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Abstract—This paper investigates the advantages of adaptive time. Our goal in this paper is to perform waveform amplitude
waveform amplitude design for estimating parameters of an design for adaptive sensing in order to estimate the set of
unknown channel/medium under average energy constraintaVe \,\known channel parameters or scattering coefficients runde

present a statistical framework for sequential design (e.g design traint. We f late thi bl
of waveforms in adaptive sensing) of experiments that imprees an average energy constraint. Vve formulate this probiem as

parameter estimation (e.g., unknown channel parameters) gr- an experimental design problem in the context of sequential
formance in terms of reduction in mean-squared error (MSE). parameter estimation. We explain the methodology of experi
We treat an N time step design problem for a linear Gaussian mental design, derive optimal designs, and show performanc
model where the shape of thelV input design vectors (one per gaing gver non-adaptive design techniques. As a final step, w
time step) remains constant and their amplitudes are chosen S . S . .

as a function of past measurements to minimize MSE. For describe in detail h‘?W some appllcathns O_f adaptive sensin
N = 2, we derive the optimal energy allocation at the second step SUch as channel estimation and radar imaging can be cast into
as a function of the first measurement. Our adaptive two-step this experimental design setting thereby leading to attrac
strategy yields an MSE improvement of at leastl.65dB relative  performance gains compared to current literature. Next, we

to the optimal non-adaptive strategy, but is not implementale , agant 4 review of waveform design and sequential estimati
since it requires knowledge of the noise amplitude. We then literat ¢ id text f K

present an implementable design for the two-step strategy ich  ''€raturé to provi ‘e a con ?X' for our work. )
asymptotically achieves optimal performance. Motivated § the Note: The term ‘sequential’ is used in different contexts in

optimal two-step strategy, we propose a suboptimal adaptey the literature. In this paper, ‘sequential’ means that arev

N-step energy allocation strategy that can achieve an MSE time instant, the best signal to transmit is selected from a
improvement of more than 5dB for N = 50. We demonstrate library that depends on past observations

our general approach in the context of MIMO channel estimaton
and inverse scattering problems.

Index Terms—Parameter estimation, sequential design, energy A. Related Work - Waveform Design

management, maximum likelihood, MMSE, inverse scattering Earl K i f desi f d lecti
channel estimation. arly work In wavertorm design focussed on seiecting

among a small number of measurement patterns [1]. Radar
signal design using a control theoretic approach subject to
|. INTRODUCTION both average and peak power constraints was addressed in
Adaptive sensing has been an important topic of research g} @nd [3]. The design was non-adaptive and the optimal
at least a decade. Many of the classical problems in statisticontinuous waveforms were shown to be on-off measurement
signal processing such as channel estimation, radar i,gagigatterns_ alternating between zero and peak power Ievelst for
target tracking, and detection can be presented in the xont@ tracking example. In our design, the energy allocation
of adaptive sensing. One of the important components irethd@ the waveforms over time are optimally chosen from a
adaptive sensing problems is the need for energy managemggftinuum of valu_es. .Parameterlzed Wa_veform selection for
Most applications are limited by peak power or average powéynamic state estimation was explored in [4] and [5] where
For example, in sensor network applications, sensors rave |the shape of_ the waveforms were aIIowgd to vary under con-
ited battery life and replacing them is expensive. Safenjté Stant transmit power. Closed-form solutions to the paramet
the peak transmit power in medical imaging problems. Ener§§l€ction problem were found for a very restrictive set of
is also a critical resource in communication systems whef@Ses such as one-dimensional target motions. More rgcentl
reliable communication is necessary at low signal-to-oid dynamic waveform selection algorithm for tracking using
ratios. Hence it is important to consider energy limitasion? class of generalized chirp signals was presented in [6]. In
in waveform design problems. Most of the effort in previougontrast to these efforts, we focus our work in finding optima
research has focussed on waveform design under peak pot@yeform amplitudes under an average energy constraint for
constraints, e.g., sensor management. There has been [RtRlic parameter estimation. Sensor scheduling can bgiou
effort in developing adaptive waveform design strategiest t Of @S an adaptive waveform design problem under a peak

allocate different amounts of energy to the waveforms ovBPWer constraint [7] where the goal is to choose the best
sensor at each time instant to provide the next measurement.
This research was partially supported by ARO-DARPA MURI i@ra The optimal sensor schedule can be determined a priori and

#DAAD19-02-1-0262. , o independent of measurements for the case of linear Gaussian
The authors are with the Department of Electrical Engimeeand Com-

puter Science, University of Michigan, Ann Arbor, Ml 48109SA (email: systems [8]' [9] The prOblem of optimal scheduling fo.r the
{rangaraj, ravivr, hero }@ecs. uni ch. edu) case of hidden Markov model systems was addressed in [10].
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Literature Type of parameters Type of design| Type of constraint Type of control
D R LSD NLSD SQ NSQ EN SN NONE EN wv SN NONE
Waveform design [1] v v v v v
Sensor scheduling [8]-[10] v v v v v
Sequential estimation [11], [12] v/ v v v
Schweppe’s design [2], [3] v v v v
RLS [13] v v v v
Stein estimator [14], [15] v v v v
Kalman filter [16] v v v v
Our sequential approach | v v v v
TABLE |

