
Highlights of Statistical Signal and Array Processing

June 29, 1998

1 Background and Overview

(section written by Alfred Hero)

Many engineering applications require extraction of a signal or parameter of interest from
degraded measurements. To accomplish this it is often useful to deploy �ne grained statistical
models; diverse sensors which acquire extra spatial, temporal, or polarization information; or multi-
dimensional signal representations, e.g. time-frequency or time scale. When applied in combination
these approaches can be used to develop highly sensitive signal estimation, detection, or tracking
algorithms which can exploit small but persistent di�erences between signals, interferences, and
noise. Conversely, these approaches can be used to develop algorithms to identify a channel or sys-
tem producing a signal in additive noise and interference, even when the channel input is unknown
but has known statistical properties.

Broadly stated, the Statistical Signal and Array Processing (SSAP) area is concerned with re-
liable estimation, detection and classi�cation of signals which are subject to random uctuations.
Opening a recent issue of the IEEE Transactions on Signal Processing to a SSAP paper the reader
will probably see one or more of the following: (1) description of a mathematical and statistical
model for measured data, including models for sensor, signal, and noise; (2) careful statistical
analysis of the fundamental limitations of the data including deriving benchmarks on performance,
e.g. the Cram�er-Rao, Ziv-Zakai, Barankin, Rate Distortion, Chernov, or other lower bounds on
average estimator/detector error; (3) development of mathematically optimal or suboptimal esti-
mation/detection algorithms; (4) asymptotic analysis of error performance establishing that the
proposed algorithm comes close to reaching a benchmark derived in (2); (5) simulations or experi-
ments which compare algorithm performance to the lower bound and to other competing algorithms.
Depending on the speci�c application, a SSAP algorithm may also have to be adaptive to changing
signal and noise environments, This requires incorporating exible statistical models, implementing
low-complexity real-time estimation and �ltering algorithms, and on-line performance monitoring.

Until recently the statistical signal and array processing area was covered by the SSAP Tech-
nical Committee which grew out of the Spectrum Estimation and Modeling Technical Committee
(discontinued in 1991). At ICASSP-98 in Seattle, an administrative restructuring took place which
eliminated the SSAP, Digital Signal Processing (DSP), and Underwater Acoustics Signal Processing
(UASP) Technical Committees, replacing them by three new committees: Signal Processing The-
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ory and Methods (SPTM), Signal Processing for Communications (SPCOM), and Sensor Arrays
and Multichannel (SAM). The SSAP areas described in this article have migrated to these new
Technical Committees and remain very active within the Signal Processing Society. In particular,
the following workshops sponsored or co-sponsored by SSAP will continue to provide forums for
researchers in the area: the Workshop on Higher Order Statistics (to be held in Caesaria, Israel in
1999 ( http://sig.enst.fr/~hos99 )), the Workshop on Statistical Signal and Array Processing
(to be held in the Poconos, PA in 2000), and the Workshop on Signal Processing Advances in
Communications (to be held in Annapolis, MD in 2000).

Similarly to other Technical Committees, SSAP ran workshops, recommended paper awards,
and reviewed papers for ICASSP. To facilitate the paper review process and provide focus for award
nominations the scope of SSAP was divided into several subareas, called \SP EDICS" categories.
These categories were: spectral analysis; higher order statistical analysis; cyclostationary signal
analysis; statistical multi-channel �ltering; statistical modeling; parameter estimation; detection;
performance analysis; system identi�cation; computational algorithms; and applications. These
categories are covered in this article and continue to be represented in the aggregated EDICS of
the SPTM, SPCOM and SAM Technical Committees.

As the reader will see from this article, SSAP impacts a very wide range of applications.
Among the applications mentioned in the sequel are: radar signal processing; sonar signal process-
ing; geophysics and climate; radar and optical remote sensing; electrocardiography (ECG); elec-
troencepholography (EEG); magnetoencepholography (MEG); nuclear magnetic resonance (NMR)
imaging; radio-isotope imaging (PET and SPECT); chemical sensing of the environment; physi-
cal oceanography; fractal internet tra�c modeling; astronomy; biology; econometrics; speech; and
music analysis or synthesis.

Over the past several years the application of signal processing to communications has become a
prevelant theme in SSAP. The prexistence of many relevant core SSAP areas made communications
a very ripe applications area. In particular, research in cyclostationarity, higher order statistics, and
system identi�cation was a springboard to the development of novel methods for channel equaliza-
tion in digital communications. Likewise work in detection and estimation led naturally to iterative
multi-user detection, source separation, and high performance modulation classi�cation algorithms.
As another example, deployment of phased antenna arrays and the associated signal processing has
spearheaded much recent activity in spatial diversity reception for wireless communications. The
sections by Giannakis and Tong highlight some of these communications applications of SSAP.

Our article begins with a group of two sections on recent developments in detection/estimation
algorithms written by Alfred Hero and Petar Djuric, respectively. The section by Hero focuses on
two areas of signi�cant activity: constant false alarm rate (CFAR) detection and iterative maximum
likelihood parameter estimation using the expectation-maximization (EM) algorithm. The section
by Djuric describes the emerging area of Bayesian signal processing including estimation, detec-
tion, tracking and monte carlo markov chain (MCMC) sampling, a technique which was largely
impractical before the current generation of high speed computers.

The article continues with a section on time delay estimation written by Hagit Messer and Jason
Goldberg and a section on multi-window spectral estimation by David Thomson. From a historical
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perspective, time delay estimation and spectral estimation are two of the oldest areas of statistical
signal processing dating back at least to the late nineteenth century (see [42]), yet they remain
two of the most active areas today. Continuing along these lines are sections on the increasingly
important problems of detection and estimation in the time-frequency domain, written by Moeness
Amin, and the time-scale or multiresolution domain, written by Hamid Krim and Jean-Christophe
Pesquet.

Next comes a section written by Georgios Giannakis on recent SSAP activity in channel esti-
mation and equalization for digital communications. This is followed by two sections dealing with
the critical problems of modeling, system identi�cation, and the often overlooked area of data val-
idation. Ananthram Swami starts o� with a broad overview of non-Gaussian measurement models
and higher order statistical methods, followed by a section by Jitendra Tugnait on advances in
multi-channel system identi�cation and testing radnom processes for non-Gaussian or non-linear
behavior. These are followed by a section written by Arye Nehorai on exciting opportunities in
SSAP due to recent advances in sensor technology.

Finally the article turns to array signal processing with four sections written by Lee Swindle-
hurst, Je� Krolik, Jean-Francois Cardoso, and Lang Tong, respectively. Swindlehurst provides a
birds-eye view of sensor array processing and its applications to source localization, source separa-
tion, and channel estimation. Cardoso follows up with a section focussing on developments in blind
source separation algorithms. Tong discusses the increasing importance of blind source separation
and diversity in multi-user communications systems design. The �nal section, written by Krolik,
discusses the use of computational propagation models for processing sonar and radar array data.

It is essential to point out that in a limited overview article such as this one cannot possibly
do justice to the large number of areas which comprise SSAP. Neither can we hope to cover but
a fraction of the contributions of individuals who have had a role in the development of SSAP
through the years. We o�er our sincere apologies to any individuals who feel omitted from this
overview.

WWW links relevant to the area of SSAP:

� The (old) SSAP home page:

http://www.eng.auburn.edu/~ding/SSAP/SSAP.html

� A database of \selected papers" which appeared in the IEEE Transactions on Signal Process-
ing 1988-1995:

http://www.eng.auburn.edu/~ding/SSAP/Intp.html

� The SPTM, SPCOM and SAM Technical Committee home pages can be accessed through
the IEEE Signal Processing Society home page:

http://www.ieee.org/society/sp/index.html

� A clearinghouse for information on many aspects of signal processing is the Signal Processing
Information Base at

http://spib.rice.edu/spib.html
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� Some other web pages of interest to those working in SSAP

{ The IEEE Societies on Computers, Antennas and Propagation, Communications, Aerospace
and Electronic Systems, Information Theory, and the IEEE Neural Network Council, all
have SSAP related activities and can be found on the IEEE page:

http://www.ieee.org/tab/cur_soc_hps.html

{ The American Statistical Association:

http://www.amstat.org/

{ The Institute of Mathematical Statistics:

http://www.imstat.org/

{ The International Association for Statistical Computing:

http://www.stat.unipg.it/iasc.html

{ The Royal Statistical Society:

http://maths.ntu.ac.uk/rss/index2.html

{ The Acoustical Society of America:

http://asa.aip.org/

{ The International Union of Radio Science:

http://www.intec.rug.ac.be/Research/Projects/ursi/welcome.html

{ The Institution of Electrical Engineers (UK):

http://www.iee.org.uk/Welcome.html

2 Advances in Detection and Estimation Algorithms for Signal

Processing

Alfred Hero
Dept. EECS, University of Michigan
Ann Arbor, MI 48109-2122

The fundamental theory behind detection, classi�cation and estimation has its home in math-
ematical statistics and decision theory [227, 109]. In the context of statistical signal processing
one must also contend with additional constraints: the exceedingly large size of signal processing
datasets; the absence of reliable and tractible signal models; the associated requirement of fast
algorithms; and the requirement of real time unsupervised algorithms. Two statistical signal pro-
cessing areas will be discussed in this section: algorithms for robust CFAR detection, and advances
in iterative parameter estimation using the expectation-maximization (EM) algorithm.

2.1 CFAR Detection

One of the most challenging problems in automated target detection and recognition is reliable
detection of targets in high clutter backgrounds. When the clutter statistics are unknown or highly
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variable, the false alarm rate of classical detection algorithms, e.g. the matched �lter, cannot be
controlled and target detection decisions become unreliable. The reason for this is lack of robustness
of the test statistics to clutter variations.

The objective of constant false alarm rate (CFAR) detection is to produce a test statistic whose
probability distribution does not depend on the unknown noise parameters, e.g. noise power or
clutter spectrum, while ensuring a high probability of signal detection. Such a detector is also
sometimes referred to as a noise adaptive detector. For such a test statistic the detection threshold
can be set to guarantee a prespeci�ed false alarm rate. There are a wide range of di�erent strategies
available for designing CFAR detectors including: min-max hypothesis testing [109], similar and
unbiased hypothesis testing [227], invariant hypothesis testing [278], and the generalized likelihood
ratio (GLR) test [205]. For lack of space we focus only on CFAR detection using the min-max,
GLR, and invariant testing approaches. We regretfully must omit work in adaptive detection for
assumed known noise backgrounds, nonparametric techniques, distributed detection, Huber robust
detection, sequential detection, signal classi�cation, and detection of number of signals.

Min-max CFAR hypothesis testing seeks to maximize detection probability subject to a con-
straint on maximum false alarm rate. The minmax approach was recently adopted in [20] and [21]
in the context of simultaneous detection and classi�cation of multiple signals This produced optimal
detectors which took the form of a weighted likelihood ratio (LR) test. It was also shown in [20]
that this minmax CFAR test implicitly implements a variant of Rissanen's MDL signal selection
criterion; establishing that MDL is minmax optimal. It is sometimes possible to arrive at min-max
optimal detectors through the method of similar tests [366]. Finally, the min-max CFAR optimal
detector can be viewed from the point of view of Bayesian detection implemented with a least
favorable prior on the unknown noise density. Thus in principle the Bayesian methods developed
in [119], [30], and more recently in [61], can be manipulated to provide CFAR tests.

In many cases direct min-max optimization is di�cult and simpler suboptimal CFAR alterna-
tives are of interest. The conceptually simplest approach is the GLR \estimate and plug" procedure
which requires computing maximum likelihood estimates for the unknown noise parameters. In [204]
the GLR principle produced an adaptive detector for detecting spatio-temporal signals or targets
in Gaussian noise with unknown spatial covariance. A di�erent GLR adaptive target detector was
derived in [57] for the case of optical images. The GLR for a general multi-channel measurement
was derived in [205] which specializes to the cases derived in [204] and [57] by applying suitable
coordinate transformations. A related and important result was presented in [333] where exact
con�dence regions for the GLR-maximizing signal vector were derived for unknown spatial covari-
ance. Additional applications of the GLR strategy to multi-spectral infrared images were presented
in [330] and [465]. In [48] the GLR test was applied to arbitary subspace projections of the data
under similar assumptions as [205].

Other notable CFAR applications of GLR have appeared in the following areas: signal detection
in noise of slowly uctuating power [100]; transient signal detection in Gaussian noise of unknown
power [316]; signal detection in unknown Gaussian-Gaussian mixture noise [39]; colored autore-
gressive noise [367, 202]; spatio-temporal signal detection in Gaussian noise with unknown spatial
covariance [120, 341, 266]; signal detection in unknown impulsive noise [59]; multi-window/GLR
sinusoid detection [187, 296]; tests for presence of cyclostationary signals [82]; and detection of
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sampled signals having sampling jitter [371].

When the GLR is intractable, e.g. for non-Gaussian signals, and the noise covariance is known
up to a scale factor, CFAR tests have been proposed based on maximizing alternative criteria such
as: deection or contrast [102, 310]; circular correlation coe�cient for sinusoid detection [300]; and
coherence [125] and generalized coherence [68] for multi-channel signal detection. CFAR detectors
have also been derived based on summary statistics such as: order statistical �lter outputs [453],
higher order spectra [209, 167]; matched �lter multiple-correlation lag products [134]; weighted sub-
space �tting residuals [445]; and adaptive �ltering followed by subspace projections [228]. Finally,
when the noise covariance matrix is unknown CFAR detection has been proposed using maximum
SNR criteria and covariance estimates [101]; group delay statistics [231]; integrated-bispectrum
non-gaussianity tests [428] (corrections in [429]); and higher order cumulants [346, 345, 140].

One of the main justi�cations of the GLR principle is its asymptotic optimality under broad
conditions, e.g., [200, 201]. However, there are two factors which can make the GLR test unworkable
in applications: 1) the GLR may not be of closed form when the clutter covariance has special
structure, e.g., block diagonal; 2) use of the GLR principle entails a loss in e�ciency [331, 206]
which can severely impact �nite sample performance. An alternative which can frequently lead to
better �nite sample performance is the application of the principle of invariance [355], also called
exact robustness [192].

The method of invariance involves expressing uncertainty in the unknown clutter covariance
as resulting from set of algebraic actions on the image by an appropriate group of transforma-
tions. Once the uncertainty has been mapped to group actions, one can often identify statistics
whose statistical distributions are functionally invariant to unknown noise parameters yet entail
minimum loss of target discrimination capability. On the basis of these statistics, optimal CFAR
likelihood ratio tests can often be speci�ed. These statistics are called \maximal invariants," and
the resultant LR tests are called CFAR invariant tests. Many simple examples exist for which
invariance principles give CFAR tests with higher power than the GLR test (for a simple but non-
trivial example see [227, Ex. 6.18]). Despite the di�culty in �nding maximal invariants and their
statistical distributions the payo� for the extra e�ort in signal processing applications can be high
[356, 354, 357, 36, 35], where often the invariant LR test signi�cantly outperforms the GLR or
approximate GLR test.

2.2 The EM Algorithm for Parametric Estimation

The Expectation-Maximization (EM) algorithm has generated much recent interest in the signal
processing community due to its ability to reliably compute iterative maximum likelihood and
penalized maximum likelihood estimates of signal parameters for cases where direct maximization
is intractable. While the origins of the algorithm are decades older, it was only after the uni�ed
overview by Dempster, Laird, and Rubin (DLR) [89] that the wide applicability of EM algorithm
became recognized. Twenty years after DLR published their paper Meng and Van Dyk [265]
published an update which cogently describes the considerable recent advances in the EM algorithm.
A review of some signal processing applications of EM recently appeared in this magazine [273].
Here we will focus on important developments which were not covered in [273].
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The intuition behind EM is simple to state. Based on an observation Y it is desired to maximize
the log-likelihood lY (�) = ln fY (y; �) over an unknown parameter �. However, either due to missing
data or to a complicated form of the log-likelihood, one would much rather maximize the simpler
log-likelihood lX(�) = ln fX(x; �) of a more informative data sample X, called the "complete data".
As the complete data X is not available one strikes a compromise by iteratively maximizing the
best estimate of the simpler log-likelihood given Y and the previous estimate of �. Here the \best
estimate" is the one which minimizes mean-squared error: the conditional mean. Remarkably this
simple recipe leads to an algorithm which has many attractive properties such as stable convergence,
monotone increasing likelihood, and exible implementation.

One of the �rst signal processing applications of EM after DLR appeared was to the problem of
emission tomography [372] and shortly thereafter to transmission tomography [221]. Many follow-
up papers appeared on this topic in the medical imaging community (see e.g. [110] for a partial
list) before the EM algorithm was applied to other signal processing problems such as parameter
estimation for multiple superimposed signals [106, 107] and direction �nding [271]. Wide adop-
tion of the EM algorithm was hindered by its disappointingly slow convergence speed. E�orts to
improve the convergence of EM include: Aitken's acceleration [247]; overrelaxation [229], conju-
gate gradient [196, 180]; Newton methods [262, 38]; quasi-Newton methods [220]; ordered subsets
EM (OSEM) [178]. Unfortunately, these methods do not automatically guarantee the monotone
increasing likelihood property of standard EM, leading to the additional burden of monitoring for
instability [222].

It has been established that the EM algorithm converges for bounded unimodal loglikelihood
lY (�) = ln fY (y; �) [462]. When the likelihood function is twice di�erentiable the asymptotic speed
of convergence of the EM algorithm is proportional to the maximum eigenvalue of [FX � FY ]F

�1
X

[89]. Here FY = �r2lY (�̂) and FX = E�̂[�r
2lX(�̂)jY; �̂] are the observed Fisher information

matrices evaluated at the ML estimate �̂. Furthermore, in [165] the monotonic rate of convergence

was shown to be equal to the matrix l2 norm kF
�
1

2

X [FX�FY ]F
�
1

2

X k. Thus the speed of convergence of
the EM algorithm increases as the complete data X become less informative, i.e. as FX approaches
FY and X gets closer to the actual measurements Y . However, there is a tradeo� between speed
of convergence and implementation complexity: the M step of the standard EM algorithm usually
becomes more di�cult as X becomes less informative. It was discovered by Fessler and Hero [110]
that this tradeo� can be eased by reformulation of the EM algorithm with \hidden data" sets
which are less informative than complete data sets and which can vary at each iteration. This
led to the \space alternating expectation maximization" (SAGE) algorithm, its main feature being
that it only updates small groups of the parameters, e.g., a single coordinate, at each iteration yet
preserves monotonicity. In this respect SAGE resembles the \expectation conditional maximization
either" (ECME) [239] but SAGE generally has faster convergence [265].

In Meng and Van Dyk's paper [265] a generalization of SAGE and ECME was introduced called
\alternating expectation conditional maximization" (AECM) which is a SAGE algorithm with a
\design parameter" similar to SAGE-3 introduced in [111]. Another recent generalization, called
parameter expansion EM (PX-EM), allows one to augment the parameter space, in addition to the
data space, in order to obtain further convergence acceleration [240]. Interestingly, for the case of
the superimposed signals problem PX-EM reduces to SAGE. In addition to the examples shown in
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[110], [111] and [265] the SAGE algorithm and its variants have been applied to: angle of arrival
estimation [115]; multi-user detection [289, 81], estimation of constrained covariance matrices [364],
and speckle interferometry [363].

For cases where the likelihood function is non-convex neither the EM algorithm nor its variants
are guaranteed to converge. Furthermore, grouped coordinate updating techniques like ECME,
SAGE and AECM may not converge even when the likelihood is convex but is non-di�erentiable.
In these cases it is still possible to improve on the plain vanilla EM algorithm. Two recent advances
are the method of Lavielle [225, 51] and the method of Chretien and Hero [63, 64]. The former
allows implementation of the E step via stochastic approximation (or simulated annealing [226])
when a closed form for the E step is not available. This permits much less informative complete data
sets to be used, for which the conditional expection in the E step is intractible, thereby improving
the asymptotic convergence speed. Furthermore, under appropriate conditions on the anealing
schedule, this method guarantees (w.p.1) convergence to the global maximum for any intialization.
On the other hand, the determinstic method of Chretien and Hero [63] was developed for non-
di�erentiable non-convex likelihood functions and iteratively approximates the ML estimate via
cutting plane methods, speci�cally proximal point iterations with Kullback-Liebler penalty. When
the relaxation parameter in the proximal point algorithm is equal to one this method reduces to
the standard EM algorithm. By decreasing the relaxation parameter towards zero a more rapidly
convergent algorithm is obtained, all the while preserving the monotonic likelihood property.

A WWW link to the author of the above section:

http://www.eecs.umich.edu/~hero/hero.html

3 Bayesian Methods for Signal Processing

Petar M. Djuri�c
Department of Electrical and Computer Engineering
State University of New York at Stony Brook
Stony Brook, NY 11794-2350

3.1 Introduction

A typical signal processing task is to extract desired information about a signal from observed data.
The sought information might be, for example, related to unknown signal parameters, number of
signals in the data, distribution of signal power as a function of time and frequency, hidden states of
a system producing a signal, or prediction of system and signal behavior. The Bayesian approach to
making the required inference relies on the use of probability models for the observed data and the
application of probability theory, where a key role is played by Bayes' theorem [28], [41], [123], [198],
[339], [355], [379]. The inference is made in terms of probability statements, and the methodology,
overall, is coherent and on conceptually sound and indisputable grounds. Its framework has consid-
erable practical advantages including substantial exibility and generality that allow coping with
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very complex models. The main distinction between Bayesian signal processing and non-Bayesian
methods is in the use of prior densities which quantify uncertainty about the unknowns. Use of
priors have important implications both in explanation of results and the repertoire of methods,
and in the statistical community their use has been a controversial subject for many years. The
controversy seems to have subsided lately, partially due to improved interpretations of the priors
in many applications and also to the maturation of the theory of Bayes methods which has greatly
clari�ed the impact of mismatched priors on the �nal results [28], [41].

3.2 Basics

To put things in prospective, consider �rst a problem where estimation is required. Let the observed
data be denoted by y and the set of unknown parameters that have to be estimated by �. The
probability model is described by the joint probability density function f(y;�), which can be
expressed as

f(y;�) = f(yj�)f(�)

where f(yj�) is the conditional density of the data given the parameters �, and f(�) is the prior
density of the parameters. Given the data y and the model f(y;�), where � is unknown, all the
information about � is summarized in the (normalized) posterior density f(�jy), which by Bayes'
theorem is given by

f(�jy) =
f(yj�)f(�)

f(y)
: (1)

Although the entire trajectory ff(�jy)g� of the posterior is sometimes of interest, very often
in practice a point estimate of � is preferred. For example, the value of � that maximizes f(�jy),
termed the maximum a posteriori (MAP) estimate, is routinely used. The search for the MAP
estimate, clearly, represents a multivariable optimization problem. Note that f(yj�), when viewed
as a function of � for given y, is called likelihood function. In the non-Bayesian literature, f(�) is
not available and the maximum likelihood estimate, i.e., the value of � that maximizes f(yj�), is
often used.

3.2.1 Estimation, Detection and Tracking

The best estimate of � is speci�ed as that value �̂ that minimizes a prespeci�ed cost function.
When the cost function is quadratic, the estimate �̂ is the conditional mean E[�jy], that is,

�̂ =

Z
�f(�jy)d�

and it represents the minimum mean-squared error (MMSE) estimate. To implement the MMSE
estimate, two multidimensional integrations are required; one for computing �̂ (1) given the pos-
terior, and one for computing the normalization factor f(y) =

R
f(yj�)f(�)d�. For an interesting

application, see [92] which treats the problem of Bayesian power spectral density estimation. Mul-
tidimensional integration is also necessary when some of the signal parameters are not of interest.
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These uninteresting parameters, referred to as nuisance parameters, are then integrated out of the
posterior, which decreases the complexity of the problem in some cases.

In signal detection, the primary objective is to determine if a signal is present in the observed
data or not. The signal may be one of many hypothesized signals, so the goal is to decide which
one is in the data. In the Bayesian literature this problem is known as model selection, and it is
addressed by �rst, de�ning a model Mk for the k-th signal, followed by associating it with a joint
probability distribution f(y;�k;Mk), where �k are the parameters of the model Mk. Then one
proceeds with the use of Bayes' theorem and evaluation of the posterior f(Mkjy), which again
requires multidimensional integrations.

When it is of interest to track signal values that continuously change with time, the signal
model is frequently described by a state-space representation. In the case of a linear model and
additive Gaussian noise, the Bayesian solution is the well known Kalman �lter [245]. If the model is
nonlinear and/or the noise is non-Gaussian, the Bayesian formulation leads to a nonlinear �ltering
problem whose solution again requires multidimensional integration.

3.2.2 Some di�culties

The conceptual simplicity of the Bayesian methodology notwithstanding, Bayesian methods have
been underused by the signal processing community mainly because of their high implementation
complexity. Indeed, there are only a small number of scenarios where the needed optimizations
or integrations can be carried out analytically. Generally analytical or numerical approximations
are required which often give discouragingly complicated mathematical functions. This picture has
gradually changed with the emergence of increasingly powerful computers. Fast numerical tech-
niques for implementation of the necessary operations have revolutionized the practice of Bayesian
estimation, detection and tracking over the past several years.

3.3 Monte Carlo Methods

The multidimensional integrations and optimizations involved in Bayesion methodology can be
approximated accurately by Monte Carlo simulation if one is able to sample from the posterior
distributions. In most cases of interest, however, such sampling is impossible. A more practical
method is to generate samples from simpler distributions followed by approximation of the integrals
by sample averages. One of these methods is importance sampling [28], [123], [297]. The gener-
ating distributions are called importance sampling functions, and their choice is crucial because
the variance of the estimated integrals is critically dependent on them. A related procedure is
sampling-importance resampling, which generates samples from the posterior distribution by re-
peated sampling from simpler distributions [342]. In this method, samples are �rst generated from
a suitable approximation of f(�jy), say g(�) yielding samples �1;�2; � � � ;�L. Then to each sample
a probability mass proportional to the weight wl = v(�ljy)=g(�l) is associated, where v(�jy) is the
unnormalized posterior density of �. Finally, the posterior density is simulated by drawing samples
from f�1;�2; � � � ;�Lg with probabilities proportional to wl, l = 1; 2; � � � ; L.



Submitted to IEEE SP Magazine, June 1998 11

Another approach is to use Markov chain Monte Carlo (MCMC) methods [28], [123], [137],
[297], [392]. These methods have extended the Bayesian methodology to many previously in-
tractable applications. The key idea is to generate samples by running an ergodic Markov chain
whose distribution after convergence is the desired posterior distribution. Similarly to importance
sampling, samples are drawn from a simple posterior-approximating distribution and are subse-
quently corrected to improve the approximation. The samples are generated sequentially from
distributions dependent on the samples most recently drawn, thereby forming a Markov chain.

The �rst MCMC method was proposed by Metropolis in the early �fties [268] and was used
in computational physics. The Metropolis algorithm draws samples from a symmetric distribution
and they are accepted or rejected according to a prescribed acceptance probability. This procedure
is repeated for a su�ciently large number of times. The Metropolis algorithm was later generalized
by Hastings to non-symmetric sampling distributions, which is known as the Metropolis-Hastings
algorithm [155]. A third MCMC method is the Gibbs sampler which employs conditional sampling
and may be considered as a special case of the Metropolis-Hastings algorithm. The parameter
vector is divided in subvectors, and each of them is drawn conditional on the remaining subvectors.
It turns out that with this scheme the probability of acceptance is equal to one and there are
no rejections. The Gibbs sampler has been widely and succesfully applied to problems in image
processing where the number of unknowns is very large [124].

The MCMC sampling methods were further generalized to allow for sampling from parameter
spaces corresponding to di�erent models [148]. The new method, called the reversible jump MCMC
sampler jumps from one parameter space to another based on transition probabilities of another
Markov chain. Once the sampler has converged, the time it spent in a speci�c parameter space
is proportional to the posterior probability of the associated model. Thus, the reversible jump
MCMC can implement simultaneous Bayesian detection and estimation.

There are several important issues related to the use of MCMC methods. First of all, these
methods are iterative, so the question of convergence is critical. Typically, the �rst N iterations
are thrown away, a period called burn-in, and determining N demands convergence diagnostics.
Of practical importance, too, is the stopping time of the chain. One would like to run the chain
long enough to obtain desired accuracy. How many parallel chains to run is another important
question. When there are many chains, their comparison may allow for easier determination of
their convergence.

3.3.1 MCMC Sampling for Signal Processing

MCMC methods have the potential to yeild iterative solutions to many important but di�cult
signal processing problems. An increasing large number of papers on the subject have appeared
in signal processing conference proceedings and journals. The following is a short list of recent
contributions; for a more detailed overview, see [8].

One standard problem in signal processing is blind deconvolution of noisy data which represent
an output of a linear system excited by an unknown input. For instance, if a system is modeled
as an FIR �lter with unknown coe�cients, and the input is a hidden Markov model with discrete
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and known state space but unknown initial state and transition probabilities, it is often important
to determine the �lter coe�cients, the input, and its model parameters from a set of distorted
observations. It was shown that the estimates of all the unknowns in this problem can be obtained
straightforwardly by Gibbs sampling [58]. In a di�erent setting, blind deconvolution of Bernoulli-
Gaussian processes was implemented by an MCMC approach in [96].

