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Sensor Management
Using Relevance Feedback Learning

Chris Kreucher*, Keith Kastella and Alfred O. Hero IIEEE Fellow

Abstract— An approach that is common in the machine learn- as wireless networking [23] and robot path planning [24].
ing literature, known as relevance feedback learning, is applied There are many objectives that the sensor manager may be
to provide a method for managing agile sensors. In the context of tuned to meet, e.g. minimization of track loss, probability
a machine learning application such as image retrieval, relevance A ’ .
feedback proceeds as follows. The user has a goal image in mindmc t?rget _c_iete_ctlon, minimization of track eror/covar_lanf:e,
that is to be retrieved from a database of images (i_e.’ learned by and identification aCCUracy. Each of these different ObJeCt|VeS
the system). The system computes an image or set of images tdaken alone may lead to a different sensor allocation strategy
display (the query). Oftentimes, the decision as to which images [27][29].
to display is done using divergence metrics such as the Kullback- Many researchers have approached the sensor scheduling

Leibler (KL) divergence. The user then indicates the relevance of - e
each image to his goal image and the system updates its estimate?rOblem with a Markov decision process (MDP) strategy.

(typically a probability mass function on the database of images). However, a complete long-term (non-myopic) scheduling so-
The procedure repeats until the desired image is found. Our lution suffers from combinatorial explosion when solving

method for managing agile sensors proceeds in an analogouspractical problems of even moderate size. Researchers have
manner. The goal of the system is to learn the number and states thus worked at approximate solution techniques. For Example,

of a group of moving targets occupying a surveillance region. The | . . . .
system computes a sensing action to take (the query), based on Krishnamurthy [22][21] uses a multi-arm bandit formulation

divergence measure called the Bnyi divergence. A measurement involving hidden Markov models. In [22], an optimal algo-
is made, providing relevance feedback and the system updates itsrithm is formulated to track multiple targets with an ESA

probability density on the number and states of the targets. This that has a single steerable beam. Since the optimal approach
procedure repeats at each time where a sensor is available for has prohibitive computational complexity, several suboptimal

use. It is shown using simulated measurements on real recorded imat thod . d ol ical
target trajectories that this method of sensor management yields approximate methods are given and some simpie numerica

a ten fold gain in sensor efficiency when compared to periodic €xamples involving a small number of targets moving among
scanning. a small number of discrete states are presented. Even with

the proposed suboptimal solutions, the problem is still very
EDICS Category: 2-INFO challenging numerically. In [21], the problem is reversed, and

Index Terms— Sensor Management, Machine Learning, Rele- & single target is observed by a single sensor from a collection

vance Feedback, Multitarget Tracking, Particle Filtering, Joint Of sensors. Again, approximate methods are formulated due
Multitarget Probability Density. to the intractability of the globally optimal solution. Bert-

sekas and Castanon [1] formulate heuristics for the solution
of a stochastic scheduling problem corresponding to sensor
scheduling. They implement a rollout algorithm based on their

HE problem of sensor management is to determine theuristics to approximate the stochastic dynamic programming

best way to task a sensor or group of sensors whatgorithm. Additionally, Castanon [3][4] formulates the prob-
each sensor may have many modes and search pattelems. of classifying a large number of stationary objects with
Typically, the sensors are used to gain information about themulti-mode sensor based on a combination of stochastic
kinematic state (e.g. position and velocity) and identificatiotiynamic programming and optimization techniques. Malhotra
of a group of targets. Applications of sensor management 425] proposes using reinforcement learning as an approximate
often military in nature [27], but also include things suclapproach to dynamic programming.

Recently, others have proposed using divergence measures
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measure of relative entropy, the Kullback-Leibler (KL) diverthe targets move through the surveillance region. Therefore
gence. Schmaedeke and Kastella [31] use the KL divergencev® include a model of the evolution of the joint multitarget
determine optimal sensor-to-target tasking. Kastella [17][18Ensity into our framework.

uses KL divergence to manage a sensor between trackingh a manner similar to the way query images are chosen
and identification mode in the multitarget scenario. Othens the CBIR application, at each iteration of our algorithm
use similar information based approaches in the context wé use a divergence-based metric to decide on the optimal
active vision [6][32]. Zhao [37] compares several approachagjery to pose. The decision as to how to use a sensor
including simple heuristics, entropy, and relative entropy (KLjhen becomes one of determining which sensing action will

Divergence-based adaptivity measures such as the KL diveraximize the expected information gain between the current
gence are a common learning metric that have been usedoimt multitarget probability density and the joint multitarget
the machine learning literature in techniques with the nampsobability density after a measurement has been made. In
“active learning” [35], “learning by query” [8], “relevance this work, we consider a more general information measure
feedback” [38][5], and “stepwise uncertainty reduction” [10]called the Rnyi Information Divergence [30] (also known as
These techniques are iterative procedures in which the systémaa-divergence), which reduces to the KL divergence under
provides a set of items to the user as a query, the user indicatartain limit. The Rnyi divergence has additional flexibility
the relevance of the retrieved items, and the system adaptivielhat in allows for emphasis to be placed on specific portions
chooses new queries based on the user feedback. The ultinadthe support of the densities to be compared. To the best of
goal is to learn something from the user in an interactivaur knowledge, this is the first timeéRyi divergence has been
manner. used in this setting. In contrast to CBIR, our query takes the

A specific example of the role of divergence measures farm of making a measurement with a physical sensor rather
machine learning is the interactive search of a databasetladn asking the user whether one image or another is closer to
imagery for a desired image, also called content based imdbe desired image. Our physical sensor is able to be modelled
retrieval (CBIR). Cox et. al. [5] associates a probability oduite precisely, while modelling a human "sensor” is quite
being the correct image to each image in a database. Tdifficult [5]. In either the human or the physical sensor case,
probability mass function (pmf) is initially either uniformly the relevance of the query is fed back into the system and
distributed or peaked due to an informational prior. Psyacorporated by Bayes’ rule.
chophysical experiments are used to develop a probabilisticThis paper contains two main contributions. First, we give
model for how a human judges images to be similar (theparticle filter (PF) based multitarget tracking algorithm that
"sensor” model). Quantities such as intensity, color, and eddag design explicitly enforces the multitarget nature of the
are found to be important. At each iteration of the algorithnproblem. Each particle is a sample from the joint multitarget
gueries are posed to the user based on entropy measuresdémsity (JMPD) and thus an estimate of the status of the
human responds, and the pmf is updated according to Bayestire system — the number of targets in the surveillance areas
rule. Similarly, Geman [10] studies the situation where a usas well as their individual states. We find that the PF based
has a specific image in mind and the system steps througmaltitarget tracker allows for successful tracking in a highly
sequence of two-image comparisons to the user. The pairnoin-linear non-Gaussian filtering scenario. Furthermore, the
images chosen by the system at each time is the query wh&se implementation allows both target tracking and sensor
answer may result in the lowest resulting Shannon entropyanagement to be done in a computationally tractable manner,
after the user responds. primarily due to our use of an adaptive sampling scheme

