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Sensor Management
Using Relevance Feedback Learning

Chris Kreucher*, Keith Kastella and Alfred O. Hero III,IEEE Fellow

Abstract— An approach that is common in the machine learn-
ing literature, known as relevance feedback learning, is applied
to provide a method for managing agile sensors. In the context of
a machine learning application such as image retrieval, relevance
feedback proceeds as follows. The user has a goal image in mind
that is to be retrieved from a database of images (i.e., learned by
the system). The system computes an image or set of images to
display (the query). Oftentimes, the decision as to which images
to display is done using divergence metrics such as the Kullback-
Leibler (KL) divergence. The user then indicates the relevance of
each image to his goal image and the system updates its estimates
(typically a probability mass function on the database of images).
The procedure repeats until the desired image is found. Our
method for managing agile sensors proceeds in an analogous
manner. The goal of the system is to learn the number and states
of a group of moving targets occupying a surveillance region. The
system computes a sensing action to take (the query), based on a
divergence measure called the Ŕenyi divergence. A measurement
is made, providing relevance feedback and the system updates its
probability density on the number and states of the targets. This
procedure repeats at each time where a sensor is available for
use. It is shown using simulated measurements on real recorded
target trajectories that this method of sensor management yields
a ten fold gain in sensor efficiency when compared to periodic
scanning.

EDICS Category: 2-INFO

Index Terms— Sensor Management, Machine Learning, Rele-
vance Feedback, Multitarget Tracking, Particle Filtering, Joint
Multitarget Probability Density.

I. I NTRODUCTION

T HE problem of sensor management is to determine the
best way to task a sensor or group of sensors when

each sensor may have many modes and search patterns.
Typically, the sensors are used to gain information about the
kinematic state (e.g. position and velocity) and identification
of a group of targets. Applications of sensor management are
often military in nature [27], but also include things such
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as wireless networking [23] and robot path planning [24].
There are many objectives that the sensor manager may be
tuned to meet, e.g. minimization of track loss, probability
of target detection, minimization of track error/covariance,
and identification accuracy. Each of these different objectives
taken alone may lead to a different sensor allocation strategy
[27][29].

Many researchers have approached the sensor scheduling
problem with a Markov decision process (MDP) strategy.
However, a complete long-term (non-myopic) scheduling so-
lution suffers from combinatorial explosion when solving
practical problems of even moderate size. Researchers have
thus worked at approximate solution techniques. For Example,
Krishnamurthy [22][21] uses a multi-arm bandit formulation
involving hidden Markov models. In [22], an optimal algo-
rithm is formulated to track multiple targets with an ESA
that has a single steerable beam. Since the optimal approach
has prohibitive computational complexity, several suboptimal
approximate methods are given and some simple numerical
examples involving a small number of targets moving among
a small number of discrete states are presented. Even with
the proposed suboptimal solutions, the problem is still very
challenging numerically. In [21], the problem is reversed, and
a single target is observed by a single sensor from a collection
of sensors. Again, approximate methods are formulated due
to the intractability of the globally optimal solution. Bert-
sekas and Castanon [1] formulate heuristics for the solution
of a stochastic scheduling problem corresponding to sensor
scheduling. They implement a rollout algorithm based on their
heuristics to approximate the stochastic dynamic programming
algorithm. Additionally, Castanon [3][4] formulates the prob-
lem of classifying a large number of stationary objects with
a multi-mode sensor based on a combination of stochastic
dynamic programming and optimization techniques. Malhotra
[25] proposes using reinforcement learning as an approximate
approach to dynamic programming.

Recently, others have proposed using divergence measures
as an alternative means of sensor management. In the context
of Bayesian estimation, a good measure of the quality of a
sensing action is the reduction in entropy of the posterior
distribution that is induced by the measurement. Therefore,
information theoretic methodologies strive to take the sensing
action that maximizes the expected gain in information. The
possible sensing actions are enumerated, the expected gain
for each measurement is calculated, and the action that yields
the maximal expected gain is chosen. Hintz et. al. [14][13]
focus on using the expected change in Shannon entropy when
tracking a single target moving in one dimension with Kalman
Filters. A related approach uses discrimination gain based on a
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measure of relative entropy, the Kullback-Leibler (KL) diver-
gence. Schmaedeke and Kastella [31] use the KL divergence to
determine optimal sensor-to-target tasking. Kastella [17][19]
uses KL divergence to manage a sensor between tracking
and identification mode in the multitarget scenario. Others
use similar information based approaches in the context of
active vision [6][32]. Zhao [37] compares several approaches,
including simple heuristics, entropy, and relative entropy (KL).

Divergence-based adaptivity measures such as the KL diver-
gence are a common learning metric that have been used in
the machine learning literature in techniques with the names
“active learning” [35], “learning by query” [8], “relevance
feedback” [38][5], and “stepwise uncertainty reduction” [10].
These techniques are iterative procedures in which the system
provides a set of items to the user as a query, the user indicates
the relevance of the retrieved items, and the system adaptively
chooses new queries based on the user feedback. The ultimate
goal is to learn something from the user in an interactive
manner.

A specific example of the role of divergence measures in
machine learning is the interactive search of a database of
imagery for a desired image, also called content based image
retrieval (CBIR). Cox et. al. [5] associates a probability of
being the correct image to each image in a database. The
probability mass function (pmf) is initially either uniformly
distributed or peaked due to an informational prior. Psy-
chophysical experiments are used to develop a probabilistic
model for how a human judges images to be similar (the
”sensor” model). Quantities such as intensity, color, and edges
are found to be important. At each iteration of the algorithm,
queries are posed to the user based on entropy measures, the
human responds, and the pmf is updated according to Bayes’
rule. Similarly, Geman [10] studies the situation where a user
has a specific image in mind and the system steps through a
sequence of two-image comparisons to the user. The pair of
images chosen by the system at each time is the query whose
answer may result in the lowest resulting Shannon entropy
after the user responds.

Additionally, Zhai and Lafferty [36] use the KL divergence
with feedback documents to improve estimation of query
models in an application involving retrieval of documents
from a text-based query. Freund et. al [8] study the rate
that the prediction error decreases under divergence-based
learning as a function of the number of queries for some
natural learning problems. Finally, Geman and Jedynak [9]
use expected entropy reduction as a means of learning the
paths of roads in satellite imagery.