Optimal �ltering is another area of major activity in signal processing. When the signal model
is non-linear or the signal is non-Gaussian the Kalman or extended Kalman �lters can give very
poor performance. A powerful alternative is to use Bayesian �lters based on sequential importance
or Gibbs samplings [52], [146], [391]. A signal processing application of the Metropolis algorithm is
parameter estimation of damped sinusoids [16]. When joint detection of sinusoids and the estima-
tion of their parameters are of interest, the reversible jump MCMC has been successfully applied
[7], [91]. MCMC methods have been successfully applied to the selection of model order of a time
series [15], [22], [145], [417]. In some of these papers nonstandard assumptions were made, which
make the direct estimation problem quite intractable. Analysis of mixed spectra within a hierar-
chical Bayesian framework was proposed in [53] via an MCMC algorithm. MCMC methods have
also been very useful in enhancing speech and music signals, which are degraded by non-Gaussian
noise characterized by impulses superimposed on a Gaussian background [144]. Finally, in addition
to its extensive application to static images, Gibbs sampling has been employed in enhancement of
degraded video images [210].

With the ever growing power of modern computers, MCMC methods are becoming very useful
tools for tackling even the most di�cult signal processing problems. In the years to come these
methods will become more sophisticated, e�cient and accurate, undoubtedly leading to many new
and e�ective signal processing algorithms.

WWW links relevant to the above section

� A WWW link to the author of the section

http://www.ee.sunysb.edu/~djuric/index.html

� A WWW link to topics in the area of MCMC:

http://www.stats.bris.ac.uk/MCMC/

4 Time Delay Estimation: Past, Present, and Future

Hagit Messer and Jason Goldberg
Department of Electrical Engineering{Systems, Tel Aviv University,
Tel Aviv 69978, Israel,

Time delay estimation (TDE), or time of arrival (TOA) estimation, is a basic tool in statistical
signal processing. Applications of TDE follow from the simple relationship: �r = v ��t, where �r
is the distance an object or a wave�eld travels at some constant speed, v, over some time interval,
�t. For example, in range measurements for radar or sonar, v is assumed known, and the target's
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range is determined by measuring �t, the time required for the transmitted signal to propagate
to a target and be reected back to point of transmission. Also, for velocity measurements (e.g.,
bio-medical [55], pp. 469-476, or nuclear engineering applications [55] pp. 363-366), �r is assumed
known, and �t, the time required for a signal to travel the distance, �r, is measured.

TDE is also important for more complicated, non-linear problems such as source direction of
arrival (DOA) or bearing measurement. If (assuming free space propagation conditions) the signal
due to a source is received by two sensors separated by distance l, then the di�erential delay between
the signal received by the sensors is given by �t = l�sin �

v , where � is the source DOA [55] pp. 403-
409. Determination of source DOA is often based on a measurement of di�erential time delay, �t,
or, for a narrow-band source, a measurement of di�erential phase shift, � = !o�t =

2�l
� sin �,

where the source frequency is written in terms of the source wavelength as !o =
2�v
� .

In practice, one seeks to measure the delay between two noisy versions of a signal (which itself
may even be unknown). Unfortunately, there is no single measurement procedure appropriate for
all TDE scenarios. This fact, combined with the practical importance of measuring time delay in
so many di�erent applications, is why time delay estimation has received so much attention over
the last three decades e.g., [55], [54].

4.1 Basic TDE

The most general TDE problem is now formulated. The noise corrupted signals received by the
two sensors over some time interval can be modeled as:

x1(t) = s(t) + n1(t) (2)

x2(t) = � � s(t��t) + n2(t); t 2 [0; T ):

The problem to be solved is that of using the measured data to determine c�t, an estimate of the
time delay parameter, �t. Depending on the application, di�erent modeling assumptions are made
on the signal waveform, s(t), the noise waveforms, n1(t) and n2(t), and the parameters, �t and �.
It is convenient to distinguish between the cases of so-called \active" and \passive" TDE [55] pp.
442-448.

� In active TDE, where x1(t) and x2(t) correspond to the transmitted and received signals
respectively, it is appropriate to assume that n1(t) = 0 and that s(t) is a known, deterministic
signal. It is well known that for the \nominal active scenario," where n2(t) is a realization of
a white, Gaussian random process, the (asymptotically optimum) maximum likelihood (ML)
TDE processor is the matched �lter, which cross-correlates x1(t) and x2(t). The estimate,c�t, is the time which corresponds to the maximum of the matched �lter output.

� In passive TDE, where x1(t) and x2(t) are two versions of the received signal, it is usually as-
sumed that � = 1, s(t) is a realization of a stationary, Gaussian random process, and n1(t) and
n2(t) are realizations of mutually uncorrelated, zero mean, white, stationary, Gaussian ran-
dom processes which are also uncorrelated with the signal. This well known \nominal passive
scenario" was addressed and \solved" some 20 years ago. In particular, it was shown that the
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(asymptotically optimum) ML processor for this scenario is the generalized cross-correlator
(GCC) [55] pp. 138-144. As shown in Fig. 1, the GCC cross-correlates appropriately pre-
�ltered versions of the sensor outputs, forming c�t as the time corresponding to the maximum
GCC output. Moreover, the GCC has been shown to be optimum even in non-asymptotic
conditions [55] pp. 126-129.

∆t

( )dt.

∆t

τr( )

τ
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ωH (  )2
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Figure 1: The Generalized Cross Correlator for passive TDE. For active TDE (when s(t) is known
and n1(t) = 0), the matched �lter is obtained by setting H1(!) = H2(!) = 1.

Intuitively, an estimator for �t in (1) should to seek the best \match" between x2(t) and a
delayed version of x1(t). In both active and passive TDE, some form of cross correlation has been
proven to be the optimum measure for matching under Gaussian conditions. Another possible
measure for matching could be the \error signal," e(t) = x2(t)�x1(t� �). An appropriate estimate
of time delay, c�t, would be the � which minimizes this error in some sense. It can easily be shown
that for the Gaussian scenarios described above, the optimum TDE processor minimizes the mean
square error (MSE), E[je(t)j2]. However, straightforward manipulation of the expression for the
MSE shows that the minimum MSE and the correlator based processors are equivalent.

4.2 Advanced TDE

The intuitive basis on which both correlation and MSE-based processors match the two versions
of the signal (1) leads one to believe that they may also function in \non-nominal" scenarios.
However, if the assumed conditions under which these procedures were derived are violated, they
are no longer optimum. This implies that better estimation performance can be achieved using
other processors. Most of the TDE research carried out over the last 20 years has been devoted
to the design and analysis of processors for non-nominal scenarios which are known to commonly
arise in practice. Current and future TDE research focuses on both the theoretical and practical
issues associated with such scenarios. Some examples are given below:

� For a moving source and/or moving sensors, the delay to be estimated is time varying. Much
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research has been directed toward adaptive TDE, tracking, and the development of parametric
techniques for simultaneously estimating delay and Doppler shift e.g., [55], Part 4.

� The implementation of the GCC requires prior knowledge of the power spectra of the source
signal and the noise processes. It is well known that the asymptotic delay estimation error
does not increase if the spectra are unknown. The non-asymptotic error for the case where
the source spectrum is known has been studied [267] using the Barankin bound. It has been
shown that while the shape of the spectrum determines the threshold signal to noise ratio
(under which the estimation error is larger than the Cramer-Rao Bound), prior knowledge of
the shape yields negligible bene�t in performance.

� Implementation of modern TDE processors requires the use of digital signal processing. The
adaptation of classical TDE techniques to modern, software based realizations raises both
practical and theoretical problems. In particular, interpolation of the discrete delay estimate
[55] pp. 343-350 and the e�ect of sampling on the achievable TOA error [18] have both been
studied.

Perhaps the most important deviation from the nominal scenarios is that of non-Gaussian
statistical scenarios. Some of the main results for non-Gaussian TDE are now reviewed.

4.2.1 Partially correlated Gaussian noise

Correlation-based TDE procedures are based on the assumption that the additive noise processes
are uncorrelated. In cases where the signal, s(t), is non-Gaussian while the additive noise processes
are Gaussian (and possibly correlated), high order statistical (HOS) techniques have been proposed
for TDE [55] pp.168-171, [166], [427]. Since the Gaussian components of the received data are
attenuated in the high (i.e., greater than second) order cumulants and spectra, processing the data
in these domains can result in improved TDE performance when the noise processes are highly
correlated.

4.2.2 Independent, non-Gaussian noise

While non-Gaussian signal and Gaussian noise processes are successfully handled by HOS tech-
niques, a di�erent approach is required when the noise processes are non-Gaussian. In [362] passive
TDE has been studied where the additive, non-Gaussian noise processes are assumed to be statisti-
cally independent. Fig. 2 shows that under such an assumption the GCC continues to function but
that procedures better matched to the distribution of the noise statistics (e.g., ML), can improve
performance.
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GCC, a=0.01 
ML, a=0.01  
GCC, a=0.001
ML, a=0.001 

Figure 2: TDE performance vs. signal to noise ratio (SNR) in white, mixed-Gaussian noise (i.e.,
the noise probability density function is an average of two zero mean Gaussian density functions of
di�erent variances). The ratio between the variances, a, indicates the deviation from Gaussianity
(the noise becomes \more Gaussian" as a approaches unity). Note that the leveling o� of estimator
performance as SNR is decreased is in fact an artifact introduced by the limited range over which
the search for c�t is carried out.

5 Multiple-Window Spectrum Estimates

David J. Thomson
Bell Labs, Murray Hill, New Jersey 07974

5.1 Introduction

One of the basic problems in signal processing is to estimate the spectral density function, or power
spectrum, from a �nite data sample. Given N observations, x(t) for t = 0; 1; :::; N � 1, equally
spaced in time at �t = 1, how does one estimate the spectrum? As the inventor of multitaper
estimates [398], I may have a biased opinion on the answer to this question, but, taking a direct
quote from [394]:

\Spectral analysis has recently undergone a revolution with the development at Bell
Labs of sophisticated techniques in which the data are multiplied in turn by a set of
tapers which are designed to maximize resolution and minimize bias [ Thomson 1982].
In addition to minimizing the bias while maintaining a given resolution, the multi-taper
approach allows an estimate of the statistical signi�cance of certain features (such as
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spectral lines) in the power spectrum by comparing the character of the DFT's of
di�erent data windows. These techniques are now in routine use..."

To understand the origins of this process, remember that the �rst commonly used estimate of the
spectrum was Schuster's periodogram, introduced in 1894. It is the square of the discrete Fourier
transform of the observations, scaled by 1=N and, as an estimate of the spectrum, is both biased
and inconsistent. In practice this means it gets an unstable wrong answer. There are statements in
the statistical spectrum estimation literature that, as a function of sample size, the periodogram is
\asymptotically unbiased." Ignore these. Engineers learn that the only reason anyone goes to the
trouble and expense of collecting more data is because they are going to ask more di�cult questions,
so one is always working with small-sample problems, not with asymptotics. In engineering data
this bias can overwhelm the signal of interest; in [397] I showed data where the periodogram
was in error by more than a factor of 1010 over most of the frequency range. The periodogram
is inconsistent because its variance, EfP(f)g2+, does not decrease with sample size and, in the
cited example, was too large by a factor of more than 1020. Although these problems with the
periodogram1 were known before World War II, many researchers persist in using periodograms. A
glance at the current literature on spectrum estimation theory and practice con�rms that evolution
is a slow process.

Fortunately, most signal processors follow the recipe in Tukey's 1966 paper [436] for computing
an estimate of the spectrum: choose a suitable data window D(t) and compute

SD(f) = j
N�1X
t=0

x(t)D(t)e�i2�ftj2 (3)

and smooth, often by convolving SD(f) with a second window. Good data windows give a much less
biased estimate of the spectrum than the periodogram. Because SD(f) is the sum of two squares
(the real and imaginary parts of the DFT at frequency f) it has a chi�squared distribution with
two degrees of freedom. Thus SD(f) is still inconsistent and the smoothing part of the recipe is
necessary to obtain a useful estimate. This estimate, however, poses a new problem: where, apart
from John Tukey saying it was a good idea, did D, the data window, come from?

Multiple-window, or multiple-taper, spectrum estimates were introduced in [398] in an attempt
to correct many of the shortcomings with \standard" spectrum estimation procedures. Here one
chooses an analysis bandwidth W for the estimate, 0 < W � 1

4 with NW � 4 or 5 a typical
choice. The dimensionality of a signal with bandwidth W and a time duration of N samples is
K = 2NW . Because our goal is to estimate the energy in a frequency band (f �W;f +W ) as
accurately as possible, we must choose the K sequences of duration N whose energy concentration
in this band is the best possible. These sequences are the discrete prolate spheroidal sequences, or

1Be cautioned that estimates that are based on the periodogram or raw DFTs have similar bias problems. Sample

autocorrelations are just the Fourier transform of the periodogram so Blackman-Tukey, autoregressive, maximum-

entropy, and other spectrum estimates that depend directly on sample autocorrelations should not be used. Similarly,

estimates of the analytic signal derived from Hilbert transforms using unwindowed DFTs have periodogram bias.
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Slepian sequences, [375, 400]. Now compute the eigencoe�cients

yk(f) =
N�1X
t=0

x(t)v
(k)
t (N;W )e�i2�ft (4)

where v
(k)
t (N;W ) is the kth Slepian sequence and parameters N and W for k = 0; 1; :::;K � 1.

>From these the crudest multiple window spectrum estimate is

Ŝ(f) =
1

K

K�1X
k=0

jyk(f)j
2 (5)

simply an average of K estimates of the form (1) made using the same data but with di�erent
tapers. Because the di�erent tapers are orthogonal, the di�erent terms in (3) are approximately
uncorrelated. Each contributes two degrees-of-freedom, so (3) has a �2 distribution with about
4NW df, so the estimate is consistent. In practice, an adaptively weighted average of the jyk(f)j

2's
is preferred to (3), see [398, 400, 403].

The multiple-window theory explained the origins of the data window, or taper. One is �nding
an approximate solution of the integral equation connecting the observations and the spectral
representation of the process. The windows are the eigenfunctions of the kernel. >From this
perspective, Tukey's estimate (1), was approximately the �rst term of the series solution (3).

As part of this theoretical development an e�ort was made to separate the deterministic (com-
monly periodic) components of the process from the nondeterministic background, which the older
estimates had lumped together. With multiple windows, detection of sinusoids is commonly done
with an F -test, a ratio of the energy explained by a periodic component at frequency f , to the
remainder of the energy in the frequency band (f �W;f +W ); see [398, 401, 400, 187, 408].

In the original multitaper estimate, an approximate linear inversion of the integral equation
was used, and the spectrum obtained by local averages of its magnitude; quadratic-inverse theory
[400] gives minimum-variance unbiased expansions of the spectrum, and represents a step in the
process of eliminating the dependence on the choice of the bandwidth W . This has been extended
[402] to nonstationary problems.

5.2 When do you use multitaper estimates?

Generally, multitaper methods have become the estimate of choice for serious spectrum estimation
problems, are becoming \routine" in geophysics, [393], and, with an excellent text on the subject
[307] and availability in MATLAB, appear to be becoming so in other �elds, [238, 208]. A quick
survey of papers describing work using multitaper methods shows that most of the early appli-
cations were scienti�c. Special windows [305], and combined time and space F -tests [235, 236]
were developed for normal-mode seismology, estimates of polarization [303], attenuation [469, 186]
and other geophysical quantities [304, 393, 394, 169, 191]. These, augmented with coincidence
tests, have been applied to processes with many lines in [408, 340]. Theory and examples of
coherence estimation and some multivariate applications are in [398, 443, 218, 407]. Several pa-
pers [398, 235, 237, 47, 369, 337, 449, 153, 259] �nd multitaper methods outperform \classical"
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alternatives. Because sample autocorrelations are just the Fourier transform of the periodogram
(and hence undesirable), multitaper correlation estimates, the Fourier transform of (3), have been
studied in [441, 261].

For \traditional" stationary, Gaussian processes spectrum estimates have chi-square distribu-
tions. In practice, however, con�dence intervals based on these were often wildly optimistic, and
resampling estimates based on the jackknife [407] and bootstrap [473] are becoming common. For a
comparison of resampling methods, see [116]. For explicitly non-Gaussian data, multitaper bispec-
trum estimates have been developed, [399, 279], and work well. (A few of the di�culties encountered
with nonstationary and non-gaussian data are discussed elsewhere in this article.)

5.3 Variations on the multiple-window theme

Using a di�erent error norm for solving the integral equation Riedel and Sidorenko [334, 335]
developed a multitaper \sine" estimate. While the 60dB range of these windows lack the crushing
sidelobe performance of the Slepian tapers, they are adequate for many applications and easier to
compute. Other choices for tapers are discussed in [280, 17], and e�cient methods for computing
the Slepian sequences given in [400, 150] and elsewhere.

The theory has been extended to arbitrarily-sampled spatial data [46, 243] but, for irregularly
sampled time series, interpolation may be a viable alternative [409, 410].

Turning to non-stationary processes, multitaper spectrograms have been in use since shortly
after the invention of multitaper estimates, see [401, 224, 191, 336, 312, 164]. Multitaper wavelets
[85, 234, 80] have also been used. For weakly nonstationary processes, quadratic-inverse theory
[402, 403, 406] works well (the �rst few coe�cients are nearly the time-derivatives of the spectrum)
while, in violently nonstationary examples, estimates of the Lo�eve, or two-frequency, spectrum [398,
359, 263, 164] often give more insight. Taking a singular value decomposition of a log multitaper
spectrogram is often useful, [401]. Narrow band tracking �lters [223] and projection �lters [404, 405],
and inverse-theory reconstructions [302] are in use. These have been used in a series of papers
applying signal processing methods to study the relationship between atmospheric CO2 and global
warming, [218, 405, 193, 406]; the warming is mostly CO2 and, more disturbing, the seasonal cycle
is also being disrupted by human use of fossil fuels.

To summarize: if you are estimating spectra, you should be using multitaper estimates. If the
data is expensive, of limited duration, or if di�cult questions are being asked, multitaper estimates
are mandatory.

6 Time-Frequency Distributions in Statistical Signal and Array

Processing

Moeness G. Amin
Department of Electrical and Computer Engineering
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Villanova University Villanova, Pa 19085

The �ftieth anniversary of the IEEE Signal Processing Society also marks �fty years since Ville
[447] applied Wigner distribution (WD) to signal analysis. The Wigner distribution (WD), which
was the �rst distribution introduced in the context of quantum mechanics [452], has paved the
way to several key contributions to advances in the area of time-frequency distributions as well
as representations of signals with time-varying characteristics. These contributions have aimed at
overcoming the drawbacks of the WD and sought new, more e�ective tools for nonstationary signal
analysis, synthesis, and processing.

In the limited space provided, we will highlight only some of the advances made in the time-
frequency distributions over the past half a century with more emphasis on immediate than distant
past contributions and on the articles which are relevant to themes embraced by the statistical
signal and array processing (SSAP) technical community.

Sixteen years after Wigner had introduced his distribution, Cohen [69] provided a consistent set
of de�nitions for a desirable class of time-frequency distributions (TFDs), often referred as Cohen's
class. This class has been of great value in guiding e�orts in this area of research. Cohen's class of
time-frequency (t; !) distributions for the signal x(t) may be presented in di�erent forms, including

�(t; !;�) =

Z
1

�1

Z
1

�1

�(t� u; �) x(u+ �=2)x(u � �=2)e�j!�dud� (6)

Di�erent distributions are obtained by selecting di�erent kernels, �(t; �). Both Wigner distri-
bution (also known as Wigner-Ville distribution) and the spectrogram are prominent members of
Cohen's class. Extensive investigation of the desirable properties of a distribution and associated
kernel requirements was done by Claasen and Mecklenbrauker [67]. Their three part paper pub-
lished in 1980 drew much attention to the limitations and o�erings of Wigner distribution and
marked the �rst comprehensive treatment of the subject using familiar continuous and discrete
signal analysis methods. Other important contributions that have given a timely overall "big pic-
ture' view of the state of this dynamically changing and rapidly growing area in signal processing
are the review articles by Cohen [70] , Boashash [32], and Hlawatsch and Boudreaux-Bartels [170].
In some respects, these articles have elaborated on a single channel deterministic aspect of TFDs
and did not fully address the problem from statistical signal processing perspective. The focus on
deterministic signals stemmed from the fact that TFDs have clear and well understood properties
when dealing with noiseless and nonstochastic environments. Further, TFDs have been successfully
applied to areas where signals are localizable in the time frequency domain and have �xed distinct
signatures that permit their classi�cation and separation. Many of these applications are discussed
in the book by Cohen [71] and also in the book by Qian and Chen [325].

The paper by Boudreaux-Bartels and Parks [37] was the �rst to recognize that by devising a
method to synthesize the signal from the time-frequency domain, the WD may be cast as a tool
for signal enhancement and noise suppression. In the case of signal in additive white noise, the
WD of the noise is scattered over the entire time-frequency domain whereas that of the signal is
con�ned to a much smaller region. If only the signal in that region is synthesized, the desired signal
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can be retrieved with reduced noise contamination and improved SNR. Several papers since have
appeared in the literature as alternatives to the least-squares approximation technique employed
by the synthesis method.

For multicomponent signals, the cross-terms (also referred to as interference terms), which
are introduced from the bilinear nature of the TFDs (6), intrude into the time-frequency regions
containing true signal power concentrations, known as \auto-term regions". In such a case, and
also for low SNR environment, the signal auto-terms may not be identi�able using WD which
renders signal classi�cations and synthesis di�cult and sometimes impossible. Choi and Williams
[62] and Zhao, Atlas and Marks [466] have proposed t-f kernels, which make such identi�cation
much more feasible than attainable using the WD. The distributions corresponding to these two
kernels have come to be known as the Choi-Williams and the ZAM TFDs. In both distributions,
the kernel is characterized by one parameter whose value may be adjusted to achieve a tradeo�
between resolution and cross term suppression. A fully signal-dependent kernel, was proposed by
Baraniuk and Jones [12], where the kernel self-adapts its shape based on the underlying signal
characteristics. In this respect, unlike both the CW and the ZAM TFDs, the signal dependent
TFD is a nonlinear smoothing of the WD. This distribution, which remains attractive for a wide
class of signals, is based on the same foundation as that of the earlier CW distribution, they both
make use of the fact that the cross-terms are oscillatory in nature and therefore lie away from
the origin when examined in the ambiguity domain. A byproduct of mitigating cross-terms in
a distribution is smoothing the noise level in the time-frequency domain . The receding of the
noise uctuations brings about a clear manifestation of the signal signature in the time-frequency
domain. Step-by-step design for kernels leading to reduce interference distributions (RID)was given
by Jeong and Williams [183]. Indeed, the above two inuential papers [62] [183] on the reduction of
cross-terms through low-pass �ltering in the ambiguity domain have made the technical community
more attentive to the exibility and generalization underlying Cohen's class of TFDs and has set
the stage for a surge of activities in this area in the last decade. Other papers which have given
valuable insights and important perspectives to TFDs include the maximum entropy approach to
positive TFDs by Loughlin, Pitton, and Atlas [246], the polynomial Wigner-Ville distributions by
Boashash and O'Shea [33], and the L-Wigner distribution by L. Stankovic and S. Stankovic [380].

Martin and Flandrin [256] considered the WD for random processes by carrying over its desir-
able properties to stochastic environments. The expected value of the WV de�nes the Wigner-Ville
spectrum, where the desirable properties of WD are now satis�ed in the mean sense and given in
terms of moments and power spectrum. The ensemble average of the distribution in (6) is the
time-frequency spectrum, which simpli�es to the Wigner-Ville spectrum when the kernel is an im-
pulse function over time. Estimating the Wigner-Ville spectrum (WVS) using time-averages and
assuming quasi stationary brings the WVS to the same form as that of the distribution (6). It
is noteworthy that for smoothed Pseudo Wigner estimators, the t-f kernel is separable, leading
to independent smoothing in time and frequency. In addition to satisfying the time-frequency
distribution properties, reducing cross terms, providing positive spectrum, etc., the kernels in the
statistical context must further lead to an unbiased and reliable estimate. Therefore, the di�erence
between the t-f kernels chosen for deterministic signals and those for stochastic processes is that
the latter are subject to an increased number of constraints in order to serve the statistical aspects
of the problem. The compatible and conicting requirements on the t-f kernel along with a discus-
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sion of nonstationary processes where the kernel statistical constraints are compatible with their
deterministic counterparts were presented by Amin [4]. Amin has also derived the optimum kernels
for reducing spectral variance when dealing with nonstationary signal in additive white Gaussian
noise [5]. Sayeed and Jones [350] proposed a minimum mean square error estimation of the WVS.
Their method is based on the optimization of the variance-bias tradeo� using knowledge of certain
second and fourth order moments. The results of this optimization are kernels very di�erent from
those considered by invoking the quasi-stationary assumption.

Kayhan, El-Jaroudi, and Chaparro have revived in [203], and also in follow up publications, the
evolutionary spectrum (ES) considered by Priestley [322]. This spectrum is based on the modeling
of nonstationary signal x(n) as a collection of uncorrelated sinusoids with random time-varying
amplitudes, namely

x(n) =

Z �

��
A(n; !)ej!ndZ(!)

where A(n; !) is the time-dependent amplitude and Z(!)is an orthogonal increments process. For a
given signal which admits this representation, the ES is de�ned as the magnitude squared of A(n; !).
The work in this area has successfully led to the generalization, estimation, and the linkage of ES
to TFDs. For processes with restricted time-frequency correlation, referred to as underspread non-
stationary random processes, it has been shown by Matz, Hlawatsch, and Kozek in [258] that major
de�nitions of time-varying spectra, such as the generalized Wigner-Ville spectrum and generalized
evolutionary spectrum, yield e�ectively equivalent results. The concept of underspread processes
proves useful in analyzing Doppler shifts and fading communication channels using time-frequency
structures.

TFDs have been examined for detection of nonstationary signals. Almost one decade ago,
Flandrin [113] provided a coherent framework for Wigner-Ville time-frequency receivers. It was
shown that classical receiver structures designed for optimum detection of Gaussian signals in
Gaussian noise admit an equivalent formulation in the time-frequency domain. The work by Sayeed
and Jones [350] has gone past the mere equivalence of to classical optimum detectors to exploit the
time-frequency structures in composite hypothesis tests where an optimum quadratic detector is
implemented at each time-frequency point.

Time-frequency distributions have recently found applications to radar and sensor array pro-
cessing. To mention a couple, Barabarossa and Farina [13] have combined conventional space time
processing with TFDs and demonstrate the advantage of the joint processing for clatter suppression
and target detection. Belouchrani and Amin [23] have introduced the spatial time-frequency dis-
tribution and used it to solve blind source separation and direction �nding problems. They derived
the fundamental equation

Dxx(t; f) = ADss(t; f)A
H (7)

which relates the TFDs of the sensors to those of the sources. In (7) A is the spatial signature
matrix. The elements of Dxx(t; f) and Dss(t; f) are not the commonly used matrix correlation
functions, but rather the self and cross TFDs of the sensors and sources, respectively.
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With their role in advancing knowledge, theory, and applications in the statistical signal and
array processing area, time-frequency distributions have been established as an integral part of this
area, and will remain so for many years to come.

A WWW link to the author of the above section:

www.ece.vill.edu/user/moeness/

7 Multiresolution analysis

Hamid Krima and Jean-Christophe Pesquetb
aECE/CACC, NCSU, Raleigh NC 27695 and bUPS/LSS, Gif-Sur-Yvette, France

Solutions to most engineering problems traditionally invoke (at least partly) spectral domain
techniques. The simplicity often provided by the Fourier domain in analyzing a process is in large
part due to an implied linearity and time-invariance (whether by assumption for tractability or
otherwise) which yield complex exponentials as the eigenfunctions of the process. Equivalently, in
a stochastic setting, stationary and linear processes have led to high performance techniques for
estimation and detection. The demand for increased performance in statistical signal applications
and the emergence of a whole class of nonstationary problems have resulted in a new active area
of research, namely time-frequency methodology (described in the section of this article by Amin)
and more recently time-scale (multiresolution) techniques.

7.1 Complementing Fourier Analysis

7.1.1 Multiresolution Analysis

It is well known that many physical phenomena may be distinguished by characteristics present
at di�erent scales [254]. The statistics associated with these characteristics and/or their evolution
across scales may provide unique and powerful signatures. The fractal structure of many natural
phenomena for instance (e.g. the coast line of a continent, the patterns on a tree leaf, etc.) may be
viewed as the result of statistically self-similar patterns [254, 461]. The ubiquity of such phenomena
in physical processes has called for a systematic and e�cient methodology to capture the multiscale
trend and preserve the statistics at the various scales for further processing.