Additionally, Zhai and Lafferty [36] use the KL divergencefor particle proposal that automatically factorizes the JMPD
with feedback documents to improve estimation of quemyhen possible. We demonstrate the algorithm by evaluating
models in an application involving retrieval of documentthe sensor management scheme and tracking algorithm on a
from a text-based query. Freund et. al [8] study the rasarveillance area containing ten targets, with target motion that
that the prediction error decreases under divergence-basethken from real recorded target trajectories from an actual
learning as a function of the number of queries for sonmilitary battle simulation.
natural learning problems. Finally, Geman and Jedynak [9]Second, we detail a reinforcement learning approach to
use expected entropy reduction as a means of learning femsor management where thenii divergence is used as the
paths of roads in satellite imagery. method for estimating the utility of taking different actions.

In the signal processing context of multitarget tracking, wehe sensor management algorithm uses the estimated density
use divergence-based methods to learn the number of tardetpredict the utility of a measurement before tasking the
present in the surveillance region as well as their states. This@nsor, thus leading to actions which maximally gain informa-
analogous to learning the target image in a CBIR applicatioion. We illustrate the efficacy of this algorithm in a scenario
We first utilize a target tracking algorithm to recursivelywhere processed sensor measurements consist of detections
estimate the joint multitarget probability density for the set afr no-detections, which leads to a computationally efficient
targets under surveillance. In the CBIR application, the goalgorithm for tasking the sensor. We show that this method
(the image) is a fixed entity and therefore no such trackiraf sensor management yields a ten-fold increase in sensor
algorithm is necessary. In our application, the goal (the humbefficiency over periodic scanning in scenarios considered.
and states of the targets) is a dynamic process that evolves ovéfhe paper is organized in the following manner. In Section
time. The kinematic states and number of targets changellasve review the target tracking algorithm that is central to our
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sensor management scheme. Specifically, we give the detaitsa set of observationZ*. The number of target§ is a

of the JMPD and examine the numerical difficulties involvedariable to be estimated simultaneously with the states df'the
in directly implementing JMPD on a grid. In Section Ill,targets. The observation s&t refers to the collection of mea-
we present our particle filter based implementation of JMPBurements up to and including timkei.e. Z* = {z', 2%, ...z"},

We see that this implementation provides for computationalyhere each of the’ may be a single measurement or a vector
tractable implementation, allowing realistic scenarios to ki measurements made at time

considered. Our sensor management scheme, which is a learfeach of the state vectorsx; in the density
ing algorithm that employs theéRyi divergence as a metric, isp(xlfvxg’ ..xk_ | xk|ZF) is a vector quantity and may
extensively detailed in Section IV. A performance analysis @for example) be of the fornfz, &, 4, 7]’. We refer to each of
the tracker using sensor management on two model problejRé T target state vectors®, xk, ..xk_ xk as a partition

of increasing realism is given in Section V. We includef the multitarget stateX. For convenience, the density
comparisons to a non-managed (periodic) scheme and tWm be written more compactly in the traditional manner as
other sensor management techniques. We briefly illustrate fy&c*|z*) which implies that the state-vectd represents
effect of non-myopic (long term) planning in this informatiory variable number of targets each possessing their own state
theoretic context. We conclude with some thoughts on futlj@ctor. As an illustration, some examples illustrating the

direction in Section VI. sample space qf are
Il. THE JOINT MULTITARGET PROBABILITY DENSITY p(0|Z), the posterior probability density for no targets in the
In this section, we introduce the details of using the Joint surveillance volume
Multitarget Probability Density (JMPD) for target tracking.p(x;|Z), the posterior probability density for one target with
Others have studied Bayesian methods for tracking multiple Statex;
targets [33][26]. The concept of JMPD was discussed by(x;,x,|Z), the posterior probability density for two targets
Kastella [17] where a method of tracking multiple targets with statesx; andxs,
that moved between discrete cells on a line was presenteg(x;, x, x3|Z), the posterior probability density for three
The JMPD is a continuous-discrete hybrid system. We gen- targets with states;,x, andxs

eralize the discussion here to deal with targets that éve

dimensional continuous valued state vectors and arbitrary kine
matics. In the model problems, we are interested in tracki
the position(z,y) and velocity(z,y) of multiple targets and ) _ _
so we describe each target by the four dimensional state vectof "€ JMPD is symmetric under permutation of the target
[z,4,y,9]'. A simple schematic showing three targets (Targe't%d'ces- This symmetry is a fund_amental property .of the JMI_D_D
A, B, and C) moving through a surveillance area is given i@nd not related to any assumptions on the indistinguishability

Here we have suppressed the time superséripterywhere
notational simplicity. We will do this whenever time is not
relevant to the discussion at hand.

Figure 1. There are two target crossings, a challenging scen&tfotargets. The multitarget statX = [x;,xo] and X =
for multitarget trackers. [x2,x1] refer to the same event, namely there are two targets
— one with statex; and one with statex,. This is true
22007 regardless of the makeup of the single target state vector. For
20001 example, the single target state vector may include target ID
or even a target serial number and the permutation symmetry
18001 remains. Therefore, all algorithms designed to implement the
gleoof JMPD (and algorithms that implement the relevance feedback
21400— learning based sensor management) are permutation invariant.
Tg’ Proper treatment of this permutation symmetry has a signifi-
= 12007 cant impact on how to implement particle sampling schemes,
5_‘1000* as described in the Appendix.
ool If the targets are widely separated in the sensor's mea-
Target C surement space, each target’s measurements can be uniquely
600r associated with it, and the joint multitarget conditional density
400 ‘ : : : : : : ) factorizes. In this case, the problem may be treated as a
0 500 1000 1500 2000 2500 3000 3500 4000

X position (meters) collection of single target trackers. The characterizing fea-
ture of multitarget tracking is that in general some of the
Fig. 1. A simple scenario involving three moving targets. The target pathpgeasurements have ambiguous associations, and therefore the

are indicated by the lines, and direction of travel by the arrows. There " . . .
o instances where the target paths cross. EBnditional q_en3|ty does not factorize into a product of single
target densities.