KEY TO THE TABLE: D-DETERMINISTIC, R-RANDOM, LSD-LINEAR STATE DYNAMICS, NLSD-NON LINEAR STATE DYNAMICS, SQ-SQUENTIAL
DESIGN, NSQ-NON SEQUENTIAL DESIGN EN-ENERGY, SN-SENSORS WV-WAVEFORM PARAMETERS

In table I, we compare our work with existing literature viaof 6 is given by the least squares (LS) soluticf.s =
different categories. >xr, xix;f)fl (3", xiy;). One way of computing the LS
estimate is the recursive least squares approach (RLS) [13]

B. Related Work - Sequential Design for Estimation which can be written as

The concept of sequential design has been studied by 0, = 01 +Px(yn —x.0,1)
statisticians for many decades [17]-[22] and has foundiappl P _ p B P, 1x,x.P, 4
cations in statistics, engineering, biomedicine, and enuos. noT nsl T xTP, 1x, ’
Sequential analysis has been used to solve important pnsble . _ .
in statistics such as change-point detection [23], [24hpand WhereP,, = (37, x;x{) . The recursive process avoids
interval estimation [25], multi-armed bandit problems Jj26 the computational complexity of inverting the matrix.
quality control [27], sequential testing [28], and stoditas In the above formulation it was assumed that the input
approximation [29]. Robbins pioneered the statisticabtile sequencéx;} remains fixed. The problem of waveform design
of sequential allocation in his seminal paper [26]. Earlis relevant when inputk; can be adaptively chosen based
research on the application of sequential design to prablefim on the past measurements. . ., y;—1. Measurement-adaptive
estimation was limited to finding asymptotically risk-eifiot estimation has application to a wide variety of areas such as
point estimates and fixed-width confidence intervals [112]] communications and control, medical imaging, radar sysfem
[30], i.e., sequential design was used to solve problems dgstem identification, and inverse scattering. By measentm
which a conventional estimate, based on a sample whose sidaptive estimation we mean that one has control over the
is determined by a suitably chosen stopping rule, achiewway measurements are made, e.g., through the selection of
certain properties such as bounded risk. For the problemvedfiveforms, projections, or transmitted energy. The stahda
estimating the mean under unknown variance, it was showalution for estimating parameters from adaptive measure-
that a sequential two-step method guaranteed specified preents is the maximum likelihood (ML) estimator. For the case
cision [23], [31], [32], which is not possible using a fixedof classic linear Gaussian model, i.e., a Gaussian obsenvat
sample. The statistical sequential design framework asswam with unknown mean and known variance, it is well-known
fixed measurement setup while acquiring the data and does [id that the ML estimator is unbiased and achieves the
consider energy constraints. In this paper, we adaptivetigth  unbiased Cramér Rao lower bouf@RB). Many researchers
input parameters to alter the measurement patterns undethawe looked at improving the estimation of these parameters
average energy constraint to obtain performance gains otgradding a small bias to reduce the MSE. Stein showed that
non-adaptive strategies. this leads to better estimators that achieve lower MSE than

Another class of problems in sequential estimation is enlithe ML estimator for estimating the mean in a multivariate
estimation, where fast updating of parameter estimates &aussian distribution with dimension greater than two [14]
made in real time, called recursive identification in cohtrg1l5]. Other alternatives such as the shrinkage estimat8y; [3
theory, and adaptive estimation in signal processing. Foikhonov regularization [34] and covariance shaping least
example, consider the problem of estimating param@ter squares (CSLS) estimator [35] have also been proposed in the
the following model literature. While these pioneering efforts present irgeng
approaches to improve static parameter estimation perfor-
mance by introducing bias, none of them incorporate the

where {x;} are the sequence of inputs to the systerfiotion of sequential design of input parameters. Our adepti
{w;} are independent identically distributed (i.i.d) Gausdesign of inputs effectively adds bias to achieve redudtion

sian random variables with zero mean afig;} are the MSE.

set of received signals. The maximum likelihood estimate In this paper, we formulate a problem of sequentially select

yi:xiTO—i—wi, i=1,2,...,n,
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ing waveform amplitudes for estimating parameters of aalineset of observations for the case of a scalar parantetare
Gaussian channel model under an average energy constraint _
over the waveforms and over the number of transmissions. In yi=hi(xi)0h +ni, i=12,....N. @)
Section Il, the problem of experimental design [36], [37] foAn N-step design procedure specifies a sequence of functions
sequential parameter estimation is outlined and the apalogk,(y,,ys,...,y;_1)}Y, corresponding to th&’ transmitted
between this problem and the waveform design problem dgynal waveforms after receiving the previous measuresnent
explained. In Section llI, closed-form expressions for th&n optimal N-step procedure selects the design vectors so
optimal design parameters and the corresponding minimyfat the MSE of the maximum likelihood (ML) estimator,
MSE in the single parameter case are derived for a two- st@(@’) (y1,y2....,y~) is minimized subject to the average
procedure (two time steps). Since the optimal solutioniregu energy constraintf Zz xil?] < Eo, where Ey is the

the knowledge of parameters to be estimated, it is showntg‘{aI available energy. The ML estimator @f for the N-step
Section IV that the performance of this omniscient solutio
rocedure is given by

can be achieved with a parameter independent strategy.
Section IV-A, we describe amV-step sequential energy al- ANY Zfil hy(x;)"y; 3
location procedure, which yields more thadB gain over Lo ZN by (x;)][2 (3)
non-adaptive methods. These results are extended to thar vec !