The wavelet theory [86] provided a powerful framework to meet this challenge, and gained
further prominence upon the ingenious connection, made by Mallat [253], with the then well known
�lter bank theory [437, 444]. The orthonormal wavelet analysis a�orded in many cases, analytical
tractability and, equally important, an e�cient tracking of the statistical properties at di�erent
scales.
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7.1.2 Scale Re�nement

An additional scale re�nement may be obtained by iterating the basic wavelet analysis on the coarse
scales as well as the �ne scales of the signals [72]. Referred to as the wavelet packet dictionary,
this representation consists of an overcomplete set of functions, out of which an orthonormal basis
is selected via an e�cient dynamic programming procedure and an additive criterion [72]. Other
extensions of the wavelet/wavelet packet decompositions are obtained by imposing some shift-
invariance properties [308].
In the interest of space, we classify the MR statistical developments into two major thrusts, the �rst
of which is centered around the analysis with an impact on compression and nonlinear estimation,
and the second focusing on the multiresolution modeling aimed more at large scale estimation and
classi�cation problems.

7.2 Multiscale Statistical Signal Analysis and Modeling

On the analysis front the good localization properties of wavelets have played a key role in the
development of various applications such as compression [253, 328] and signal reconstruction [253,
94, 211, 275, 347] (also referred to as denoising). The tree-like structure of the wavelet analysis
framework has also led to e�cient multiresolution stochastic modeling techniques with a remarkable
impact on large scale physics-based estimation and classi�cation problems [19, 249].

7.2.1 Fractal Analysis

Fractal analysis has been the focus of interest in signal processing for almost two decades and
continues to play an important role in the applications �elds such as compression, analysis of
turbulence, and communications.

The characterizing scale-invariance of fractal signals, as noted earlier, makes wavelet analysis
the tool of choice. The orthogonal wavelet representation of fractal processes entirely reect the
properties (statistical or others) residing at di�erent scales. Such analysis led to signi�cant advances
in fully and accurately identifying fractal and multifractal signals [179], and in other related syn-
thesis problems of fractional Brownian motion [114, 461, 395, 257]. Using the parsimony-achieving
potential of wavelets, other well adapted analyses were proposed [84] for identi�cation/synthesis of
turbulent velocity signals. In particular, these were shown to provide a considerable simpli�cation
and usefulness for turbulence signals.
Other applications where fractal signals have shown promise include biomedical, biochemistry [1]
and communications [461].

Other multiscale analyses of related processes, such as nonstationary processes with stationary
increments [49, 212]2 have resulted in stationarizing properties, thus allowing the application of
classical statistical techniques and equally important a deeper understanding of other nonstation-
ary parametric processes [212]. A particularly interesting extension to 2-dimensional signals also

2Fractional Brownian motion is a special case of a nonstationary process with stationary increments.
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resulted in analyzing and synthesizing �elds such as ocean oor [314].

7.2.2 Signal Reconstruction

In an attempt to �lter the observation noise from a signal, and using the ability of wavelets to
concentrate signal energy along a few directions, researchers have tried to separate the directions
containing signal energy and the orthogonal directions containing mostly noise energy. These noise
directions are then discarded and the former used in the reconstruction. The development of this
thrust is marked by three phases which took place in sequence.

Signal in Gaussian Noise:

Using to advantage the energy compaction property of wavelets, Mallat and Hwang [253] �rst
showed that e�ective noise suppression may be achieved by transforming the noisy signal into
the wavelet domain, and preserving only the local maxima of the transform for subsequent recon-
struction. While performing amazingly well, a sound statistical formalism to various deterministic
thresholding techniques was �rst proposed by Donoho and Johnston [94] who considered the ob-
served signal

x(t) = s(t) + n(t) (8)

with t = 1; � � � ;K, n(t) � N(0; �2) and s(t) unknown. They showed that a certain optimality was
achieved by thresholding all wavelet coe�cients of x(t) below T =

p
2�2 logK. Speci�cally, given

that a wavelet basis is an unconditional basis for a great many smoothness spaces [253], they showed
that the reconstruction error was within a scalar multiple of the minimum worst case error over
these signal spaces. Other developments ensued as other interpretations of signal enhancement
or denoising were adopted. In [275, 347, 211] the notion of coding was independently used to
lead to algorithms with more or less the same type of nonlinear thresholding. The information
theoretic criterion Minimum Description Length (MDL) developed in the late seventies [338, 365],
proved to be very useful in not only providing the threshold T upon its minimization in the wavelet
domain, but also in clarifying the intertwined relationships between the various wavelet properties.
In Figure 3, a summary of the nonlinear thresholding technique (otherwise referred to as a hard-
thresholding) together with its various modi�cations which for the purpose of this overview are
only worth noting. Other extensions include techniques which account for a simple correlation
structure among the coe�cients, which if it agrees with the signal structure should lead to a better
performance [79]. This, however, also results in a higher computational cost. A statistical approach
to optimize a process representation in a wavelet packet set which also led to denoising techniques
has been proposed in [211, 213, 309, 95].

7.2.3 Beyond Normality

While the Gaussian noise assumption may be valid in a number of applications, it certainly does
not hold in certain environments such as those encountered in an industrial setting for instance.
The Gaussian assumption about the noise is thus in general limiting, particularly when we have no
knowledge about the prevailing noise. An approach inspired by Huber's early work [358], is due to
Schick and Krim [358] who by obtaining the minimum maximal description length (DL) of a data
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sequence in the wavelet domain, derive a robust nonlinear �lter to cope with nongaussian scenarios.
As it turned out, the minimax DL �lter resulted from a mixture noise as shown in Figure 4 and
led to a thresholding rule shown in Figure 3.

7.2.4 Bayesian Approach

The above thresholding approaches have been demonstrated to lead to good results in relatively
moderate noise scenarios and have been successfully applied in a variety of settings. They are,
however, based upon threshold values which present two drawbacks:

� They are directly dependent upon the noise variance without regard to the signal character-
istics

� They grow without bound with the data record length

To address these limitations and particularly when prior information about the underlying signal
is available (quite reasonable in practice), a purely Bayesian approach was adopted in [309]. The
prior knowledge about the signal in essence regularized the estimation problem. This clearly led to
Maximum A Posteriori (MAP) estimates of the signal coe�cients.

In contrast to the previous approaches, this approach takes a more elaborate form allowing
one to account for probabilistic prior information one may have about the signal of interest. The
Bayesian thresholding �lter which results is independent of the data lengthK and is only dependent
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on the signal and noise variance. Interestingly, it has been shown that many thresholding rules
may be included within this framework [446]. For instance, if the noise components are i.i.d.
Gaussian and the signal components are i.i.d., zero-mean and have a Laplacian distribution, a soft
thresholding policy allows us to recover the signal.

To better account for the expected sparsity of the components of the signal of interest (parsimo-
nious wavelet representation), a prior of a Bernoulli-Gaussian distribution (which is a degenerate
Gaussian mixture) in presence of i.i.d. Gaussian noise, leads to an estimate which is a tradeo�
between a Wiener and a thresholding estimator [309].

7.2.5 Multiresolution Modeling

Multiresolution modeling �rst appeared in the context of data compression [253]. Its recent in-
creased prominence is largely due to the computational e�ciency of a �lter bank implementation.
This led to a multitude of applications, and one of particular interest herein, is the clever recast-
ing of time recursive �ltering into scale recursive �ltering [19]. This led to modeling algorithms
with high e�ciency as a result of the tree-like structure of the analysis. The generality of this
modeling technique comes from the fact that the nodes may be interpreted di�erently depending
on the application [249], and the appeal of easily implementable algorithms. Other extensions
included the introduction of time dynamics [174] with a variety of applications. One interesting
applications is to ground water hydrology where measurements are in fact multiresolution over
space, resulting in very e�cient data fusion algorithms and subsequent estimation procedures [83].
Another application is to ocean height estimation with sparse satellite measurement data where
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multiresolution methods could be implemented with unprecedent e�ciency and accuracy, creating
a ground-breaking milestone in computational oceanography [112]. Other applications include Syn-
thetic Aperture Radar image classi�cation, compression [207], as well as the analysis of self-similar
processes[112].

A WWW link to the author of the above section:
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8 Channel Estimation and Equalization

Georgios Giannakis
Dept. of Electrical Engineering, University of Virginia
Charlottesville, VA 22903-2442

Communications and in particular channel estimation and equalization are areas that o�er a
fertile ground for statistical signal processing tools and algorithms. Information sources are mapped
to (generally complex) symbols that take values from a �nite alphabet and are thus non-Gaussian
signals. They undergo distortions that introduce intersymbol or interchannel interference (ISI or
ICI) as they propagate through channels before being received by single or multiple sensors in
noise. Receiver noise is narrowband and hence is modeled well as additive Gaussian, although im-
pulsive models appear also with ambient and atmospheric noise sources in underwater acoustic and
radio communications. ISI and ICI arise due to bandlimited transmit- and receive-�lters, ampli-
�ers, delay- and multipath-propagation, relative transmitter-receiver motion, coupling e�ects, and
multiple access interference (MAI) [323]. Depending on the transmission rate, the propagation con-
ditions, the number of transmitters and receivers, the complex discrete-time equivalent baseband
channels can be: (i)deterministic or random constants over one or more information symbols (mod-
eling at fading e�ects); (ii)single-input single-output (SISO) linear time-invariant (LTI) FIR �l-
ters (accounting for frequency-selectivity); (iii)multiplicative sequences (modeling time-selectivity);
(iv)linear time-varying (LTV) �lters with random or deterministic coe�cients (capturing fast fading
e�ects); (v)nonlinear FIR �lters of the Volterra type (modeling saturation nonlinearities of power
ampli�ers); (vi)multi-input multi-output (MIMO) �lters (for multiuser scenarios); or, possible com-
binations of (i)-(vi). Equalizers on the other hand, undo channel e�ects to recover the transmitted
sequence, and depending on complexity versus performance tradeo�s they can be: (i)linear or non-
linear; (ii)FIR or IIR, and (iii)batch for block-by-block equalization, or, adaptive for e�cient online
processing and tracking of slowly varying channels.

Channel estimation, equalization, and symbol recovery algorithms are founded on detection-
estimation and system identi�cation principles, and their advances parallel and cross-fertilize ideas
to diverse signal processing applications including seismic deconvolution, sonar de-reverberation,
image restoration, signal reconstruction, time-series modeling, and various inverse problems in-
volving dispersive media [162]. Estimation of channels using the received (output) samples can
be viewed as an input-output system identi�cation problem if a known training sequence (input)
is transmitted during the acquisition mode. In the operational stage, receivers usually switch to
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a decision-feedback mode where previously equalized and quantized (according to the alphabet)
symbols are used together with the received data to update channel estimates [321], [24], [323].
Training sequences consume bandwidth and consumption increases if frequent re-training is re-
quired to avoid erroneous convergence of decision feedback equalizers (DFEs) which occurs when
the propagation channel is time-varying; see e.g., [326], [90]. To obviate training and thus utilize
bandwidth e�ciently, self-recovering (a.k.a. blind) algorithms have received attention over the last
dozen years for identifying the channel or estimating the equalizer directly using output data only
{ a feature also important when information transmission cannot be interrupted for training as for
example in broadcasting and multicasting scenaria [143], [26], [117]. The success of blind methods
in a communications context depends on maximum exploitation of input features such as whiteness,
non-Gaussianity, �nite alphabet, constant modulus, cyclostationarity { properties that equalizers
are often designed to restore at their outputs by optimizing pertinent criteria. Some of these input
properties can be imposed by the transmitter design (e.g., periodically inserted guard times or
constant modulus [143], [416], [3]) and from this point of view blind schemes can be thought of
as semi-blind identi�cation approaches because the input may be unknown to the receiver but its
characteristics which can be imposed at the transmitter are known { a distinct di�erence with time
series modeling applications where the input is inaccessible and thus cannot be a�ected by design.

Equalization of linear FIR channels with training is commonly used in practice especially with
wired line transmissions over telephone lines, cable television, and asymmetric digital subscriber
loops (ADSL); see e.g., [248], [326], [195], and [343]. Blind approaches show more promise in future
wireless and mobile communications, high-frequency modems, digital audio and video broadcasting
systems where rapid channel variations render the overhead for training prohibitive; see e.g., [117],
[103], and [90]. Although receiver-based (or post-) equalization has been predominantly treated,
when a reverse link is available from the receiver, transmitter-based (or pre-)equalization is also
possible when channel estimates are available as shown by [411] and [154]; see also [121] for recent
advances in pre-equalization and its relationship with DFEs.

The tools used for channel estimation and equalization include second- and higher-order statis-
tics (SOS and HOS). SOS are sample correlations and power spectral densities of the received
(symbol-rate sampled) stationary data, whereas HOS refers to e.g., sample fourth-order cumulants
and polyspectral densities which can extract additional information from the non-Gaussian data
about the underlying channel [233]. They are useful for mitigation of nonlinear e�ects [24], and
blind estimation of LTI channels because they complement channel magnitude response informa-
tion (conveyed by SOS) with complete phase response information which allows equalization of
nonminimum phase channels [430], [131], [370], and [157]. However, HOS exhibit high-variance
and channel variations may violate the stationarity assumption as the receiver collects long records
required for reliable HOS estimation.

With su�cient excess bandwidth at the transmitter, most FIR channels can be estimated and
equalized blindly using second-order cyclic statistics (SOCS) that become available when one over-
samples (or fractionally samples) the continuous-time received signal at a rate higher than the
symbol rate [414], [122], [413], [130], [129]. The resulting time series is cyclostationary and the
redundancy introduced renders the LTI SISO model equivalent to either a linear periodically time-
varying (LPTV) SISO model, or, to an LTI single-input multi-output (SIMO) model which can be
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characterized by multivariate stationary SOS. SIMO models arise also even when symbol-rate sam-
ples are collected by multiple receive-antennas [276], and the excess-bandwidth condition adopted
to introduce diversity now translates to su�cient sensor separation in order to guarantee chan-
nel disparity (co-primeness of the SIMO transfer functions). An important consequence of the
LPTV-SISO and LTI-SIMO structures under such time- or space-diversity conditions, is that LTI
FIR channels can be equalized exactly by FIR equalizers of the same or greater order; see e.g.,
[376]. Recall that LTI-SISO channels with zeros on the unit circle cannot be inverted and even
with MMSE (Wiener) equalizers performance drops due to noise ampli�cation at the frequencies of
the channel nulls. This ideal SIMO equalization feature is analogous to the perfect reconstruction
encountered with multirate analysis-synthesis FIR �lterbanks [438], and its practical implication to
communications is threefold even when zeros are close to the unit circle: (i)truncated FIR equaliz-
ers of FIR channels need not be excessively long to approximate ideal IIR behaviour, and (ii)with
appropriate initialization, adaptive equalization algorithms can be globally convergent at least in
high-SNR environments [232]; (iii)so long as the input sequence is persistently exciting (a minimal
condition for identi�ability) it is allowed to be colored or even deterministic which is important for
coded sequences which are non-white; see e.g., [276], [463].

Recent attempts focus on inducing cyclostationarity or diversity at the transmitter by means
of periodic modulating sequences or redundant �lterbank precoders [424], [128], [60], [368], [353].
Equalization exploiting transmit-diversity is very promising because contrary to FSEs, it imposes
no channel disparity conditions, is applicable to non-white and deterministic inputs, and shows
robustness to channel order overestimation, and additive stationary colored noise [424], [368]. At
the expense of added complexity and possibility of divergence, DFEs o�er a practical alternative to
equalizing channels with unit-circle zeros and their asymptotic performance has been shown recently
to approach that of the maximum likelihood sequence estimation (MLSE) [323], [66]. Given a
channel estimate, the latter is implemented using Viterbi's algorithm [24], and is the optimummeans
of recovering the �nite-alphabet input, although its practical use is limited due to its complexity
which especially with multiuser communications increases exponentially in the channel order and
the number of users [442].

Simple non-frequency selective FIR channels introduce constant amplitude and phase distortions
which can be compensated with automatic gain control (AGC) and di�erential encoding respectively
(see e.g., [323]). But recently, even polynomial phase distortions arising due to relative motion
can be mitigated with generalized di�erential encoding [142]. Carrier and timing synchronization

are in principle frequency and time-delay estimation problems respectively, and can be solved
using ML [323] or cyclic methods with fractional sampling [141]. Especially for code-division
multiple access (CDMA) systems entailing asynchronous users, correct timing acquisition a�ects
performance considerably, and a variety of methods (including subspace approaches) have been
proposed recently (see e.g., [383], [25]).

Blind equalizers of FIR frequency-selective channels do not need to acquire timing because they
absorb it in the channel itself. In addition, methods that rely on the constant-modulus (restoral)
algorithm (CMA) do not require frequency o�set estimation [143], [416]. CMA is basically a HOS
based technique equivalent to the Shalvi-Weinstein algorithm (SWA) [370], [90]. By constraining
the linear equalizer's output, CMA reduces the variance of HOS based techniques and estimates
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the equalizer directly, as opposed to most parametric and nonparametric HOS based approaches
that estimate the channel �rst (via linear equation or nonlinear matching methods [233], [430],
[131]) and next equalize using either: (i)the computationally complex Viterbi; or, (ii)the so called
zero-forcing equalizer (ZFE) that is nothing but a truncated version of the inverse channel [248];
or, (iii)the minimum mean-square error (MMSE, a.k.a. Wiener) equalizer that assumes knowledge
of the signal-to-noise-ratio (SNR) to obtain a regularized inverse [323], [317]. Direct adaptive linear
equalizers of the CMA/SWA type are particularly attractive computationally, but convergence,
and speed may be problematic especially with channel roots on (or close to) the unit circle - a
concern that is alleviated with fractionally sampled versions of the originally developed symbol-
spaced CMA/SWA [232], [90]. MMSE or ZFEs can initialize the CMA or other nonlinear schemes
whose convergence depends crucially on initialization. CMA can also be invoked in a DFE mode to
improve performance especially with channel nulls. Although interesting preliminary results have
appeared, convergence of FIR CMA-FSEs and their DFE versions in the presence of noise are not
fully understood.

Fading channels appear with mobile cellular telephony, temperature and salinity variations in
underwater environments, and ionospheric uctuations in microwave links, where variations of
short coherence time cause runaway e�ects in adaptive tracking algorithms. They are modeled
as linear time-varying (LTV) FIR �lters with the average extent (delay-spread) of the multipath
de�ning channel memory and degree of frequency-selectivity and with the so called Doppler-spread
accounting for the average channel variation and measuring time-selectivity [323]. The latter can
also arise due to oscillator drifts and relative motion that manifest themselves as multiplicative noise
when frequency-selectivity is negligible. In general, LTV channel taps are modeled as uncorrelated
stationary random processes which are assumed to be low-pass, Gaussian, with zero mean (Rayleigh
fading) or non-zero mean (Rician fading) depending on whether line-of-sight propagation is absent
or present [323]. Correlations of the unknown taps capture average propagation characteristics and
are used to track the channel's time evolution using Kalman Filtering estimators. The challenging
task of estimating channel parameters using training data or decision-feedback has been addressed
in [425]. Blind approaches for random coe�cient fading channels are yet to be developed.

However, blind methods adopting deterministic �nitely parameterized LTV models have been
proposed recently using a basis expansion [421], [133]. They turn LTV-SISO models to LTI-MIMO
structures with inputs formed by modulating the transmitted sequence with the bases. Fourier bases
are well motivated for modeling rapidly fading mobile communication channels when multipath
propagation caused by a few dominant reectors gives rise to (Doppler induced) linearly varying
path delays. Doppler frequencies can be estimated blindly using cyclic statistics and channel orders
can be determined from rank properties of a received data matrix [422]. When channel (or Doppler)
diversity is complemented by temporal, or, spatial diversity (available with oversampling or multiple
antennas) blind estimators of LTV channels along with direct equalizers become available even with
minimal (persistence-of-excitation) assumptions about the input and the bases [133]. Multivariate
LTI ZFEs lend themselves to adaptive algorithms which provide �ne tuning for possible model
mismatch of the bases which capture only the nominal part of the rapidly fading channel (see [133]
for a tutorial treatment and [422] for blind HOS LTV channel estimators and DFEs).

MIMO channel equalization is a major challenge in multiple-access wireless communications be-
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cause multipath introduces MAI which limits system capacity and bit error rate (BER) performance.
Low-complexity CDMA systems able to cope with (perhaps unknown and time-varying) multipath
and are equipped with self-recovering capabilities are most desirable because they are versatile in
variable data rates and fading (e.g., mobile) environments. They also relieve the need for power-
control and bandwidth-consuming training sequences. Linear suboptimum equalizers with training
that either suppress MAI completely (a.k.a. zero-forcing (ZF) or decorrelating receivers), [250],
[251], or, their MMSE [177] and minimum-output energy [423] counterparts, o�er a compromise
between the high-complexity ML solution [442] (that assumes knowledge of all system parameters)
and the matched-�lter (MF) multiuser demodulators that are not only known to su�er from near-
far e�ects but also exhibit an error oor in their BER due to MAI. Additional approaches include
multi-stage adaptive demodulators, DFEs [98], and spatial combiners (RAKE receivers that in
fact are nothing but inverses of multivariate channels that assumed to have been estimated) [323].
Frequency-selective multipath induces interchip interference and simultaneous incorporation and
mitigation of asynchronism and multipath e�ects was reported recently in [420] and [423] using
a multirate equivalent discrete-time model (see also [459] and [460]). Blind approaches are well
motivated when high-rate communication protocols entail small data packets (e.g., in distributed
networks and wireless PCS prototypes), or, when the propagation medium is rapidly varying (e.g.,
in large cells with considerable delays and high data rate time-varying wireless environments).
Such self-recovering CDMA receivers were proposed recently in [420], [474], [383], [241], [25], and
[419]. They capitalize on code diversity o�ered by the user code(s) and the received data but
have relatively high complexity especially because they adopt subspace decomposition (via the
SVD) of large matrices for signature waveform estimation. Inverse �ltering criteria and recursive
least-squares (RLS) and least mean-square (LMS) algorithms that include multipath were reported
recently in [419] and [426] by viewing self-recovering CDMA demodulation as a blind beamforming
problem. Interesting directions for mitigating MAI, asynchronism, and multipath by judicious code
design at the transmitter include the blind Lagrange-Vandermonde CDMA transceivers of [352] and
the emerging multicarrier CDMA systems both of which turn frequency selective multipath into at
fading [472], [105], (see also [349] for wavelet-based codes that target graceful degradation especially
with oversaturated CDMA systems).

The plethora of propagation conditions and requirements for transmitter-receiver constraints
in terms of complexity, transmit-energy, bandwidth, SNR, and performance speci�cations (MMSE
or BER), o�er numerous possibilities for statistical signal processing algorithms. Digital commu-
nication systems in general, entail man-made components and is a \paradise" for signal processing
(SP) research and development because they provide considerable exibility to the SP designer.
At the same time SP algorithms must be tuned to the often strict speci�cations of communication
systems and standards. A number of interesting directions open up for future research: (i)maximum
exploitation of available information and communication constraints (semi-blind approaches along
the lines of [56], and [147] o�er promising directions for linear equalization); (ii)if there is a choice
for inducing diversity in the input, the channel, or the received output, it appears that input (i.e.,
transmit-) diversity in the form of short training sequences, modulation, codes, or �lterbanks is to
be preferred and optimal transeivers should be designed along the lines of [464] (see also [351]);
(iii)with increasing interest towards low-power communications and non-constant modulus trans-
missions (e.g., OFDM or downlink CDMA in general) pre- or post-mitigation of power ampli�er
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nonlinear distortions is necessary using training or self-recovering receivers (see [132] and refer-
ences therein for steps in this direction); (iii)convergence studies of adaptive CMA and DFE algo-
rithms in realistic noise environments [90]; (iv)performance analysis of channel estimators especially
when model perturbations due to synchronization e�ects and Doppler frequency drifts are present;
(v)BER evaluation of ZF equalizers and experimental comparisons with the mean-square error
equalizers in SISO, SIMO, and MIMO structures; (vi)diversity techniques for blind identi�cation
of random coe�cient models and performance comparisons with the basis expansion models using
real data; (vii)development and performance analysis of low-complexity blind multiuser equalizers;
(viii)joint design of equalizers with channel encoders and interleavers; (ix)exploitation of network
protocol structures from higher-layers (e.g., ATM) for designing equalizers at the physical layer (see
[11] along these lines) ; (x)balanced combination of the various possible diversity-inducing factors
(e.g., codes, channels, fractional sampling, antennas) for blind channel estimation and equalization
of general MIMO channels under minimal and realistic identi�ability assumptions (see [373] for
preliminary steps in this direction).

A WWW link to the author of the above section:
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The Gaussian distribution enjoys a central place in statistical signal processing; the Gaussian
assumption is often justi�ed by appealing to the Central Limit Theorem. The pdf is tractable, and
algorithms derived under the Gaussian assumption are usually simple (linear / closed-form). In
contrast, non-Gaussian signal processing typically involves non-linear processing. In this section,
we will look at recent trends in the modeling of non-Gaussian processes: �nite-variance and in�nite-
variance processes, fractal point processes and multiplicative noise models.

9.1 Finite variance models

Non-Gaussian data are encountered in various �elds, such as agriculture (the Fisher Iris data) and
economics (unemployment data) [6]; astronomy (sunspot data) and biology (canadian lynx data)
[322], music (average kurtosis of music has been steadily increasing!) [149], exploration seismology,
radar, sonar, speech, image and communication signals. Experimental measurements show that
ambient noise is often signi�cantly non-Gaussian, particularly in urban and radio channels [270]
and underwater acoustic channels [45, 269]. In communication channels, multiple user interference
is highly structured and non-Gaussian. Of course, non-linearities usually lead to non-Gaussian
outputs.

In general, the multivariate pdfs of non-Gaussian processes are intractable, and with few excep-



Submitted to IEEE SP Magazine, June 1998 34

tions there are no general models. In the non-Gaussian context, linear techniques and second-order
statistics are not merely suboptimal but are, in some cases, incapable of providing acceptable
performance (e.g., multi-channel processes and source separation). Since the Gaussian environ-
ment is the least favorable, exploitation of the non-Gaussian pdf can lead to signi�cantly improved
performance, although this usually involves non-linear signal processing [199].

Optimal estimation/detection may be feasible if the multivariate pdfs are analytically known
(and tractable). If we have access only to training data (or if the signal is weak), the noise pdf can
be estimated using various approaches (kernel density approaches, stabilized histogram estimators,
type-based estimators, etc). Alternatively, one may use a parametric model, such as the Gaussian
mixture model, whose parameters can be e�ciently estimated via the EM algorithm [260, 273].
Depending upon the application, the (multivariate) pdf estimators may not be satisfactory unless
su�cient data are available, and the resulting signal estimators may be highly non-linear.

Since non-Gaussian processes are not completely characterized by their �rst and second-order
moments, higher-order statistical descriptors, such as the higher-order moments and cumulants, and
their Fourier transforms, the moment and cumulant spectra (\HOS") are required. Consequently, in
the last two decades, lot of attention has centered around HOS [320, 264, 291, 292, 315, 387]. HOS
provide a parsimonious (but generally incomplete) characterization of the non-Gaussian process,
and are multi-dimensional statistics; for example, the fourth-order moment of a stationary random
process is a function of three indices: m4x(i; j; k) := Efx(n)x(n+ i)x(n+ j)x(n + k)g. HOS have
been used to provide tractable solutions to various \non-problems" in signals and systems: non-
Gaussianity, non-minimum phase, non-causality, non-linearity, non-reversibility, non-additivity, and
non-stationarity. Sampling a continuous-time minimum-phase linear process usually renders the
discrete-time process non-minimum phase (NMP) and NMP signals are encountered in frequency
selective communication channels. Non-linearities are encountered, for example, in high-power
ampli�ers in communication satellites operating near the saturation point, interactions in ocean
waves, magnetic recording channels, and scattering phenomena in radar and sonar.

The history of HOS can be traced back to Fisher and the seminal work of statisticians in North
America and Eastern Europe: Brillinger, Kolmogorov, Leonov, Rosenblatt, Shiryaev, Sinai and
Tukey. The interest of the Signal Processing and Systems communities perked up in the early
1980's, due partly to a US-ONR funded initiative in non-Gaussian processes [450]. Subsequently
there have been �ve biannual international workshops and several special issues devoted to the
subject; a comprehensive bibliography may be found in [387]. The success of HOS-based methods
depends clearly on the amount of non-Gaussianity and non-linearity of the underlying processes
and models; hence, tests of Gaussianity and linearity are important. HOS-based methods typically
entail an increase in dimensionality, computational load and statistical variance of the sample
estimators. The potential need for longer data records also cautions one to test for stationarity.

The cumulants of a stationary-random process (or of a random vector) can be represented
either as tensors or as m-D matrices. Several results in the scalar case can be generalized to the
vector case by replacing scalar multiplications with Kronecker products [386]. But, notions related
to rank, eigenvector decomposition, diagonalization etc are largely unsolved, but some interesting
results may be found in [75, 76] where relationships with the theory of homogeneous multi-variable
polynomials are established. Even when slices or projections are used, the resulting 2-D matrices
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are generally not symmetric, so that the general non-symmetric eigenvector problem is involved.