In the signal processing context of multitarget tracking, we
use divergence-based methods to learn the number of targets
present in the surveillance region as well as their states. This is
analogous to learning the target image in a CBIR application.
We first utilize a target tracking algorithm to recursively
estimate the joint multitarget probability density for the set of
targets under surveillance. In the CBIR application, the goal
(the image) is a fixed entity and therefore no such tracking
algorithm is necessary. In our application, the goal (the number
and states of the targets) is a dynamic process that evolves over
time. The kinematic states and number of targets change as

the targets move through the surveillance region. Therefore
we include a model of the evolution of the joint multitarget
density into our framework.

In a manner similar to the way query images are chosen
in the CBIR application, at each iteration of our algorithm
we use a divergence-based metric to decide on the optimal
query to pose. The decision as to how to use a sensor
then becomes one of determining which sensing action will
maximize the expected information gain between the current
joint multitarget probability density and the joint multitarget
probability density after a measurement has been made. In
this work, we consider a more general information measure
called the Ŕenyi Information Divergence [30] (also known as
the α-divergence), which reduces to the KL divergence under
a certain limit. The Ŕenyi divergence has additional flexibility
in that in allows for emphasis to be placed on specific portions
of the support of the densities to be compared. To the best of
our knowledge, this is the first time Rényi divergence has been
used in this setting. In contrast to CBIR, our query takes the
form of making a measurement with a physical sensor rather
than asking the user whether one image or another is closer to
the desired image. Our physical sensor is able to be modelled
quite precisely, while modelling a human ”sensor” is quite
difficult [5]. In either the human or the physical sensor case,
the relevance of the query is fed back into the system and
incorporated by Bayes’ rule.

This paper contains two main contributions. First, we give
a particle filter (PF) based multitarget tracking algorithm that
by design explicitly enforces the multitarget nature of the
problem. Each particle is a sample from the joint multitarget
density (JMPD) and thus an estimate of the status of the
entire system – the number of targets in the surveillance areas
as well as their individual states. We find that the PF based
multitarget tracker allows for successful tracking in a highly
non-linear non-Gaussian filtering scenario. Furthermore, the
PF implementation allows both target tracking and sensor
management to be done in a computationally tractable manner,
primarily due to our use of an adaptive sampling scheme
for particle proposal that automatically factorizes the JMPD
when possible. We demonstrate the algorithm by evaluating
the sensor management scheme and tracking algorithm on a
surveillance area containing ten targets, with target motion that
is taken from real recorded target trajectories from an actual
military battle simulation.

Second, we detail a reinforcement learning approach to
sensor management where the Rényi divergence is used as the
method for estimating the utility of taking different actions.
The sensor management algorithm uses the estimated density
to predict the utility of a measurement before tasking the
sensor, thus leading to actions which maximally gain informa-
tion. We illustrate the efficacy of this algorithm in a scenario
where processed sensor measurements consist of detections
or no-detections, which leads to a computationally efficient
algorithm for tasking the sensor. We show that this method
of sensor management yields a ten-fold increase in sensor
efficiency over periodic scanning in scenarios considered.

The paper is organized in the following manner. In Section
II, we review the target tracking algorithm that is central to our
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sensor management scheme. Specifically, we give the details
of the JMPD and examine the numerical difficulties involved
in directly implementing JMPD on a grid. In Section III,
we present our particle filter based implementation of JMPD.
We see that this implementation provides for computationally
tractable implementation, allowing realistic scenarios to be
considered. Our sensor management scheme, which is a learn-
ing algorithm that employs the Rényi divergence as a metric, is
extensively detailed in Section IV. A performance analysis of
the tracker using sensor management on two model problems
of increasing realism is given in Section V. We include
comparisons to a non-managed (periodic) scheme and two
other sensor management techniques. We briefly illustrate the
effect of non-myopic (long term) planning in this information
theoretic context. We conclude with some thoughts on future
direction in Section VI.

II. T HE JOINT MULTITARGET PROBABILITY DENSITY

In this section, we introduce the details of using the Joint
Multitarget Probability Density (JMPD) for target tracking.
Others have studied Bayesian methods for tracking multiple
targets [33][26]. The concept of JMPD was discussed by
Kastella [17] where a method of tracking multiple targets
that moved between discrete cells on a line was presented.
The JMPD is a continuous-discrete hybrid system. We gen-
eralize the discussion here to deal with targets that haveN -
dimensional continuous valued state vectors and arbitrary kine-
matics. In the model problems, we are interested in tracking
the position(x, y) and velocity(ẋ, ẏ) of multiple targets and
so we describe each target by the four dimensional state vector
[x, ẋ, y, ẏ]′. A simple schematic showing three targets (Targets
A, B, and C) moving through a surveillance area is given in
Figure 1. There are two target crossings, a challenging scenario
for multitarget trackers.
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Fig. 1. A simple scenario involving three moving targets. The target paths
are indicated by the lines, and direction of travel by the arrows. There are
two instances where the target paths cross.

JMPD provides a means for tracking an unknown num-
ber of targets in a Bayesian setting. The statistics model
uses the joint multitarget conditional probability density
p(xk

1 ,xk
2 , ...xk

T−1,x
k
T |Zk) as the probability density for ex-

actly T targets with statesxk
1 ,xk

2 , ...xk
T−1,x

k
T at timek based

on a set of observationsZk. The number of targetsT is a
variable to be estimated simultaneously with the states of theT
targets. The observation setZk refers to the collection of mea-
surements up to and including timek, i.e.Zk = {z1, z2, ...zk},
where each of thezi may be a single measurement or a vector
of measurements made at timei.

