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Motivation Our contribution Simulations

To estimate the Rényi a-entropy H,(f) = (1 — a)~! [ f*(x)dx from e Higher order analysis of bias Four different choices of weight vectors:

M, d-di ional i.i.d. les X1,..., Xy ~ 1) Leonenko et.al.’s estimator: w, = [1,0,...,0], (2) uniform weighted estimator: w, =
PSR LS, BELELPHEE ) e Provide a choice of weights which reduces bias to O(M ~1/2) () | . (2) 5

We seek to estimate this for high dimensional data;i.e. d >> 5
5 e MSE convergence rate of 1/

Several asymptotically consistent estimators have been proposed.

e Performs well with small sample sizes as well e Dimensiond = 6 —Leonenko |
_ —Uniform |

. . . e Density 0.8f5(1.5,1.5) + 5 :gi“tf?“ﬂe”d
Recently, nearest neighbor methods have become popular. Advantages: H 1J her order bias anaIySIS 2fu h PETRe=,

e Rates of convergence known For s-times differentiable bounded densities, with boundary corrected
k-NN distances, we show [3] for constants ¢;, {1 = 1, .., s}, ¢,

Performance for finite sample size M not known

e Simulation shows that
optimized weighted esti-
mator outperforms other

estimators . l l | | . l l l
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Bias is of order O((1/M)'/?); Variance is of order O(1/M) !

o Circumvent density estimation

e k-NN graph estimators, entropic graph estimators

Problem: curse of dimensionality. Bias is very large for large dimensions

Can we do better in high dimensions? Define ~,, (i) = Zle w(l)I*/?. Bias: Anomaly detection

Mission: To use RSS measurements to detect intruders. 14 sensor nodes randomly de-

ployed inside and outside a lab room. 14 x 13 = 182 RSS measurements recorded every 0.5

secs for 30 mins

e Form a temporal dependency discrim-
inant by considering vectors of d = 3
successive time samples at each sensor

!

Ho(f) = (1 —a) '4(f) where I,(f) = [ f%(x)dx Bound on variance:

Leonenko’s estimator [1] for I, (f)

Estimating the Rényi entropy by aver-
aging over M = 182 spatial samples
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If magnitude of the weight coefficients {w¢(l)} are large, then the vari-
ance and the coefficients in the bias expansion v, (z), ¢ > 1 will be large.
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Perform anomaly detection by thresh-

() . . . olding the entropy estimate
r 1 18 k-th nearest neighbor distance from X; to some other sample

X; Weight selection via convex optimization Optimized weighted estimator out- . —Optimized
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e Seek Welght Wy, that performs first order correction estima- | [ 01 015 02 025 03 035 04 045 05

Leonenko showed that the estimator is consistent for False positive rate

e reduces bias by minimizing coefficients ~,,(¢), ¢ = {1, ..,t} for some

Liitidinen et.al. [2] showed that
t <s

o Bias(Ins o) =ryM %44 o(M—1/% e has minimum possible /; norm ||w||; to reduce variance Conclusions
o Var(In pa) =OM™1)

Convex optimization for optimal weight w, (solved using interior point e k-NN estimators suffer from curse of dimensionality; Bias is of order O((1/M)*/?)

methods)
Welg hted estimator e Higher order analysis of bias reveals basis functions to be (k/M)"/¢

e For a weight vector w ={w(l)},l ={1,...,k} with > w(l) =1 e Can use simple weighted linear combination of estimators to reduce bias from
O((1/M)* ) to O((1/M)/?); RMS rate of convergence of 1/v/M
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In theory, bias is reduced to o(M ~1/%), can continue to be quite large

estimator for small to moderate sample sizes