Other relatively virgin areas of HOS research include: extensions of HOS to non-stationary
processes, truly adaptive algorithms, e�cient algorithms for nonlinear system analysis, robust es-
timation algorithms, applications in point processes, synchronization and multi-user problems in
communications, and performance analyses of algorithms.

9.2 In�nite variance models

Heavy-tailed non-Gaussian processes, particularly the Gaussian mixture model and the Cauchy
r.v., have long been used to develop and test signal processing techniques which are robust to
impulsive noise [194]. The Cauchy r.v. has in�nite variance, and is a special case of an alpha-stable
r.v. It is easy to create a Cauchy r.v. as the ratio of two (possibly correlated) Gaussian random
variables and Feller [108] shows how the Cauchy r.v. arises in an example with rotating mirrors.
Stable r.v.'s result from generalized central limit theorems [470], and are characterized by four
parameters: scale, location, the characteristic exponent �, and a skewness index � [293, 348, 470].
The exponent satis�es 0 < � � 2, where � = 2 corresponds to the Gaussian and � = 1 corresponds
to the Cauchy. The skewness index satis�es �1 � � � 1, with � = 0 indicating symmetry. The
non-Gaussian stable processes are characterized by their in�nite variance; indeed, Ejxjr = 1 if
r � �. Hence, one must use lower-order (r < �) rather than higher-order moments to study these
processes [293]. The non-Gaussian alpha-stable process may be considered impulsive, and at least
in the symmetric case, there are connections with the Middleton B model [270] which remain to
be fully explored. A survey of parameter estimation techniques may be found in [293]. Although
the lack of a closed-form pdf, except in special cases, has made analysis di�cult, numerically sound
maximum-likelihood estimators are discussed in [294].

Despite the `in�nite variance' of these processes, they have found applications in areas such as
astronomy (gravitational �elds) [470], and econometrics (income distributions) [255]; modeling of
radar data [294, 418] and Ethernet tra�c data [448]; several applications in the physical sciences
are discussed in [181].

In the context of linear symmetric stable processes, identi�ability of mixed-phase ARMA models
was established in [252]; in [389], it was shown that normalized HOS could be used to estimate
these parameters, extending the earlier work of Davis-Resnick, and Mikosch et al. Alpha-stable
processes may be used to model very impulsive noise, and they can be suppressed (to some extent)
using the usual tools of ranks, weighted medians and order statistics. Locally optimum detectors
may also be used [293]; another alternative is to use data-adaptive non-linearities [388]. Impulsive
noise suppression is particularly important for compression and dynamic range reduction. Model
validation is important, and several ideas are discussed in [294] and [295]. Di�erentiating between
non-linearity and non-stationarity may be more di�cult than in the �nite variance case [87].
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9.3 Fractal point processes

Recent papers by Willinger et al [448] show that Ethernet tra�c data are self-similar and alpha-
stable, so that the standard Poisson model and conventional analysis [44] are no longer adequate.
The self-similarity naturally leads to wavelet-based analysis, see e.g., [2]. Semi-parametric tech-
niques, based on log-periodogram regression, are proposed for estimating the fractal dimension in
[277], and fractal point process models have been proposed in [14, 219, 344], but several interesting
analysis and synthesis problems remain open.

9.4 Multiplicative noise

Just as non-linearities give rise to non-Gaussianity, they also lead to non-additive noise. For
example, if the received signal x(k) = s(k) + w(k) passes through a zero-memory non-linearity
(ZMNL) (the receiver ampli�er), and if the signal s(k) is weak relative to the noise w(k), the
observed signal can be written as y(k) = s(k)[�+g(k)]+v(k), where � is a parameter of the ZMNL.
The noises v(k) and g(k) are now, in general, correlated, non-Gaussian, and have non-zero means.
Multiplicative noise is encountered in speckle imagery [40], fading channels [141, 324], underwater
acoustics [99], lidar and radar [29].

An interesting approach is taken in [318], where the signal is a harmonic, the noises are modeled
as being non-random, and error bounds on the frequency estimates are developed. In the case
of a harmonic signal, and stationary noises, conventional spectral analysis of the data (\cyclic
mean") or of the squared data (\cyclic variance") have been proposed and analyzed in [468];
fourth-order cumulants were used in [99]. Cramer-Rao bounds were established in [118, 467, 385].
Some parameter estimation problems are discussed in [384]. Note that all these papers assume that
the additive and multiplicative noises are independent.

The detection of the weak signal, s(k), from the observed data y(k) = �s(k)[1 + g(k)] + v(k),
has been considered both for the random and non-random cases in [378, 31, 9, 126], but much more
work remains to be done (e.g., temporally correlated noise, and `non-weak' signals).

A WWW link to more information on non-Gaussian processes and on higher order stastistics:

http://www.comm.uni-bremen.de/HOSHOME

10 System identi�cation and tests for non-Gaussianity and linear-

ity

Jitendra K. Tugnait
Dept. of Electrical Engineering, Auburn University
Auburn, Alabama 36849, USA
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10.1 System identi�cation

System identi�cation is the �eld of mathematical modeling of systems and signals from experimen-
tal data [377]. In signal processing applications, system identi�cation methods are used for linear
prediction, adaptive �ltering, noise and interference cancellation, parametric spectral estimation,
inverse and forward modeling, and numerous other objectives. In systems and control applica-
tions, models obtained by system identi�cation approaches are used for controller design, system
simulation and prediction. The system identi�cation methods are applicable to both cases, when
input-output data of the system under investigation are available as well as when one only has the
system output measurements (time series analysis).

The area of system identi�cation has been an active research area for past thirty to forty
years. Most of the focus has been on single-input single-output (SISO) linear models and on scalar
stationary time series, mainly because of its wide applicability and partly because of its analytical
tractability. The available methods have been well analyzed in excellent texts such as [377, 244, 245].
The text by Widrow and Stearns contains a wide range of applications [451]. A typical approach
is to choose a model structure with �xed (order) order, e.g. state space models with known state
dimension, autoregressive moving average (ARMA) models with known AR and MA model orders,
MA models, etc., and then turn the system identi�cation problem into one of parameter estima-
tion. The choice of the model structure is dictated by the intended application. For instance, [451]
favors using MA models for adaptive signal processing in applications where the stability of the
�tted model is paramount. A large number of methods exist for parameter estimation including
least-squares, prediction error minimization, maximum likelihood, instrumental variable methods,
output error minimization and others [377, 244, 245]. A complete system identi�cation method-
ology should, however, include an iterative process of model structure determination, parameter
estimation and model validation [377, 244].

The problem of multi-input multi-output (MIMO) system identi�cation has proved to be more
complex. Unlike the scalar (SISO) case, in the MIMO ARMA models with known orders, the
representation of system output measurements in terms of AR and MA matrix coe�cients in not
necessarily unique. This lack of uniqueness can lead to ill-conditioning in parameter estimation.
A possible solution is to use a canonical parametrization requiring knowledge of certain structure
indices which are di�cult to determine in practice [152] An interesting solution to MIMO model
identi�cation (including ARMA parameter estimation) via a subspace-based realization approach
using state space formulation has recently been proposed [439]. It is applicable to both input-
output (\deterministic") models with noisy output measurements as well as to multivariate time
series (\stochastic" models).

Systems and techniques not captured by the above formulations (stationary linear time series,
linear systems with noisy output measurements but noise-free input measurements, time-domain
approaches) have also received considerable attention in recent years. Some representative examples
include:

� Errors-in-variables models: These are models where both input and output measurements
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are noisy. Higher-order statistics have been used in [434, 431, 135], second-order statistics
and subspace instrumental variable methods in [381], and cyclic and/or higher-order spectral
analysis in [135, 415].

� Nonlinear systems: Volterra systems have attracted considerable attention [281]. More gen-
eral Hammerstein systems have been considered in [327]. Time series models have been
treated in detail in [412].

� Frequency-domain approaches have been investigated in [432, 433, 361]. Approaches of [432]
and [433] do not require explicit noise modeling.

� For time series models higher-order statistics-based approaches have attracted considerable
attention due to their ability to (blindly) identify non-minimum phase and/or non-causal
models [292, 435].

10.2 Gaussianity and linearity tests

Linear parametric models of stationary random processes whether signal or noise, have been found
to be useful in a wide variety of signal processing tasks such as signal detection, estimation, �ltering,
and classi�cation, and in a wide variety of applications such as digital communications, automatic
control, radar and sonar, and other engineering disciplines and sciences. Parsimonious parametric
models such as AR, MA, ARMA or state-space, as opposed to impulse response modeling, have
been popular together with the assumption of Gaussianity of the data. Linear Gaussian models
have long been dominant both for signals as well as for noise processes. Assumption of Gaussianity
allows implementation of statistically e�cient parameter estimators such as maximum likelihood
estimators. A stationary Gaussian process is completely characterized by its second-order statistics
(autocorrelation function or equivalently, its power spectral density { PSD) and it can always be
represented by a linear process. Since PSD depends only on the magnitude of the underlying transfer
function, it does not yield information about the phase of the transfer function. Determination of
the true phase characteristic is crucial in several applications such as seismic deconvolution and
blind equalization of digital communications channels. Use of higher-order statistics allows one
to uniquely identify nonminimum-phase parametric models. Higher-order cumulants of Gaussian
processes vanish, hence, if the data are stationary Gaussian, a minimum-phase (or maximum-
phase) model is the `best' that one can estimate. Given these facts, it has been of some interest to
investigate the nature of the given signal: whether it is a Gaussian process and if it is non-Gaussian,
whether it is a linear process.

10.2.1 Gaussianity tests

Several tests have been devised on the basis of the fact that the higher-order cumulant spectra [43]
of Gaussian processes vanish. One of the earliest tests based upon testing of the signal bispectrum
is given in [329]. Hinich [168] has simpli�ed the test of [329] by using the known expression for the
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asymptotic covariance of the bispectrum estimators. Notice that a vanishing bispectrum does not
necessarily imply that the underlying signal is Gaussian; it may result from the fact that the signal
is non-Gaussian with zero bispectrum. Therefore, a next logical step would be to test for vanishing
trispectrum of the record. This has been done in [272] using the approach of [168]; extensions of
[329] are too complicated. Computationally simpler tests using \integrated polyspectrum" of the
data have been proposed in [429]. The integrated polyspectrum (bispectrum or trispectrum) is
computed as cross-power spectrum and it is zero for Gaussian processes. Alternatively, one may
test higher-order cumulant functions of the data in time-domain. This has been done in [136].

Other tests that do not rely on higher-order cumulant spectra of the data may be found in [412].

10.2.2 Linearity Tests

For a stationary time series one can de�ne a normalized bispectrum, called bicoherence or skewness
function [292], which turns out to be a (non-zero) constant for all bifrequencies if the signal is
linear non-Gaussian with non-vanishing bispectrum. This property has been used by Subba Rao
and Gabr [329] to design a statistical test for linearity. Hinich [168] has `simpli�ed' the test of [329].
Notice that this test is useless if the signal is non-Gaussian with zero bispectrum. Therefore, a
next logical step would be to test a normalized trispectrum (tricoherence function). This has been
done in [272] using the approach of [168]; extensions of [329] are too complicated. The approaches
of [329] and [168] will fail if the data are noisy. A modi�cation to [329] is presented in [428] when
additive Gaussian noise is present. Finally, other tests that do not rely on higher-order cumulant
spectra of the record may be found in [412].

11 Advanced-Sensor Signal Processing

Arye Nehorai
EECS Department, M/C 154
The University of Illinois at Chicago
851 S. Morgan St.
Chicago, IL 60607-7053
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11.1 Background

Over the last several years, advanced sensors have been introduced and combined with statistical
sensor array processing methods. These sensors exploit more physical information, or are orders
of magnitude more sensitive, than traditional sensors. Their use has improved the performance
of current systems, increased the scope of signal processing methods, and created entirely new
applications. Four examples are presented in the following.

11.2 Electromagnetic Vector Sensors

Eaach element in an electromagnetic vector sensor measures all 6 electromagnetic (EM) �eld com-
ponents at a single point, have been introduced in [284], [287] for estimating the direction and
polarization of EM sources. In contrast, conventional antennas measure a single component of
the electric �eld. Vector sensors are commercially available and actively researched. EMC Baden
Ltd. in Baden, Switzerland, manufactures them for a 75Hz-30MHz frequency range, and Flam and
Russell, Inc. in Horsham, PA, for 2MHz-30MHz. Lincoln Labs at MIT has performed preliminary
localization tests with the vector sensors of Flam and Russell, Inc. [156]. Other research on sensor
development is reported in [189], [190].

EM vector sensors are sensitive to both the direction and polarization information in the in-
coming waves. The polarization provides a crucial criterion for distinguishing and isolating signals
that may otherwise overlap in conventional scalar-sensor arrays. When a single vector sensor is
used for direction �nding, it has the following advantages and capabilities:

� Direction estimation in 3D while occupying very little space,

� Estimation of the directions and polarization ellipses of up to 3 sources [175], [172],

� Resolution of very closely spaced (even co-incident) sources based on polarization di�erences,

� Ability to process wideband signals in the same way as narrowband signals,

� Handling of sources with either single or dual-message signals,

� Isotropic response,

� No need for location calibration and time synchronization among di�erent components.

Some of these advantages result from the fact that no time delays are used. In contrast,
conventional scalar-sensor methods require a 2D array for direction �nding in a 3D space, need
accurate location calibration and time synchronization, and require much higher computational
cost to process wideband rather than narrowband signals.

The optimum accuracy of source parameter estimation for vector-sensor arrays is analyzed in
[284], [287] in terms of Cram�er-Rao bounds (absolute limits on the accuracy of the class of unbiased
parameter estimators). Quality measures are de�ned for estimating direction and orientation in 3D
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space, including mean-square angular error and covariance of vector-angular error. Lower bounds
on these measures give concrete results on expected performance.

A fast algorithm for direction �nding using an EM vector sensor has been proposed in [284],
[287]. Inspired by the Poynting theorem, it forms the cross-product of the electric �eld vector with
the complex conjugate of the magnetic vector and averages over time. The asymptotic performance
under general conditions is shown to be close to optimum.

A minimum-noise-variance beamformer for interference cancellation employing a single EM
vector sensor has been proposed in [283]. It assumes that the direction and polarization of the
source are known. This enables suppression of uncorrelated interference, even if it comes from
the same direction as the source, based on polarization as well as location di�erences. Analysis of
the signal to interference-plus-noise ratio showed the beamformer to be very e�ective, particularly
when the signal and interference are di�erently polarized.

An array of spatially distributed vector sensors can additionally exploit time delays among the
sensors. In general, arrays of vector sensors can achieve better performance than scalar-sensor
arrays, while occupying less space. Alternatively, they can be spaced further apart than to increase
aperture and hence performance without introducing ambiguities [390], [454]. Some high-resolution
direction �nding algorithms have been developed for EM vector-sensor arrays [230], [173], [171],
[457], [458]. Preliminary results on the application of vector sensors to communication problems
can be found in [471] and [65].

11.3 Acoustic Vector Sensors

Acoustic vector sensors measure the acoustic pressure and all 3 components of the acoustic particle
velocity vector at a given point; standard methods measure only the pressure. The use of acoustic
vector sensors for array processing has been proposed in [285] and [286]. These references introduced
measurement models, derived fast direction estimation algorithms, and presented general Cram�er-
Rao bounds on direction parameters. These developments have coincided with a surge of interest in
particle velocity sensors [27] and improvements in fabrication techniques [97] to make vector-sensor
arrays a practical reality [290].

Since a vector sensor extracts directional information directly from the structure of the velocity
�eld, it can, for example, locate up to two sources in 3D space [175]. By making use of this extra
information, arrays of vector sensors improve source localization accuracy while using smaller array
apertures.

Beamforming and Capon direction estimation procedures with acoustic vector-sensor arrays
have been developed in [160]. It was shown that the extra velocity-�eld information removes all
ambiguities such as grating lobes. This allows the use of simple structures for which fast direction
estimation algorithms exist, e.g. a uniform linear array, to determine both the azimuth and elevation
of a source. It also means that spatially undersampled arrays of vector sensors can be used to
increase aperture and hence performance. A fast estimation algorithm that makes uses of this
property was developed in [456] and another algorithm for arbitrary array shapes appears in [455].
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In [158] the e�ect of sensor placement on the direction estimation performance of an array of
acoustic vector sensors has been considered. Using the Cram�er-Rao bound on the parameters of
a single source, conditions were derived that minimize the lower bound on the asymptotic mean-
square angular error, and that it is isotropic. The increase in estimation accuracy obtained by
vector sensors is greatest for linear or planar arrays (as opposed to 3D), small number of sensors,
and low SNRs. By exploiting velocity and pressure information, any vector-sensor array, and hence
the popular linear array, can be used to unambiguously determine both the azimuth and elevation
of a single source.

Vector sensors have been successfully applied in other areas such as hull-mounted applications,
where they overcome serious problems in detecting low-frequency emitting targets [159]. (At low
frequency the vessel's hull is acoustically exible leading to a very low pressure signal but a strong
velocity signal.)

11.4 Chemical Sensors

Chemical sensors are useful for detecting explosives, drugs, and leakage of hazardous chemicals, and
for monitoring the environment. They are manufactured by companies such as Cyrano Sciences
Inc., Science Applications International Corporation (SAIC) and Jaycor in San Diego, CA. Array
processing techniques using chemical sensors have been proposed in [288], [319], [184]. Compared
with animal chemoreception, these techniques have the advantage that they share information and
can be optimized.

Methods for detecting and localizing vapor-emitting sources were developed in [288]. Based on
the di�usion equation, distributions of vapor concentration in time and space were derived for var-
ious environments. The results were used to develop statistical models of the array measurements.
Maximum likelihood estimates and general likelihood ratio tests were derived to estimate the un-
known source parameters and detect the existence of a source. The performance was analyzed
using Cram�er-Rao bounds and probabilities of detection and false alarm.

Employment of moving sensors was proposed in [319]. A single moving sensor can achieve the
task of multiple stationary sensors by taking measurements at di�erent locations and times. Its
path can be planned in real time to optimize desired performance criterion. The criterion used in
[319] was to reduce the expected location error by moving the sensor in directions opposite to the
gradients of the Cramer-Rao bound.

Monitoring of disposal sites on the ocean oor using chemical sensor arrays was considered in
[184]. Such sites have been suggested as suitable for the relocation of dredge materials from harbors
and shipping channels, where their buildup has a detrimental impact upon economy and military
security. Algorithms for detecting possible release of pollutants near these sites were developed,
and their performance was analyzed. The results were used to optimally design arrays with respect
to the numbers of sensors and time samples, and sensor locations.
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11.5 Superconducting QUantum Interference Devices (SQUIDs)

SQUIDS are the most sensitive detectors of magnetic ux currently available. They �nd broad
application, from measurements of magnetic �elds induced by brain activity to non-destructive
evaluation of materials and the location of underground objects and structures. Their most im-
portant commercial use is in magnetoencephalography (MEG). MEG is concerned with mapping
electrical activity in the brain by measuring the induced external magnetic �eld [151]. MEG sensor
arrays measure extracranial magnetic �elds of only a few hundred femtoTesla | a billion times
smaller than the Earth's steady magnetic �eld. Together with electroencephalography (EEG),
which measures electric potentials on the scalp, MEG has emerged as a powerful non-invasive tool
for the localization and tracking of electrical sources in the brain. The solution to this problem is
of great importance in the diagnosis and evaluation of various brain disorders such as epilepsy, and
for furthering understanding of the functioning of the brain.

In [274] the MUSIC algorithm was applied for localizing brain sources modeled as current
dipoles. Maximum likelihood techniques have been developed in [93] to account for unknown
spatially correlated noise, predominantly due to sporadic background activity in neurons. The
optimization of MEG sensor arrays to minimize the mean-square error of dipole location estimates
has been proposed in [176]

SQUID's have opened other new applications of signal processing, such as detecting the wake
of a ship using an airborne system [282].

In conclusion, it is expected that the use of novel sensors will continue to be a source of new
applications and further developments in signal processing.

A WWW link to the author of the above section:

http://www.eecs.uic.edu/~nehorai/

12 Sensor Array Signal Processing

A. Lee Swindlehurst
Electrical and Computer Engineering, Brigham Young University
Provo, UT 84602

The processing and manipulation of data received by a spatially distributed array of sensors
has been an active area of research in the signal processing community for well over thirty years.
The long-lasting attention devoted to this area can be traced to the large number of applications
where data is collected in both space and time. Figure 5 depicts a generic scenario in which energy
(possibly acoustic, electromagnetic, seismic, etc) from two sources is received by a sensor array.
There are a number of possible objectives of such a system, the most important being

� Source Localization { determine the azimuth and elevation angles to the sources, possibly the
range to the sources as well if they are located in the near-�eld of the array; information on
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Figure 5: A Generic array signal processing scenario

source velocity can be obtained by measuring frequency shifts, or angle and range rates of
change.

� Source Separation { determine the signal waveforms transmitted by each source; the fact that
the energy from each source arrives from di�erent directions allows these waveforms to be
separated even if they overlap in time and frequency.

� Channel Estimation { determine the space-time propagation e�ects between the sources and
the array; estimate where reections occur or how much the transmitted signal is spread in
time and angle.

Which of the above three objectives is most important depends on the application. In active
radar and sonar, the received waveforms are approximately scaled and delayed versions of a known
signal, so it is the location (and motion) of the sources that is most important. In a communications
system, it is the information-bearing waveform and not the location of the sources that is critical.
For seismic applications, the source signals arise from explosive charges. The received energy is
used to characterize the propagation channel, which in this case provides information about the
structure of the ground.

To be more precise, and to aid the discussion that follows, we introduce some simple mathemat-
ical notation. Referring to Figure 5, in the simplest case the sources and array lie in the same plane,
and the sources are far enough from the array so that the arriving signals have planar wavefronts.
For this case, if the signals are assumed to be \narrowband" and there are a total of d of them,
then the output of array element p is given by

xp(t) =
dX

k=1

ap(�k)sk(t) ; (9)
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where �k represents the direction of arrival (DOA) of the wavefront from source k, and ap(�k) is the
(complex) response of element p to a signal arriving from that direction. In the general case, we
would treat the reection of source 2's signal in Figure 5 as a separate term in the above sum; ie,
we would let s3(t) = s2(t� T ). The outputs of an array of m elements can be stacked in a vector,
as follows:

x(t) =

2
64
x1(t)
...

xm(t)

3
75 =

dX
k=1

a(�k)sk(t) + n(t) ; (10)

where a(�k) = [a1(�k) � � � am(�k)]
T denotes the vector array response, and we have added a term

n(t) to account for unmodeled measurement noise and interference. Using this notation, we can give
concrete examples of the three objectives listed above. For example, in source localization, we would
use samples of the array output, x(t1); � � � ;x(tN ) to estimate the DOAs �1; � � � ; �d of the sources.
Source separation involves extracting samples of one (or more) of the signals, sk(t1); � � � ; sk(tN ),
from the array data. In channel estimation, we may have sk(t) = �ks(t � Tk), in which case we
are interested in the amplitudes �k and delays Tk of the various arrivals (perhaps as well as the
DOAs).

Early research in sensor array signal processing, conducted mainly in the 1960's and 70's, was
based on the observation that, if the array is composed of identical uniformly spaced elements (ie,
a Uniform Linear Array, or ULA for short), then a direct analogy exists with temporal sampling.
The array elements perform a uniform (one-dimensional) spatial sampling of the wave�eld, and
the spacing between elements determines what spatial frequencies can be uniquely represented.
Signals whose wavefronts are nearly parallel to the ULA (� � 0�) have low spatial frequencies;
as j�j ! 90� increases, the spatial frequency of the signal increases, and reaches a maximum at
� = �90�. A spatial version of the Nyquist criterion states that the array response vector a(�) of a
ULA is unique provided that the elements of the array are separated by no more than one-half the
wavelength of the signal. Using this analogy with temporal sampling, it is possible to design spatial
�lters that pass signals with certain spatial frequencies (ie, that arrive from certain directions) and
attenuate others. However, unlike temporal �ltering, it is usually not known a priori what spatial
frequencies are occupied by signals of interest. Thus the emphasis was on data adaptive methods
that estimated the directions to the desired user(s) prior to computing the appropriate spatial �lter
coe�cients. Such algorithms are usually referred to as adaptive beamformers, since the desired
spatial frequency response is a narrow beam \steered" towards the source of interest.

The problem of estimating the source directions can also be addressed using this analogy with
temporal sampling. A point source located in the far �eld of a ULA at DOA � produces the
following output at sensor k:

xk(t) = e�2��(k�1) sin �=� + nk(t) ; (11)

where � is the distance between the sensors and � is the wavelength of the signal. Viewed as a
function of k, the vector of samples from the array is seen to be a complex exponential in noise.
With multiple sources, the problem of DOA estimation is seen to be equivalent to the classical
spectral analysis problem of determining the frequencies of a collection of sinusoids in noise. This
connection has led to numerous \crossover" techniques, the most popular of which are those based
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on simple Fourier analysis with windows (Bartlett, Hamming, Chebyshev, etc.) used to control
resolution and sidelobe levels. Unlike their counterparts in temporal frequency estimation, the
resolution of these methods cannot be increased by collecting more data from the array; the ability
to resolve sources spaced closely in � is limited by the aperture of the array, which is typically
�xed. In addition, the �xed aperture can produce large sidelobes in the spatial frequency spectrum
that lead to inconsistent DOA estimates when more than one source is present. To overcome some
of these de�ciencies, techniques based on maximum entropy, autoregressive modeling, and linear
prediction were proposed, with mixed success.

A dramatic shift in emphasis in sensor array signal processing occurred during the 1980's with
the introduction of the so-called subspace based techniques. These methods are based on the ob-
servation that, if the number of sensors is strictly greater than the number of sources, the signal
component of the array data lies in a low-rank subspace. Under certain conditions, this subspace
uniquely identi�es the DOAs of the signals, and can be determined quite accurately using, for
example, a numerically stable singular value decomposition. A large number of parametric es-
timators have been developed based on the subspace idea. These techniques enjoy a number of
advantages over earlier methods, including statistical consistency and very high resolution. Numer-
ous extensions to the simple model outlined above have been considered, including generalizations
to wideband or diversely polarized signals, techniques for handling correlated or perfectly coherent
signals, or arrays whose response a(�) is not precisely known or calibrated.

The main driving force behind research in array signal processing in the 1980's was provided
by military applications, primarily in radar and sonar. In these applications, the sources are
often non-cooperative and little may be known about the signals they generate. In such situations,
discrimination based on only the spatial properties of the received signals is necessary, which in turn
requires that the response of the array be accurately calibrated with respect to �. The sensitivity
of subspace based methods to array calibration errors limited their usefulness to some degree,
particularly in underwater environments where the propagation medium is severely nonuniform.
As military funding has waned, and as the �eld of personal wireless communications has emerged,
interest in applications of array signal processing to communications systems has blossomed in
the past few years. The use of multiple antennas at the base station of a wireless network o�ers
a processing gain that can increase base station range and improve coverage. By exploiting the
spatial selectivity of an antenna array, co-channel interference may be reduced which in turn can
be traded for increased system capacity. In addition, communication channels can be multiplexed
in the spatial dimension just as in the frequency and time dimensions. This is often referred to as
Spatial Division Multiple Access (SDMA).

A distinguishing aspect of using antenna arrays in communications applications is that, due to
the cooperative nature of such systems, signi�cant information about the source signals is available
and can be exploited for spatial processing. For example, it may be known that training sequences
are present in the data, or that the signal is digitally modulated with a known symbol constellation
and pulse shaping �lter, or that the signal has a constant amplitude envelope, etc. Each of these
properties can be used by a system employing multiple antennas to achieve source separation
without the need for explicit array calibration data. Algorithms that use this approach are referred
to as \blind" source separation methods. Such techniques can also be extended to perform blind
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equalization of propagation channels with signi�cant delay spread. A breakthrough in this area
came in the early 1990's, when it was shown that if a pulse amplitude modulated signal is received
by an array of antennas, then the channel can be identi�ed using only second-order cyclostationary
statistics.

Although blind methods can eliminate the need for calibration information, signi�cant perfor-
mance improvement can be achieved if reasonably accurate calibration is available. Techniques that
exploit both the spatial and temporal properties of the received signals are thus of high interest
at the present time. Joint space-time processing in radar and sonar applications is also receiving
added attention, as the speed and throughput of multichannel DSP processors continues to increase.
Further advances in computing power will bring other di�cult array signal processing problems to
the forefront, such as source localization and separation for wideband signals, parameter estimation
for sources with distributed spatial spectra, and matched �eld processing for sonar applications.