Each of the state vectorsxi in the density
p(xk

1 ,xk
2 , ...xk

T−1,x
k
T |Zk) is a vector quantity and may

(for example) be of the form[x, ẋ, y, ẏ]′. We refer to each of
the T target state vectorsxk

1 ,xk
2 , ...xk

T−1,x
k
T as a partition

of the multitarget stateX. For convenience, the density
will be written more compactly in the traditional manner as
p(Xk|Zk), which implies that the state-vectorX represents
a variable number of targets each possessing their own state
vector. As an illustration, some examples illustrating the
sample space ofp are

p(∅|Z), the posterior probability density for no targets in the
surveillance volume

p(x1|Z), the posterior probability density for one target with
statex1

p(x1,x2|Z), the posterior probability density for two targets
with statesx1 andx2

p(x1,x2,x3|Z), the posterior probability density for three
targets with statesx1,x2 andx3

Here we have suppressed the time superscriptk everywhere
for notational simplicity. We will do this whenever time is not
relevant to the discussion at hand.

The JMPD is symmetric under permutation of the target
indices. This symmetry is a fundamental property of the JMPD
and not related to any assumptions on the indistinguishability
of targets. The multitarget stateX = [x1,x2] and X =
[x2,x1] refer to the same event, namely there are two targets
– one with statex1 and one with statex2. This is true
regardless of the makeup of the single target state vector. For
example, the single target state vector may include target ID
or even a target serial number and the permutation symmetry
remains. Therefore, all algorithms designed to implement the
JMPD (and algorithms that implement the relevance feedback
learning based sensor management) are permutation invariant.
Proper treatment of this permutation symmetry has a signifi-
cant impact on how to implement particle sampling schemes,
as described in the Appendix.

If the targets are widely separated in the sensor’s mea-
surement space, each target’s measurements can be uniquely
associated with it, and the joint multitarget conditional density
factorizes. In this case, the problem may be treated as a
collection of single target trackers. The characterizing fea-
ture of multitarget tracking is that in general some of the
measurements have ambiguous associations, and therefore the
conditional density does not factorize into a product of single
target densities.

The temporal update of the posterior likelihood on this
density proceeds according to the usual rules of Bayesian
filtering. Given a model of how the JMPD evolves over time
p(Xk|Xk−1), we may compute the time-updated or prediction
density via
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p(Xk|Zk−1) =
∫

dXk−1p(Xk|Xk−1)p(Xk−1|Zk−1) (1)

p(Xk|Zk−1) is referred to as the prior or prediction density
at time k, as it is the density at timek conditioned on
measurements up to and including timek − 1. The time
evolution of the JMPD may be a collection of target kinematic
models or may involve target birth and death. In the case where
target identity is part of the state being estimated, different
kinematic models may be used for different target types.

Given a model of the sensor,p(zk|Xk), and assuming
conditional independence of the measurements given the state,
Bayes’ rule is used to update the posterior density as new
measurementszk arrive via

p(Xk|Zk) =
p(zk|Xk)p(Xk|Zk−1)

p(zk|Zk−1)
(2)

p(Xk|Zk) is referred to as the posterior or the updated
density at timek as it is the density at timek conditioned
on all measurements up to and including timek.

This formulation allows JMPD to avoid altogether the
problem of measurement to track association. There is no need
to identify which target is associated with which measurement
because the Bayesian framework keeps track of the entire joint
multitarget density.

In practice, the sample space ofXk is very large. It contains
all possible configurations of state vectorsxi for all possible
values ofT . The implementation of JMPD given by Kastella
[18] approximated the density by discretizing on a grid. It was
found that the computational burden in this scenario makes
evaluating realistic problems intractable, even when using the
simple model of targets moving between discrete locations in
one-dimension. In fact, the number grid cells needed grows as
LocationsTargets, whereLocations is the number of discrete
locations the targets may occupy andTargets is the number
of targets.

Thus, we need a method for approximating the JMPD that
leads to more tractable computational burden. In the next
section, we show that the Monte Carlo methods collectively
known as particle filtering break this computational barrier.

III. T HE PARTICLE FILTER IMPLEMENTATION OF JMPD

We find that a particle filter based implementation of JMPD
breaks the computational logjam and allows us to investigate
more realistic problems. Other authors [16][34] have investi-
gated using particle filter algorithms to approximate a multi-
object density in the context of computer vision. The algorithm
that we present here introduces an adaptive sampling scheme
that substantially increases the efficiency of particles so as to
allow tracking of large numbers of objects with a relatively
few number of particles.

To implement JMPD via a particle filter (PF), we approxi-
mate the joint multitarget probability densityp(X|Z) by a set
of Npart weighted samples (particles). First, let the multitarget
state vector be written

X = [x1, x2, ..., xT−1, xT ] (3)

and be defined for allT , T = 1...∞. Next, let the particle
state vector be written

Xp = [xp,1, xp,2, . . . xp,Tp
] (4)

where Tp is the estimate particlep has for the number of
targets in the surveillance region. LettingδD denote the usual
Dirac delta where it is understood that it is defined on the
domain of its argument (i.e. finite dimensional real or complex
vector), we define

δ(X−Xp) =
{

0 T 6= Tp

δD(X−Xp) otherwise
(5)

Then the particle filter approximation to the JMPD is given
by

p(X|Z) ≈
Npart∑
p=1

wpδ(X−Xp) (6)

Different particles in the approximation may have different
estimates of the number of targets in the surveillance region,
Tp. In practice, the maximum number of targets a particle may
track is truncated at some large finite numberTmax.

Particle filtering is a method of approximately solving the
prediction and update equations by simulation [7]. Samples are
used to represent the density and to propagate it through time.
The prediction equation (eq. 1) is implemented by proposing
new particles from the existing set of particles using a model
of state dynamics and the measurements. The update equation
(eq. 2) is implemented by assigning a weight to each of the
particles that have been proposed using the measurements and
the model of state dynamics.

