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Motivation
• To estimate the Rényi α-entropy Hα(f) = (1− α)−1

∫
fα(x)dx from

M , d-dimensional i.i.d. samples X1, . . . ,XM ∼ f

• We seek to estimate this for high dimensional data; i.e. d >> 5

• Several asymptotically consistent estimators have been proposed.

• Performance for finite sample size M not known

• Recently, nearest neighbor methods have become popular. Advantages:

• Rates of convergence known

• Circumvent density estimation

• k-NN graph estimators, entropic graph estimators

• Bias is of order O((1/M)1/d); Variance is of order O(1/M)

• Problem: curse of dimensionality. Bias is very large for large dimensions

• Can we do better in high dimensions?

Previous work
• Hα(f) = (1− α)−1Iα(f) where Iα(f) =

∫
fα(x)dx

• Leonenko’s estimator [1] for Iα(f)

ÎM,k,α =
1

M

M∑
i=1

Γ(k)

Γ(k + 1− α)
(cd(M − 1)(r

(i)
k,M−1)d)1−α

• r(i)k,M−1 is k-th nearest neighbor distance from Xi to some other sample
Xj

• Leonenko showed that the estimator is consistent

• Liitiäinen et.al. [2] showed that

• Bias(ÎM,k,α) = rkM
−1/d + o(M−1/d)

• V ar(ÎM,k,α) = O(M−1)

Weighted estimator
• For a weight vector w = {w(l)}, l = {1, . . . , k}with

∑
w(l) = 1

ÎwM,k,α =
k∑
l=1

w(l)ÎM,l,α

• Bias(Î(w)
M,k,α) = (

∑
rlw(l))M−1/d + o(M−1/d)

• Liitiäinen et.al.’s [2] first order correction: choose w so that
∑
rlw(l) = 0

• Bias reduces to o(M−1/d); V ar(Î(w)
M,k,α) = O(M−1)

• In theory, bias is reduced to o(M−1/d), can continue to be quite large

• In simulations, bias was found to increase in comparison to unweighted
estimator for small to moderate sample sizes

Our contribution
• Higher order analysis of bias

• Provide a choice of weights which reduces bias to O(M−1/2)

• MSE convergence rate of 1/M

• Performs well with small sample sizes as well

Higher order bias analysis
• For s-times differentiable bounded densities, with boundary corrected
k-NN distances, we show [3] for constants ci, {i = 1, .., s}, cv

Bias(ÎM,k,α) =
s∑
i=1
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V ar(ÎM,k,α) = cv
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)
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1

M

)
• Define γw(i) =

∑k
l=1 w(l)li/d. Bias:

Bias(ÎwM,k,α) =
s∑
i=1

ciγw(i)M−i/d + o
(
M−1/2

)
• Bound on variance:

V ar(ÎwM,k,α) ≤ ||w||
2
1cv

M
+ o

(
1

M

)
• If magnitude of the weight coefficients {wf (l)} are large, then the vari-

ance and the coefficients in the bias expansion γwf
(i), i ≥ 1 will be large.

Weight selection via convex optimization
• Seek weight wo that

• reduces bias by minimizing coefficients γw(i), i = {1, .., t} for some
t ≤ s
• has minimum possible l1 norm ||w||1 to reduce variance

• Convex optimization for optimal weight wo (solved using interior point
methods)

minimize
w

||w||1

subject to γw(0) = 1,

|γw(i)M−i/d| ≤ ε, i ∈ {1, 2, . . . , t}

• The solution ||w||1 increases with number of constraints t and decreases
with ε. For large k, the solution is shown to be sparse [4]

• Best possible MSE rate of weighted estimator is O(1/M) because vari-
ance is O(1/M). Therefore seek to reduce bias to O(1/

√
M).

• Choose t to be as small as possible; Assume that density is sufficiently
smooth, i.e., s > dd/2e and fix t = dd/2e.

• Choose ε as large as possible; ε =
√
c0/M where c0 is a bound on cv/c2i

• Bias(ÎwM,k,α) =
∑dd/2e
i=1 ciγw(i)M−i/d + o

(
M−1/2

)
= O

(
M−1/2

)

Simulations
Four different choices of weight vectors:
(1) Leonenko et.al.’s estimator: ws = [1, 0, . . . , 0], (2) uniform weighted estimator: wu =
(1/k)[1, . . . , 1], (3) First-order correction estimator of Liitiäinen et.al. : wf , (4) Proposed
optimized weighted estimator: wo

• Dimension d = 6

• Density 0.8fβ(1.5, 1.5) +
.2fu

• Simulation shows that
optimized weighted esti-
mator outperforms other
estimators

Anomaly detection
Mission: To use RSS measurements to detect intruders. 14 sensor nodes randomly de-
ployed inside and outside a lab room. 14× 13 = 182 RSS measurements recorded every 0.5
secs for 30 mins
• Form a temporal dependency discrim-

inant by considering vectors of d = 3
successive time samples at each sensor

• Estimating the Rényi entropy by aver-
aging over M = 182 spatial samples

• Perform anomaly detection by thresh-
olding the entropy estimate

• Optimized weighted estimator out-
performs first order correction estima-
tor

Conclusions
• k-NN estimators suffer from curse of dimensionality; Bias is of order O((1/M)1/d)

• Higher order analysis of bias reveals basis functions to be (k/M)i/d

• Can use simple weighted linear combination of estimators to reduce bias from
O((1/M)1/d) to O((1/M)1/2); RMS rate of convergence of 1/

√
M
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