There is a large body of published literature in the area of sensor array signal processing
available to the interested reader. The references listed below are good starting points because of
their tutorial nature and their extensive bibliographies:

� general books [161, 311, 185]

� connections with spectral analysis [197, 382]

� adaptive beamforming [77, 440]

� applications to radar systems [104, 163]

� subspace methods [299, 34, 214]

� applications in communications [298, 396, 306]

A WWW link to the author of the above section:

http://www.ee.byu.edu/~swindle

13 SSAP with Computational Acoustic and Electromagnetic Prop-

agation Models

Je�rey Krolik
Duke University
Durham, NC 27708

Statistical signal and array processing of signals carried by propagating waves has traditionally
been developed assuming simple plane-wave acoustic or electromagnetic propagation models. This
is despite the fact that in many problems associated with sonar, radar, wireless communications,
and geophysics, complex coherent multipath propagation between the source and receiver is a dom-
inant feature. The historical focus on signal processing using plane-wave models has been a result
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of: 1) their analytic simplicity, 2) elegant analogies between familiar time-domain �ltering/spectral
analysis and plane-wave beamforming/�eld-directionality mapping, and 3) the fact that accurate
numerical models for complex multipath propagation were too computationally intensive for signal
processing applications. Although di�culties with plane-wave approximations in coherent multi-
path environments are often dealt with by a variety of mitigation techniques, the performance of
such methods is inevitably upper bounded by the case where multipath is absent. The notion
that instead of trying to undo the e�ects of coherent multipath, one could actually exploit them to
achieve dramatically improved performance with the assistance of a numerical propagation model is
the essence what is now known as matched-�eld processing (MFP). The availability of inexpensive,
high power computing to rapidly calculate numerical solutions of the wave equation is what has
really driven the development of MFP methods over the last decade.
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Figure 6: A typical scenario for passive sonar matched-�eld processing.

Matched-�eld processing was �rst developed as a simple generalization of narrowband plane-
wave beamforming wherein conventional array weights based on plane-wave "steering vectors" were
replaced by "replica vectors" derived from the full-�eld solution of the wave equation in a ducted
channel. Historically, these techniques have been applied to the problem of underwater passive
source localization [10]. A common set-up for passive sonar MFP is illustrated in Figure 6, where
acoustic signals in a shallow-water waveguide are received at a vertical array of hydrophones from
a distant source in the presence of interference from surface shipping plus di�use ambient noise.
The objective is to detect and localize the source in range and depth. The medium is described
by a sound-speed pro�le within the water column together with the bathymetry and geoacoustic
properties of the bottom. Because distant signals have numerous interactions with the ocean
boundaries, single-path plane-wave propagation is clearly not an appropriate model here. However,
given su�ciently accurate environmental information, the coherent sum of multipaths between
source and receivers for di�erent hypothesized source locations can be predicted by numerical
solution of the wave equation and its boundary conditions. The most basic MFP approach, known
as Bartlett matched-�eld beamforming, is then to simply correlate each of these replicas with the
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�eld measured at the array. The estimated source location is then the hypothesized range and depth
which maximizes the power at the output of the beamformer. The so-called ambiguity surface of the
Bartlett beamformer is its output power versus hypothesized range and depth. A typical Bartlett
ambiguity surface obtained using actual Mediterranean data from a 48 sensor vertical array is
shown in Figure 7. Note that there is a local maximum of this ambiguity surface near the true
source location at a range of 5900 m and depth of 70 m. This data set was collected by the NATO
SACLANT Centre [139] and is currently available to the public on the IEEE SP data base web-site
at Rice University (http://spib.rice.edu).
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Figure 7: A Bartlett matched-�eld ambiguity surface for SACLANT Mediterranean Data.

Two major di�culties facing matched-�eld processors are: 1) high sidelobe levels, as seen in Fig-
ure 7, which result in ambiguous source location estimates, and 2) the sensitivity of these methods to
errors in the assumed environmental conditions. In order to suppress ambiguous sidelobes, several
variations of minimum variance (MV) adaptive beamforming have been proposed [78],[360],[215].
The basic MV matched-�eld beamformer selects weights for each hypothesized source location
which minimize output power subject to the constraint of unity gain for signals emanating from
the desired range-depth point under the assumed environmental model. MV matched-�eld beam-
formers generally do provide lower sidelobe levels than the Bartlett processor but often this comes
at the price of even greater sensitivity to mismatch between the assumed and actual environmental
conditions. To achieve matched-�eld localization performance which is robust to environmental
mismatch, a number of approaches have been proposed not only in the form of beamforming meth-
ods but also by jointly estimating the source location and environmental parameters [332],[73].
One robust beamforming approach which has been demonstrated to provide lower sidelobes and
higher probability of correct source localization in the presence of environmental uncertainty is the
minimum variance beamformer with environmental perturbation constraints (MV-EPC) [215],[216].
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Figure 8: A MV-EPC matched-�eld ambiguity surface for SACLANT Mediterranean Data.

Essentially, the MV-EPC method minimizes output power subject to a set of linear constraints de-
signed to maintain array gain for signals emanating from a hypothesized range-depth point but over
an ensemble of perturbed channel models derived from the statistics of uncertain ocean parameters.
A typical MV-EPC ambiguity surface for the Mediterranean SACLANT dataset as shown in Figure
8. Observe that the sidelobe levels are substantially lower than those of the Bartlett processor in
Figure 7 with an unambiguous peak at a range of 5500 m. and depth of 82 m. which is close to the
true source position. Among parameter estimation approaches to robust matched-�eld processing,
Bayesian methods which involve numerical or Monte Carlo integration over a priori distributions
for the uncertain environmental parameters have been developed in [332] and global optimization
methods for jointly estimating the source and environmental parameters are proposed in [139],[216].
In addition, it is worth noting that wideband matched-�eld processing, usually achieved by inco-
herently averaging ambiguity surfaces across frequency often signi�cantly increases robustness to
mismatch. Wideband averaging increases robustness to mismatch under conditions where pertur-
bations of the environment cause only a frequency-independent shift in the source location peak,
while simultaneously decorrelating the sidelobe structure across the receiver band. Although an
exhaustive literature now exists on matched-�eld processing for underwater acoustics, there are still
several important open problems. These include: 1) reducing the threshold signal-to-noise ratio
required to detect submerged targets, 2) achieving computationally-e�cient MFP methods with
large multi-dimensional arrays, and 3) handling more dynamic targets which seriously limit avail-
able integration times. Those interested in pursuing these problems can �nd much of the necessary
software and data at NJIT's Ocean Acoustics Library web-site (http://oalib.njit.edu).

Beyond underwater acoustic applications, matched-�eld techniques are also currently being
explored for problems involving multipath electromagnetic propagation. Although this work is still
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Figure 9: Log-amplitude Delay (a.k.a. Slant Range) versus Doppler frequency surfaces for multiple
radar dwells.

in its early stages, electromagnetic matched-�eld processing (EM-MFP) has already been proposed
in several applications including: 1) aircraft height �nding using a low-angle microwave radar that
can exploit multipath due to the target's direct-path and specular reection o� the ground [182]; 2)
inversion of tropospheric refractivity parameters which characterize ducted radio-wave propagation
conditions over the sea surface using point-to-point microwave transmissions [138]; and 3) target
localization in high frequency skywave over-the-horizon (OTH) radar [217],[301]. One application
where EM-MFP provides an existing radar with an entirely new capability is that of aircraft altitude
estimation for OTH radar. Over-the-horizon radars use the refractive properties of the ionosphere
for wide-area surveillance of targets at megameter ranges. And although target localization in
latitude and longitude is typically achieved by tracing the paths of rays refracted through the
ionosphere, determination of target altitude has never been reliably achieved. In recent work,
however, a form of EM-MFP has been developed which uses an ionospheric propagation model
to predict the signal in complex delay-Doppler space due to unresolved multipaths from ground
reections local to the aircraft [301]. These predictions are essentially correlated with complex
delay-Doppler data in a maximum likelihood altitude estimation method which uses multiple radar
dwells on the aircraft target as illustrated in Figure 9. The sub-plots in this �gure represent
consecutive delay-Doppler surfaces from an OTH radar. Note that the dominant vertical band in
each sub-plot is due to ground clutter and the peak encircled in each plot is a small twin-engine
aircraft approximately 2500 km away from the radar. Matched-�eld altitude estimation (MFAE)
exploits the fact that the complex fading characteristic of the target peak is highly dependent on
aircraft altitude. In MFAE, a time-evolving log-likelihood function of aircraft altitude is updated
with each radar revisit of the target. An example of this function is shown in Figure 10 for this
real-data example. Observe that the matched-�eld estimate of altitude is remarkably close to its
true height of 5000 ft.
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Figure 10: Time-evolving log-likelihood of aircraft altitude for a small twin-engine plane at an
altitude of 5000 feet and range of 2500 kilometres.

In summary, statistical signal and array processing with computational propagation models per-
mit the exploitation of complex multipath conditions to achieve signi�cantly enhanced performance
over traditional methods. Such approaches involve a tight coupling between the physics of wave
propagation and signal processing. They also rely on the availability of su�ciently accurate esti-
mates of the environmental parameters. Numerous results obtained with real data in very di�erent
settings, however, suggest that "su�ciently accurate" should by no means be interpreted as "per-
fect knowledge" of the environment. Indeed, in some situations, robust signal processing methods
have been developed which facilitate matched-�eld processing with almost "common knowledge"
of the environment. Clearly, the further integration of computational wave equation solutions and
signal processing techniques will pose many challenges and rewards in the future.

A WWW link to the author of the above section:

http://www.ee.duke.edu/people/jk.html

14 Blind separation of sources

Jean-Fran�cois Cardoso
�Ecole Nationale Sup�erieure des T�el�ecommunications (ENST),
46 rue Barrault, 75634 Paris Cedex 13, France
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14.1 Objectives

Source separation. Source separation consists in recovering a set of `source signals' from the
observation of several mixtures of these signals. This problem typically arises when the available
signals are obtained at the output of an array of sensors which temporally and spatially sample
signals emitted at di�erent locations in space. In general, each sensor receives a mixture of all the
source signals: if there are fewer sources than sensors, the received mixture of signals is (in general)
linearly invertible: this is the case of spatial diversity discussed in the following section by L. Tong.

Figure 11 shows an example of separation of electrocardiography (EKG) signals. The left panel
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Figure 11: Output of one out 8 EKG electrodes (left); reconstruction of the mother's EKG contri-
bution (middle) and of the fetus' EKG contribution (right) using all 8 electrodes.

shows the output of one EKG electrode located on the abdomen of a pregnant woman: the fetus
heart beat cannot be easily distinguished. The data set [88] contains the outputs of 7 other sensors
placed on the mothers chest and abdomen. A source separation technique allows the contributions
from the mother (middle) and from the fetus (right panel) to be separated.

Blind source separation. Exploiting an array of sensors to focus on a particular source signal
while rejecting other `interferers' is a standard task in array processing (see the sections by Swindle-
hurst and Krolik in this article). The blind source separation (BSS) problem consists in recovering
all the sources without using prior information about the channels, �.e. about the transfer function
between the sources and the sensors. BSS is an `output-only' technique in the sense that neither
source signals nor training sequences are available: all of the available information is contained in
the observed data themselves. Two seminal papers on this topic are those by Jutten et al. [188]
and Comon [74].

The major strength of the blind approach to source separation stems precisely from the fact
that a precise model of the underlying physical phenomena, e.g., wave generation, propagation,
and transduction, is not required. Thus, for example, BSS can be applied to uncalibrated arrays in
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situations where calibration is di�cut or impossible or when physical modeling is overly complicated
or unreliable.

The basic idea of BSS is that one makes up for the lack of information about the channels
by assuming that the source signals are (statistically) independent. Statistical independence is a
relatively strong assumption but it is plausible in many contexts because it arises from a lack of
physical relationship between the various sources.

The simplest source separation model assumes an n-sensor array receiving signals x1(t); : : : ; xn(t)
from as many sources s1(t); : : : ; sn(t) and an instantaneous and noise-free mixture:

2
64
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...

xn(t)

3
75 =

2
64
a11 � � � an1
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a1n � � � ann

3
75�
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3
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The mixture coe�cients aij can be collected in an n�n `mixing matrix' A. Collecting the n source
signals and the n array outputs into n � 1 column vectors, the BSS model reads more concisely
x(t) = As(t).

If the mixing matrix A were known, source signals could easily be recovered by direct inversion:
s(t) = A�1x(t). Conversely, if the source signals were available, the mixing matrix could be easily
estimated by a simple input-output identi�cation procedure. The challenge of BSS is that of `double
blindness': neither s(t) nor A is available in the model x = As(t).

s - A -

x
B -y = bs

Figure 12: Mixing and separating. Source signals: s; array output: x, estimated sources: y.

Algorithms for the blind separation of sources try to determine a separating matrix B to un-
mix the observation vector into y = Bx (see Figure 12). Ideally, the separating matrix B should
approximate the inverse of the mixing matrix A. The next section outlines some statistical ideas
for accomplishing BSS.

14.2 Principles.

Before listing a few ideas behind BSS algorithms, it is instructive to explain why the simplest idea
|�nding a separating matrix B making the outputs uncorrelated| does not work. The reason
is that decorrelation is a symmetric property: Corr(yi; yj) = 0 also implies that Corr(yj; yi) = 0.
Therefore, there are only as many decorrelation conditions as pairs of sources, namely n(n� 1)=2,
which is about half of the constraints needed to determine the n2 entries of a separating matrix.



Submitted to IEEE SP Magazine, June 1998 55

Thus pairwise correlations (second-order information) are not su�cient to solve the BSS problem:
it is necessary to express statistical independence in a stronger sense.

That decorrelation is not su�cient has an important consequence. Recall that for Gaussian
variables, decorrelation implies independence; it follows that Gaussian sources cannot be blindly
separated because their independence boils down to pairwise decorrelation. Therefore, some non-
Gaussianity is needed to achieve BSS. One may see BSS as the art of exploiting the non-Gaussianity
of the signals and measurements.

Some ideas for deriving source separation algorithms are to adjust B in such a way that:

1. the probability distribution of y is as close as possible to some pre-speci�ed distribution of
independent components, or

2. the outputs y1; : : : ; yn are as independent as possible, or

3. the outputs y1; : : : ; yn are decorrelated and as non-Gaussian as possible or as low-entropic as
possible.

All these objective functions can be derived from the application of the maximum likelihood (ML)
principle [50] under various assumptions. The �rst objective function results from �tting x to the
linear model x = As whereA is unknown and s has a �xed (hypothetical) given distribution of non-
Gaussian independent components; the second objective function reults from �ting to the model
x = As with respect to both the unknown system A and to the distribution of the independent
sources s; the third objective function arsises when one imposes the addition constraint that the
recovered signals should be uncorrelated. This can be understood as follows: summing independent
random variables `tends' to produce a more Gaussian result (think of the Central Limit theorem)
so that driving y away from Gaussianity may be thought of as a way of recovering the original
source signals.

The ML principle gives rise to measures of independence, non Gaussianity and entropy (as
listed above) which are based on information-theoretic quantities. Because they may be di�cult
to manipulate, one often resorts in practice to more tractable approximations, e.g., high-order
correlations (triple, quadruple correlations), high-order cumulants, or pair-wise correlations between
non-linear functions of y1; : : : ; yn.

14.3 Perspectives

Beyond the simple cases described here, blind source separation has been applied to much more
general models such as noisy observations, complex signals, non-square mixtures, and convolutive
mixtures [50]. The latter extension often brings the BSS problem close to the problem of channel
equalization and of system identi�cation (see the sections by Giannkis and Tugnait in this article).

Another interesting extension is to consider the case where the BSS model does not hold. In
this case BSS may be implemented as a data exploration technique for which one is interested in
�nding the linear transformation of a random vector x into y = Bx such that the components of
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y are as independent as possible. BSS is then seen as a device for independent component analysis
(I.C.A.) which can complement principal component analysis (P.C.A.).

WWW links relevant to the above section:

� The author's web page:

http://sig.enst.fr/~cardoso/stuff.html

� WWW links to independent components analysis (ICA)

{ ICA research group at the Helsinki University of Technology:

http://www.cis.hut.fi/projects/ica/

{ Laboratory for Open Information Systems at the Riken Institute:

http://www.bip.riken.go.jp/open/Welcome.html

{ Computational Neurobiology Lab at the Salk Institute:

http://www.cnl.salk.edu/~tewon/ica_cnl.html

� Misc WWW links of relevance

{ http://sound.media.mit.edu/~paris/ica.html

{ http://www.bmc.riken.go.jp/sensor/Allan/ICA/

15 Source separation and diversity for communications

Lang Tong
School of Electrical Engineering
Cornell University
Ithaca, NY 14853

15.1 Source separation and diversity

Separating multiple sources is a fundamental signal processing problem that arises from many
applications. An easily understood scenario is the so-called \cocktail party" problem where the
objective is to separate one voice from others in the room. To a large degree, humans perform this
task remarkablly well. We are able to distinguish di�erent voices, and may even follow the conver-
sation. The cocktail party problem is germane to many similar applications in biomedical signal
processing, geophysical signal processing and, most notably, in communication system designs.

In wireless communications, for example, when the signal is transmitted over a non-ideal chan-
nel, sophisticated signal processing is often required at the receiver to counter noise and interference
from various sources. One of the major channel impairments is multipath fading. The problem here
is analogous to calling someone a hundred yards away in the Grand Canyon. Your friend will hear
your voice and its echoes. He can separate your voice and its echoes unless, of course, you speak too
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fast. It will be much harder for him if someone else tries to talk to him at the same time. But this
is exactly the problem in today's digital cellular system where transmitted signal is interfered not
only by its echoes (multipath interference) but also by other users in the neighborhood (cochannel
interference). We face the source separation problem similar to that in a cocktail party.

What makes it possible for us to separate and track di�erent voices in a cocktail party? What
features do we use? Can this process be made automatic? These questions touch upon some of the
fundamental issues in source separation. Perhaps it is easier to see what makes it more di�cult
to separate sources. Can you still separate di�erent voices with only one ear? Perhaps, but it is
more di�cult. What if you close your eyes? The loss of visual signals will de�nitely make it much
harder. As it turns out, the key to source separation is diversity. To separate di�erent sources,
it is important to have di�erent receptions of the signal. This can be done in di�erent ways by
exploiting the characteristics of the signal and its propagation medium.

� Spatial Diversity. Using sensor arrays is an e�ective way to gain spatial diversity. You can see
the antenna array on the cell-phone tower along major highways. (Imagine how much more
you could hear at the cocktail party if you had an array of ears!) Recently, the so-called smart
antenna technology has attracted considerable interest from both academia and industry. See
a recent survey by Paulraj and Papadias [306].

� Spectral Diversity. Spectral diversity can be obtained in many ways. To counter frequency
selective fading caused by echoes, the transmission band can be divided into a number of
smaller frequency bands through which modulated signals of di�erent power are transmitted.
This kind of multicarrier transmission is the basis for the OFDM (orthogonal frequency di-
vision multiplexing) system for Digital Audio Broadcasting (DAB). Frequency-hopping (FH)
spread spectrum [374] is another way of achieving spectral diversity. Invented in the 1940's,
this technique avoids hostile interference by changing the transmission band in a way known
to the receiver but unpredictable to the jammer.

� Temporal Diversity. Diversity can also be achieved in the time-domain by transmitting mul-
tiple copies of the signal at di�erent times or, in a more intelligent way, by transmitting
the signal in some special waveform known to the receiver. A direct-sequence spread spec-
trum signal gains diversity by modulating the source with a special code sequence. When
the received signal is sampled at a rate higher than the bit rate, we e�ectively obtain the
transmitted symbol at a di�erent time, which is analogous to spatial diversity where the
transmitted signal is obtained at di�erent locations. Di�erent users can be separated if they
use di�erent codes. The exploitation of temporal correlation of the signal waveform provides
a crucial property used in many signal processing algorithms. See again [306] for discussions
about space-time processing.

15.2 Statistical Signal Processing for Source Separation

Estimating signals under various diversity receptions is currently an active research area. A general
model for source separation is shown in Figure 13 where sources fsi(t)g are propagated through
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a channel H, contaminated by noise fsi(t)g, and received with diversity as fxi(t)g. The goal of
source separation is to estimate one or all of the source signals from fxi(t)g.

Classical approaches to source separation are based on either the knowledge of the channel or
the ability of having access to the channel input so that the channel (or its inverse) can be estimated
by sending \training" signals. Depending on the application, di�erent criteria (such as minimizing
the detection error probability or minimizing the mean-square error) can be used to design the
signal estimator.

In recent years, there has been considerable interest in the so-called blind source separation
problem. Here, neither the channel is known a priori, nor is it possible to have access to the
channel input so that training can be made (recall again the cocktail party problem). The merit
of blind signal separation is twofold. First, there are cases when channel estimation by training
is very di�cult. Second, the transmission of training inevitablely reduces the transmission rate of
information. Such reduction can be signi�cant when training has to be performed repeatedly.

The key to blind signal separation is to exploit qualitative information about the structure of
the channel and characteristics of the input sources. For example, source signals in communications
often can only have a �nite number of alphabets, which enable the separation of multiple sources.
The statistical independency among sources is another condition that leads to a number of e�ective
source separation algorithms [50], among them is the widely applied constant modulus algorithm
(CMA) [143, 416]. In a special issue of IEEE Proceedings [242] to appear later this year, tutorials
of blind source separation techniques and their applications are presented. For related topics on
this growing �eld of research, readers are also referred to a special issue (edited by G. Giannakis
and G. Xu) on signal processing for advanced communication [127] and the recent book by Poor
and Wornell [313].
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Figure 13: Source separation with receiver diversity.



Submitted to IEEE SP Magazine, June 1998 59

References

[1] A.Arneodo, Y. D. Carafa, B. Audit, E. Bacry, J. Muzy, and C. Thermes, \What can we learn
with wavelets about dna sequences," Physica A, vol. 249, pp. 439{448, 1998.

[2] P. Abry and P. Flandrin, \Point processes, LRD and wavelets," in Wavelets in biology and
medicine, A. Aldroubi and M. Unser, editors, CRC Press, 1996.

[3] B. G. Agee, S. V. Schell, and W. A. Gardner, \Spectral self-coherence restoral: a new ap-
proach to blind adaptive signal extraction using antenna arrays," Proceedings of the IEEE,
vol. 78, pp. 753{767, 1990.

[4] M. Amin, \Time-frequency spectrum analysis and estimation for nonstationary random pro-
cesses," in Time-Frequency Signal Analysis:Methods and Applications, B. Boashash, editor,
pp. 208{232, Wiley Halsted Press, Australia, 1992.

[5] M. Amin, \Minimum variance time-frequency distribution kernels for signal in additive noise,"
IEEE Transactions on Signal Processing, vol. 44, pp. 2352{2356, 1996.

[6] D. Andrews and A. Herzberg, Data. A collection of problems from many �elds for the student
and research worker, Springer-Verlag, 1985.

[7] C. Andrieu, A. Doucet, and P. Duvaut, \Joint bayesian detection and estimation of sinusoids
embedded in noise," in ICASSP, pp. 2245{2248, 1998.

[8] C. Andrieu, A. Doucet, W. J. Fitzgerald, and S. J. Godsill, \An introduction to the theory
and applications of simulation based computational methods in signal processing," Technical
Report CUED/F-INFENG/TR. 324, University of Cambridge, UK, 1998.

[9] J. Bae and I. Song, \Rank-based detection of weak random signals in a multiplicative noise
model," Signal Processing, vol. 63, pp. 121{131, 1997.

[10] A. Baggeroer, W. Kuperman, , and P. N. Mikhalevsky, \An overview of matched-�eld methods
in ocean acoustics," IEEE Journal of Oceanic Engineering, vol. 18, no. 4, pp. 401{424, 1993.

[11] J. Q. Bao and L. Tong, \Applications of blind equalization in wireless atm networks," in
Proc. ICASSP'98, 1998.

[12] R. Baraniuk and D. Jones, \A signal dependent time-frequency representation: Optimal
kernel design," IEEE Transactions on Signal Processing, vol. 41, pp. 1589{1602, 1993.

[13] S. Barbarossa and A. Farina, \Space-time-frequency processing of synthetic aperture radar
signals," IEEE Transactions on Aerospace Electr. Syst., vol. 30, pp. 341{358, 1994.

[14] S. Barbarossa, A. Scaglione, A. Baiocchi, and G. Colletti, \Modeling network tra�c data
by doubly stochastic point processes with self-similar intensity process and fractal renewal
point process," in Proc. Thirty-First Asilomar Conf on Signals, Systems and Computers, pp.
1112{16, Monterey,CA, Nov 1997.



Submitted to IEEE SP Magazine, June 1998 60

[15] G. Barnet, R. Kohn, , and S. Sheather, \Bayesian estimation of an autoregressive model using
markov chain monte carlo," Journal of Econometrics, vol. 74, pp. 237{254, 1996.

[16] P. Barone and R. Ragona, \Bayesian estimation of parameters of a damped sinusoidal model
by a markov chain monte carlo method," IEEE Transactions on Signal Processing, vol. 45,
pp. 1806{1814, 1997.

[17] D. L. Bartholomew and J. A. Tague, \Quadratic power spectrum estimation with orthogonal
frequency division multiple windows," IEEE Trans. SP, vol. 43, pp. 1279{1282, 1995.

[18] A. Bartov and H. Messer, \Lower bound on the achievable DSP performance for localizing
step-like continuous signals in noise," IEEE Transactions on Signal Processing, vol. SP-46, ,
1988.

[19] M. Basseville, M. Benveniste, A. Chou, K. Golden, R. Nikoukhah, and A. S. Willsky, \Mod-
eling and estimation of multiresolution stochastic processes," IEEE Trans. on IT, vol. IT-38,
pp. 529{532, Mar. 1992.

[20] B. Baygun and A. O. Hero, \Optimal simultaneous detection and estimation under a false
alarm constraint," IEEE Trans. on Inform. Theory, vol. 41, no. 3, pp. 688{703, 1995.

[21] B. Baygun and A. O. Hero, \An iterative solution to the min-max simultaneous detection
and estimation problem," in Proc. of the IEEE Workshop on Statistical Signal and Array
Processing, pp. 8{11, Corfu, Greece, June 1996.

[22] E. Beadle and P. M. Djuri�c, \Parameter estimation for non-gaussian autoregressive pro-
cesses," in ICASSP, pp. 3557{3560, 1997.

[23] A. Belouchrani and M. Amin, \Blind source separation based on time-frequency signal rep-
resentations," IEEE Transactions on Signal Processing, p. Submitted.

[24] S. Benedetto, E. Biglieri, and V. Castellani, Digital Transmission Theory, Prentice-Hall Inc.,
New Jersey, 1987.

[25] S. E. Bensley and B. Aazhang, \Subspace based channel estimation for cdma communication
systems," IEEE Trans. on Communications, pp. 1009{1020, August 1996.

[26] A. Benveniste, M. Goursat, and G. Ruget, \Blind equalizers," IEEE Trans. on Communica-
tions, pp. 871{882, August 1982.

[27] M. J. Berliner and J. F. L. (Eds.), Acoustic Particle Velocity Sensors: Design, Performance
and Applications, AIP Press, Woodbury, NY, 1996.

[28] J. M. Bernardo and A. F. M. Smith, Bayesian Theory, John Wiley, New York, 1994.

[29] O. Besson and P. Stoica, \Sinusoidal signals with random amplitudes: least-squares estimators
and their statistical analysis," IEEE Trans. Sig. Proc, vol. 43, no. 11, pp. 2733{44, Nov 1995.



Submitted to IEEE SP Magazine, June 1998 61

[30] T. G. Birdsall and J. O. Gobien, \Su�cient statistics and reproducing densities in simul-
taneous sequential detection and estimation," IEEE Trans. on Inform. Theory, vol. 19, pp.
760{768, 1973.

[31] R. Blum, \Asymptotically robust detection for known signals in contaminated multiplicative
noise," Signal Processing, vol. 38, pp. 197{210, 1994.

[32] B. Boashash, \Time-frequency signal analysis," in Advances in Spectrum Analysis and Array
Processing, S. Haykin, editor, pp. 418{517, Prentice-Hall, 1990.

[33] B. Boashash and P. O'Shea, \Polynomial wigner-ville distributions and their relationship to
time-varying higher order spectra," IEEE Transactions on Signal Processing, vol. 42, , 1995.

[34] N. Bose and C. Rao, editors, Handbook of Statistics, Volume 10, Signal Processing and its
Applications, Elsevier Science Publishers, Amsterdam, 1993.

[35] S. Bose and A. O. Steinhardt, \Adaptive array detection of uncertain rank one waveforms,"
Signal Processing, vol. 44, no. 11, pp. 2801{2809, Nov. 1996.

[36] S. Bose and A. O. Steinhardt, \A maximal invariant framework for adaptive detection with
structured and unstructured covariance matrices," Signal Processing, vol. 43, no. 9, pp. 2164{
2175, Sept. 1995.

[37] G. F. Boudreaux and T. Parks, \Time-varying �ltering and signal estimation using wigner
distribution synthesis techniques," IEEE Transactions on Acoustics, Speech, and Signal Pro-
cessing, vol. 34, pp. 442{451, 1986.