To make our notation more concrete, assume that a par-
ticular particle,Xp, is trackingTp targets. In the case where
each target is modelled using the state vectorx = [x, ẋ, y, ẏ]′,
the particle will haveTp partitions each of which has4
components:

Xp = [xp,1, xp,2, . . . xp,Tp ] =



xp,1 xp,2 . . . xp,Tp

ẋp,1 ẋp,2 . . . ẋp,Tp

yp,1 yp,2 . . . yp,Tp

ẏp,1 ẏp,2 . . . ẏp,Tp


 (7)

Notice that this method differs from traditional particle
filter tracking algorithms where a single particle corresponds
to a single target. The single target/single particle model is
inappropriate in the multitarget scenario. If each particle is
attached to a single target, some targets will become particle
starved over time. All of the particles tend to attach to the
target receiving the best measurements. This method explicitly
enforces the multitarget nature of the problem by encoding
in each particle the estimate of the number of targets and
the states of those targets. This technique helps to alleviate
the particle starvation issue, ensuring that all targets are
represented by the particles. This is particularly important in
the challenging scenario of target crossing, and for estimating
the number of targets in the surveillance region.
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The permutation symmetry discussed in Section II is di-
rectly inherited by the particle filter representation. Each
particle contains many partitions (as many as the number of
targets it estimates are in the surveillance region) and the
permutation symmetry of JMPD is visible through the fact
that the relative ordering of targets may change from particle to
particle. Algorithms for particle proposal, sensor management
and estimation of target parameters must all be permutation
invariant.

Representing the full joint multitarget density rather than
merely using a factorized representation provides the advan-
tage that correlations between targets are explicitly modelled.
However, due to the dramatic increase in dimensionality, a
simplistic implementation leads to greatly increased compu-
tational burden. The key to computational tractability of the
particle filter algorithm presented here is an adaptive sampling
scheme for particle proposal that automatically factorizes the
JMPD when targets or groups of targets are acting indepen-
dently from the others (i.e. when there is no measurement to
target association ambiguity), while maintaining the couplings
when necessary. Our multi-partition proposal scheme is out-
lined in the Appendix and more thoroughly in [20].

Estimating the multitarget states from the particle filter
representation of JMPD must be done in a way that is invariant
to permutations of the particles. Before estimating target states,
we permute the particles so that each of the particles has the
targets in the same order. We use the K-means algorithm to
cluster the partitions of each particle, where the optimization is
done across permutations of the particles. In practice, this is a
very light computational burden. First, those partitions that are
not coupled (see the Appendix) are already correctly ordered
and are not involved in the clustering procedure. Second, since
this ordering occurs at each time step, those partitions that are
coupled are nearly ordered already, and so one iteration of the
K-means algorithm is enough to find the best permutation.

IV. RELEVANCE FEEDBACK LEARNING FORSENSOR

MANAGEMENT

The goal of the multitarget tracker is to learn the number
and states of a set of targets in a surveillance region. This goal
is to be obtained as quickly and accurately as possible by using
the sensor in the best manner possible. A good measure of the
quality of each sensing action is the reduction in entropy of
the posterior distribution that is expected to be induced by
the measurement. Therefore, at each instance when a sensor
is available, we use a divergence based method to compute
the best sensing action to take (the query). This is done by
first enumerating all possible sensing actions. A sensing action
may consist of choosing a particular mode (e.g. SAR mode
or GMTI mode), a particular dwell point/pointing angle, or a
combination of the two. Next, theexpectedinformation gain
is calculated for each of the possible actions, and the action
that yields the maximum expected information gain is taken.
The measurement received is treated as the relevance feedback.
This measurement is used to update the JMPD, which is in
turn used to determine the next measurement to make.

As mentioned earlier, our paradigm for sensor management
is analogous to the machine learning methodologies present

in relevance feedback techniques such as content based image
retrieval (CBIR). The central element in both is an estimate of
a density (in our case a multitarget density). This estimate is
used to determine the query to perform based on maximizing a
divergence measure. The response to the query (measurement)
is then fed back into the system to further refine the estimate
of the multitarget density.

The calculation of information gain between two densities
f1 and f0 is done using the Ŕenyi information divergence
[30][12], also known as theα-divergence:

Dα(f1||f0) =
1

α− 1
ln

∫
fα
1 (x)f1−α

0 (x)dx (8)

Theα parameter in equation (8) may be used to adjust how
heavily one emphasizes the tails of the two distributionsf1

and f0. In the limiting case ofα → 1 the Ŕenyi divergence
becomes the more commonly utilized Kullback-Leibler (KL)
discrimination (9).

lim
α→1

Dα(f1||f0) =
∫

f0(x)ln
f0(x)
f1(x)

dx (9)

In the case thatα = 0.5, the Ŕenyi information divergence
is related to the Hellinger-Battacharya distance squared [11]

dH(f1, f0) =
1
2

∫ (√
f1(x)−

√
f0(x)

)2

dx (10)

The function Dα given in (eq. 8) is a measure of the
divergence between the densitiesf0 andf1. In our application,
we are interested in computing the divergence between the
predicted densityp(Xk|Zk−1) and the updated density after a
measurement is made,p(Xk|Zk). Therefore, we write

Dα

(
p(Xk|Zk)||p(Xk|Zk−1)

)
=

1
α− 1

ln
∑

X

p(Xk|Zk)αp(Xk|Zk−1)1−α (11)

The symbol
∑

X f(X) is intended to denote the integral over
the domain. This can be precisely written as

∫
dXf(X) .=

∞∑

T=0

∫
dx1...xT f(X) (12)

After some algebra and the incorporation of Bayes’ rule (eq.
2), equation (11) can be simplified to

Dα

(
p(Xk|Zk)||p(Xk|Zk−1)

)
=

1
α− 1

ln
1

p(z|Zk−1)α

∑

X

p(Xk|Zk−1)p(z|Xk)α (13)

The integral over the domain reduces to a summation since
any discrete approximation ofp(Xk|Zk−1) only has nonzero
probability at a finite number of target states. In the particle
filter case, the approximation consists of only a set of samples
and associated weights from the density. In the special case
where the positions of the particles in both sets are identical
(which they are in this application since the two densities differ
only in that one has been measurement updated and one has
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not) it is possible to compute the divergence by straightforward
calculation.

Our particle filter approximation of the density (eq. 6)
reduces equation (13) to

Dα

(
p(Xk|Zk)||p(Xk|Zk−1)

)
=

1
α− 1

ln
1

p(z)α

Npart∑
p=1

wpp(z|Xp)α (14)

where

p(z) =
Npart∑
p=1

wpp(z|Xp) (15)

We note here that the sensor modelp(z|Xp) is used to
incorporate everything known about the sensor, including
signal to noise ratio, detection probabilities, and even whether
the locations represented byXp are visible to the sensor.