: : : ; : - 2
parameter case in Section V. Finally in Section VI, we shoy, 4 the corresponding MSEx;} Y ,) £ E U@(N) _ 91‘ } is
the applicability of this framework for channel estimatiand =t !
radar imaging problems.

2
h 3 1
MSEM®Y) ({Xz}l — ‘LXHQ (4)
Il. PROBLEM STATEMENT 1 | (x4 |
We begin by introducing nomenclature commonly useD@enote E;(yi,...,yi—1) = |xi(y1,...,yi_1)||?>, where
throughout the paper. We denote vectors@’ by bold- E;(y,,...,y;_1) represents the energy allocated to each time
face lowercase letters and matrices (H/*" by boldface stepi. Define & [{x;(y1,...,yi—1)}}.,] as the average en-

uppercase letters. The identity matrix is denoted bWe use ergy in the design parameters for thestep procedure. The
()" and(-)¥ to denote the transpose and conjugate transpesgerage energy constraint can be written as
operators, respectively. We denote thenorm of a vector by

I -1l ie., ||x|| = vxfx. A circularly symmetric complex [{xi(y1,. .. yi1) _ ZHXzH < E,. (5)
Gaussian random vector with meanand covariance matrix -

C is denoted a6\ (u, C). E [-] and t(-) denote the statistical
expectation and trace operators, respectively. The teri®g M
and SNR are abbreviations to mean-squared error and S|g
to-noise ratio, respectively.

Our goal is to find the best sequence of the design vectors
r{ Y, to minimize the MSEY) ({x;}Y,) in (4) under the
average energy constraint {(A).

Let @ = [01,...,00]" be the M-element vector of un- )
known parameters. The problem of estimatéhin noise can A. Non-adaptive strategy
then be written as As a benchmark for comparison, we consider the non-
adaptive case wherg; ...,yi_1) is deterministic, inde-
Y1:f(xzvo)+nla i:1727"'7N7 (1) n Z(yh ) 1)

pendent Ofyl,yg, e Yi—1, HXZ'”2 =F;, andeil FE; < Ey.
where{n;} is an i.i.d. random process corrupting the functioimplifying the expression for MSE if4), we have

of the parameters of intereftx;,#) and: denotes the time o2 o2

index. TheT-element design parameter vectofs, }¥, can MSEN) = — > 7y ©
depend on the past measurements:= x;(y1,...,yi—1), Sicy Iha(x) )2~ EoAm(Hi)

where y; is the i K-element observation vector. In thewhere equality is achieved iff¥i x; o~ vm, the nor-
context of adaptive sensindi(x;,6) represents the responsenalized eigenvector corresponding to,(H;), the maxi-

of the medium,7 and K denote the number of transmitmum eigenvalue of the matridf H;. Note \n(H;) =

and receive antennas respectivef;}Y , are the set of max, (x” H{' Hx)/(x"x) = max, ||h;(x)|?/|x||?. Fur-
waveforms to be designeé,are the set of channel parameterthermore, the performance of the ML estimator does not
or scattering coefficients to be estimated using the set @épend on the energy allocation. Hence, without loss of
received signal{y,}% ,. For the classic estimation problemgenerality we can assume all energy is allocated to the first
in a linear Gaussian model, we ha¥éx;,0) = H(x;)0, transmission which implies that any-step non-adaptive
H(x;) = [hi(x;), ha(x;),...,ha(x;)] is a knownK x M  strategy is no better than the optimal one-step strategy. We
matrix and linear inx; andn; is aCN (0, 0*I) random vector. define SNR{x;}Y,) as

When H(x) is linear inx, we can writeh;(x) = H;x,l = N

1,2,..., M. In this caseH(-) is uniquely determined by the SNRY) — Am(HE [{xi(y1, -0 yie ) Y] o
matrices{ H1, Hs, ..., H),}. The linear Gaussian model has o?

been widely adopted in many studies [38], [39] includinghen the average energy constraint (§) is equivalent to
channel estimation [40] and radar imaging [41] problems TISNR?Y) < SNR,, where SNR = Am(H1)Eo/o?. We show
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in [42] that the problem of minimizing MSE") subject to We use Lagrangian multipliers to minimize the MSE(ii8)
SNR™Y) < SNR, is equivalent to minimizing MSE") x  with respect toa; and a2(-) under the energy constraint in
SNR™). Thus we use the two minimization criteria inter{16). The objective function to be minimized can then be
changeably in the remainder of this paper. The product wfitten as