JMPD provides a means for tracking an unknown num- The temporal update of the posterior likelihood on this
ber of targets in a Bayesian setting. The statistics mod#gnsity proceeds according to the usual rules of Bayesian
uses the joint multitarget conditional probability densitfiltering. Given a model of how the JMPD evolves over time
p(xk, x5, ..xk | xk|Z*) as the probability density for ex- p(X*|X*~1), we may compute the time-updated or prediction
actly 7' targets with states?, x5, ..x% | x% attimek based density via
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and be defined for all’, T = 1...00. Next, let the particle
. state vector be written
p(XHZE) = [ aXE XX (Xt ZE ) ()

p(X¥|ZF—1) is referred to as the prior or prediction density Xp = Bo1s Xp2, o X, )

at time k, as it is the density at time: conditioned on where 7}, is the estimate particle has for the number of
measurements up to and including tinhe— 1. The time targets in the surveillance region. Lettiig denote the usual
evolution of the JMPD may be a collection of target kinematipirac delta where it is understood that it is defined on the
models or may involve target birth and death. In the case whejémain of its argument (i.e. finite dimensional real or complex
target identity is part of the state being estimated, differegéctor), we define
kinematic models may be used for different target types.

Given a model of the sensop(z*|X*), and assuming 5(X — X )_{ 0 T+#T, 5)
conditional independence of the measurements given the state, P2 0p(X—X,) otherwise
Bayes’ rule is used to update the posterior density as n

b oo . THen the particle filter approximation to the JMPD is given
measurements”® arrive via

by

p(z*[X*)p(X*|Z+1)
p(z*|ZF 1) @ (X|Z) NZ 5(X —X,) (6)
p ~ Wp — Ay
p(X*|Z*) is referred to as the posterior or the updated p=1

density at timek as it is the density at timé conditioned  piferent particles in the approximation may have different
on all measurements up to and including tife estimates of the number of targets in the surveillance region,

This formulation allows JMPD to avoid altogether thep |n practice, the maximum number of targets a particle may
problem of measurement to track association. There is no ngegdx is truncated at some large finite nuMEgL,, .

to identify which target is associated with which measurement p,icje filtering is a method of approximately solving the
because the Bayesian framework keeps track of the entire jqiptgiction and update equations by simulation [7]. Samples are
multitarget density. _ ~ used to represent the density and to propagate it through time.
In pra_ctlce, the_ sample spaceXf is very large. It cont_alns The prediction equation (eq. 1) is implemented by proposing
all possible configurations of state vectogsfor all possible e\ particles from the existing set of particles using a model
values of7'. The implementation of JMPD given by Kastellgy state dynamics and the measurements. The update equation
[18] approximated the density by discretizing on a grid. It WaRq. 2) is implemented by assigning a weight to each of the

found that the computational burden in this scenario makgsicles that have been proposed using the measurements and
evaluating realistic problems intractable, even when using th& model of state dynamics.

simple model of targets moving between discrete locations INTo make our notation more concrete, assume that a par-

one-dimension. In fact, the number grid cells needed grows@s,|ar particle,X,,, is trackingT,, targets. In the case where
Locations™9¢%, whereLocations is the number of discrete g5qp, target is modelled using the state vester [z, &, v, §]’
)y 1

locations the targets may occupy afidrgets is the number e particle will haveT,, partitions each of which hag

p(X*|ZF) =

of targets. o components:
Thus, we need a method for approximating the JMPD that
leads to more tractable computational burden. In the nextX, = [x,1, Xp2, ... Xp1,]=
section, we show that the Monte Carlo methods collectively
known as particle filtering break this computational barrier. Tp1 Tp2 .o IpT,
Ip71 Z;,,72 e 'Tp,Tp (7)
I1l. THE PARTICLE FILTER IMPLEMENTATION OF JMPD Y1 Yp2 .- UpT,
Yp,1 Yp,2 v Yp, T,

We find that a particle filter based implementation of JIMPD
breaks the computational logjam and allows us to investigateNotice that this method differs from traditional particle
more realistic problems. Other authors [16][34] have investilter tracking algorithms where a single particle corresponds
gated using particle filter algorithms to approximate a multito a single target. The single target/single particle model is
object density in the context of computer vision. The algorithmmappropriate in the multitarget scenario. If each particle is
that we present here introduces an adaptive sampling scheaatiached to a single target, some targets will become particle
that substantially increases the efficiency of particles so asstarved over time. All of the particles tend to attach to the
allow tracking of large numbers of objects with a relativelyarget receiving the best measurements. This method explicitly
few number of particles. enforces the multitarget nature of the problem by encoding

To implement JMPD via a patrticle filter (PF), we approxiin each particle the estimate of the number of targets and
mate the joint multitarget probability densityX|Z) by a set the states of those targets. This technique helps to alleviate
of Np.-+ Weighted samples (particles). First, let the multitargehe particle starvation issue, ensuring that all targets are
state vector be written represented by the particles. This is particularly important in

the challenging scenario of target crossing, and for estimating
X =[x1, X2, ..., X7_1, XT] (3) the number of targets in the surveillance region.
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The permutation symmetry discussed in Section Il is din relevance feedback techniques such as content based image
rectly inherited by the particle filter representation. Eadtetrieval (CBIR). The central element in both is an estimate of
particle contains many partitions (as many as the number aflensity (in our case a multitarget density). This estimate is
targets it estimates are in the surveillance region) and theed to determine the query to perform based on maximizing a
permutation symmetry of JMPD is visible through the fadlivergence measure. The response to the query (measurement)
that the relative ordering of targets may change from particleigthen fed back into the system to further refine the estimate
particle. Algorithms for particle proposal, sensor managemeuottthe multitarget density.
and estimation of target parameters must all be permutatioriThe calculation of information gain between two densities
invariant. f1 and fy is done using the &yi information divergence