We would like to choose to perform the measurement that
makes the divergence between the current density and the
density after a new measurement has been made as large as
possible. This indicates that the sensing action has maximally
increased the information content of the measurement updated
density,p(Xk|Zk), with respect to the density before a mea-
surement was made,p(Xk|Zk−1).

We propose, then, as a method of sensor management
calculating the expected value of equation (14) for each of
them (m = 1...M) possible sensing actions and choosing the
action that maximizes the expectation. In this notationm refers
to any possible sensing action under consideration, including
but not limited to sensor mode selection and sensor beam
positioning. In this manner, we say that we are making the
measurement that maximizes the expected gain in information.

The expected value of equation (14) may be written as
an integral over all possible outcomeszm when performing
sensing actionm:

< Dα >m=
∫

dzmp(zm|Zk−1)Dα

(
p(Xk|Zk)||p(Xk|Zk−1)

)
(16)

In the special case where measurements are thresholded
(binary) and are therefore either detections or no-detections
(i.e. z = 0 or z = 1), this integral reduces to

< Dα >m= p(z = 0|Zk−1)Dα|m,z=0

+p(z = 1|Zk−1)Dα|m,z=1 (17)

Which, using equation (14) results in

< Dα >m=

1
α− 1

1∑
z=0

p(z)ln
1

p(z)α

Npart∑
p=1

wpp(z|Xp)α (18)

Computationally, the value of equation (18) can be calcu-
lated for M possible sensing actions inO(MNpart). Notice
that the sensor management algorithm is permutation invariant

as it only depends on the likelihood of the measurements given
the particles.

We have specialized here to the case where the measure-
ments are thresholded (binary), but make the following general
comments about the extension to more complicated scenarios.
It is straightforward to extend the binary case to a situation
where the measurementz may take on one of a finite number
of values. This would be relevant in a situation where, for
example, raw sensor returns are passed through an automatic
target recognition algorithm and translated into target identi-
fications that come from a discrete set of possibilities. In the
case wherez is continuous valued, the integral of equation
(16) would have to be solved approximately, perhaps using the
same importance sampling strategy that the particle filtering
technique uses to solve equations (1) and (2).

In summary, our sensor management algorithm is a recur-
sive algorithm that proceeds as follows. At each occasion
where a sensing action is to be made, we evaluate the expected
information gain as given by equation (18) for each possible
sensing actionm. We then perform the sensing action that
gives maximal expected information gain. The measurement
made is fed back into the JMPD via Bayes’ rule.

A. On the Value ofα in the Ŕenyi Divergence

The Ŕenyi divergence has been used in the past in many
diverse applications, including content-based image retrieval,
image georegistration, and target detection [12][11]. These
studies provide guidance as to the optimal choice ofα.

In the georegistration problem [12] it was empirically
determined that the value ofα leading to highest resolution
clusters around eitherα = 1 or α = 0.5 corresponding to
the KL divergence and the Hellinger affinity respectively. The
determining factor appears to be the degree of differentiation
between the two densities under consideration. If the densities
are very similar, i.e. difficult to discriminate, then the indexing
performance of the Hellinger affinity distance (α = 0.5) was
observed to be better that the KL divergence (α = 1). These
empirical results give reason to believe that eitherα = 0.5 or
α = 1 are good choices. We investigate the performance of
our scheme under both choices in Section V.

An asymptotic analysis [12] shows thatα = .5 results
in the maximum discriminatory ability between two densities
that are very similar. The valueα = .5 provides a weighting
which stresses the tails, or the minor differences, between two
distributions. In the case where the two densities of interest are
very similar (as in our application where one is a prediction
density and one is a measurement updated density), the salient
differences are in the regions of low probability, and therefore
we anticipate that this choice ofα will yield the best results.

B. Extensions to Non-Myopic Sensor Management

The sensor management algorithm proposed here is myopic
in that it does not take into account long-term ramifications of
the current sensing action when deciding the optimal action. In
some scenarios, the greedy approach may be close to optimal.
However, in scenarios where the dynamics of the problem are
changing in a predictable manner, tracking performance may
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benefit from non-myopic scheduling. For example, if a target
is about to become invisible to a sensor (e.g. by passing into
an area where the target to sensor line of sight is obstructed)
extra sensor dwells should be tasked immediately before the
target disappears. This will tend to reduce the uncertainty
about this target at the expense of the other targets, but is
justified because the target will be unable to be measured at
the next epoch due to obstruction. Our ability to predict times
when targets will become invisible is of course tied to having
accurate ancillary information, such as sensor trajectories and
ground elevation maps. We propose as a first step towards non-
myopic sensor management a Monte Carlo rollout technique
like that given by Castanon [1].

At each time a measurement decision is to be made, we first
enumerate all possible measurements and the corresponding
expected information gains. For each candidate measurement,
we simulate making the measurement based on our estimated
JMPD, update the density to the next time step based on
the simulated measurement received, and compute the actual
information gain received under this simulated measurement.
We can then compute the expected gains of all possible
measurements at the new time, and the actual gain received
plus the maximum expected gain at the new time give the
total information gain for making the particular measurement.
Running this procedure many times gives a Monte Carlo
estimate of the 2-step ramification of making a particular
measurement. Extensions to n-step are straightforward, but
computationally burdensome.

It should be noted that due to the nature of the sensor
management problem, the number of decision trajectories is
exponential in the number of time steps that the algorithm
wishes to look ahead. However, as many of these trajectories
are clearly poor paths, optimization techniques (e.g. A-stars)
may be useful to prune the set of trajectories that need to be
searched to find the best path.

V. SIMULATION RESULTS

In this section, we provide simulation results to show the
benefit of sensor management in the multitarget tracking sce-
nario. We first present a synthetic scenario and then proceed to
a more realistic scenario using real recorded target trajectories
from a military battle simulation. In both cases, we assume
the sensor is limited by time, bandwidth and other physical
constraints which only allow it to measure a subset of the
surveillance area at any epoch. We conclude with preliminary
results on the benefit of non-myopic sensor scheduling.