MSE and SNR is . [|h1(x1)Hn1 + hl(XQ)Hn2|2
S hi(x)n,| (M Gen) 2 + [ (x2) )2
Zij\il |y (x:)]|2 In [42], we show that the optimal solution te(y;) depends
on y; only through the functiom (y1; 61), where
An(HDE [ 2]

hy(vin)? (y1 —hui(x1)01)  hy(v)? my

+7 (o +E [03(y1)])
MSE™Y) x SNRY) = E ‘

- 7 @ mnt) = TR e Tl ¢,
(17)
and the minimum MSE for the one-step (or non-adapfi*e ~ CA/(0,1). Hence we denote the solution@g (71 (y1;61)).
step) strategy satisfies Let g (it (y1;601)) = (1 + M) Setting the deriva-
MS (1i>n % SNR) = 1. (9) tive of the objective function with respect tpto zero yields
While our goal is to find optimal input design parameters, 3 _ l,g+ 2Lf:‘1|2 =0, (18)
{xj(y1,...,y;-1)}}L, which achieve minimum MSE, any

suboptimal design that guarantees MSEx SNR) < 1is wherey — ~a'SNR,. The functiong that minimizes MSE
also of interest. We first look at a two-step sequential desigs the root of the third-order polynomial ifL8), real-valued
procedure. A word of caution: in Sections Ill and IlI-A weand greater than or equal fo If more than one real-valued
develop optimal and suboptimal strategies where the soisiti sojution greater thanl to the cubic equation exists, the
require the knowledge of the unknown parameétetHowever, gptimal solution tog will be the root that achieves minimum
in Section IV we present &, -independent design whichMSE. The optimalg for every 7, and 7’ is denoted by

asymptotically achieves the performance of the ‘omnisttierbv/ (i1). Also E {97’ (fh)] _ % Therefore, finding, that

strategies. . . ; e L
minimizes MSE is equivalent to finding that minimizes

I11. OMNISCIENT OPTIMAL TWO-STEPSEQUENTIAL MSE. We Obta'ngv’@l) for evgry7 and gs_e_a brute
STRATEGY force grid search to find the optimal that minimizes the
objective function. The MSE is minimized at* =~ 0.22,

In the two-step sequential procedure, we hate= 2 time or af ~ 0.7421. The optimalas is given by the relation

steps where in each time stép= 1,2, we can control input
design parametex; to obtain observatioly;. For a two-step a3 (n1(y1;61)) = a’{\/(gv/* (n1(y1;601)) — 1). Since this
process, we have solution depends on the unknown parametgrwe call this
yi = hi(x1)0; +n, (10) Minimizer an_“omnlsment” energy allocatlon strategy. foe
optimal solution, the product of MSE SNR is
y2 = hi(x2(y1))f1 + no. (11)

The ML estimator off; for a two-step procedure froit8) is
R h H h H This corresponds to 32% improvement in performance or a
0 = ||1}(1X(1) )}lﬁ i ”;1()((2))”};2 (12) 1.67dB gain in terms of SNR for the two-step design when
X 1% compared to the one-step procedure for which K&Ex
and its MSE from(4) is given by SNR, = 1.

[ (x1)" 1 + b (x2) " * . (13)  The optimal energy allocation at the second step,
([ ()2 + | (x2)[12)? a3? (n1(y1;61)) as shown in Fig. 1 (solid) is a thresholding
We assume that the shape of the optimal déanction, i.e., o} is zero for |f1|> < 0.59. This solution

signs, i.e., {x;/||x;|]|} is the one-step optimum given byimplies that when the actual realization of the normalized
vm defined below(6) and minimize the MSE over thenoise alongh;(vy) in the first step is small enough, then

MSE) x SNR, ~ 0.68. (19)

MSE® (x1,x;) = E

energy of the design parameters. Denfite| = /Epa; the second measurement becomes unnecessary. On the other
and ||x2(y1)|| = vEoaz(y1). Under the sequential designhand, when the normalized noise alohg(vn) exceeds a
framework, we select threshold, then there is some merit in incorporating the in-
formation from the second measurement. The solution also
xi = VE aivn (14) suggests that the higher the noise magnitude at the first step
x2(y1) = VEo aa(y1)vm, (15) the more the energy that needs to be used. However, the

robability of allocating energy greater than a particwiaue
%creases exponentially with that energy value. Neversisel
in applications with a peak energy constraint, the transiois
E [a% + a%(yl)} <1. (16) of the optimal energy at the second stage may not always

wherea; andas(+) are real-valued scalars. The average ener
constraint from(5) can then be written as
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(22), and using the fact thak [I(|z|> > p)] = e and

2 —oOptimal |, ‘ ‘ ‘ E [|z|*I(|z]* > p)] = pe~? whenz ~ CN(0,1), the expres-
----- Suboptimal sion MSE? x SNR? simplifies to
1
15 MSE® x SNR? = ((Bp+1)e "+ 5(1 —(1+p)e )
< x (B4 (1—B)e ). (24)
Z 1 Minimizing MSE?) x SNR?) with respect to3 andp through
5 a grid search fop? € [0, 1] andp € [0, c0) yields §* ~ 0.37,
p* ~ 0.675. It follows thataj ~ 0.7319 and a5 ~ 0.9550.
05 Substituting for the optimal values aff, a3, 3%, p* in (24)
and(22), and simplifying yields
, MSE?) x SNR, ~ 0.7143. (25)
G I I I I I
0 1 2 3 4 5 6 This translates to 28.47% improvement in MSE performance