Representing the full joint multitarget density rather thaf80][12], also known as the-divergence:
merely using a factorized representation provides the advan-
tage that correlations betweep tgrgets are explicitly'mod'elled. Do (fillfo) = 1 ln/ff‘(x) é—a(x)dm @8)
However, due to the dramatic increase in dimensionality, a a—1

simplistic implementation leads to greatly increased compu-The o, parameter in equation (8) may be used to adjust how
tational burden. The key to computational tractability of thﬁeavily one emphasizes the tails of the two distributigins
particle filter algorithm presented here is an adaptive sampliggg #,. In the limiting case ofx — 1 the Renyi divergence

scheme for particle proposal that automatically factorizes th@comes the more commonly utilized Kullback-Leibler (KL)
JMPD when targets or groups of targets are acting indepjiscrimination (9).

dently from the others (i.e. when there is no measurement to
target association ambiguity), while maintaining the couplings
when necessary. Our multi-partition proposal scheme is out-
lined in the Appendix and more thoroughly in [20].
Estimating the multitarget states from the particle filter
representation of JMPD must be done in a way that is invariant’
to permutations of the particles. Before estimating target states, 1 2
we permute the particles so that each of the particles has the  du(f1, fo) = 5/ (\/ fi(@) — \/fo(x)> dz (10)
targets in the same order. We use the K-means algorithm to
cluster the partitions of each particle, where the optimization is The function D, given in (eq. 8) is a measure of the
done across permutations of the particles. In practice, this ifli§ergence between the densitigsand 1. In our application,
very light computational burden. First, those partitions that a¥¢e are interested in computing the divergence between the
not coupled (see the Appendix) are already correctly orderBggdicted density(X*|Z*~") and the updated density after a
and are not involved in the clustering procedure. Second, sifBgasurement is madg(X*|Z*). Therefore, we write
this ordering occurs at each time step, those partitions that are A A
coupled are nearly ordered already, and so one iteration of thee (p(X |Z%)[Ip(X*|Z )) -
K-means algorithm is enough to find the best permutation. 1

a—1

fo(2) dx
fi(z)
In the case that = 0.5, the Renyi information divergence
elated to the Hellinger-Battacharya distance squared [11]

Iny " p(XF|ZF) p(XF|ZF 1) e 11)
IV. RELEVANCE FEEDBACK LEARNING FORSENSOR X

MANAGEMENT The symbol}_y f(X) is intended to denote the integral over

The goal of the multitarget tracker is to learn the numbdhe domain. This can be precisely written as
and states of a set of targets in a surveillance region. This goal -
is to be obtained as quickly and accurately as possible by using N
the sensor in the best manner possible. A good measure of the /de(X) o TZ:O/Xm"'XTf(X) (12)
quality of each sensing action is the reduction in entropy of
the posterior distribution that is expected to be induced byAfter some algebra and the incorporation of Bayes'’ rule (eq.
the measurement. Therefore, at each instance when a seRsopduation (11) can be simplified to
is available, we use a divergence based method to compute - A
the best sensing action to take (the query). This is done by« (p(X*Z8)||p(X*F|ZE71)) =
first enumerating all possible sensing actions. A sensing action 1 1 N ,
may consist of choosing a particular mode (e.g. SAR mode , _ llnp(z|zk71)a Zp(xk|zk p(2|XF)"
or GMTI mode), a particular dwell point/pointing angle, or a x
combination of the two. Next, thexpectednformation gain  The integral over the domain reduces to a summation since
is calculated for each of the possible actions, and the actiany discrete approximation @f X*|Z*~1) only has nonzero
that yields the maximum expected information gain is takeprobability at a finite number of target states. In the particle
The measurement received is treated as the relevance feedbfiltds. case, the approximation consists of only a set of samples
This measurement is used to update the JMPD, which isand associated weights from the density. In the special case
turn used to determine the next measurement to make. where the positions of the particles in both sets are identical
As mentioned earlier, our paradigm for sensor manageméwhich they are in this application since the two densities differ

is analogous to the machine learning methodologies presenty in that one has been measurement updated and one has

(13)
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not) it is possible to compute the divergence by straightforwaed it only depends on the likelihood of the measurements given
calculation. the particles.

Our particle filter approximation of the density (eq. 6) We have specialized here to the case where the measure-
reduces equation (13) to ments are thresholded (binary), but make the following general

comments about the extension to more complicated scenarios.

Do (p(X*|Z9)||p(X*|ZF1)) = It is straightforward to extend the binary case to a situation

Nypare where the measurementmay take on one of a finite number
bt wyp(aX ) (14) of values. This would be relevant in a situation where, for
a—1" p(z)~ = example, raw sensor returns are passed through an automatic

target recognition algorithm and translated into target identi-

where fications that come from a discrete set of possibilities. In the
Nyare case wherez is continuous valued, the integral of equation

_ (16) would have to be solved approximately, perhaps using the

p(z) = Z wpp(2(Xy) (15) same importance sampling strategy that the particle filtering
technigue uses to solve equations (1) and (2).

We note here that the sensor moggk|X,) is used 0 |n summary, our sensor management algorithm is a recur-
incorporate everything known about the sensor, includingye algorithm that proceeds as follows. At each occasion
signal to noise ratio, detection probabilities, and even whethghere a sensing action is to be made, we evaluate the expected
the locations represented B, are visible to the sensor.  information gain as given by equation (18) for each possible

We would like to choose to perform the measurement th@énsing actionn. We then perform the sensing action that

makes the divergence between the current density and {figes maximal expected information gain. The measurement
density after a new measurement has been made as largghae is fed back into the JMPD via Bayes' rule.