A. An Extensive Evaluation of Sensor Management Perfor-
mance Using Three Simulated Targets

We gauge the performance of the sensor management
scheme by considering the following model problem. There
are three targets moving on a12 × 12 sensor grid. Each
target is modelled using the four-dimensional state vector
[x, ẋ, y, ẏ]′. Target motion is simulated using a constant-
velocity (CV) model with large plant noise. Motion for each
target is independent. The trajectories have been shifted and

time delayed so there are two times during the simulation
where targets cross paths (i.e. come within sensor resolution).

The target kinematics assumed by the filter (eq. 1) are CV as
in the simulation. At each time step, a set ofL (not necessarily
distinct) cells are measured. The sensor is at a fixed location
above the targets and all cells are always visible to the sensor.
When measuring a cell, the imager returns either a0 (no
detection) or a1 (detection) which is governed by a probability
of detection (Pd) and a per-cell false alarm rate (Pf ). The
signal to noise ratio (SNR) links these values together. In this
illustration, we takePd = 0.5, andPf = P

(1+SNR)
d , which is

a standard model for thresholded detection of Rayleigh returns
[2]. When there areT targets in the same cell, the detection

probability increases according toPd(T )=P
1+SNR

1+T∗SNR

d . This
model is known by the filter and used to evaluate equation (2).
The filter is initialized with 10% of the particles in the correct
state (both number of targets and kinematic state). The rest of
the particles are uniformly distributed in both the number of
targets and kinematic state.

We contrast the performance of the tracker when the sensor
uses a non-managed (periodic) scheme with the performance
when the sensor uses the relevance feedback based manage-
ment scheme presented in Section IV. The periodic scheme
measures each cell in sequence. At time1, cells 1...L are
measured. At time2, cells L + 1...2L are measured. This
sequence continues until all cells have been measured, at
which time the scheme resets. The managed scheme uses
the expected information divergence to calculate the best
L cells to measure at each time. This often results in the
same cell being measured several times at one time step.
Multiple measurements made in the same cell are independent
(i.e. each measurement in a target containing cell returns a
detection with probabilityPd irrespective of whether earlier
measurements resulted in a detection).

Figure 2 presents a single-time snapshot, which graphically
illustrates the difference in behavior between the two schemes.
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Fig. 2. Comparison of managed and non-managed tracking performance. (L)
Using sensor management, and (R) A periodic scheme. Targets are marked
with an asterisk, the covariance of the filter estimate is given by the ellipse,
and grey scale is used to indicate the number of times each cell has been
measured at this time step (the total number of looks is identical in each
scenario). In the periodic scenario, one twelfth of the region is scanned at each
time step starting at the bottom and proceeding to the top before repeating
(cells scanned at this epoch are indicated by the white stripe). With sensor
management, measurements are used only in areas that contain targets.
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Qualitatively, in the managed scenario the measurements
are focused in or near the cells that the targets are in.
Furthermore, the covariance ellipses, which reflect the current
state of knowledge of the tracker conditioned on all previous
measurements, are much tighter. In fact, the non-managed
scenario has confusion about which tracks correspond to which
target as the covariance ellipses overlap.

A more detailed examination is provided in the Monte Carlo
simulation results of Figure 3. We refer to each cell that
is measured as a “Look”, and are interested in empirically
determining how many looks the non-managed algorithm
requires to achieve the same performance as the managed
algorithm at a fixed number of looks. The sensor management
algorithm was run with24 looks (i.e. was able to scan24
cells at each time step) and is compared to the non-managed
scheme with24 to 312 looks. Here we takeα = 0.99999
(approximately the KL divergence) in equation (9). It is found
that the non-managed scenario needs approximately312 looks
to equal the performance of the managed algorithm in terms
of RMS error. Multitarget RMS position error is computed by
taking the average RMS error across all targets. The sensor
manager is approximately13 times as efficient as allocating
the sensors without management. This efficiency implies that
in an operational scenario target tracking could be done with
an order of magnitude fewer sensor dwells. Alternatively put,
more targets could be tracked with the same number of total
resources when this sensor management strategy is employed.
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Fig. 3. The median error versus signal to noise ratio (SNR). Managed
performance with24 looks is similar to non-managed with312 looks.

To determine the sensitivity of the sensor management
algorithm to the choice ofα, we test the performance with
α = .1, α = .5, and α ≈ 1. Figure 4 shows that in this
case, where the actual target motion is very well modelled
by the filter dynamics, that the performance of the sensor
management algorithm is insensitive to the choice ofα. We
generally find this to be the case when the filter model is
closely matched to the actual target kinematics.
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Fig. 4. The performance of the sensor management algorithm with different
values ofα. We find that in the case where the filter dynamics match the
actual target dynamics, the algorithm is insensitive to the choice ofα.

B. A Comparison Using Ten Real Targets

We test the sensor management algorithm again using a
modified version of the above simulation, which is intended to
demonstrate the technique in a scenario of increased realism.
Here we have ten targets moving in a5000m × 5000m
surveillance area. Each target is modelled using the four-
dimensional state vector[x, ẋ, y, ẏ]′ . Target trajectories for
the simulation come directly from a set of recorded data
based on GPS measurements of vehicle positions over time
collected as part of a battle training exercise at the Army’s
National Training Center. Targets routinely come within sensor
cell resolution (i.e. crossing trajectories). Therefore, there
is often measurement to track ambiguity, which is handled
automatically by JMPD since there is no measurement to
track assignment necessary. Target positions are recorded at
1 second intervals, and the simulation duration is 1000 time
steps. Images showing the road network and the positions of
the targets at three different times is given in Figure 5.

The filter again assumes constant velocity motion with large
plant noise as the model of target kinematics. However, in
this case the model is severely at odds with the actual target
behavior which contains sudden accelerations and move-stop-
move behavior. This model mismatch adds another level of
difficulty to this scenario that was not present previously. We
use 500 particles, each of which is tracking the states of all
ten targets, and therefore each particle has 40 dimensions.

At each time step, an imager is able to measure cells in
the surveillance area by making measurements on a grid with
100m×100m detection cell resolution. The sensor simulates a
moving target indicator (MTI) system in that it may lay a beam
down on the ground that is one resolution cell wide and ten
resolution cells deep. Each time a beam is formed, a vector
of measurements (a vector zeros and ones corresponding to
non-detections and detections) is returned, one measurement
for each of the ten resolution cells. In this simulation, we refer
to each beam that is laid down as a “Look”.