[38] C. Bouman and K. Sauer, \Fast numerical methods for emission and transmission tomo-
graphic reconstruction," in Proc. Conf. on Inform. Sciences and Systems, Johns Hopkins,
1993.

[39] M. Bouvet and S. C. Schwartz, \Comparison of adaptive and robust receivers for signal de-
tection in ambient underwater noise," IEEE Trans. Acoustics, Speech, and Signal Processing,
vol. ASSP-37, no. 5, pp. 621{626, 1989.

[40] A. Bovik, \On detectig edges in speckle imagery," IEEE Trans ASSP, vol. 36, no. 10, pp.
1618{27, Oct 1988.

[41] G. E. P. Box and G. C. Tiao, Bayesian Inference, John Wiley, New York, 1973.

[42] D. R. Brillinger, Time Series: Data Analysis and Theory, Springer-Verlag, New York, 1981.

[43] D. Brillinger, \An introduction to polyspectra," Annals Math. Statistics, vol. 36, pp. 1351{
1374, 1965.

[44] D. Brillinger, \Comparative aspects of the study of ordinary time series and point processes,"
Developments in Statistics, vol. 1, pp. 33{133, 1978.

[45] P. L. Brockett, M. Hinich, and G. R. Wilson, \Nonlinear and non-Gaussian ocean noise," J.
Acoustical Society of America, vol. 82, pp. 1386{1394, 1987.



Submitted to IEEE SP Magazine, June 1998 62

[46] T. P. Bronez, \Spectral estimation of irregularly sampled multidimensional processes by gen-
eralized prolate spheroidal sequences," IEEE Trans. SP, vol. 36, pp. 862{873, 1988.

[47] T. P. Bronez, \On the performance advantage of multitaper spectral analysis," IEEE Trans.
SP, vol. 40, pp. 2941{2946, 1992.

[48] K. Burgess and B. D. Van Veen, \Subspace-based adaptive generalized likelihood ratio de-
tection," IEEE Transactions on Signal Processing, vol. 44, no. 4, pp. 912{927, l996.

[49] S. Cambanis and C. Houdr�e, \On the continuous wavelet transform of second order random
processes," IEEE Trans. on IT, vol. 41, no. 3, pp. 628{633, May 1995.

[50] J.-F. Cardoso, \Blind signal separation: statistical principles," Proc. of the IEEE. Special
issue on blind identi�cation and estimation, 1998. To appear.

[51] J.-F. Cardoso, M. Lavielle, and E. Moulines, \Un algorithme d'identi�cation par maximum de
vraisemblance pour des donn�ees incompletes," Comptes Rendus de l'Academie des Sciences,
Series I, vol. 320, no. 3, pp. 363{368, 1995.

[52] B. P. Carlin, N. G. Polson, and D. S. Sto�er, \A monte carlo approach to nonnormal and
nonlinear state-space modeling," Journal of the American Statistical Association, vol. 87, pp.
493{500, 1992.

[53] C. K. Carter and R. Kohn, \Semiparametric bayesian inference for time series with mixed
spectra," Journal of the Royal Statistical Society B, vol. 59, pp. 255{268, 1997.

[54] G. Carter, editor, Special Issue on Time Delay Estimation, volume ASSP-29, IEEE Transac-
tions on Acoustics, Speech, and Signal Processing, 1981.

[55] G. Carter, editor, Coherence and Time Delay Estimation{An Applied Tutorial for Research,
Development, Test, and Evaluation Engineers, IEEE-Press, Piscataway, NJ, 1993.

[56] E. D. Carvalho and D. T. M. Slock, \Cramer-rao bounds for semi-blind and training sequence
based channel estimation," in Proc. 1st IEEE Signal Proc. Work. on Wireless Comm., pp.
129{132, 1997.

[57] J. Y. Chen and I. S. Reed, \A detection algorithm for optical targets in clutter," IEEE Trans.
on Aerosp. Electron. and Systems, vol. AES-23, no. 1, pp. 46{59, 1987.

[58] R. Chen and T.-H. Li, \Blind restoration of linearly degraded discrete signals by gibbs sam-
pling," IEEE Transactions on Signal Processing, vol. 43, pp. 2410{2413, 1995.

[59] J. Cheung and L. Kurz, \A generlized M-interval partition detcetoir with applications to
signal detection in impulsive noise," IEEE Transactions on Acoustics, Speech, and Signal
Processing, vol. 41, no. 1, pp. 213{221, 1993.

[60] A. Chevreuil and P. Loubaton, \Blind second-order identi�cation of �r channels: Forced
cyclo-stationarity and structured subspace method," IEEE Signal Proc. Letters, vol. 4, no. 7,
pp. 204{206, July 1997.



Submitted to IEEE SP Magazine, June 1998 63

[61] C.-M. Cho and P. Djuric, \Bayesian detection and estimation of cisoids in colored noise,"
Signal Processing, vol. 43, no. 12, pp. 2943{2952, 1995.

[62] H. Choi and W. Williams, \Improved time-frequency representation of multicomponent sig-
nals using exponential kernels," IEEE Transactions on Acoustics, Speech, and Signal Pro-
cessing, vol. 37, pp. 862{871, 1989.

[63] S. Chretien and A. Hero, \Acceleration of the EM algorithm via proximal point iterations,"
in Proc. of IEEE Symposium on Information Theory, MIT, Cambridge, August 1998.

[64] S. Chretien and A. Hero, \Generalized proximal point algorithms and bundle implemen-
tations," Technical Report CSPL-314, Comm. and Sig. Proc. Lab. (CSPL), Dept. EECS,
University of Michigan, Ann Arbor, Mar. 1998.

[65] P.-H. Chua, C.-M. S. See, and A. Nehorai, \Vector-sensor array processing for estimating
angles and times of arrival of multipath communication signals," in Proc. IEEE Intl Conf.
on Acoust., Speech, and Sig. Proc. (ICASSP98), pp. 3325{3328, Seattle, WA, May 1998.

[66] J. M. Cio�, G. P. Dudevoir, M. V. Eyuboglu, and G. D. Forney, \Mmse decision feedback
equalization and coding { parts i and ii," IEEE Trans. on Communications, vol. 43, no. 10,
pp. 2582{2604, Oct. 1995.

[67] T. Claasen and W. Mecklenbrauker, \The wigner-distribution - a tool for time-frequency
signal analysis- parts i: Continuous-time signals, - part ii: Discrete time signals, - part iii:
Relations with other time-frequency signal transformations," Philips J. Research, vol. 35, ,
1980.

[68] D. Cochran, H. Gish, and D. Sinno, \A geometric approach to multiple-channel signal detec-
tion," IEEE Transactions on Signal Processing, vol. 43, no. 9, pp. 2049{2057, l995.

[69] L. Cohen, \Generalized phase space distribution functions," Journal of Math. Physics., vol.
7, pp. 781{786, 1966.

[70] L. Cohen, \Time-frequency distributions - a review," Proceedings of the IEEE, vol. 77, pp.
941{981, 1989.

[71] L. Cohen, Time-Frequency Analysis, Prentice-Hall, New Jersey, 1995.

[72] R. R. Coifman and M. V. Wickerhauser, \Entropy-based algorithms for best basis selection,"
IEEE Trans. on IT, vol. IT-38, pp. 713{718, Mar. 1992.

[73] M. Collins and W. Kuperman, \Focalization: Environmental focusing and source localiza-
tion," Journal of the Acoustical Society of America, vol. 90, no. 3, pp. 1410{1422, 1991.

[74] P. Comon, \Independent component analysis, a new concept ?," Signal Processing, Elsevier,
vol. 36, no. 3, pp. 287{314, 1994.

[75] P. Comon and J. F. Cardoso, \Eigenvalue decomposition of a tensor with applications," in
Proc. SPIE Conf. on Advanced Signal Processing Algorithms, Architectures and Implementa-
tions, pp. 361{372, San Diego, CA, July 1990.



Submitted to IEEE SP Magazine, June 1998 64

[76] P. Comon and B. Mourrain, \Decomposition of quantics in powers of linear forms," Signal
Processing, vol. 53, no. 2-3, pp. 93{108, Sep 1996.

[77] R. T. Compton, Adaptive Antennas { Concepts and Performance, Prentice Hall, Inc., Engle-
wood Cli�s, NJ, 1988.

[78] H. Cox, R. Zeskind, and M. Myers, \A subarray approach to matched-�eld processing,"
Journal of the Acoustical Society of America, vol. 85, no. 3, pp. 1158{1166, 1990.

[79] M. S. Crouse, R. D. Nowak, and R. G. Baraniuk, \Signal estimation using wavelet-markov
models," in Proc. IEEE Int. Conf. Acoust., Speech, Signal Processing | ICASSP '97, Munich,
Germany, 1997.

[80] Z. Cvetkovi�c, \Short-time fourier analysis - a novel window design procedure," in Proc.
ICASSP, volume 3, pp. 1773{1776, 1998.

[81] D. Dahlhaus, A. Jarosch, B. Fleury, and R. Heddergott, \Joint demodulation in ds/cdma sys-
tems exploiting the space and time diversity of the mobile radio channel," in Proc. IEEE Int.
Symp. on Personal Indoor and Mobile radio Communications, pp. 47{52, Helsinki, Finland,
1997.

[82] A. Dandawate and G. Giannakis, \Statistical tests for presence of cyclostationarity," IEEE
Transactions on Signal Processing, vol. 42, no. 9, pp. 2355{2369, 1994.

[83] M. Daniel and A. Willsky, \\a multiresolution methodology for signal-level fusion and data
assimilation with applications to remote sensing"," IEEE Proceedings, vol. 85, no. 1, , 1997.

[84] K. Daoudi, \Multifractal representation of turbulence signals: A wavelet based approach,"
in INRIA International Wavelets Conference, INRIA, editor, Tanger, Morocco, April 1998.

[85] I. Daubechies, \The wavelet transform, time-frequency localization, and signal analysis,"
IEEE Trans Inf. Theor., vol. 36, pp. 961{1005, 1990.

[86] I. Daubechies, Ten Lectures on Wavelets, CBMS-NSF, SIAM, Philadelphia, 1992.

[87] R. Davis and S. Resnick, \Limit theory for bilinear processes in heavy-tailed noise," Annals
of Probability, vol. 6, no. 4, pp. 1191{1210, 1996.

[88] De Moor B.L.R. (ed.). DAISY: Database for the Identi�cation of Systems.
http://www.esat.kuleuven.ac.be/sista/daisy, October 1997.

[89] A. P. Dempster, N. M. Laird, and D. B. Rubin, \Maximum likelihood from incomplete data
via the EM algorithm," J. Royal Statistical Society, Ser. B, vol. 39, no. 1, pp. 1{38, 1977.

[90] Z. Ding, \Adaptive �lters for blind equalization," in Digital Signal Processing Handbook,
V. K. Madisetti and D. Williams, editors, chapter 24, CRC Press, 1998.

[91] P. M. Djuri�c, S. J. Godsill, W. J. Fitzgerald, and P. J. W. Rayner, \Detection and estimation
of signals by reversible jump markov chain monte carlo computations," in ICASSP, pp. 2269{
2272, 1998.



Submitted to IEEE SP Magazine, June 1998 65

[92] P. M. Djuri�c and H.-T. Li, \Bayesian spectrum estimation," Signal Processing Letters, vol.
2, pp. 213{215, 1995.

[93] A. Dogand�zi�c and A. Nehorai, \Estimating evoked dipole responses by MEG/EEG for un-
known noise covariance," in Proc. 19th Ann. Intl Conf. IEEE Eng. Med. Biol. Soc., pp.
1224{1227, Chicago, IL, October 1997.

[94] D. L. Donoho and I. M. Johnstone, \Ideal spatial adaptation by wavelet shrinkage," preprint
Dept. Stat., Stanford Univ., Jun. 1992.

[95] D. Donoho and I. Johnstone, \Adapting to unknown smoothness via wavelet shrinkage,"
JASA, vol. 90, pp. 1200{1223, Dec. 1995.

[96] A. Doucet and P. Duvaut, \Bayesian estimation of state space models applied to deconvolution
of bernoulli-gaussian processes," Signal Processing, vol. 57, pp. 147{161, 1997.

[97] G. D'Spain and W. S. Hodgkiss, \The simultaneous measurement of infrasonic acoustic par-
ticle velocity and acoustic pressure in the ocean by freely drifting swallow oats," IEEE J.
Oceanic Eng., vol. 16, pp. 195{207, April 1991.

[98] A. Duel-Hallen, \Decorrelating decision-feedback multiuser detector for synchronous cdma
channel," IEEE Trans. on Communications, pp. 285{290, February 1993.

[99] R. F. Dwyer, \Fourth-order spectra of Gaussian amplitude-modulated sinusoids," J. Acous-
tical Society of America, vol. 90, no. 2, pp. 918{926, August 1991.

[100] M. H. El Ayadi, \Generalized likelihood adaptive detection of signals deformed by unknown
linear �ltering in noise with slowly uctuating power," IEEE Trans. Acoustics, Speech, and
Signal Processing, vol. ASSP-33, no. 2, pp. 401{405, 1985.

[101] M. H. El Ayadi, \NAR estimators of spatial covariance matrices for adaptive array detection,"
IEEE Transactions on Signal Processing, vol. 39, no. 7, pp. 1682{1690, 1991.

[102] M. H. El Ayadi and B. Picinbono, \NAR AGC adaptive detection of nonoverlapping signals
in noise with uctuating power," IEEE Trans. Acoustics, Speech, and Signal Processing, vol.
ASSP-29, no. 5, pp. 952{962, 1981.

[103] European Telecommunications Standards Institute, editor, European Telecommunications
Standard, Radio broadcast systems: Digital audio broadcasting (DAB) to mobile, portable,
and �xed receivers (ETS 300 401), 1994.

[104] A. Farina, Antenna Based Signal Processing Techniques for Radar Systems, Artech House,
Norwood, MA, 1992.

[105] K. Fazel and G. Fettweis, Multi-Carrier Spread Spectrum, Kluwer Academic Publ., 1997.

[106] M. Feder and E. Weinstein, \Optimal multiple source location estimation via the EM algo-
rithm," in Proc. IEEE Int. Conf. Acoust., Speech, and Sig. Proc., pp. 1762{1765, 1985.



Submitted to IEEE SP Magazine, June 1998 66

[107] M. Feder and E. Weinstein, \Parameter estimation of superimposed signals using the EM
algorithm," IEEE Trans. Acoust., Speech, and Sig. Proc., vol. 36, no. 4, pp. 477{489, April
1988.

[108] W. Feller, An Introduction to Probability Theory and Its Applications - Volume II, John Wiley
and Sons, second edition edition, 1971.

[109] T. S. Ferguson, Mathematical Statistics - A Decision Theoretic Approach, Academic Press,
Orlando FL, 1967.

[110] J. A. Fessler and A. O. Hero, \Space-alternating generalized EM algorithm," IEEE Trans.
on Signal Processing, vol. SP-42, no. 10, pp. 2664{2677, Oct. 1994.

[111] J. A. Fessler and A. O. Hero, \Penalized maximum-likelihood image reconstruction using
space alternating generalized EM algorithm," IEEE Trans. on Image Processing, vol. IP-4,
no. 10, pp. 1417{1429, Oct. 1995.

[112] P. Fieguth, W. Karl, A. Willsky, and C. Wunsch, \Multiresolution optimal interpolation and
statistical ananlysis of topex/poseidon satellite altimetry," IEEE Trans. on Geoscience and
Remote Sensing, vol. 33, no. 2, pp. 280{292, March 1995.

[113] P. Flandrin, \A time-frequency formulation of optimum detectors," IEEE Transactions on
Acoustics, Speech, and Signal Processing, vol. 36, pp. 1377{1384, 1988.

[114] P. Flandrin, \On the spectrum of fractional Brownian motion," IEEE Trans. on IT, vol.
IT-35, pp. 197{199, Jan. 1989.

[115] B. Fleury, D. Dahlhaus, R. Heddergott, and M. Tschudin, \Wideband angle of arrival esti-
mation using the SAGE algorithm," in Proc. of IEEE Int. Symp. on Spread Spectrum Tech.
and Apps, pp. 79{85, Mainz, DL, 1996.

[116] I. K. Fodor and P. B. Stark, \Multitaper spectrum estimates," in Proc. SOHO 6 / GONG
98 workshop on helioseismology, 1998. in press.

[117] G. J. Foschini, \Equalization without altering or detect data," AT&T Tech. Journal, pp.
1885{1911, October 1985.

[118] J. Francos and B. Friedlander, \Bounds for estimation of multicomponent signals with random
amplitude and deterministic phase," IEEE Trans Sig Proc, vol. 43, no. 5, pp. 1161{72, May
1995.

[119] A. Fredricksen, D. Middleton, and D. VandeLinde, \Simultaneous signal detection and esti-
mation under multiple hypotheses," IEEE Trans. on Inform. Theory, vol. 18, pp. 607{614,
1972.

[120] D. R. Fuhrmann, \Application of toeplitz covariance estimation to adaptive beamforming and
detection," IEEE Transactions on Signal Processing, vol. 39, no. 10, pp. 2194{2198, 1991.



Submitted to IEEE SP Magazine, June 1998 67

[121] M. V. E. G. D. Forney, Jr., \Combined equalization and coding using precoding," IEEE
Communications Magazine, pp. 25{34, Dec 1991.

[122] W. A. Gardner, editor, Cyclostationarity in Communications and Signal Processing, IEEE
Press, 1994.

[123] A. Gelman, J. B. Carlin, H. S. Stern, and D. B. Rubin, Bayesian Data Analysis, Chapman
and Hall, New York, 1995.

[124] S. Geman and D. Geman, \Stochastic relaxation, gibbs distributions and the bayesian restora-
tion of images," IEEE Transactions on Pattern Analysis, and Machine Intelligence, vol. 6,
pp. 721{741, 1984.

[125] A. A. Gerlach, \Optimum detection performance of passive coherence estimators," IEEE
Trans. Acoustics, Speech, and Signal Processing, vol. ASSP-33, no. 1, pp. 240{247, 1985.

[126] M. Ghogho and A. Nandi, \Locally optimum detectors for deterministic signals in multiplica-
tive noise," in Proc. ICASSP'98, volume IV, pp. 2137{40, Seattle, May 1998.

[127] G. Giannakis and G. Xu, editors, Special Issue on Signal Processing For Advanced Commu-
nications, 1997.

[128] G. B. Giannakis, \Filterbanks for blind channel identi�cation and equalization," IEEE Signal
Processing Letters, vol. 4, pp. 184{187, June 1997.

[129] G. B. Giannakis, \Cyclostationary signal analysis," in Digital Signal Processing Handbook,
V. K. Madisetti and D. Williams, editors, chapter the Statistical Signal Processing Section,
CRC Press, 1998.

[130] G. B. Giannakis and S. Halford, \Blind fractionally-spaced equalization of noisy �r channels:
direct and adaptive solutions," IEEE Transactions on Signal Processing, vol. 45, pp. 2277{
2292, September 1997.

[131] G. B. Giannakis and J. M. Mendel, \Identi�cation of non-minimum phase systems using
higher-order statistics," IEEE Trans. on Acoustics, Speech, and Signal Processing, vol. 37,
pp. 360{377, March 1989.

[132] G. B. Giannakis and E. Serpedin, \Linear multichannel blind equalizers of nonlinear �r
volterra channels," IEEE Transactions on Signal Processing, vol. 45, pp. 67{81, January
1997.

[133] G. B. Giannakis and C. Tepedelenlioglu, \Basis expansion models and diversity techniques
for blind equalization of time-varying channels," Proceedings of the IEEE, September 1998
(to appear).

[134] G. B. Giannakis and M. K. Tsatsanis, \Signal detection and classi�cation using matched
�ltering and higher order statistics," IEEE Transactions on Acoustics, Speech, and Signal
Processing, vol. 38, no. 7, pp. 1284{1296, l990.



Submitted to IEEE SP Magazine, June 1998 68

[135] G. Giannakis, \Polyspectral and cyclostationary approaches for identi�cation of closed-loop
systems," IEEE Trans. Automatic Control, vol. 40, pp. 882{885, 1995.

[136] G. Giannakis and M. Tstatsanis, \Time-domain tests for gaussianity and time-reversibility,"
IEEE Trans. Signal Proc., vol. 42, pp. 3460{3472, 1994.

[137] W. R. Gilks, S. Richardson, and D. J. Spiegelhalter, Markov Chain Monte Carlo in Practice,
Chapman and Hall, New York, 1996.

[138] D. Gingras, P. Gerstoft, , and N. Gerr, \Electromagnetic matched-�eld processing: Basic
concepts and tropospheric simulations," IEEE Transactions on Antennas and Propagation,
vol. 45, pp. 1536{1545, 1997.

[139] D. Gingras and P. Gerstoft, \Inversion for geometric and geoacoustic parameters in shallow
water: Experimental results," Journal of the Acoustical Society of America, vol. 97, no. 6,
pp. 3589{3598, 1995.

[140] F. Gini, \A cumulant-based adaptive technique for coherent radar detection in a mixture of
K-distributed clutter and a Gaussian disturbance," IEEE Transactions on Signal Processing,
vol. 45, no. 6, pp. 1507{1519, l997.

[141] F. Gini and G. B. Giannakis, \Frequency o�set and symbol timing recovery in at fading
channels: A cyclostationary approach," IEEE Transactions on Communications, vol. 46, pp.
400{411, March 1998.

[142] F. Gini and G. B. Giannakis, \Generalized di�erential encoding: A nonlinear signal processing
framework," IEEE Transactions on Signal Processing, vol. 46, , 1998 (to appear).

[143] D. N. Godard, \Self-recovering equalization and carrier tracking in two-dimensional data
communication systems," IEEE Trans. on Communications, pp. 1867{1875, 1980.

[144] S. Godsill, \Bayesian enhancement of speech and audio signals which can be modelled as
arma processes," International Statistical Review, vol. 65, pp. 1{21, 1997.

[145] S. J. Godsill, \Robust modelling of noisy arma signals," in ICASSP, pp. 3797{3800, 1997.

[146] N. J. Gordon, D. J. Salmond, and A. F. M. Smith, \Novel approach to nonlinear/non-gaussian
bayesian state estimation," IEE Proceedings, vol. 140, pp. 107{113, 1993.

[147] A. Gorokhov and P. Loubaton, \Semi-blind second-order identi�cation of convolutive chan-
nels," in Proc. ICASSP'97, vol. V, 1997.

[148] P. J. Green, \Reversible jump markov chain monte carlo computation and bayesian model
determination," Biometrika, vol. 82, pp. 711{732, 1995.

[149] M. Grigoriu, Applied Non-Gaussian Processes, Prentice-Hall, 1995.

[150] D. M. Gruenbacher and D. R. Hummels, \A simple algorithm for generating discrete prolate
spheroidal sequences," IEEE Trans. SP, vol. 42, pp. 3276{3278, 1994.



Submitted to IEEE SP Magazine, June 1998 69

[151] M. H�am�al�ainen, R. Hari, R. Ilmoniemi, J. Knuutila, and
O. Lounasmaa, \Magnetoencephalography|Theory, Instrumentation, and Applications to
Noninvasive Studies of Signal Processing of the Human Brain," Rev. Mod. Phys., vol. 65, pp.
413{497, April 1993.

[152] E. Hannan and M. Deistler, The Statistical Theory of Linear Systems, Wiley, New York, 1988.

[153] M. Hansson and G. Salomonsson, \A multiple window method for estimation of peaked
spectra," IEEE Trans. SP, vol. 45, pp. 778{781, 1997.

[154] H. Harashima and H. Miyakawa, \Matched-transmission technique for channels with inter-
symbol interference," IEEE Trans. on Commun., pp. 774{780, Aug 1972.

[155] W. K. Hastings, \Monte carlo sampling methods using markov chains and their applications,"
Biometrika, vol. 57, pp. 97{109, 1970.

[156] G. Hatke, \Performance analysis of the SuperCART antenna array," Technical Report #AST-
22, MIT Lincoln Laboratory, Lexington, MA, March 1992.

[157] D. Hatzinakos and C. L. Nikias, \Blind equalization using a tricepstrum based algorithm,"
IEEE Trans. on Communications, vol. 39, pp. 669{682, May 1991.

[158] M. Hawkes and A. Nehorai, \E�ects of sensor placement on acoustic vector-sensor array
performance," Submitted to IEEE J. Oceanic Eng.

[159] M. Hawkes and A. Nehorai, \Surface-mounted acoustic vector-sensor array processing," in
Proc. IEEE Intl Conf. on Acoust., Speech, and Sig. Proc. (ICASSP96), pp. 3710{3713, At-
lanta, GA, May 1996.

[160] M. Hawkes and A. Nehorai, \Acoustic vector-sensor beamforming and Capon direction esti-
mation," IEEE Trans. Sig. Proc., vol. 46, , September 1998.

[161] S. Haykin, Array Signal Processing, Prentice-Hall, Englewood Cli�s, NJ., 1984.

[162] S. Haykin, editor, Blind Deconvolution, Prentice-Hall, 1994.

[163] S. Haykin, J. Litva, and T. Shepherd, editors, Radar Array Processing, Springer-Verlag,
Berlin, 1993.

[164] S. Haykin and D. J. Thomson, \Signal detection in a nonstationary environment reformulated
as an adaptive pattern classi�cation problem," Proc. IEEE, vol. 86, pp. in press, 1998.

[165] A. O. Hero and J. A. Fessler, \Convergence in norm for alternating expectation-maximization
(em) type algorithms," Statistica Sinica, vol. 5, no. 1, pp. 41{54, 1995.

[166] M. J. Hinich and C. R. Wilson, \Time delay estimation using the cross bispectrum," IEEE
Transactions on Acoustics, Speech, and Signal Processing, vol. ASSP-40, , 1992.



Submitted to IEEE SP Magazine, June 1998 70

[167] M. J. Hinich and C. R. Wilson, \Detection of non-gaussian signals in non-gaussian noise
using the bispectrum," IEEE Transactions on Acoustics, Speech, and Signal Processing, vol.
38, no. 7, pp. 1126{1131, l990.

[168] M. Hinich, \Testing for gaussianity and linearity of a stationary time series," J. Time Series
Analysis, vol. 3, pp. 169{176, 1982.

[169] L. Hinnov and J. Park, \Multi-windowed spectrum estimates of the ils polar motion," in
The Earth's Rotation and Reference Frames for Geodesy and Geodynamics, A. Babcock and
G. Wilkins, editors, pp. 221{226, Kluwer Academic, Dordrecht, 1988.

[170] F. Hlawatsch and G. Boudreaux-Bartels, \Linear and quadratic time-frequency signal repre-
sentations," IEEE Signal Processing Magazine, vol. 9, pp. 21{68, 1992.

[171] K.-C. Ho, K.-C. Tan, and A. Nehorai, \Estimation of Directions-of-arrival of Completely
Polarized and Incompletely Polarized Signals with Electromagnetic Vector Sensors," in 11th
IFAC Symp. on Syst. Ident., volume 2, pp. 523{528, Kitakyushu City, Japan, July 1997.

[172] K.-C. Ho, K.-C. Tan, and W. Ser, \An investigation on number of signals whose directions-of-
arrival are uniquely determinable with an electromagnetic vector sensor," Signal Processing,
vol. 47, pp. 41{54, November 1995.

[173] K.-C. Ho, K.-C. Tan, and B. Tan, \E�cient method for estimating directions-of-arrival of
partially polarized signals with electromagnetic vector sensors," IEEE Trans. Sig. Proc., vol.
45, pp. 2485{2498, October 1997.

[174] T. Ho, P. Fieguth, and A. Willsky, \Multiresolution stochastic models for e�cient solution
of large-scale space-time estimation problems," in ICASSP'96, volume VI, pp. 3098{4001,
Atlanta, GA, 1996.

[175] B. Hochwald and A. Nehorai, \Identi�ability in array processing models with vector-sensor
applications," IEEE Trans. Sig. Proc., vol. 44, pp. 83{95, January 1996.

[176] B. Hochwald and A. Nehorai, \Magnetoencephalography with diversely-oriented and multi-
component sensors," IEEE Trans. Biomed. Eng., vol. 34, pp. 40{50, January 1997.

[177] M. L. Honig, U. Madhow, and S. Verd�u, \Blind adaptive multiuser detection," IEEE Trans.
on Info. Theory, pp. 944{96, July 1995.

[178] H. Hudson and R. Larkin, \Accelerated image reconstruction using ordered subsets of pro-
jection data," IEEE Transactions on Medical Imaging, vol. 13, no. 12, pp. 601{609, 1994.

[179] S. Ja�ard, \Exposants de H�older en des Points Donn�es et Coe�cients d'Ondelettes," C.R.A.S
Paris, vol. 1, no. 308, pp. 79{81, 1989.

[180] M. Jamshidian and R. I. Jennrich, \Conjugate gradient acceleration of the EM algorithm,"
J. Am. Statist. Assoc., vol. 88, no. 421, pp. 221{228, 1993.



Submitted to IEEE SP Magazine, June 1998 71

[181] A. Janicki and A. Weron, \Can one see �-stable variables and processes?," Statistical Science,
vol. 9, no. 1, pp. 109{126, 1994.