possible. This indicates that the sensing action has maximally
increased the information content of the measurement updaAedOn the Value ofv in the Renyi Divergence
density,p(X*|Z*), with respect to the density before a mea-" o _ _
surement was made(X*|Z+~1). .The I%ny|.d|v_ergen_ce ha§ been used in thg past in many
We propose, then, as a method of sensor managem@H?rse appl|c§1t|on§, including content—ba;ed image retrieval,
calculating the expected value of equation (14) for each Bfiage georegistration, and target detection [12][11]. These
them (m = 1...M) possible sensing actions and choosing thgudies provide guidance as to the optimal choiceof
action that maximizes the expectation. In this notatiorefers /N the georegistration problem [12] it was empirically
to any possible sensing action under consideration, includifi§termined that the value of leading to highest resolution
but not limited to sensor mode selection and sensor be&fHSters around eithem = 1 or o = 0.5 corresponding to
positioning. In this manner, we say that we are making ifige KL _dl_vergence and the Hellinger affinity respepnvely. _The
measurement that maximizes the expected gain in informati@§ermining factor appears to be the degree of differentiation

The expected value of equation (14) may be written Hetween the two densities under consideration. If the densities
an integral over all possible outcomes, when performing &€ Very similar, i.e. difficult to discriminate, then the indexing
sensing actionn: ’ performance of the Hellinger affinity distance € 0.5) was

observed to be better that the KL divergence= 1). These
< Dy >m= empirical results give reason to believe that either 0.5 or
«a = 1 are good choices. We investigate the performance of
/dzmp(zm\zk‘l)Da (p(X*|Z*)||]p(X¥|ZF~"))  (16) our scheme under both choices in Section V.
An asymptotic analysis [12] shows that = .5 results
In the special case where measurements are thresholifethe maximum discriminatory ability between two densities
(binary) and are therefore either detections or no-detectioigt are very similar. The value = .5 provides a weighting

p=1

(i.e. z = 0 or z = 1), this integral reduces to which stresses the tails, or the minor differences, between two
- distributions. In the case where the two densities of interest are
< Do >m=p(z = 0Z""")Da|m,z=0 very similar (as in our application where one is a prediction
(2 = 1|Zk—1)Da|m7Z:1 17) d_enS|ty and oneis a mea_surement updated_densny), the salient
differences are in the regions of low probability, and therefore
Which, using equation (14) results in we anticipate that this choice of will yield the best results.
< Do >m= B. Extensions to Non-Myopic Sensor Management
1 ! 1 Nper o The sensor management algorithm proposed here is myopic
o1 Zp(z)l”p(z)a wpp(2|Xp) (18) in that it does not take into account long-term ramifications of
z=0

p=1 the current sensing action when deciding the optimal action. In
Computationally, the value of equation (18) can be calcgome scenarios, the greedy approach may be close to optimal.

lated for M possible sensing actions (M N,..). Notice However, in scenarios where the dynamics of the problem are

that the sensor management algorithm is permutation invarighanging in a predictable manner, tracking performance may
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benefit from non-myopic scheduling. For example, if a targéitme delayed so there are two times during the simulation
is about to become invisible to a sensor (e.g. by passing intthere targets cross paths (i.e. come within sensor resolution).

an area where the target to sensor line of sight is obstructedyhe target kinematics assumed by the filter (eq. 1) are CV as
extra sensor dwells should be tasked immediately before {ghe simulation. At each time step, a setlofnot necessarily
target disappears. This will tend to reduce the uncertaindystinct) cells are measured. The sensor is at a fixed location
about this target at the expense of the other targets, bulisove the targets and all cells are always visible to the sensor.
justified because the target will be unable to be measuredyghen measuring a cell, the imager returns eithed o

the next epoch due to obstruction. Our ability to predict timgfetection) or a (detection) which is governed by a probability
when targets will become invisible is of course tied to havingf getection £.) and a per-cell false alarm rate’(). The
accurate ancillary information, such as sensor trajectories %?Qnal to noise ratio{ N R) links these values together. In this
ground elevation maps. We propose as a first step towards nq{istration. we takeP; = 0.5, and Py = Pf*SNR) which is
myopic sensor management a Monte Carlo rollout techniqyesiandard model for thresholded detection of Rayleigh returns

IikeAthat Ei"_e” by Castanon [1].d o is (6 be mad f_[2]. When there ard” targets in the same cell, the detection
t each time a measurement decision is to be made, we first, . . LN
ability increases according t8,(7)=P,;*"**"". This

i 0
enumerate all possible measurements and the correspon(% i . .
expected information gains. For each candidate measuremé} el is known by the filter and used to evaluate equation (2).

we simulate making the measurement based on our estimae[g] fllfrtﬁ |n|t|ag|zedfv;nth 1t0/0 O; tl?e parttl_clest T th?_r::orrectt f
JMPD, update the density to the next time step based ﬁe( oth number of targets and kinematic state). The rest o

the simulated measurement received, and compute the ac{ugl particles are uniformly distributed in both the number of

information gain received under this simulated measuremeﬁﬁ’ggets and kinematic state.
We can then compute the expected gains of all possible¥Ve contrast the performance of the tracker when the sensor
measurements at the new time, and the actual gain recei#§S @& non-managed (periodic) scheme with the performance
plus the maximum expected gain at the new time give tmghen the sensor uses the relevance feedback based manage-
total information gain for making the particular measuremerif’€nt scheme presented in Section IV. The periodic scheme
Running th|s procedure many times gives a Monte Carmeasures eaCh. Ce” N Sequence. At tlmece”S 1...L al’e.
estimate of the 2-step ramification of making a particuldﬁeasured- At §|me2, celI; L + 1..2L are measured. This
measurement. Extensions to n-step are straightforward, Bgfuence continues until all cells have been measured, at
computationally burdensome. which time the scheme resets. The managed scheme uses
It should be noted that due to the nature of the sendb€ expected information divergence to calculate the best
management problem, the number of decision trajectorieslisCells 10 measure at each time. This often results in the
exponential in the number of time steps that the algorithi@Me cell being measured several times at one time step.
wishes to look ahead. However, as many of these trajectorME'“me measurements m.ade in the same (':e'll are independent
are clearly poor paths, optimization techniques (e.g. A-staféf- €ach measurement in a target containing cell returns a
may be useful to prune the set of trajectories that need to gtection with probabilityP; irrespective of whether earlier
searched to find the best path. measurements resulted in a detection).
Figure 2 presents a single-time snapshot, which graphically
V. SIMULATION RESULTS illustrates the difference in behavior between the two schemes.
In this section, we provide simulation results to show the
benefit of sensor management in the multitarget tracking sce
nario. We first present a synthetic scenario and then proceed"
a more realistic scenario using real recorded target trajectorie 10
from a military battle simulation. In both cases, we assume .
the sensor is limited by time, bandwidth and other physical$
constraints which only allow it to measure a subset of theg ¢
surveillance area at any epoch. We conclude with preliminary”
results on the benefit of non-myopic sensor scheduling. N
A. An Extensive Evaluation of Sensor Management Perfor 2 4 6 8 10 12 2 4 6 8 10 12
mance Using Three Simulated Targets X Position X Position
We gauge the performance of the sensor managemE€it2. Comparison of manage(tji ?ggi Ron-mag,agedhtracking performance. (kL)d
H : . INg sensor management, an perioaic scheme. argets are marke
scheme by ConSIde”ng the following model prOb,lem' Thetéﬁth an asterisk, the covariance of the filter estimate is given by the ellipse,
are three targets moving on B x 12 sensor grid. Each and grey scale is used to indicate the number of times each cell has been
target is modelled using the four-dimensional state vectmeasured at this time step (the total number of looks is identical in each
. .1y . . . ; scenario). In the periodic scenario, one twelfth of the region is scanned at each
[Mv?/’y] . Target mo_tlon 1S SImUIateq using _a constan ime step starting at the bottom and proceeding to the top before repeating
velocity (CV) model with large plant noise. Motion for eachcells scanned at this epoch are indicated by the white stripe). With sensor
target is independent. The trajectories have been shifted arahagement, measurements are used only in areas that contain targets.