As in the previous simulation, the sensor is at a fixed
location above the targets and all cells are always visible to
the sensor. When making a measurement, the imager returns
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Fig. 5. Three time sequential snapshots showing the ten-target case under consideration. The positions of the targets are each marked with an asterisk. The
backdrop is the hospitability – a military product that indicates the terrain drivability. Road networks are visible (high drivability, hence a white color).

either a 0 (no detection) or a1 (detection) governed by
Pd, Pf , and SNR. In this illustration, we takePd = 0.5,
SNR = 2, andPf = P

(1+SNR)
d . When there areT targets in

the same cell, the detection probability increases according to

Pd(T )=P
1+SNR

1+T∗SNR

d .
We compare first the performance of the sensor management

algorithm under different values ofα in equation (8). This
problem is more challenging then the simulation of Section
V-A for several reasons (e.g. number of targets, number of
target crossing events, and model mismatch). Of particular
interest is the fact that the filter motion model and actual target
kinematics do not match very well. The asymptotic analysis
performed previously (see Section IV-A) leads us to believe
that α = 0.5 is the right choice in this scenario.

In Figure 6, we show the results of50 Monte Carlo trials
using our sensor management technique withα = 0.1, α =
0.5, andα = 0.99999. The statistics are summarized in Table
I. We find that indeed the sensor management algorithm with
α = 0.5 performs best here as it does not lose track on any of
the10 targets during any of the50 simulation runs. We define
the track to be lost when the filter error remains above100
meters after some point in time. Both theα ≈ 1 andα = 0.1
case lose track of targets on several occasions.

TABLE I

SENSOR MANAGEMENT PERFORMANCE WITH DIFFERENT VALUES OFα.

Mean Position
Position Error

α Error(m) Variance (m)
0.1 49.57 614.01
0.5 47.28 140.25

0.99999 57.44 1955.54

Due to the asymptotic analysis and these empirical results,
we employα = .5 for the rest of the comparisons involving
this scenario.

In addition to a comparison between the divergence based
sensor management algorithm and a naive periodic scheme,
we consider two additional methods of sensor management.

Sensor management algorithm “A” manages the sensor by
pointing it at or near the estimated location of the targets.
Specifically, algorithm “A” performs a gating procedure to
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Fig. 6. A comparison of sensor management performance under different
values of the Ŕenyi divergence parameter,α.

restrict the portion of the surveillance area that the sensor
will consider measuring. The particle filter approximation of
the time updated JMPD (equation 1) is used to predict the
location of each of the targets at the current time. The set of
cells that the sensor manager considers is then restricted to
those cells containing targets plus the surrounding cells, for a
total of 9 cells in consideration per target. The dwells are then
allocated randomly among the gated cells.

Sensor management algorithm “B” tasks the sensor based
on the estimated number of targets in each sensor cell.
Specifically, the particle approximation of the time updated
JMPD is projected into sensor space to determine the filter’s
estimate of the number of targets in each sensor cell. The cell
to measure is then selected probabilistically, favoring cells that
are estimated to contain more targets. In the single target case,
this method breaks down to measuring the cell that is most
likely to contain the target.

We compare the performance of the various managed strate-
gies and the periodic scheme in Figure 7 by looking at RMS
error versus number of sensor dwells. As before, multitarget
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RMS error is computed by taking the average RMS error
across all targets. In all cases, the filter is initialized with the
true number and states of the targets.
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Fig. 7. A comparison of the performance of the various managed strategies
and the periodic scheme in terms of RMS error versus number of looks.
The α-divergence strategy out performs the other strategies, and at50 looks
performs similarly to non-managed with750 looks.

Figure 7 shows that the non-managed scenario needs ap-
proximately750 looks to equal the performance of the man-
aged algorithm in terms of RMSE error. We say that the sensor
manager is approximately15 times as efficient as allocating
the sensors without management. Furthermore, the additional
sensor management schemes perform more poorly than the
divergence driven method.

As mentioned in Section IV, this technique provides for
an efficient algorithm computationally. Modestly optimized
MatLabTM code running on an off-the-shelf 2.8 GHz Linux
machine tracks using the sensor management algorithm on
three targets (section V-A) in about 10% longer than real-time.
Tracking the targets using just a periodic scan in the 3 target
scenario is done 3-4 times faster than real time. Tracking ten
targets with sensor management is about 10 times slower than
real time. This owes mainly to the fact that more sensor dwells
are required to be scheduled and that there is more opportunity
for targets to be coupled (closely spaced) which requires the
CP algorithm rather than the IP algorithm (see the Appendix).
The non-managed tracking algorithm runs in real time.

C. The Effect of Non-Myopic Scheduling

Finally, we give some preliminary results on the rami-
fications of non-myopic (long-term) sensor management on
algorithm performance. We inspect a challenging scenario in
which the sensor is prevented from seeing half of the region
every other time step. At even time steps, all of the targets are
visible; at odd time steps only half of the targets are visible.
For the purposes of exposition, we assume that this pattern is
fixed and known ahead of time by the sensor manager.

The myopic (greedy) management scheme simply measures
the targets whose expected information gain is highest at the

current time. This implies that at odd time steps it will only
measure targets that are visible to the sensor, but at even
time steps will have no preference as to which targets to
measure. Intuitively, we would like the manager to measure
targets that are about to become obscured from the sensor
preferentially, since the system must wait two time steps to
have an opportunity to revisit.

The non-myopic sensor management technique discussed
in IV-B takes the dynamics of the scene into account. When
making a measurement at even time steps it prefers to measure
those targets that will be invisible at the next time step, because
it rolls out the ramifications of its action and determines the
best action to take is to measure targets that are about to
become obscured since this will result in the maximum total
(2-step) information gain.

We show in Figure 8 the results of tracking in this challeng-
ing scenario. It turns out that it is only modestly important
to be non-myopic. Myopic sensor scheduling results in loss
of track approximately 22% of the time, while non-myopic
scheduling only loses track 11% of the time. It is especially
important to be non-myopic around time step150, where the
dynamics of the problem accelerate due to the speed up of
some of the targets.
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Fig. 8. A comparison of sensor management performance in the myopic
(greedy) case and in the 2-step non-myopic case.