= 12
[l or a1.5dB savings in terms of SNR. The suboptimal solution
Fig. 1. Plot of the optimal and suboptimal solution to themalized energy .tO t_he energy des“-m is shown in Flg_' 1 by a daSh(_ad dotted line
transmitted at the second stage as functions of receivehlsig first stage. indicated as Suboptimal-1. Thus, while the suboptimaltsgy
limits the peak transmit power taax (o2, a3?) Ep, it is able
to achieve near optimal performance.
be possible. Hence, in the following subsection we look at a|n the previous section, we addressed the problem of
SUbOptimal solution which takes into account this ConBtraiminimizing MSE Subject to an average energy constraint,

and still achieves near optimal performance. E [||X1H2 + HX2||2] < Eo. An average energy constraint
implies that the total allocated energy averaged over tedea
A. Omniscient Suboptimal Two-step Strategy trials of the two-step experiment is constrained to be lkas t

The optimal solution in Section Il is a thresholding funcOr equal toEy. This is less restrictive than the strict energy
tion, where energy allocated to the second stage is zerde@nstraint|x: || +||xz||* < Ey, as any solution satisfying this
the noise magnitude at the first step is less than a threshefstraint satisfies the average energy constraint butinet v
and increases with increasing noise magnitudes otherfise. Versa. The problem of minimizing the MSE {i3) under this
the suboptimal solution, we use a binary energy allocatiglyict energy constraint was addressed in the context afrrad
strategy at the second stage based on the noise magnitud&aging in [43]. We show in [42] that the optimal two-step
the first step, i.e., we allocate a fixed nonzero energy if ti§€sign under the strict constraint is given by
noise magnitude is greater than a threshold else we allocate

: . ) x1 = a] VEyvm
zero energy. The suboptimal solution to the design vectors . o .
andx, is then of the form X3 = ay \/Eovm I (|n1| >p ) ;
X1 = vmVEy) o (20) whereaj ~ 0.628, a5 ~ 0.7782, and p* ~ 0.2831. The

minimum MSE is then given by Miﬁn x SNRy ~ 0.9219.
The optimal solution satisfies the strict energy constnaittt

where 71, is defined in(17), a1,a, are design parametersequality but the average energy useddigaj? + a3%e ") ~

X2 = VvmvVEyaxl (|ﬁl|2 > P) ) (21)

independent of/; andI(-) is the indicator function, i.e., 0.8550F). The solution to the two-step strategy under this
) strict energy constraint can also be derived by imposing an
I(A) = { é’ ﬁ :z IE;lIfe additional constrainta? + o2 < 1 to the suboptimal design
’ problem described earlier in this section. In the followseg-
The SNR of the suboptimal two-step procedure is tion, we design &, -independent design strategy that achieves

the optimal performance asymptotically and allows for any
~ 2
SNR®) = SNR, (Of% +a;P (|"1| > P)) - (22) peak power constraint in the design.

The MSE of the ML estimator under this suboptimal solution

using (@3) is V. PARAMETER INDEPENDENTTWO-STEPDESIGN
STRATEGY
1 a?|f|? + a3 . . .
MSE® SR 1 ; 5 22 I (|ﬁ1|2 > p) Consider the optimal design for the two-step procedure
(af + a3) .
1 |ﬁ1|2 o X1 = vV Ey Q1Vm
+—SNR3E |: OL% 1 (|n1| < p)] . (23) Xy = /EO a;(ﬁl(}’l;el))vm
o2 . - VB o ( hy (v (y1 = VEoathi (vin)61) )v

— 1 = .
Denote g8 = Taz 0 < B < 1. Substituting for g 2\ | T (v p m

in the expressions for MSE and SNR? in (23) and (26)
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14 ——————1 single step strategy with signal-to-noise ratio SNRhis is
—— 24.3dB . .

] 1439 | Pecause the solution presented(Y) and (28) in terms of

13 ——432dB scalaraj and thresholding function;(-) were optimized for

——-567dB|| ™1+ 2z ~ CN(0,1), i.e., whenz = 0. When§, # 6, the

_ 1.2 ——-15.67dB| following happensz # 0, n; + 2z ~ CN(z,1), and the design
%ﬁ 11 ) parameters; andaj (), which were found optimally fofi; +
Z z ~CN(0,1) (= = 0) are no longer optimal. Wheji; —6,| is
x 1 o B Sxrshecesys lArge,z in (29) is a large constant and hengeis a negligible
DR T term compared to: with high probability. In other words,
czjo.g as (1 + z) can be made arbitrarily close t&(z) with high

probability asz tends to infinity. This implies that the strategy
becomes equivalent to a two-step non-adaptive stratedy wit
a specific non-adaptive energy distribution between the two
steps whose performance is given by M8Ex SNR, = 1
from Section II-A. Thus we observe that the performance of

200 -150 -100 -50 0 50 100 150 200 the two-step strategy tends tofor large |0, — 6,].