Managed Scan Periodic Scan

12

N
Y Position




Qualitatively, in the managed scenario the measuremer
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1.

are focused in or near the cells that the targets are il 4, —+ a=0.99999
Furthermore, the covariance ellipses, which reflect the curre g g:g:i
state of knowledge of the tracker conditioned on all previou
measurements, are much tighter. In fact, the non-manag &
scenario has confusion about which tracks correspond to whi«uz 0.9
target as the covariance ellipses overlap. g08
A more detailed examination is provided in the Monte Carlcg 0.7
simulation results of Figure 3. We refer to each cell tha 06
is measured as a “Look”, and are interested in empiricall 0.5
determining how many looks the non-managed algorithr 0.4
requires to achieve the same performance as the manag 5 3 4 5 6 o9 12 415 1®

algorithm at a fixed number of looks. The sensor manageme

SNR

algorithm was run with24 looks (i.e. was able to scadd _ o
cells at each time step) and is compared to the non-managll’: f® L GTTEE e et e the fiter dynamics match the.
scheme with24 to 312 looks. Here we takex = 0.99999  actual target dynamics, the algorithm is insensitive to the choice. of
(approximately the KL divergence) in equation (9). It is found

that the non-managed scenario needs approximat@lyooks

to equal the performance of the managed algorithm in terrBs A Comparison Using Ten Real Targets

of RMS error. Multitarget RMS position error is computed by We test the sensor management algorithm again using a
taking the average RMS error across all targets. The sensor

. . ) - .~ modified version of the above simulation, which is intended to
manager is approximately3 times as efficient as allocatlngd

. . - o monstrate the technique in a scenario of increased realism.
the sensors without management. This efficiency implies t : .
. . . - ere we have ten targets moving in #00m x 5000m
in an operational scenario target tracking could be done wit| . : .
. : urveillance area. Each target is modelled using the four-
an order of magnitude fewer sensor dwells. Alternatively pu imensional state vectdt, &y, ]’ . Target trajectories for
more targets could be tracked with the same number of to E T: Yy Y 9 )

. . simulation come directly from a set of recorded data
resources when this sensor management strategy is emplo%%%.ed on GPS measurements of vehicle positions over time

collected as part of a battle training exercise at the Army’'s
National Training Center. Targets routinely come within sensor
cell resolution (i.e. crossing trajectories). Therefore, there
is often measurement to track ambiguity, which is handled
automatically by JMPD since there is no measurement to
track assignment necessary. Target positions are recorded at
1 second intervals, and the simulation duration is 1000 time
steps. Images showing the road network and the positions of
the targets at three different times is given in Figure 5.

The filter again assumes constant velocity motion with large
plant noise as the model of target kinematics. However, in
this case the model is severely at odds with the actual target
behavior which contains sudden accelerations and move-stop-
move behavior. This model mismatch adds another level of
difficulty to this scenario that was not present previously. We
use 500 particles, each of which is tracking the states of all
ten targets, and therefore each particle has 40 dimensions.

At each time step, an imager is able to measure cells in
The median error versus signal to noise ratio (SNR). Managgae surveillance arga by making measurements On,a grid with
100mx100m detection cell resolution. The sensor simulates a
moving target indicator (MTI) system in that it may lay a beam
down on the ground that is one resolution cell wide and ten

To determine the sensitivity of the sensor managemenmsolution cells deep. Each time a beam is formed, a vector
algorithm to the choice ofy, we test the performance withof measurements (a vector zeros and ones corresponding to
a = .1, a=.5 anda ~ 1. Figure 4 shows that in this non-detections and detections) is returned, one measurement
case, where the actual target motion is very well modellédr each of the ten resolution cells. In this simulation, we refer
by the filter dynamics, that the performance of the senstr each beam that is laid down as a “Look”.
management algorithm is insensitive to the choicexoiWe As in the previous simulation, the sensor is at a fixed
generally find this to be the case when the filter model Iscation above the targets and all cells are always visible to
closely matched to the actual target kinematics. the sensor. When making a measurement, the imager returns

-+ periodic 24 looks
=¥ periodic 72 looks
-©- periodic 120 looks
-B- periodic 216 looks
=% periodic 312 looks
=== \anaged 24 looks

Median Error

R R R .

SNR

Fig. 3.
performance with24 looks is similar to non-managed withil2 looks.

~
~
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5000 10000
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Fig. 5. Three time sequential snapshots showing the ten-target case under consideration. The positions of the targets are each marked with an asterisk. Th

backdrop is the hospitability — a military product that indicates the terrain drivability. Road networks are visible (high drivability, hence a white color).