VI. D ISCUSSION

We have applied an approach that is common in the
machine learning literature, known as relevance feedback
learning, to provide a method for managing agile sensors.
The sensor management algorithm is integrated with the
target tracking algorithm in that it uses the posterior density
p(X|Z) approximated by the multitarget tracker via particle
filtering. In this case, the posterior is used in conjunction
with target kinematic models and sensor models to predict
which measurements will provide the most information gain.
In simulated scenarios, we find that the tracker with sensor
management gives similar performance to the tracker without
sensor management with more than a ten-fold improvement
in sensor efficiency. Furthermore, the algorithm outperforms
simplistic sensor management strategies that are predicated on
looking where the target is expected to be.

APPENDIX I
ADAPTIVE SAMPLING FOR PARTICLE PROPOSAL

Estimating the entire joint density rather than a factorized
approximation provides the advantage that the correlations
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between targets are modelled. However, the dramatic increase
in dimensionality requires advanced sampling schemes to
prevent undue computational burden. We detail herein the
adaptive sampling scheme we utilize to provide computational
tractability. A more thorough treatment of this topic is given
in [20].

The standard method of particle proposal used in the liter-
ature, which we will refer to as sampling from the kinematic
prior, proposes new particlesXk

p at time k using only the
particles at timek − 1, Xk−1

p , and the model of target
kinematicsp(Xk|Xk−1). For each target in each particle at
time k − 1, the model of single target kinematics is used
to propose a new state. This method has the benefit that it
is simple to implement and is computationally inexpensive.
However, one obvious drawback is that it does not take
advantage of the fact that the state vector in fact represents
many targets. Targets that are far apart in measurement space
behave independently and should be treated as such. A second
drawback, common to many particle filtering applications, is
that the current measurements are not used when proposing
new particles. These two considerations taken together result
in a very inefficient use of particles and therefore require large
numbers of particles to successfully track.

To overcome these deficiencies, we have employed an alter-
native particle proposal technique which biases the proposal
process towards the measurements and allows for factorization
of the target state when permissible. These techniques are
collectively called multi-partition proposal (MPP) strategies.
The MPP strategies propose each partition (target) in a particle
separately, and form new particles as the combination of the
proposed partitions. Particle weighting is then appropriately
adjusted to account for this biased sampling.

In this manner, particles are herded towards the correct
location of state space. Both of these measurement-aided
techniques still rely on the kinematic prior for proposing
particles and so all proposed particles are consistent with the
model of target kinematics.

1) Independent-Partition (IP) Method:The independent
partition (IP) method given by Orton [28] is a convenient
way to propose particles when part or all of the joint mul-
titarget density factorizes. When applicable, we apply the
Independent-Partition (IP) method of Orton to propose new
partitions independently as follows. For a partitioni, each
particle at timek − 1 has it’s ith partition proposed via the
Kinematic prior and weighted by the measurements. From this
set ofNpart weighted estimates of the state of theith target,
we selectNpart samples with replacement to form theith

partition of the particles at timek.
Recall that in our paradigm a partition corresponds to a

target. See equation (7) for a concrete example of a particle
and its partitions. A particle is then built by combining the
individual partitions selected and reweighting correctly to
compensate for the biased sampling.

It is important to carefully account for the permutation
symmetry issue discussed in Section III here. The IP method
of [28] is not permutation independent as it assumes that the
ith partition of each particle corresponds to the same target.
Therefore the partitions in each particle must be identically

positioned before this method is applied. If IP is applied to
particles that have different orderings of partitions, multiple
targets will be grouped together and erroneously used to
propose the location of a single target.

In the case of well separated targets, this method allows
many targets to be tracked with the same number of particles
needed to track a single target. Indeed, as mentioned earlier,
in the case of well separated targets, the multitarget tracking
problem breaks down into many single-target problems. The
IP method is useful for just this case, as it allows the targets
to be treated independently when their relative spacing deems
that appropriate. Note, however, that this method is not ap-
plicable when there is any measurement-to-target association
ambiguity. Therefore, when targets are close together in sensor
space, an alternative method must be used.

2) Coupled Partition (CP) Proposal Method:When targets
are close together in sensor space, we say that the corre-
sponding partitions are coupled. In these instances, the IP
method is no longer applicable, and another method of particle
proposal such as Coupled Partitions (CP) must be used. The
CP algorithm for particle proposal is permutation independent.

We apply the coupled partitions method as follows. To
propose partitioni of particle p, CP proposesM possible
realizations of the future state using the kinematic prior. The
M proposed futures are then given weights according to the
current measurements and a single representative is selected.
This process is repeated for each particle until theith partition
for all particles has been formed. As in the IP method, the final
particle weights must be adjusted for this biased sampling.

This algorithm is a modified version of the traditional SIR
technique that operates on partitions individually. It improves
tracking performance over SIR at the expense of additional
computations.

3) Adaptive Particle Proposal Method:Since at any partic-
ular time, some of the partitions are coupled while others are
independent, we propose a hybrid sampling scheme, called
the Adaptive-Partition (AP) method. The adaptive-partition
method again considers each partition separately. Those parti-
tions that are sufficiently well separated according to a given
metric from all other partitions (see below) are treated as
independent and proposed using the IP method. When targets
are not sufficiently distant, the CP method is used. Therefore,
the AP method is permutation independent, as it only uses IP
when target partitions are already identically ordered.

To determine when targets are sufficiently separated, we
have employed distance measures between the estimated cen-
ters of theith partition and thejth partition (both a Euclidian
metric and the Mahalanobis metric) as well as a simple
nearest-neighbor type criterion. In practice, it is found that
simply using a nearest neighbor criterion is sufficient and less
computationally burdensome.

The AP method dramatically increases the efficiency of
each particle, by automatically factorizing the state into a
product of independent partitions and coupled partitions. In
the extreme case where all targets are well separated the
AP method operates like a set of single target filters. In the
opposite extreme where all targets are coupled the AP method
correctly models the correlation between targets.
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