Percentage error in 6, The optimal solution to MSE) () x SNR?(2) is achieved
whenz = 0. There are two ways that drive— 0. If 6, = 6,,
thenz = 0 and we have)(0) = n* = MS (2i)n x SNRy ~
0.68, the optimal two-step performance. Singgis arbitrary,
|61 —6,] > 0; the two-step design is not optimal and therefore
MSE(2g x SNRy = n(z) > n*. The other way to achieve
the optimal solution is to make SNRas small as possible.
Note that if SNR is sufficiently small MSE? x SNR?
%proaches its minimal value. Since SRR< SNR,, driving

SNR to zero, drives the MS® to infinity. To overcome

this problem, we propose aN x 2-step procedurdo allow
. S - the SNR to be fixed while drivingz — 0. The N x 2-step
[Ormin; Omax], Ormin, 9‘?“”‘ < IR..We de_scrlbe the |ntg|t|on behInOIalgorithm is outlined in Fig. 3. Any peak power constraint ca
the proposed ;oluuon in this section. The details of the)proalso be satisfied using thE x 2-step strategy by choosing a
can be found in [42]. Since we do not know the value of thﬁn‘ficiently largeN. The most important information in Fig. 2

actual parameter_, we replade b_y a ‘guess’ oft, sayo, N s the performance of the two-step strategy under the low SNR
the optimal solution to the design at the second step g'venr%ime since each-step procedure in thay x 2-step strategy
(26). The resulting suboptimal design is

works at (1/N)™ of the total SNR. Hence a® becomes
X1 = VVEovm (27) large, SNR in each experiment is very small and the lack of

h H — JE-a'h 9 knowledge off; plays a negligible effect on the performance
Xo = B ( 1{¥m) " (¥ baih (Vin)6y) ) Vm asz is made close to zero through the SNR factor.

Fig. 2. Plot of reduction in MSE versus percentage error & dness of
parameterd; for various SNR.

We showed that by designing; and a, optimally we can
gain up to32% improvement in estimator performance. Bu
the “omniscient” solution (26) depends on the paramet
to be estimated. Here, we prove that we can approach {
optimal two-step gain by implementing & -independent
energy allocation strategy whefy is bounded, i.e.f; €

(b (vim) | o
= VEods (| + 2]) v, (28) A. Design ofN-step procedure
where In Sections Ill and IV, we derived the omniscient optimal
ot Eol[by (van)| two_-step design to minimize thg MSE and prqved tha_lt the
= f(el —0,) = a’{\/ﬁ(ol —0,) (29) optimal performance can be achieved asymptotically using a

N x 2-step strategy. But théV x 2-step strategy is a specific
andn, which is defined in(17) is CA/(0, 1). Substituting the case of &2N-step design. In this subsection, we generalize the
above suboptimal solution in the expression for MSEx  suboptimal solution from the-step case to théV-step case
SNR™) in (8) and simplifying, we obtain as follows: we assume that the shape of the design vector
n(z) = MSE(Q)(Z) % SNR<2)(,2) is fixed and look at the energy allocation among the various

¥ 12 w271 steps. The set of observations are as define@jn Let the

[al [7a|” + a2~(|n1 * Zl)] shape of the design vectar; be vy, and the energy at stejp

(O[TQ + a§2(|n1 + Z|))2 El = 0412(3’17 N 7}’1’—1), i.e., X; = vmai(yl, ce ayi—l)a 1 <

xE [a7? + a3*(|fn + 2])] . (30) i< N. Then

Figure2 shows(z) in (30) as a function of the percentage o, = A,
error in the guess afy, 100 (%) for varying SNR. The <|Z;—11 hy (x;)7n; 2

lot indicates that wherd, = 6;, the optimal performance a = Al 1 — = pi], 22,31
’ L ratooy is achioved T o I ()20

of the adaptive two-step strategy is achieved for all SNR. At
high SNR, for certain values ¢f, —6,|, the two-step strategy where {A;, p;} are design parameters. This approximate so-
defined by equation$27) and (28) performs worse than a lution is motivated from the suboptimal thresholding sioint
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o Step 1: PerformV independent two-step suboptimal experiments with in@%&l and \/LﬁxQ wherex; and x, are
given in(27) and (28) respectively, i.e., use enerdy, /N in each of theN experiments.

— The SNR of the2N-step procedure is SNRY)(z) = NSNR?!(z) = SNR? (z/v/N) where SNR?* is the
SNR of thek™ two-step experiment. The first equality follows from thetﬂst:[at{SNR@)”“}Q;1 are identical as
the N experiments are independent while the second equalitgviglifrom the fact that each two-step experimént
uses only(1/N)" of the total energy.

o Step 2: Obtain ML estimate from each stepéé@’k and average theV estimates to obtain the ML estimator of the
N x 2-step strategy ad\>") = L SN 42k,

— The MSE of6{*") is given by MSE*™)(z) = LMSE®!(z) = MSE®? (z/v/N), where MSE?* is the MSE of
each two-step estimat@ér‘))’k. The first equality follows from the fact théMSE(Q)”“}{CV:1 are identical as th&v
experiments are independent while the second equalitpwislifrom the fact that each two-step experiment uses
only (1/N)™ of the total energy.