[182] J. Jao, \A matched array beamforming technique for low angle radar tracking in multipath,"
in IEEE National Radar Conference, pp. 171{176, 1994.

[183] J. Jeong and W. Williams, \Kernel design for reduced interference distributions," IEEE
Transactions on Signal Processing, vol. 40, pp. 402{412, 1992.

[184] A. Jeremic and A. Nehorai, \Design of chemical sensor arrays for monitoring disposal sites
on the ocean oor," To appear in IEEE J. Oceanic Eng.

[185] D. Johnson and D. Dudgeon, Array Signal Processing { Concepts and Techniques, Prentice
Hall, Inc., Englewood Cli�s, NJ, 1993.

[186] J. Johnson, D. J. Thomson, E. X. Wu, and S. C. R. Williams, \Multiple-window spectrum
estimation applied to in vivo nmr spectroscopy," J. Mag. Resonance, vol. B 110, pp. 138{149,
1996.

[187] J. O. Jonsson and A. O. Steinhardt, \The total pFA of the multi-window harmonic detector
and its application to real data," IEEE Transactions on Signal Processing, vol. 41, no. 4, pp.
1702{1705, 1993.

[188] C. Jutten and J. Herault, \Blind separation of sources I. An adaptive algorithm based on
neuromimetic architecture," Signal Processing, vol. 24, no. 1, pp. 1{10, July 1991.

[189] M. Kanda, \An electromagnetic near-�eld sensor for simultaneous electric and magnetic-�eld
measurements," IEEE Trans. Electromag. Compat., vol. 26, pp. 102{110, August 1984.

[190] M. Kanda and D. Hill, \A three-loop method for determining the radiation characteristics of
an electrically small source," IEEE Trans. Electromag. Compat., vol. 34, pp. 1{3, February
1992.

[191] M. E. Kappus and F. L. V. III, \Acoustic signature of thunder from seismic records," J.
Geophys. Res., vol. 96, pp. 10,989{11,006, 1991.

[192] T. Kariya and B. K. Sinha, Robustness of Statistical Tests, Academic Press, San Diego, 1989.

[193] T. R. Karl, P. D. Jones, R. W. Knight, O. R. White, W. Mende, J. Beer, and D. J. Thomson,
\Testing for bias in the climate record," Science, vol. 271, pp. 1879{1883, 1996.

[194] S. Kassam and H. Poor, \Robust techniques for signal processing: a survey," Proc IEEE, vol.
73, pp. 433{481, 1985.

[195] S. Kasturia, J. T. Aslanis, and J. M. Cio�, \Vector coding for partial response channels,"
IEEE Trans. on Info. Theory, vol. 36, pp. 741{761, July 1990.

[196] L. Kaufman, \Implementing and accelerating the EM algorithm for positron emission tomog-
raphy," IEEE Trans. on Medical Imaging, vol. MI-6, no. 1, pp. 37{51, 1987.



Submitted to IEEE SP Magazine, June 1998 72

[197] S. Kay, Spectral Estimation: Theory and Application, Prentice Hall, Inc., Englewood Cli�s,
NJ, 1987.

[198] S. Kay, Fundamentals of Statistical Signal Processing, Estimation Theory, PTR Prentice-Hall,
Englewood Cli�s, NJ, 1993.

[199] S. Kay and D. Sengupta, \Recent advances in non-Gaussian autoregressive processes," in
Advances in spectrum analysis and array processing, S. Haykin, editor, volume 1, pp. 141{
210, Prentice-Hall, 1991.

[200] S. M. Kay, \Asymptotically optimal detection in unknown colored noise via autoregressive
modeling," IEEE Trans. Acoustics, Speech, and Signal Processing, vol. ASSP-31, no. 5, pp.
927{933, 1983.

[201] S. M. Kay, \Asymptotically optimal detection in incompletely characterized non-gaussian
noise," IEEE Trans. Acoustics, Speech, and Signal Processing, vol. ASSP-37, no. 4, pp. 627,
1989.

[202] S. M. Kay and D. Sengupta, \Detection in incompletely characterized colored non-gaussian
noise via parametric modeling," IEEE Transactions on Signal Processing, vol. 41, no. 10, pp.
3066{3069, 1993.

[203] S. Kayhan, A. El-Jaroudi, and L. Chaparro, \Evolutionary periodogram for nonstationary
signals," IEEE Transactions on Signal Processing, vol. 42, pp. 527{1536, 1994.

[204] E. J. Kelly, \An adaptive detection algorithm," IEEE Trans. on Aerosp. Electron. and Sys-
tems, vol. AES-22, no. 3, pp. 115{123, 1986.

[205] E. J. Kelly and K. M. Forsythe, \Adaptive detection and parameter estimation for multidi-
mensional signal models," Technical Report 848, M.I.T. Lincoln Laboratory, April, 1989.

[206] C. G. Khatri and C. R. Rao, \E�ects of estimated noise covariance matrix in optimal signal
detection," IEEE Trans. Acoustics, Speech, and Signal Processing, vol. ASSP-35, no. 5, pp.
671{679, 1987.

[207] A. Kim and H. Krim, \Hierarchical stochastic modeling of sar imagery for segmenta-
tion/compression," IEEE Trans. on SP. To appear.

[208] I. P. Kirsteins, S. K. Mehta, and J. Fay, \Adaptive separation of unknown narrowband and
broadband time series," in Proc. ICASSP, volume 4, pp. 2525{2529, 1998.

[209] D. Kletter and H. Messer, \Suboptimal detection of non-gaussian signals by third-order anal-
ysis," IEEE Transactions on Acoustics, Speech, and Signal Processing, vol. 38, no. 6, pp.
901{909, 1990.

[210] A. Kokaram, Motion Picture Restoration, Springer Verlag, New York, 1998.

[211] H. Krim, S. Mallat, D. Donoho, and A. Willsky, \Best basis algorithm for signal enhance-
ment," in ICASSP'95, Detroit, MI, May 1995, IEEE.



Submitted to IEEE SP Magazine, June 1998 73

[212] H. Krim and J.-C. Pesquet, \Multiresolution analysis of a class of nonstationary processes,"
IEEE Trans. of Inf. Theory, vol. 41, no. 4, pp. 1010{1020, July 1995.

[213] H. Krim, D. Tucker, S. Mallat, and D. Donoho, \Near-optimal risk for best basis search,"
submitted to IEEE Trans. on IT, 1997.

[214] H. Krim and M. Viberg, \\Two Decades of Array Signal Processing Research"," IEEE SP
Magazine, vol. 13, no. 4, pp. 67{94, July 1996.

[215] J. Krolik, \Matched-�eld minimum variance beamforming in a random ocean channel," Jour-
nal of the Acoustical Society of America, vol. 92, no. 3, pp. 1408{1419, 1992.

[216] J. Krolik, \The performance of matched-�eld beamformers with mediterranean vertical array
data," IEEE Transactions on Signal Processing, vol. 44, No. 10, pp. 2605{2611, 1996.

[217] J. Krolik and R. Anderson, \Maximum likelihood coordinate registration for over-the-horizon
radar," IEEE Transactions on Signal Processing, vol. 45, no. 4, pp. 945{959, 1997.

[218] C. Kuo, C. Lindberg, and D. J. Thomson, \Coherence established between atmospheric car-
bon dioxide and global temperature," Nature, vol. 343, pp. 709{714, 1990. (Reprinted in
pp 395-400 of Coherence and Time Delay Estimation, G. C. Carter, Ed., IEEE Press,
1993.).

[219] W. Lam and G. Wornell, \Multiscale representation and estimation of fractal point processes,"
IEEE Trans. Sig. Proc., vol. 43, no. 11, pp. 2606{17, Nov 1995.

[220] K. Lange, \A quasi-newtonian acceleration of the EM algorithm," Statistica Sinica, vol. 5,
no. 1, pp. 1{18, 1995.

[221] K. Lange and R. Carson, \EM reconstruction algorithms for emission and transmission to-
mography," J. Comp. Assisted Tomography, vol. 8, no. 2, pp. 306{316, April 1984.

[222] D. Lansky and G. Casella, \Improving the EM algorithm," in Computing and Statistics:
Proc. Symp. on the Interface, C. Page and R. LePage, editors, pp. 420{424, Springer-Verlag,
1990.

[223] L. J. Lanzerotti, T. P. Armstrong, R. E. Gold, C. G. Maclennan, E. C. Roelof, G. M. Simnett,
D. J. Thomson, K. A. Anderson, S. E. H. III, S. M. Krimigis, R. P. Lin, M. Pick, E. T. Sarris,
and S. J. Tappin, \Over the southern solar pole: low-energy interplanetary charged particles,"
Science, vol. 268, pp. 1010{1013, 1995.

[224] L. J. Lanzerotti, R. E. Gold, D. J. Thomson, R. E. Decker, C. G. Maclennan, and S. M.
Krimigis, \Statistical properties of shock-accelerated ions in the outer heliosphere," Ap. J.,
vol. 380, pp. L93{L96, 1991.

[225] M. Lavielle, \Stochastic algorithm for parametric and non-parametric estimation in the case
of incomplete data," Signal Processing, vol. 42, no. 1, pp. 3{17, 1995.



Submitted to IEEE SP Magazine, June 1998 74

[226] M. Lavielle and E. Moulines, \A simulated annealing version of the EM algorithm for non-
Gaussian deconvolution," Statist. Comput, vol. To appear, , 1998.

[227] E. L. Lehmann, Testing Statistical Hypotheses, Wiley, New York, 1959.

[228] H. Leung and S. Haykin, \Detection and estimation using an adaptive rational function �lter,"
IEEE Transactions on Signal Processing, vol. 42, no. 12, pp. 3366{3376, 1994.

[229] R. Lewitt and G. Muehllehner, \Accelerated iterative reconstruction for positron emission
tomography," IEEE Trans. on Medical Imaging, vol. MI-5, no. 1, pp. 16{22, 1986.

[230] J. Li, \Direction and polarization estimation using arrays with small loops and short dipoles,"
IEEE Trans. Antennas and Prop., vol. 41, pp. 379{387, March 1993.

[231] X. Li and M. Bilgutay, \Wiener �lter realization for target detection using group delay statis-
tics," IEEE Transactions on Signal Processing, vol. 41, no. 6, pp. 2067{2074, 1993.

[232] Y. Li and Z. Ding, \Global convergence of fractionally spaced godard adaptive equalizers,"
IEEE Trans. on Signal Processing, pp. 818{826, April 1996.

[233] K. S. Lii and M. Rosenblatt, \Deconvolution and estimation of transfer function phase and
coe�cients for non-gaussian linear processes," The Annals of Statistics, vol. 10, pp. 1195{
1208, 1982.

[234] J. Lilly and J. Park, \Multiwavelet spectral and polarization analysis of seismic records,"
Geophys. J. Intl., vol. 122, pp. 1001{1021, 1995.

[235] C. R. Lindberg, Multiple taper spectral analysis of terrestrial free oscillations, PhD thesis,
Univ. Calif., San Diego, 1986.

[236] C. R. Lindberg and J. Park, \Multiple-taper spectral analysis of terrestial free oscillations:
part II," Geophys. J. Royal Astr. Soc., vol. 91, pp. 795{836, 1987.

[237] C. R. Lindberg and D. J. Thomson, \Comment on \a new method of spectral analysis and
its application to the earth's free oscillations: the `sompi' method", by S. Hori et al.," J.
Geophys. Res., vol. 95, pp. 12,785{12,788, 1990.

[238] C. R. Lindberg and D. J. Thomson. Method and Apparatus for Detecting Control Signals,
1995. U.S. Patent 5,442,696.

[239] C. Liu and D. B. Rubin, \The ECME algorithm: a simple extension of EM and ECM with
fast monotone convergence," Biometrika, vol. 81, pp. 633{648, 1994.

[240] C. H. Liu, D. B. Rubin, and Y. N. Wu, \Parameter expansion for EM acceleration - the
PX-EM algorithm," Biometrika, p. to appear, 1998.

[241] H. Liu and G. Xu, \A subspace method for signature waveform estimation in synchronous
CDMA systems," IEEE Trans. Communications, pp. 1346{1354, Nov. 1996.



Submitted to IEEE SP Magazine, June 1998 75

[242] R. Liu and L. Tong, editors, Special Issue on Blind Channel Identi�cation and Signal Esti-
mation, 1998.

[243] T.-C. Liu and B. D. Van Veen, \Multiple window based minimum variance spectrum estima-
tion for multidimensional random �elds," IEEE Trans. SP, vol. 40, pp. 578{589, 1992.

[244] L. Ljung, System Identi�cation: Theory for the User, Prentice-Hall, Englewood Cli�s, N.J.,
1987.

[245] L. Ljung and T. Soderstrom, Theory and Practice of Recursive Identi�cation, MIT Press,
Cambridge, MA, 1987.

[246] Loughlin, J. Pitton, and L. Atlas, \Construction of positive time-frequency distributions,"
IEEE Transactions on Signal Processing, vol. 42, pp. 2697{2705, 1994.

[247] T. A. Louis, \Finding the observed information matrix when using the EM algorithm," J.
Royal Statistical Society, Ser. B, vol. 44, no. 2, pp. 226{233, 1982.

[248] R. W. Lucky, \Techniques for adaptive equalization of digital communication systems," Bell
Syst. Tech. Journal, pp. 255{286, February 1966.

[249] M. Luettgen and A. Willsky, \"multiscale smoothing error models"," IEEE Trans. on Auto-
matic Control, 1994.

[250] R. Lupas and S. Verd�u, \Linear multiuser detectors for synchronous code-division multiple-
access channels," IEEE Trans. Inform. Theory, pp. 123{136, 1989.

[251] R. Lupas and S. Verd�u, \Near-far resistance of multiuser detectors in asynchronous channels,"
IEEE Trans. on Comm., pp. 496{508, April 1990.

[252] X. Ma and C. Nikias, \Parameter estimation and blind channel identi�cation in impulsive
signal environments," IEEE Trans Sig Proc, vol. 43, no. 12, pp. 2884{2897, Dec 1995.

[253] S. Mallat, A Wavelet Tour of Signal Processing, Academic Press, Boston, 1998.

[254] B. Mandelbrot, The Fractal Geometry Of Nature, W.H.Freeman and company, 1977.

[255] B. Mandelbrot, The fractal geometry of nature, W.H. Freeman and Co., 1983.

[256] W. Martin and P. Flandrin, \Wigner-ville spectral analysis for nonstationary processes,"
IEEE Transactions on Acoustics, Speech, and Signal, Processing, vol. 33, pp. 1461{1471,
1995.

[257] E. Masry, \The wavelet transform of stochastic processes with stationary increments and its
application to fractional Brownian motion," IEEE Trans. on IT, vol. IT-39, pp. 260{264,
Jan. 1993.

[258] G. Matz, F. Hlawatsch, and W. Kozek, \Generalized evolutionary spectral analysis and the
weyl spectrum of nonstationary random processes," IEEE Transactions on Signal Processing,
vol. 45, pp. 1520{1534, 1997.



Submitted to IEEE SP Magazine, June 1998 76

[259] E. J. McCoy, A. T. Walden, and D. B. Percival, \Multitaper spectral estimation of power law
processes," IEEE Trans. SP, vol. 46, pp. 655{668, 1998.

[260] G. McLachlan and T. Krishnan, The EM algorithm and extensions, Wiley, 1997.

[261] L. T. McWhorter and L. L. Scharf, \Multiwindow estimators of correlation," IEEE Trans.
SP, vol. 46, pp. 440{448, 1998.

[262] I. Meilijson, \A fast improvement to the EM algorithm on its own terms," J. Royal Statistical
Society, Ser. B, vol. 51, no. 1, pp. 127{138, 1989.

[263] R. Mellors, I. F. L. Vernon, and D. J. Thomson, \Detection of dispersive signals using mul-
titaper double frequency coherence," Geophys. J. Intl., vol. XX, pp. in press, 1998.

[264] J. M. Mendel, \Tutorial on higher-order statistics (spectra) in signal processing and system
theory: theoretical results and some applications," Proceedings of the IEEE, vol. 79, pp.
278{305, March 1991.

[265] X. L. Meng and D. Van Dyk, \The EM algorithm { an old folk-song sung to a fast new tune,"
J. Royal Statistical Society, Ser. B, vol. 59, no. 3, pp. 511{567, 1997.

[266] H. Messer, \Potential performance gain in using spectral information in passive detec-
tion/localization of wideband sources," IEEE Transactions on Signal Processing, vol. 43,
no. 12, pp. 2964{2974, l995.

[267] H. Messer and S. Tsruya, \Performance analysis of time delay estimation of a signal with
unknown spectral parameters," in Proceedings of the Fifth ASSP Workshop on Spectrum
Estimation and Modeling, IEEE, 1990.

[268] N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller, \Equations
of state calculations by fast computing machines," Journal of Chemical Physics, vol. 21, pp.
1087{1092, 1953.

[269] D. Middleton, \Channel modeling and threshold signal processing in underwater acoustics:
an analytic overview," IEEE J Oceanic Engg, vol. 12, pp. 4{28, 1987.

[270] D. Middleton and A. Spaulding, \Elements of weak-signal detection in non-Gaussian noise,"
in Advances in statistical signal processing - vol 2: Signal Detection, H. Poor and J. Thomas,
editors, pp. 137{215, JAI press, Greenwich, CT, 1993.

[271] M. I. Miller and D. R. Fuhrmann, \Maximum-likelihood narrow-band direction �nding and
the EM algorithm," IEEE Transactions on Acoustics, Speech, and Signal Processing, vol. 38,
no. 9, pp. 1560, 1990.

[272] J. D. Molle and M. Hinich, \Tripsectral analysis of stationary time series," J. Acoustical Soc.
America, vol. 97, , 1995.

[273] T. Moon, \The expectation maximization algorithm," IEEE Signal Processing Magazine, vol.
13, no. 6, pp. 47{60, 1996.



Submitted to IEEE SP Magazine, June 1998 77

[274] J. Mosher, P. Lewis, and R. Leahy, \Multiple dipole modeling and localization from spatio-
temporal MEG data," IEEE Trans. Biomed. Eng., vol. 39, pp. 541{557, June 1992.

[275] P. Moulin, \A wavelet regularization method for di�use radar target imaging and speckle
noise reduction," Journ. Math. Imaging and Vision, vol. 3, pp. 123{134, 1993.

[276] E. Moulines, P. Duhamel, J.-F. Cardoso, and S. Mayrargue, \Subspace methods for the blind
identi�cation of multichannel �r �lters," IEEE Trans. on Signal Processing, vol. 43, pp. 516{
525, 1995.

[277] E. Moulines and P. Soulier, \Fractional exponential model for fractal point processes," in Proc.
Thirty-First Asilomar Conf on Signals, Systems and Computers, pp. 1107{11, Monterey,CA,
Nov 1997.

[278] R. J. Muirhead, Aspects of Multivariate Statistical Theory, Wiley, New York, 1982.

[279] C. F. Mullins, \Multiple window cumulant estimation," in Proc. IEEE SP workshop on
Higher-Order statistics, p. M1.4, South Lake Tahoe, CA, 1993.

[280] T. C. Mullis and L. L. Scharf, \Quadratic estimators of the power spectrum," in Advances in
Spectrum Analysis and Array Processing, S. Haykin, editor, volume 1, pp. 1{57, Prentice-Hall,
1991.

[281] S. Nam and E. Powers, \Applications of higher order spectral analysis to cubically nonlinear
system identi�cation," IEEE Trans. Signal Proc., vol. 42, pp. 2124{2135, 1994.

[282] Z. Nan and A. Nehorai, \Detection of ship wake using an airborne magnetic transducer,"
in Proc. 32nd Asilomar Conf. on Signals, Syst. and Comput., Paci�c Grove, CA, November
1998.

[283] A. Nehorai, K.-C. Ho, and B. Tan, \Minimum-noise-variance beamformer with an electromag-
netic vector sensor," in Proc. IEEE Intl Conf. on Acoust., Speech, and Sig. Proc. (ICASSP98),
pp. 2021{2024, Seattle, WA, May 1998.

[284] A. Nehorai and E. Paldi, \Vector-sensor processing for electromagnetic source localization,"
in Proc. 25th Asilomar Conf. on Signals, Syst. and Comput., pp. 566{572, Paci�c Grove, CA,
November 1991.

[285] A. Nehorai and E. Paldi, \Acoustic vector-sensor array processing," in Proc. 26th Asilomar
Conf. on Signals, Syst. and Comput., pp. 192{198, Paci�c Grove, CA, October 1992.

[286] A. Nehorai and E. Paldi, \Acoustic vector-sensor array processing," IEEE Trans. Sig. Proc.,
vol. 42, pp. 2481{2491, September 1994.

[287] A. Nehorai and E. Paldi, \Vector-sensor array processing for electromagnetic source localiza-
tion," IEEE Trans. Sig. Proc., vol. 42, pp. 376{398, February 1994.

[288] A. Nehorai, B. Porat, and E. Paldi, \Detection and localization of vapor-emitting sources,"
IEEE Trans. Sig. Proc., vol. 43, pp. 243{253, January 1995.



Submitted to IEEE SP Magazine, June 1998 78

[289] L. B. Nelson and H. V. Poor, \Iterative multiuser receivers for CDMA channels: an EM-based
approach," IEEE Trans. on Communications, vol. 44, no. 12, pp. 1700{1710, 1996.

[290] J. Nickles, G. Edmonds, R. Harriss, F. Fisher, W. Hodgkiss, J. Giles, and G. D'Spain, \A
vertical array of directional acoustic sensors," in Proc. Mast. Oceans thru Tech. (Oceans 92),
pp. 340{345, Newport, RI, October 1992.

[291] C. L. Nikias and J. M. Mendel, \Signal processing with higher-order spectra," IEEE Signal
Processing Magazine, vol. 10, pp. 10{37, July 1993.

[292] C. L. Nikias and A. P. Petropulu, Higher-Order Spectra Analysis, Prentice-Hall, Englewood
Cli�s, NJ, 1993.

[293] C. Nikias and M. Shao, Signal processing with alpha-stable distributions and applications,
John Wiley & Sons, 1995.

[294] J. Nolan, \Parameter estimation and data analysis for stable distributions," in Proc. Thirty-
First Asilomar Conf on Signals, Systems and Computers, pp. 443{47, Monterey,CA, Nov
1997.

[295] J. Nolan, \Multivariate stable distributions: approximation, estimation, simulation and iden-
ti�cation," in A practical guide to heavy tails: statistical techniques for analyzing heavy tailed
distributions, R. F. R.J. Adler and M. Taqqu, editors, Birkhauser, 1998.

[296] R. Onn and A. Steinhardt, \A multiwindow method for spectrum estimation and sinusoid
detection in an array environment," IEEE Transactions on Signal Processing, vol. 42, no. 11,
pp. 3006{3015, 1994.

[297] J. J. K. O'Ruanaidh and W. J. Fitzgerald, Numerical Bayesian Methods Applied to Signal
Processing, Springer Verlag, New York, 1996.

[298] B. Ottersten, \\Array Processing for Wireless Communications"," in Proc. 8th Workshop on
Stat. Sig. and Array Proc., pp. 466{473, Corfu, Greece, June 1996.

[299] B. Ottersten, M. Viberg, P. Stoica, and A. Nehorai, \\Exact and Large Sample ML Tech-
niques for Parameter Estimation and Detection in Array Processing"," in Radar Array Pro-
cessing, Haykin, Litva, and Shepherd, editors, pp. 99{151, Springer-Verlag, Berlin, 1993.

[300] L. Pakula and S. M. Kay, \Detection performance of the circular correlation coe�cient re-
ceiver," IEEE Trans. Acoustics, Speech, and Signal Processing, vol. ASSP-34, no. 3, pp.
399{404, 1986.

[301] M. Papazoglou and J. Krolik, \Multi-dwell matched-�eld altitude estimation for over-the-
horizon radar," in Proc. IEEE Int. Conf. Acoust., Speech, and Sig. Proc., 1998.

[302] J. Park, \Envelope estimation for quasi-periodic geophysical signals in noise: a multitaper
approach," in Statistics in the Environmental and Earth Sciences, A. Walden and P. Guttorp,
editors, pp. 189{219, Edwin Arnold, London, 1992.



Submitted to IEEE SP Magazine, June 1998 79

[303] J. Park, F. V. III, and C. Lindberg, \Frequency dependent polarization analysis of high-
frequency seismograms," J. Geophys. Res., vol. 92, pp. 12,664{12,674, 1987.

[304] J. Park, C. Lindberg, and F. V. III, \Multitaper spectral analysis of high-frequency seismo-
grams," J. Geophys. Res., vol. 92, pp. 12,675{12,684, 1987.

[305] J. Park, C. Lindberg, and D. Thomson, \Multiple-taper spectral analysis of terrestial free
oscillations: part I," Geophys. J. Royal Astr. Soc., vol. 91, pp. 755{794, 1987.

[306] A. Paulraj and C. Papadias, \Space-time processing for wireless communications," IEEE
Signal Processing Magazine, vol. 14, pp. 49{83, 1997.

[307] D. B. Percival and A. T. Walden, Spectral Analysis for Physical Applications; Multitaper and
Conventional Univariate Techniques, Cambridge Univ. Press, 1993.

[308] J.-C. Pesquet, H. Krim, and H. Carfantan, \Time invariant orthonormal wavelet representa-
tions," IEEE Trans. on Sig. Proc., Aug. 1996.

[309] J. Pesquet, H. Krim, H. Leporini, and E. Hamman, \Bayesian approach to the best basis
selection," in ICASSP'96, Atlanta, GA, May 1996.

[310] B. Picinbono and P. Duvaut, \Optimal linear quadratic systems for detection and estimation,"
IEEE Trans. on Inform. Theory, vol. IT-34, no. 2, pp. 304{311, 1988.

[311] S. U. Pillai, Array Signal Processing, Springer Verlag, 1989.

[312] J. W. Pitton, \Nonstationary spectrum estimation and time-frequency concentration," in
Proc. ICASSP, volume 4, pp. 2425{2428, 1998.

[313] V. Poor and G. Wornell, Wireless Communication: Signal Processing Perspectives, Prentice
Hall, New Jersy, 1998.

[314] B. Popescu, P. Costa, P. Larzabal, and H. Clergeot, \Extraction of parameters from a wavelet
packet analysis for terrain matching," in Proc. of the 3-rd IEEE Int. Workshop on Time-Scale,
Time-Frequency, pp. 423{426, Paris, 18-21 Juin, 1996.

[315] B. Porat, Digital Processing of Random Signals, Theory & Methods, Prentice Hall, Englewood
Cli�s, NJ, 1994.

[316] B. Porat and B. Friedlander, \Adaptive detection of transient signals," IEEE Trans. Acous-
tics, Speech, and Signal Processing, vol. ASSP-34, no. 6, pp. 1410{1418, 1986.

[317] B. Porat and B. Friedlander, \Blind equalization of digital communication channels using
high-order moments," IEEE Trans. on Signal Processing, vol. 39, pp. 522{526, 1991.

[318] B. Porat and B. Friedlander, \Estimation of frequency in the presence of non-random inter-
ference," IEEE Trans. Sig. Proc., vol. 44, no. 3, pp. 640{651, Mar 1996.

[319] B. Porat and A. Nehorai, \Localizing vapor-emmiting sources by moving sensors," IEEE
Trans. Sig. Proc., vol. 44, pp. 1018{1021, April 1996.



Submitted to IEEE SP Magazine, June 1998 80

[320] E. Powers, B. Boashash, and A. M. Zoubir, editors, Higher Order Statistical Signal Processing
and Applications, Longman Cheshire, Melbourne, Australia, 1995.

[321] R. Price, \Nonlinear feedback equalized pam versus capacity for noisy �lter channels," in
Proc. of Intl. Conf. on Communications, pp. 22.12{22.17, 1972.

[322] M. B. Priestley, Non-Linear and Non-Stationary Time Series Analysis, Academic Press, San
Diego CA, 1988.

[323] J. G. Proakis, Digital Communications, McGraw-Hill Book Company, NY, 2nd edition, 1989.

[324] J. G. Proakis, Digital Communications, Third edition, McGraw Hill, 1995.

[325] S. Qian and D. Chen, Joint Time-Frequency Analysis - Methods and Applications, Prentice-
Hall, New Jersey, 1996.

[326] S. U. H. Qureshi, \Adaptive equalization," Proceedings of the IEEE, pp. 1349{1387, 1985.

[327] J. Ralston, A. Zoubir, and B. Boashash, \Identi�cation of a class of nonlinear systems under
stationary non-gaussian excitation," IEEE Trans. Signal Proc., vol. 45, pp. 719{735, 1997.

[328] K. Ramchandran and M. Vetterli, \Best Wavelet Packets in a Rate Distortion Sense," IEEE
Trans. on Image Proc., pp. 160{175, 1993.

[329] T. S. Rao and M. Gabr, \A test for linearity of stationary time series," J. Time Series
Analysis, vol. 1, pp. 145{158, 1980.