50 Trials usinga = 0.1

w
o
=]

either a0 (no detection) or al (detection) governed by

Py, P;, and SNR. In this illustration, we takeP; = 0.5, 5250
SNR =2, andP; = P(§1+SNR). When there ard” targets in 7;;200
the same ?fs”N Ighe detection probability increases according to g 5
P, (T):Pdm . % 100
We compare first the performance of the sensor management ‘g .
algorithm under different values af in equation (8). This -y
problem is more challenging then the simulation of Section © % 1020 3 40 50 60 70 80 90 100
V-A for several reasons (e.g. number of targets, number 50 Trials usinga = 0.5 00 50 Trials using = 0.99999

target crossing events, and model mismatch). Of particulj@f
interest is the fact that the filter motion model and actual targjju
kinematics do not match very well. The asymptotic analyss
performed previously (see Section IV-A) leads us to believg 1%
thata = 0.5 is the right choice in this scenario.

In Figure 6, we show the results 66 Monte Carlo trials
using our sensor management technique with- 0.1, o = o o
0.5, anda = 0.99999. The statistics are summarized in Table ~ ° *© 20 30 9 50 59 70 80 90 100 0 10 20 30 4 o ey 70 80 90100
I. We find that indeed the sensor management algorithm with
«a = 0.5 performs best here as it does not lose track on any@?ﬁees' of
the 10 targets during any of thg0 simulation runs. We define
the track to be lost when the filter error remains abaoe
meters after some point in time. Both thex 1 anda = 0.1
case lose track of targets on several occasions.

250

N
a
=)

200

N
o
=]

=
o
=}
=
o
=)

o
S
o
=]

Position Error (Ten Target Average)
I
o

Position Error (

A comparison of sensor management performance under different
the Rnyi divergence parametet,

restrict the portion of the surveillance area that the sensor
will consider measuring. The particle filter approximation of

TABLE | the time updated JMPD (equation 1) is used to predict the
SENSOR MANAGEMENT PERFORMANCE WITH DIFFERENT VALUES Oe.  location of each of the targets at the current time. The set of
cells that the sensor manager considers is then restricted to
Mean Position those cells containing targets plus the surrounding cells, for a
Position Error total of 9 cells in consideration per target. The dwells are then
a Error(m)  Variance (m) I ted d | th ted Il
01 7957 61401 allocated randomly among the gated cells.
0.5 47.28 140.25 Sensor management algorithm “B” tasks the sensor based
0.99999  57.44 1955.54

on the estimated number of targets in each sensor cell.
Specifically, the particle approximation of the time updated

Due to the asymptotic analysis and these empirical resud®/PD is projected into sensor space to determine the filter's
we employa = .5 for the rest of the comparisons involvingestimate of the number of targets in each sensor cell. The cell
this scenario. to measure is then selected probabilistically, favoring cells that

In addition to a comparison between the divergence bas@@ estimated to contain more targets. In the single target case,
sensor management algorithm and a naive periodic scheiifiés method breaks down to measuring the cell that is most
we consider two additional methods of sensor managemeritkely to contain the target.

Sensor management algorithm “A” manages the sensor byWe compare the performance of the various managed strate-
pointing it at or near the estimated location of the targetgies and the periodic scheme in Figure 7 by looking at RMS
Specifically, algorithm “A” performs a gating procedure tarror versus number of sensor dwells. As before, multitarget
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RMS error is computed by taking the average RMS erraurrent time. This implies that at odd time steps it will only
across all targets. In all cases, the filter is initialized with thmeasure targets that are visible to the sensor, but at even
true number and states of the targets.

=
o
w

RMS Error (m)

=
(=}
N

Performance of Divergence Based Sensor Management

-8~ Periodic Scan
—4— Method A
Method B
-m— a-Divergence (a=.5)

10

10°

Number of Looks

time steps will have no preference as to which targets to
measure. Intuitively, we would like the manager to measure
targets that are about to become obscured from the sensor
preferentially, since the system must wait two time steps to
have an opportunity to revisit.

The non-myopic sensor management technique discussed
in IV-B takes the dynamics of the scene into account. When
making a measurement at even time steps it prefers to measure
those targets that will be invisible at the next time step, because
it rolls out the ramifications of its action and determines the
best action to take is to measure targets that are about to
become obscured since this will result in the maximum total
(2-step) information gain.

We show in Figure 8 the results of tracking in this challeng-
ing scenario. It turns out that it is only modestly important
to be non-myopic. Myopic sensor scheduling results in loss
of track approximately 22% of the time, while non-myopic
scheduling only loses track 11% of the time. It is especially
important to be non-myopic around time stef0, where the

dynamics of the problem accelerate due to the speed up of
Fig. 7. A comparison of the performance of the various managed strategigsme of the targets.
and the periodic scheme in terms of RMS error versus number of looks.
The a-divergence strategy out performs the other strategies, afd ktoks
performs similarly to non-managed wift50 looks. =TT

350 il

Comparison between Myopic and 2-step SM Comparison between Myopic and 2-step SM

Figure 7 shows that the non-managed scenario needs o
proximately 750 looks to equal the performance of the mans ,,, 4

Error

Median Track Error

aged algorithm in terms of RMSE error. We say that the sens's 200 ot

manager is approximatelys times as efficient as allocating §15° /’

the sensors without management. Furthermore, the additio * o AL 2
sensor management schemes perform more poorly than S T R e M 1502‘5‘:(;’0“°”;"5V[)°”'°300