« From Steps 1 and 2, we have MSE)(z) x SNR?N) () = MSE® (2 /v N)SNR? (z/v/N). As N — 00, z/vVN — 0
and MSE?™)(z) x SNR?*Y)(z) — »*, i.e., minimal MSE is achieved. The details of the proof canfdund in [42].

Fig. 3. Description of theV x two-step procedure.

to the two-step case derived in Section llI-A. Note that th 6 T
definition of the amplitudes at each stage is recursive,the. 7%@3@%‘;& o
amplitude designa; depends on past inputsy,...,x; 1 A , © ot
which in turn depends onvy,...,«a;_1. To simplify our
analysis, we make the assumptipn < po < ... < pn.
Then, =4
hy (x) n | . =
0422142](%71 ZP2>=A21(|”1|22/)2)a §3*
; (32) 3
wheren; = i‘ﬁfz"%“ 2 are i.i.dCN(0,1) random variables. O 2k
Following the same procedure, a general expression.faan
be written as 1
i—1
o= AT 1 (Jwsl = pr) (33) ‘ ‘ ‘ ‘
s=1 0 10 20 30 40 50
S Ajiy Number of time steps

wherew, = This form states that the stopping

H A"
criteria at time sjtélrls fs‘ when the magnitude of the averagéig. 4. Plot of gains obtained through suboptiniétstep procedure as a
noise, w, drops below the threshold,,;. The goal is to function of N through theory and simulations.
minimize Gy = MSEY) x SNR?Y) of this N-step procedure
with respect toA = [A;,...,Ay] andp = [p1,...,pN]-
) ] ] . . in 50 steps, we are able to achieve gains of more #i@. In

~Since there is no closed-form solution to tRi&" dimen-  gection IV, we showed that the two-step gain can be achieved
sional optimization [42], we e_valuate the performance Qfsing anN x 2-step strategy, i.e., N steps. The basic
suboptimal solutions to the design vectatsand p. For our  qiivating factor was to reduce the SNR in each experiment
simulations, we choosg = (i—1)/(N—1) pmax, 1 <@ < N.  anqd achieve the diversity gain by increasing the number of
Furthermore, we choos& as {A; = d aj, oddi; A; = gteps. For the generadVi-step strategy, progressive reduction
d a3, eveni}, whereaj,a; are optimal values from the iy SNR of each experiment implies that as the number of
suboptlmal solution presented in Sectl_on l-A aghd;_qhqsen steps increases, the error of guessidas a reduced effect
to satisfy the average energy constraint. The intuitionii®h o, the overall performance. We demonstrate the achietsabili

this choice of A and p is motivated through an asymptotiCos herformance for anyV-step design through the following
result derived in [42]. We evaluate the performance of thgeorem.

N-step procedure with these parameters through theory an

verify the theory using simulations. Performance gahs,(in q‘heorem 4.L:For an/N-step procedure, we need to design

L2 - _a sequence of input vectorfx; N, optimally under an
dB) are presented in Fig. 4. By designing tisstep proce average energy constraint to minimize the MSE in (4). Let

dure, we are ess_entlally alte_rmg the Gau53|an_ statisfitiseo S = {x:(y1,...,yi_1:00)}Y, be any design of the input
measurement noise to obtain improvements in performanc%.rarneters satisfving the fz)llowin conditions:
In Fig. 5, we illustrate how the distribution of the estinoati P ying 9 '

residuals changes with the number of the steps. We see that Average energy constraint:
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1209 e x = [x1 z2]", y = [y1 v2]", n = [n1 n2]” ~ CN(0,Rn),

10004 and R, = o¢2I. Then for a one-step process, we have
MSE™Y (6) = 202 /22 and MSEY (6,) = 02 /22. Minimizing

wod sood tr(MSE™ (6)) = MSE (6;) + MSE) (6,) over the energy
2004 — constraint||x||> < Ey = 1, we obtainz; = 2o = 1/V2
52 a4 o 1 2 3 52 a4 o0 1z 3 and tr(MSEfﬁi)n) = 602. Now consider the following two-step
non-adaptive strategy,

8000 10006

25 Step1. x=[z1 0], v =201 +n4,
Step2. x=[0z2)", [11]ys = 222605 + [1 1]ny.

: Minimizing the tiMSE® (0)) = MSE® (6,)+MSE®? (6,) =

' o?/x? + 0% /223 over the energy constraint, we obtain =

Ty = 1/v/2 and t(MS (Qi)H) = 30?. This translates to

a 3dB gain in SNR for the two-step non-adaptive strategy
over the one-step approach. We control the shape of the

Fig. 5. Distribution of noise versus number of steps.

input x = [z; 2»]7 such that we have different energy
N ) allocation for each column of the matrid. By specifically
K {Z —r I (v sy ) | } = Eo. designing the two-step non-adaptive strategy given insstep
« Continuity - The design VeCtO’!z (y1,.--,¥i-13561) is @ and2, we have reduced the estimation of the vector parameter
continuous function ofly;}’~; or can assume the formg — [4, ¢,] to two independent problems of estimating scalar
of a thresholding function in (31) parameter®); and 6, respectively. For each of these scalar

