procedure has the highest
probability of correct detection. The gain in power of the
FDR criterion becomes more significant with increasing m.
In the considered scenarios, the MDL approach always needs
higher SNRs to achieve the same performance as the multiple
testing based methods. The gap between them is largest for
m = 3 and decreases when m increases. The cause for this
phenomena may be that the test statistic (8) is more sensitive
to the presence of a new signal when the number of signals
is small. In other words, when m is large, a new signal will
not cause so much change in SNR as when m is small.

B. Broadband signals
In the broadband case, we choose J = 10 frequency bins

equally spaced between (17/32)f0 and f0 for processing. The
number of snapshots K = 10. Each experiment uses the same
number of signals and source locations as in the narrowband
case. We consider two scenarios: (1) signals of equal strengths
and (2) signals of various strengths.

1) Signals of equal strengths: The first experiment consid-
ers m = 3. From Fig. 4, we observe that the FDR-controlling
procedure performs slightly better than the FWE-controlling
procedure. Both procedures achieve 100% of correct detection
at −3 dB. This is 1 dB higher than in the narrowband case.
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In the second experiment, the number of signals is increased
to m = 8. The results presented in Fig. 5 show that the FDR-
controlling procedure has a significant gain in power compared
to the FWE-controlling procedure. In the region from −2 to
2 dB, the difference between two curves is more than 15% .
At 0 dB, FDR-controlling procedure has 77% probability of
correct detection, while FWE-controlling procedure has only
45% probability of correct detection. For SNR as high as 4
dB, the probability of correct detection of the FWE-controlling
procedure is still below that of the FDR-controlling procedure
and does not achieve 100% probability of correct detection.

In the third experiment, m = 12. Both procedures need
higher SNRs to achieve reliable estimation. As shown in Fig.
6, the SNR threshold region covers a wider range than those
in Figs. 4 and 5. Compared to experiments with m = 3
and m = 8, the advantage of the FDR criterion becomes
even more remarkable. From SNR= 7 to 12 dB, the FDR-
controlling procedure performs significantly better than the
FWE-controlling procedure. At SNR= 9 dB, the probability
of correct detection of the FWE-controlling procedure is
improved by the FDR-controlling procedure from 38% to
78%. To reach 100% probability of correct detection, the
FDR-controlling procedure requires 12 dB, while the FDR-
controlling procedure requires 17 dB.

2) Signals of various strengths: The above experiments
are repeated with signals of various strengths. The relative
signal strnegths are the same as in the narrowband case. We
obtain similar results as Figs. 4, 5 and 6. Table II includes
relevant values in the threshold regions. The FDR-controlling
procedure outperforms the FWE-controlling procedure in all
experiments. The increase in the power gain of the FDR-
controlling procedure becomes more significant with increas-
ing m.

C. Noise only

To test the reliability of the proposed test, we simulate data
that contains only noise. The maximum number of signals
is chosen to be 4. The number of snapshots K varies from
10 to 40 in a ∆K = 5 step. Since the number of signals
is zero, correct detection occurs when m̂ = 0. From Fig.
7 one can observe that both procedures have probability of
correct decision higher than 96% for all K’s. This implies
that although q and α are chosen to be 0.1, the false alarm
rate is lower than 4%. Using broadband signals, we can
observe similar results.

In summary, the FDR-controlling procedure provides more
powerful results than the FWE-controlling procedure in all
experiments. When narrowband signals are applied, both mul-
tiple test based procedures outperform the MDL approach
in the considered settings. The advantage of using the FDR
criterion becomes more significant for large numbers of signals
and broadband signals. In the broadband case, the FDR-
controlling procedure leads to a gain as high as 40% in
probability of correct detection. Furthermore, the gain in power
does not affect reliability of the proposed test.

VIII. CONCLUSION

We discussed broadband signal detection using a multiple
hypothesis test under an FDR consideration of Benjamini and
Hochberg. Compared to the classical FWE criterion, the FDR
criterion leads to more powerful tests and controls the errors at
a reasonable level. We proved that the independence condition
required by the Benjamini-Hochberg procedure is satisfied
in the proposed detection scheme. Since the test statistics
have no closed form distribution function, we applied the
bootstrap technique to determine the p-values numerically.
Simulation results show that the FDR-controlling procedure
has always a higher probability of correct detection than the
FWE-controlling procedure. As expected, the advantage of
using the FDR criterion becomes more significant when the
number of signals increases. More importantly, the false alarm
rate remains low despite a potential gain in power of the FDR-
controlling procedure.
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Fig. 2. Empirical probability of correct detection vs. SNR. Number of signals
m = 8, number of snapshots K = 30. Two sources are located closely to
each other. All signals are of equal strengths.
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Fig. 3. Empirical probability of correct detection vs. SNR. Number of signals
m = 12, number of snapshots K = 30. Two sources are located closely to
each other. All signals are of equal strengths.
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m = 8
FDR
FWE
MDL
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0
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0
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m = 12
FDR
FWE
MDL

-
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-
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0.12
0.09
0.03

0.52
0.43
0.19

0.90
0.86
0.60

1.00
1.00
0.95

TABLE I
EMPIRICAL PROBABILITY OF CORRECT DETECTION VS. SNR.

NARROWBAND SIGNALS WITH VARIOUS STRENGTHS.

Probability of correct detection
−6 dB −2dB 0 dB 6 dB 8 dB 10 dB 12 dB 16 dB

m = 3
FDR
FWE

0.61
0.45

1.00
1.00

1.00
1.00

1.00
1.00

-
-

-
-

-
-

-
-

m = 8
FDR
FWE

0.00
0.00

0.24
0.06

0.78
0.54

1.00
0.98

-
-

-
-

-
-

-
-

m = 12
FDR
FWE

-
-

-
-

-
-

-
-

0.08
0.00

0.38
0.11

0.88
0.55

0.99
0.92

TABLE II
EMPIRICAL PROBABILITY OF CORRECT DETECTION VS. SNR.

BROADBAND SIGNALS WITH VARIOUS STRENGTHS.
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Comparison of FDR, FWE, m= 3.
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Fig. 4. Empirical probability of correct detection vs. SNR. Number of signals
m = 3, number of frequency bins J = 10, number of snapshots K =
10. Two sources are located closely to each other. All signals are of equal
strengths. ‘−’: FDR-controlling procedure, ‘−·’: FWE-controlling procedure.

−8 −6 −4 −2 0 2 4 6

0

0.2

0.4

0.6

0.8

1

SNR (dB)

pr
ob

ab
ili

ty
 o

f c
or

re
ct

 d
et

ec
tio

n

Comparison of FDR and FWE, m= 8.

FDR

FWE

Fig. 5. Empirical probability of correct detection vs. SNR. Number of signals
m = 8, number of frequency bins J = 10, number of snapshots K =
10. Two sources are located closely to each other. All signals are of equal
strengths.
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Comparison of FDR and FWE, m= 12.
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Fig. 6. Empirical probability of correct detection vs. SNR. Number of signals
m = 12, number of frequency bins J = 10, number of snapshots K =
10. Two sources are located closely to each other. All signals are of equal
strengths.
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Fig. 7. Empirical probability of correct detection vs. number of snapshots.
Array data contains noise only (m = 0). Number of frequency bins J = 1.