Time Step Time Step

divergence driven method.
As mentioned in Section IV, this technique provides for. . . .
- . . L ig. 8. A comparison of sensor management performance in the myopic
an efficient algorithm computationally. Modestly optimize@greedy) case and in the 2-step non-myopic case.
MatLab’ code running on an off-the-shelf 2.8 GHz Linux
machine tracks using the sensor management algorithm on
three targets (section V-A) in about 10% longer than real-time. VI. DISCUSSION
Tracking the targets using just a periodic scan in the 3 targetwe have applied an approach that is common in the
scenario is done 3-4 times faster than real time. Tracking tefachine learning literature, known as relevance feedback
targets with sensor management is about 10 times slower th@arning, to provide a method for managing agile sensors.
real time. This owes mainly to the fact that more sensor dweffhe sensor management algorithm is integrated with the
are required to be scheduled and that there is more opportunéyet tracking algorithm in that it uses the posterior density
for targets to be coupled (closely spaced) which requires theX|Z) approximated by the multitarget tracker via particle
CP algorithm rather than the IP algorithm (see the AppendiXjitering. In this case, the posterior is used in conjunction
The non-managed tracking algorithm runs in real time.  with target kinematic models and sensor models to predict
which measurements will provide the most information gain.
C. The Effect of Non-Myopic Scheduling In simulated scenarios, we find that the tracker with sensor
Finally, we give some preliminary results on the ramimanagement gives similar performance to the tracker without
fications of non-myopic (long-term) sensor management sensor management with more than a ten-fold improvement
algorithm performance. We inspect a challenging scenarioiih sensor efficiency. Furthermore, the algorithm outperforms
which the sensor is prevented from seeing half of the regisimplistic sensor management strategies that are predicated on
every other time step. At even time steps, all of the targets aeoking where the target is expected to be.
visible; at odd time steps only half of the targets are visible.
For the purposes of exposition, we assume that this pattern is APPENDIXI
fixed and known ahead of time by the sensor manager. ADAPTIVE SAMPLING FOR PARTICLE PROPOSAL
The myopic (greedy) management scheme simply measuregstimating the entire joint density rather than a factorized
the targets whose expected information gain is highest at #hygproximation provides the advantage that the correlations
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between targets are modelled. However, the dramatic increpgssitioned before this method is applied. If IP is applied to
in dimensionality requires advanced sampling schemes pgarticles that have different orderings of partitions, multiple
prevent undue computational burden. We detail herein tkergets will be grouped together and erroneously used to
adaptive sampling scheme we utilize to provide computationaopose the location of a single target.
tractability. A more thorough treatment of this topic is given In the case of well separated targets, this method allows
in [20]. many targets to be tracked with the same number of particles
The standard method of particle proposal used in the litereeded to track a single target. Indeed, as mentioned earlier,
ature, which we will refer to as sampling from the kinematim the case of well separated targets, the multitarget tracking
prior, proposes new particlexf; at time k using only the problem breaks down into many single-target problems. The
particles at timek — 1, X’;‘l, and the model of target IP method is useful for just this case, as it allows the targets
kinematicsp(X*|X*~1). For each target in each particle ato be treated independently when their relative spacing deems
time £ — 1, the model of single target kinematics is usethat appropriate. Note, however, that this method is not ap-
to propose a new state. This method has the benefit thaplicable when there is any measurement-to-target association
is simple to implement and is computationally inexpensivambiguity. Therefore, when targets are close together in sensor
However, one obvious drawback is that it does not talgpace, an alternative method must be used.
advantage of the fact that the state vector in fact represent®) Coupled Partition (CP) Proposal Methodhen targets
many targets. Targets that are far apart in measurement spaiee close together in sensor space, we say that the corre-
behave independently and should be treated as such. A secgpehding partitions are coupled. In these instances, the IP
drawback, common to many particle filtering applications, imethod is no longer applicable, and another method of particle
that the current measurements are not used when propogingposal such as Coupled Partitions (CP) must be used. The
new particles. These two considerations taken together restiR algorithm for particle proposal is permutation independent.
in a very inefficient use of particles and therefore require largeWe apply the coupled partitions method as follows. To
numbers of particles to successfully track. propose partition; of particle p, CP proposesM possible
To overcome these deficiencies, we have employed an alte@lizations of the future state using the kinematic prior. The
native particle proposal technique which biases the propoddl proposed futures are then given weights according to the
process towards the measurements and allows for factorizatimmrent measurements and a single representative is selected.
of the target state when permissible. These techniques &hés process is repeated for each particle untilithiepartition
collectively called multi-partition proposal (MPP) strategiedor all particles has been formed. As in the IP method, the final
The MPP strategies propose each partition (target) in a partiperticle weights must be adjusted for this biased sampling.
separately, and form new particles as the combination of theThis algorithm is a modified version of the traditional SIR
proposed partitions. Particle weighting is then appropriatelgchnique that operates on partitions individually. It improves
adjusted to account for this biased sampling. tracking performance over SIR at the expense of additional
In this manner, particles are herded towards the correxmputations.
location of state space. Both of these measurement-aide®@) Adaptive Particle Proposal Methodsince at any partic-
techniques still rely on the kinematic prior for proposingilar time, some of the partitions are coupled while others are
particles and so all proposed particles are consistent with theependent, we propose a hybrid sampling scheme, called
model of target kinematics. the Adaptive-Partition (AP) method. The adaptive-partition
1) Independent-Partition (IP) MethodThe independent method again considers each partition separately. Those parti-
partition (IP) method given by Orton [28] is a convenientions that are sufficiently well separated according to a given
way to propose particles when part or all of the joint mulmetric from all other partitions (see below) are treated as
titarget density factorizes. When applicable, we apply thedependent and proposed using the IP method. When targets
Independent-Partition (IP) method of Orton to propose neave not sufficiently distant, the CP method is used. Therefore,
partitions independently as follows. For a partitigneach the AP method is permutation independent, as it only uses IP
particle at timek — 1 has it's ' partition proposed via the when target partitions are already identically ordered.
Kinematic prior and weighted by the measurements. From thisTo determine when targets are sufficiently separated, we
set of N+ Weighted estimates of the state of the target, have employed distance measures between the estimated cen-
we selectN,,,. samples with replacement to form th& ters of thei'" partition and thej*" partition (both a Euclidian
partition of the particles at timé. metric and the Mahalanobis metric) as well as a simple
Recall that in our paradigm a partition corresponds to reearest-neighbor type criterion. In practice, it is found that
target. See equation (7) for a concrete example of a partisienply using a nearest neighbor criterion is sufficient and less
and its partitions. A particle is then built by combining theomputationally burdensome.
individual partitions selected and reweighting correctly to The AP method dramatically increases the efficiency of
compensate for the biased sampling. each particle, by automatically factorizing the state into a
It is important to carefully account for the permutatioproduct of independent partitions and coupled partitions. In
symmetry issue discussed in Section Il here. The IP methtite extreme case where all targets are well separated the
of [28] is not permutation independent as it assumes that tA® method operates like a set of single target filters. In the
it" partition of each particle corresponds to the same targepposite extreme where all targets are coupled the AP method
Therefore the partitions in each particle must be identicalgorrectly models the correlation between targets.
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