[330] I. S. Reed and X. Yu, \Adaptive multi-band CFAR detection of an optical pattern with
unknown spectral distribution," IEEE Trans. Acoust., Speech, and Sig. Proc., vol. 38, no. 10,
pp. 1760{1771, 1990.

[331] I. Reed, J. Mallet, and L. Brennan, \Rapid convergence rate in adaptive arrays," IEEE Trans.
on Aerosp. Electron. and Systems, vol. AES-10, pp. 853{863, 1974.

[332] A. Richardson and L. Nolte, \A posteriori probability source localization in an uncertain
sound speed deep ocean environment," Journal of the Acoustical Society of America, vol. 89,
no. 5, pp. 2280{2284, 1991.

[333] C. D. Richmond, \Derived PDF of maximum likelihood signal estimator which employs an
estimated noise covariance," IEEE Transactions on Signal Processing, vol. 44, no. 2, pp.
305{315, l996.

[334] K. S. Riedel and A. Sidorenko, \Minimum bias multiple taper spectral estimation," IEEE
Trans. SP, vol. 43, pp. 188{195, 1995.

[335] K. S. Riedel and A. Sidorenko, \Adaptive smoothing of the log-spectrum with multiple ta-
pering," IEEE Trans. SP, vol. 44, pp. 1794{1800, 1996.



Submitted to IEEE SP Magazine, June 1998 81

[336] K. S. Riedel, A. Sidorenko, N. Bretz, , and D. J. Thomson, \Spectral estimation of plasma
uctuations. II. nonstationary analysis of edge localized mode spectra," Phys. Plasma, vol.
1, pp. 501{514, 1994.

[337] K. S. Riedel, A. Sidorenko, and D. J. Thomson, \Spectral estimation of plasma uctuations.
1. comparison of methods," Phys. Plasma, vol. 1, pp. 485{500, 1994.

[338] J. Rissanen, \Modeling by shortest data description," Automatica, vol. 14, pp. 465{471, 1978.

[339] C. P. Robert, The Bayesian Choice, Springer Verlag, New York, 1994.

[340] D. A. Roberts., K. W. Ogilvie, M. L. Goldstein, D. J. Thomson, C. G. Maclennan, and L. J.
Lanzerotti, \The nature of the solar wind," Nature, vol. 381, pp. 31{32, 1996.

[341] F. Robey, D. Fuhrmann, E. Kelly, and R. Nitzberg, \A CFAR adaptive matched �lter detec-
tor," IEEE Transactions on Aerospace and Electronic Systems, vol. 43, no. 12, pp. 2964{2974,
l992.

[342] D. B. Rubin, \Using the SIR algorithm to simulate posterior distributions," in Bayesian
Statistics 3, J. M. Bernardo, M. H. DeGroot, D. V. Lindley, and A. F. M. Smith, editors, pp.
395{402, University Press, Oxford, UK, 1988.

[343] A. Ruiz, J. M. Cio�, and S. Kasturia, \Discrete multiple tone modulation with coset coding
for the spectrally shaped channel," IEEE Trans. on Communications, pp. 1012{1029, 1992.

[344] B. Ryu and S. Lowen, \Point-process approaches to the modeling and analysis of self-similar
tra�c," in Proc IEEE Conf Infocom, pp. 1468{75, 1996.

[345] B. M. Sadler, \Detection in correlated impulsive noise using fourth-order cumulants," Signal
Processing, vol. 44, no. 11, pp. 2793{2800, 1996.

[346] B. Sadler, G. Giannakis, and K. Li, \Estimation and detection in non-gaussian noise using
higher order statistics," IEEE Transactions on Signal Processing, vol. 42, no. 4, pp. 2729{
2741, l994.

[347] N. Saito, Local feature extraction and its applications using a library of bases, PhD thesis,
Yale University, Dec. 1994.

[348] G. Samorodnitsky and M. Taqqu, Stable non-Gaussian random processes, Chapman & Hall,
1994.

[349] S. D. Sandberg and M. A. Tzannes, \Overlapped discrete multitone modulation for high
speed copper wire communications," IEEE Journal on Selected Areas in Communications,
pp. 1571{1585, 1995.

[350] A. Sayeed and D. Jones, \Optimal detection using bilinear time-frequency and time-scale
representations," IEEE Transactions on Signal Processing, vol. 43, pp. 2872{2883, 1995.



Submitted to IEEE SP Magazine, June 1998 82

[351] A. Scaglione, S. Barbarossa, and G. B. Giannakis, \Filterbank transceivers optimizing infor-
mation rate in block transmissions over dispersive channels," IEEE Transactions on Infor-
mation Theory, 1999.

[352] A. Scaglione and G. B. Giannakis, \Code-only dependent asynchronous cdma receivers for
mui elimination and mitigation of unknown multipath," in Proc. of 31st Asilomar Conf. on
Signals, Systems, and Computers, pp. 950{954, 1997.

[353] A. Scaglione, G. B. Giannakis, and S. Barbarossa, \Redundant �lterbank precoders and
equalizers, parts i & ii," IEEE Transactions on Signal Processing, 1999.

[354] L. L. Scharf, \Invariant Gauss-Gauss detection," IEEE Trans. on Inform. Theory, vol. IT-19,
no. 3, pp. 422{427, 1973.

[355] L. L. Scharf, Statistical Signal Processing: Detection, Estimation, and Time Series Analysis,
Addison-Wesley, Reading, MA, 1991.

[356] L. L. Scharf and D. W. Lytle, \Signal detection in Gaussian noise of unknown level: an
invariance application," IEEE Trans. on Inform. Theory, vol. IT-17, no. 3, pp. 404{411,
1971.

[357] L. Scharf and B. Friedlander, \Matched subspace detectors," IEEE Transactions on Signal
Processing, vol. 42, no. 8, pp. 2146{2157, 1994.

[358] I. Schick and H. Krim, \Robust wavelet denoising," in ICASSP'97, Munich, Germany, May
1997, IEEE.

[359] R. E. Schild and D. J. Thomson, \The Q0957+561 time delay, quasar structure, and mi-
crolensing," in Astronomical time series, D. M. et al., editor, pp. 73{84, Kluwer Academic
Publishers, Dordrecht, 1997.

[360] H. Schmidt, A. Baggeroer, W. Kuperman, and E. Sheer, \Environmentally-tolerant beam-
forming for high-resolution matched-�eld processing: Deterministic mismatch," Journal of
the Acoustical Society of America, vol. 88, pp. 1802{1810, 1990.

[361] J. Schoukens and R. Pintelon, Identi�cation of Linear Systems, Pergamon Press, Oxford, UK,
1991.

[362] P. Schultheiss, H. Messer, and G. Shor, \Maximum likelihood time delay estimation in non-
Gaussian noise," IEEE Transactions on Signal Processing, vol. SP-45, , 1997.

[363] T. J. Schultz, \Fast algorithm for maximum-likelihood imaging with coherent speckle mea-
surements," in Proc. IEEE Conf on Image Proc., pp. 679{682, Santa Barbara, CA, 1997.

[364] T. J. Schultz, \Penalized maximum-likelihood estimation of covariance matrices with linear
structure," IEEE Transactions on Signal Processing, vol. 45, no. 12, pp. 3027{3038, 1997.

[365] G. Schwartz, \Estimating the dimension of a model," Ann. Stats., vol. 6, pp. 4611{4640,
1978.



Submitted to IEEE SP Magazine, June 1998 83

[366] R. E. Schwartz, \Minimax CFAR detection in additive Gaussian noise of unknown covari-
ance," IEEE Trans. on Inform. Theory, vol. 15, no. 4, pp. 722{725, July 1969.

[367] D. Sengupta and S. M. Kay, \Parameter estimation and GLRT detection in colored non-
gaussian autoregressive processes," IEEE Transactions on Acoustics, Speech, and Signal Pro-
cessing, vol. 38, no. 10, pp. 1661{1676, 1990.

[368] E. Serpedin and G. B. Giannakis, \Blind channel identi�cation and equalization using modu-
lation induced cyclostationarity," IEEE Transactions on Signal Processing, vol. 46, pp. 1930{
1944, 1998.

[369] M. S. Seymour and S. Haykin, \ISAR using Thomson's multiwindow adaptive spectrum
estimation method," IEEE Trans. Aero. and Elec. Sys., vol. 29, pp. 1065{1070, 1993.

[370] O. Shalvi and E. Weinstein, \New criteria for blind deconvolution of nonminimum phase
systems (channels)," IEEE Trans. on Information Theory, vol. 36, pp. 312{321, 1990.

[371] I. Sharfer and H. Messer, \The bispectrum of sampled data: part II { Monte Carlo simulations
of detection and estimation of the sampling jitter," IEEE Transactions on Signal Processing,
vol. 42, no. 10, pp. 2706{2714, 1994.

[372] L. A. Shepp and Y. Vardi, \Maximum likelihood reconstruction for emission tomography,"
IEEE Trans. on Medical Imaging, vol. MI-1, No. 2, pp. 113{122, Oct. 1982.

[373] N. D. Sidiropoulos, G. B. Giannakis, and R. Bro, \Deterministic waveform-preserving blind
separation of DS-CDMA signals using an antenna array," in Proc. SSAP'98, Portland, Ore-
gon, 1998.

[374] M. Simon, J. Omura, R. Scholtz, , and B. Levitt, Spread Spectrum Communication Handbook,
McGraw-Hill, New York, 1994.

[375] D. Slepian, \Prolate spheroidal wave functions, Fourier analysis, and uncertainty V: the
discrete case," Bell System Tech. J., vol. 57, pp. 1371{1429, 1978.

[376] D. T. M. Slock, \Blind fractionally-spaced equalization, perfect-reconstruction �lter banks
and multichannel linear prediction," in Proc. ICASSP'94, vol. IV, pp. 585{588, 1994.

[377] T. Soderstrom and P. Stoica, System Identi�cation, Prentice Hall Intern., London, 1989.

[378] I. Song and S. Kassam, \LOD of signals in a generalized observation model," IEEE Trans
Info Theory, vol. 36, no. 3, pp. 502{15,516{30, May 1990.

[379] H. W. Sorenson, Parameter Estimation, Marcel Dekker, New York, 1980.

[380] L. Stankovic and S. Stankovic, \An analysis of instantaneous frequency representation using
time-frequency distributions-generalized wigner distribution," IEEE Transactions on Signal
Processing, vol. 43, , 1995.



Submitted to IEEE SP Magazine, June 1998 84

[381] P. Stoica, M. Cedervall, and A. Eriksson, \Combined instrumental variable and subspace
�tting approach to parameter estimation of noisy input-output systems," IEEE Trans. Signal
Proc., vol. 43, pp. 2386{2397, 1995.

[382] P. Stoica and R. Moses, Introduction to Spectral Analysis, Prentice Hall, Inc., Upper Saddle
River, NJ, 1997.

[383] E. G. Strom, S. Parkvall, S. L. Miller, and B. E. Ottersten, \Propagation delay estima-
tion in asynchronous direct-sequence code-division multiple access systems," IEEE Trans. on
Comm., pp. 84{93, Jan. 1996.

[384] A. Swami, \Multiplicative noise models: parameter estimation using cumulants," Signal Pro-
cessing, vol. 36, no. 3, pp. 355{373, April 1994.

[385] A. Swami, \Cramer-Rao bounds for deterministic signals in additive and multiplicative noise,"
Signal Processing, vol. 53, no. 2-3, pp. 231{244, Sep 1996.

[386] A. Swami, G. B. Giannakis, and S. Shamsunder, \Multichannel ARMA processes," IEEE
Trans. on Signal Processing, vol. 42, pp. 898{913, 4 1994.

[387] A. Swami, G. Giannakis, and G. Zhou, \Bibliography on Higher-Order Statistics," Signal
Processing, vol. 60, no. 1, pp. 65{126, July 1997.

[388] A. Swami and B. Sadler, \TDE, DOA, and related parameter estimation problems in impul-
sive noise," in Proc. IEEE SP Workshop on HOS, pp. 273{77, Ban�, Canada, 1997.

[389] A. Swami and B. Sadler, \Parameter estimation for linear alpha-stable processes," IEEE
Signal Processing Letters, vol. 5, no. 2, pp. 48{50, Feb 1998.

[390] K.-C. Tan, K.-C. Ho, and A. Nehorai, \Uniqueness study of measurements obtainable with
arrays of electromagnetic vector sensors," IEEE Trans. Sig. Proc., vol. 44, pp. 1036{1039,
April 1996.

[391] H. Tanizaki, Nonlinear �lters: Estimation and Applications, Springer Verlag, New York, 1996.

[392] M. A. Tanner, Tools for Statistical Inference, Springer Verlag, New York, 1996.

[393] L. Tauxe, \Sedimentary records of relative paleointensity of the geomagnetic �eld: theory
and practice," Rev. Geophysics, vol. 31, pp. 319{354, 1993.

[394] L. Tauxe and G. Wu, \Normalized remanence in sediments of the western equatorial Paci�c:
relative paleointensity of the geomagnetic �eld?," J. Geophys Res., vol. 95, pp. 12,337{12,350,
1990.

[395] A. Tew�k and A. Kim, \Correlation structure of the discrete wavelet coe�cients of fractional
brownian motion," IEEE Trans. on IT, vol. IT-38, pp. 904{909, 1992.

[396] J. Thompson, P. Grant, and B. Mulgrew, \\Smart Antenna Arrays for CDMA Systems","
IEEE Personal Comm. Magazine, vol. 3, no. 5, pp. 16{25, Oct. 1996.



Submitted to IEEE SP Magazine, June 1998 85

[397] D. J. Thomson, \Spectrum estimation techniques for characterization and development of
WT4 waveguide," Bell System Tech. J., vol. 56, pp. Part I, 1769{1815,Part II, 1983{2005,
1977.

[398] D. J. Thomson, \Spectrum estimation and harmonic analysis," Proc. IEEE, vol. 70, pp.
1055{1096, 1982.

[399] D. J. Thomson, \Multi-window bispectrum estimates," in Proc. IEEE Workshop on Higher-
order spectral analysis, pp. 19{23, Vail, Colorado, 1989.

[400] D. J. Thomson, \Quadratic-inverse spectrum estimates: applications to paleoclimatology,"
Phil. Trans. R. Soc. Lond., vol. A 332, pp. 539{597, 1990.

[401] D. J. Thomson, \Time series analysis of holocene climate data," Phil. Trans. R. Soc. Lond.,
vol. A 330, pp. 601{616, 1990.

[402] D. J. Thomson, \Non-stationary uctuations in \stationary" time series," Proc. SPIE, vol.
2027, pp. 236{244, 1993.

[403] D. J. Thomson, \An overview of multiple-window and quadratic-inverse spectrum estimation
methods," in Proc. ICASSP, volume VI, pp. 185{94, 1994.

[404] D. J. Thomson, \Projection �lters for data analysis," in Proc. Seventh IEEE SP Workshop
on Stat. Sig. and Array Proc., pp. 39{42, Quebec, 1994.

[405] D. J. Thomson, \The seasons, global temperature, and precession," Science, vol. 268, pp.
59{68, 1995.

[406] D. J. Thomson, \Dependence of global temperatures on atmospheric CO2 and solar irradi-
ance," Proc. Natl. Acad. Sci. USA, vol. 94, pp. 8370{8377, 1997.

[407] D. J. Thomson and A. D. Chave, \Jackknifed error estimates for spectra, coherences, and
transfer functions," in Advances in Spectrum Analysis and Array Processing, S. Haykin, edi-
tor, volume 1, pp. 58{113, Prentice-Hall, 1991.

[408] D. J. Thomson, C. G. Maclennan, and L. J. Lanzerotti, \Propagation of solar oscillations
through the interplanetary medium," Nature, vol. 376, pp. 139{144, 1995.

[409] D. J. Thomson and R. Schild, \Processes with level-dependent delay," in Proc. IEEE SP
workshop on Higher-Order statistics, pp. 374{378, South Lake Tahoe, CA, 1993.

[410] D. J. Thomson and R. Schild, \Time delay estimates for Q0957+561 A, B," in Applications of
time series analysis in astronomy and meteorology, T. S. Rao, M. B. Priestley, and O. Lessi,
editors, pp. 187{204, Chapman and Hall, London, 1997.

[411] M. Tomlinson, \New automatic equaliser employing modulo arithmetic," Electron. Lett., vol.
7, pp. 138{139, 1971.

[412] H. Tong, Non-linear Time Series, Oxford University Press, New York, 1990.



Submitted to IEEE SP Magazine, June 1998 86

[413] L. Tong, G. Xu, B. Hassibi, and T. Kailath, \Blind channel identi�cation based on second-
order statistics: A frequency-domain approach," IEEE Trans. on Information Theory, vol.
41, pp. 329{334, 1995.

[414] L. Tong, G. Xu, and T. Kailath, \Blind identi�cation and equalization based on second-order
statistics: a time domain approach," IEEE Trans. on Information Theory, pp. 340{349, 1994.

[415] C. Tontiruttananon and J. Tugnait, \Identi�cation of closed-loop linear systems via cyclic
spectral analysis: An equation-error formulation," in Proc. IEEE Int. Conf. Acoust., Speech,
and Sig. Proc., 1998.

[416] J. R. Treichler and B. G. Agee, \A new approach to multipath correction of constant modulus
signals," IEEE Trans. Acoust., Speech, and Sig. Proc., vol. ASSP-31, pp. 459{472, April 1983.

[417] P. Troughton and S. J. Godsill, \Bayesian model selection for time series using markov chain
monte carlo," in ICASSP, pp. 3733{3736, 1997.

[418] P. Tsakalides and C. Nikias, \The robust covariation-based MUSIC (ROC-MUSIC) algorithm
for bearing estimation in impulsive noise environments," IEEE Trans. Sig. Proc, pp. 1613{
1622, Jul 1996.

[419] M. K. Tsatsanis, \Inverse �ltering criteria for CDMA systems," IEEE Trans. on Signal Pro-
cessing, pp. 102{112, Jan. 1997.

[420] M. K. Tsatsanis and G. B. Giannakis, \Multirate �lter banks for code-division multiple access
systems," in Proc. ICASSP'95, vol. II, pp. 1484{1487, 1995.

[421] M. K. Tsatsanis and G. B. Giannakis, \Equalization of rapidly fading channels: Self recovering
methods," IEEE Transactions on Communications, vol. 44, pp. 619{630, 1996.

[422] M. K. Tsatsanis and G. B. Giannakis, \Modeling and equalization of rapidly fading channels,"
International Journal of Adaptive Control and Signal Processing, vol. 10, pp. 159{176, 1996.

[423] M. K. Tsatsanis and G. B. Giannakis, \Optimal linear receivers for DS-CDMA systems: a
signal processing approach," IEEE Transactions on Signal Processing, vol. 44, pp. 3044{3055,
1996.

[424] M. K. Tsatsanis and G. B. Giannakis, \Transmitter induced cyclostationarity for blind chan-
nel equalization," IEEE Transactions on Signal Processing, vol. 45, pp. 1785{1794, 1997.

[425] M. K. Tsatsanis, G. B. Giannakis, and G. Zhou, \Estimation and equalization of fading
channels with random coe�cients," Signal Processing, vol. 53, pp. 211{229, 1996.

[426] M. K. Tsatsanis and Z. Xu, \On minimum output energy cdma receivers in the presence of
multipath," in Proc. 31st Conf. on Info. Sciences and Systems, pp. 724{729, Johns Hopkins
Univ., Baltimore MD, March 19-21, 1997.

[427] J. Tugnait, \On time delay estimation with unknown spatially correlated Gaussian noise using
fourth-order cumulants and cross cumulants," IEEE Transactions on Acoustics, Speech, and
Signal Processing, vol. ASSP-39, , 1991.



Submitted to IEEE SP Magazine, June 1998 87

[428] J. Tugnait, \Detection of non-Gaussian signals using integrated polyspectrum," IEEE Trans-
actions on Signal Processing, vol. 42, no. 11, pp. 3137{3149, l994.

[429] J. Tugnait, \Corrections to "detection of non-Gaussian signals using integrated polyspec-
trum"," IEEE Transactions on Signal Processing, vol. 43, no. 11, pp. 2792{2793, l995.

[430] J. K. Tugnait, \Identi�cation of linear stochastic systems via second- and fourth-order cu-
mulant matching," IEEE Trans. on Information Theory, vol. 33, pp. 393{407, 1987.

[431] J. K. Tugnait, \Identi�cation of multivariable stochastic linear systems via polyspectral anal-
ysis given noisy input-output time-domain data," IEEE Trans. Automatic Control, vol. 43,
pp. to appear, 1998.

[432] J. K. Tugnait, \Identi�cation of multivariable stochastic linear systems via spectral analysis
given time-domain data," IEEE Trans. Signal Proc., vol. 46, pp. 1458{1463, 1998.

[433] J. K. Tugnait and C. Tontiruttananon, \Identi�cation of linear systems via spectral analysis
given time-domain data: consistency, reduced-order approximation and performance analy-
sis," IEEE Trans. Automatic Control, vol. 43, pp. to appear, 1998.

[434] J. K. Tugnait and Y. Ye, \Stochastic system identi�cation with noisy input-output measure-
ments using polyspectra," IEEE Trans. Automatic Control, vol. 40, pp. 670{683, 1995.

[435] J. Tugnait, \Identi�cation and deconvolution of multichannel linear non-gaussian processes
using higher-order statistics and inverse �lter criteria," IEEE Trans. Signal Proc., vol. 45,
pp. 658{672, 1997.

[436] J. W. Tukey, \An introduction to the calculations of numerical spectrum analysis," in Spectral
Analysis of Time Series, B. Harris, editor, pp. 25{46, J.Wiley and Sons, 1967.

[437] P. P. Vaidyanathan, Multirate systems and �lter banks, Prentice Hall, New Jersey, 1992.

[438] P. P. Vaidyanathan, Multirate Systems and Filter Banks, Prentice Hall, 1993.

[439] P. van Overschee and B. de Moor, Subspace Identi�cation for Linear Systems: Theory -
Implementation - Methods, Kluwer Academic, Boston, MA, 1996.

[440] B. Van Veen and K. Buckley, \\Beamforming: A Versatile Approach to Spatial Filtering","
IEEE ASSP Magazine, vol. 5, no. 2, pp. 4{24, April 1988.

[441] B. D. Van Veen and L. L. Scharf, \Estimation of structured covariance matrices and multiple
window spectrum analysis," IEEE Trans. SP, vol. 38, pp. 1467{1471, 1990.

[442] S. Verd�u, \Multiuser detection," in Advances in Statistical Signal Processing, V. P. (Ed.),
editor, pp. 369{409, JAI, NY, 1997.

[443] F. L. Vernon III, Analysis of data recorded on the ANZA seismic network, PhD thesis, Univ.
Calif., San Diego, 1989.



Submitted to IEEE SP Magazine, June 1998 88

[444] M. Vetterli and J. Kovacevic, Wavelets and Subband Coding, Prentice Hall, Englewood Cli�s,
NJ, 1995.

[445] M. Viberg, B. Ottersten, and T. Kailath, \Detection and estimation in sensor arrays using
weighted subspace �tting," IEEE Transactions on Signal Processing, vol. 39, no. 11, pp.
2436{2449, 1991.

[446] B. Vidakovic, \Nonlinear wavelet shrinkage with bayes rules and bayes," Journal of the Amer-
ican Statistical Association, vol. 93, pp. 173{179, 1998.

[447] J. Ville, \Th�eorie et applications de la notion de signal analytique," Cables et Transmissions,
vol. 2A, pp. 61{74, 1948.

[448] W. L. W. Willinger, M.S. Taqqu and D. Wilson, \On the self-similar nature of ethernet
tra�c," IEEE/ACM Trans on Networking, vol. 2, pp. 1{15, 1994.

[449] A. T. Walden, \Multitaper estimation of the innovation variance of a stationary time series,"
IEEE Trans. SP, vol. 43, pp. 181{187, 1995.

[450] E. Wegman, S. Schwartz, and J. Thomas, editors, Topics in Non-Gaussian Signal Processing,
Springer-Verlag, New York, 1989.

[451] B. Widrow and S. Stearns, Adaptive Signal Processing, Prentice-Hall, Englewood Cli�s, N.J.,
1985.

[452] E. P. Wigner, \On the quantum correction for thermodynamic equilibrium," Physics Review,
vol. 40, pp. 749{759, 1932.

[453] K. M. Wong and S. Chen, \Detection of narrow-band sonar signals using order statistical
�lters," IEEE Trans. Acoustics, Speech, and Signal Processing, vol. ASSP-35, no. 5, pp. 597{
613, 1987.

[454] K. Wong and M. Zoltowski, \High accuracy 2D angle estimation with extended aperture vec-
tor sensor arrays," in Proc. IEEE Intl Conf. on Acoust., Speech, and Sig. Proc. (ICASSP96),
pp. 2789{2792, Atlanta, GA, 1996.

[455] K. Wong and M. Zoltowski, \Closed-form underwater acoustic direction-�nding with arbi-
trarily spaced vector-hydrophones at unknown locations," IEEE J. Oceanic Eng., vol. 22, pp.
649{658, October 1997.

[456] K. Wong and M. Zoltowski, \Extended-aperture underwater acoustic multisource az-
imuth/elevation direction-�nding using uniformly but sparsely spaced vector hydrophones,"
IEEE J. Oceanic Eng., vol. 22, pp. 659{672, October 1997.

[457] K. Wong and M. Zoltowski, \Uni-vector-sensor ESPRIT for multisource azimuth, elevation,
and polarization estimation," IEEE Trans. Antennas and Prop., vol. 45, pp. 1467{1474,
October 1997.



Submitted to IEEE SP Magazine, June 1998 89

[458] K. Wong and M. Zoltowski, \Closed-form direction-�nding with arbitrarily spaced electro-
magnetic vector-sensors at unknown locations," in Proc. IEEE Intl Conf. on Acoust., Speech,
and Sig. Proc. (ICASSP98), pp. 1949{1952, Seattle, WA, May 1998.

[459] G. Wornell, \Spread-signature cdma: E�cient multiuser communications in the presence of
fading," IEEE Trans. on Info. Theory, pp. 1418{1438, Sept. 1995.

[460] G. Wornell, \Emerging applications of multirate signal processing and wavelets in digital
communications," Proceedings of the IEEE, pp. 586{603, 1996.

[461] G. Wornell, Signal Processing with Fractals: A Wavelet-Based Approach, Prentice-Hall, Upper
Saddle River, NJ, 1995.

[462] C. F. J. Wu, \On the convergence properties of the EM algorithm," Annals of Statistics, vol.
11, pp. 95{103, 1983.

[463] G. Xu, H. Liu, L. Tong, and T. Kailath, \A least-squares approach to blind channel identi�-
cation," IEEE Trans. on Signal Processing, vol. 43, pp. 2982{2993, 1995.

[464] J. Yang and S. Roy, \On joint transmitter and receiver optimization for multiple-input-
multiple-output (MIMO) transmission systems," IEEE Trans. on Communications, pp. 3221{
3231, 1994.

[465] X. Yu, I. S. Reed, and A. D. Stocker, \Comparative performance analysis of adaptive multi-
spectral detectors," IEEE Trans. on Signal Processing, vol. 41, no. 8, pp. 2639{2655, 1993.

[466] Y. Zhao, L. Atlas, and R. Marks, \The use of cone-shaped kernels for generalized time-
frequency representations of nonstationary signals," IEEE Transactions on Acoustics, Speech,
and Signal Processing, vol. 38, pp. 1084{1091, 1990.

[467] G. Zhou and G. Giannakis, \Harmonics in Gaussian multiplicative and additive noise: CRBs,"
IEEE Trans. Sig. Proc., vol. 43, no. 5, pp. 1217{31, May 1995.

[468] G. Zhou and G. Giannakis, \Harmonics in Gaussian multiplicative and additive noise: per-
formance analysis of cyclic statistics," IEEE Trans. Sig. Proc., vol. 43, no. 6, pp. 1445{60,
Jun 1996.

[469] T. Zhu, K.-P.Chun, and G. F. West, \High-frequency p-wave attenuation determination using
multiple-window spectral analysis method," Bull. Seism. Soc. Am., vol. 79, pp. 1054{1069,
1989.

[470] V. Zolotarev, One-dimensional stable distributions, American Mathematical Society, 1986.

[471] M. Zoltowski and K. Wong, \Polarization diversity and extended-aperture spatial diversity
to mitigate fading-channel e�ects with a sparse array of electric dipoles or magnetic loops,"
in Proc. IEEE Int. Vehic. Tech. Conf., pp. 1163{1167, 1997.

[472] W. Y. Zou and Y. Wu, \Ofdm: An overview," IEEE Trans. on Broadcasting, vol. 41, pp.
1{8, 1995.



Submitted to IEEE SP Magazine, June 1998 90

[473] A. M. Zoubir, \The bootstrap and its applications," in Proc. ICASSP, volume VI, pp. 65{100,
1994. Special Session.

[474] Z. Zvonar and D. Brady, \Linear multipath-decorrelating receivers for CDMA frequency-
selective fading channels," IEEE Trans. on Communications, pp. 650{663, Jan. 1996.