Then there exists a#@;-independent strategy whoseestimators, we design twiy-step sequential procedures\

performance can come arbitrarily close to M8HS) steps in total) as in Section IV-A for scalar contrals and

which assumes the knowledge of paraméter xo to obtain an improvement in performance of estimating
6. Applying the N-step deS|gn to both; and zs, we have

Proof: The proof is similar to theNV x 2-step strategy MSEW) (01) = GnMS 2) .(01) for the first N steps and

presented in Section IV, where the actual valugiofin the MSE™Y)(4,) = gNMSEmm(92) for the nextN steps. Hence

optimal solution is replaced with a guesséf Refer to [42] tr(MSEY)) = gy tr(MSEmm) whereGy is defined below

for details. B (33). In other words, the MSE gains of thé-step procedure
carry over to the vector parameter case as well.

V. SEQUENTIAL DESIGN FORVECTORPARAMETERS

A general N-step procedure for the case &f unknown

parameters can be written as
. The component wise MSE for estimating specific parame-
z:H i oo Yi— 7] Qs :1,2,...,N, 34 . . . .

Y (xi(y1 yi-1))0 +mi, (34) ters is given by the diagonal elements of the matrix MSE
whered is an)M-element vectom; ~ CA(0, Rx), andH(x) [(0 0)(6 — 9)H] We seek to find the optimal energy
is a K x M matrix. For the multiple parameter case, MSF’E\”OC&'{IOH between the two design vectors({y ) _
is no longer a scalar. Various criteria such as trace, mipmax /

determinant of the MSE matrix can be considered as measufés anz({yﬁ ) i = 1,2, that minimizes the Worst case
mean-squared erroN\(C MSE) of the unknown parameters,
of performance under the multiple unknown setting.

whereuy, is any unit norm vector independent of past mea-
surements, e.gum is chosen to minimize the one-step MSE.
A. Trace Criteria The ML estimate for a one-step process with enefgyand

gs corresponding MSE are given by

B. Worst Case Error - Min Max Approach

For the multiple parameter case, the MSE is a m

trix and we consider the trace as a measure of perfor-5(1) _ Hpp—1 a _ 1
mance, i.e.ming, 3 tr(MSEY)(0)). The problem of multi- 0 VE, " (um) "Ry "y1, MSES = By ¥ um
ple parameter estimation is more complicated than estmati (36)
of a single parameter for the following reason. We showed YWere

Section I-A that independent of the shapesqgf any non- Wy, = (H(um) "R, "H(um)) " (37)

adaptive energy allocation strategy is to assign all enﬁngyDefme@(u MSE) = u MSEu. Then
the first step, i.e., a one-step strategy with endrgyBut this

is not true for the multiple parameter setting. Let us comsid =~ WGMSE = mgxef[MSEei = max &(e;, MSE),  (38)
a simple example of estimating two paramet@rs [6; 62]”

in the modely — H(x)6 + n, where wheree; is an M-element vector with all zeros except for

in the i position. Then for a one-step process

X X
H(x)=[ 0 o } (35)  WGMSE® = max ®(e;, MSEV) = &(e;-, MSED), (39)

€2
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where:* indicates theirgmaxié(ei,MSE(l)) and estimator (BLUE) approach for the case of multiple LS
1 channel estimates.
®(u, MSE") = E—uHWumu- (40) 1) Problem Formulation:In order to estimate the x ¢
) 0 channel matrix® for a MIMO system witht transmit andr
The set of observations for the two-step process are receive antennasy > t training vectorsX = [x,...,Xx]
yi = \/E_omH(um)O +n, (41) are transmitted. The corresponding set of received sigraals
be expressed as [40], [53]
y2 = VEoaz(y1)H(um)0 + no. (42)
For a two-step procedure, we need to designand a(y1) R=06X+M, (46)
to minimize WGMSE®). We show in [42] that where R = [ry,....,ry] is @ r x N matrix, M =
[my,...,my] is the r x N matrix of sensor noisex; is

®(u, MSE?) = & (u, MSE")

o? [ (y1;0)] + a3 (i1 (y1:0))
(a2 + a(n1(y1;0))?

the t x 1 complex vector of transmitted signals, and; is

the r x 1 complex zero mean white noise vector. Ligf be

the transmitted training power constraint, i.6X||2 = P,

|- || = indicates Frobenius normi X || = /tr(X#X)) ando?

denote the variance of receiver noise. Tho@lis random,

uW, H(um) R, (y1 — H(x1)0) (a4) we estimate® for a particular realization corresponding to

W, u the block of received data. The task of channel estimation

is to recover the channel matri® based on the knowledge

is a CN'(0,1) random variable. The error in (43) wheny x and R as accurately as possible under a transmit

o ) 0/ .
minimized under the constrainf +E [a3(i21)] < 1is exactly power constraint orX. The standard LS solution and the
the same minimization derived for the single parameter tase

! . _ ; corresponding estimation error can then be written as
Section 1. It follows that the optimal and suboptimal stidns

E

, (43)

where

n1(y1:0) =

2t27°

to a; andas(-) will h02ld for the multiple paraimeter case. In (:)Ls _ RXH(XXH)—I’ MSE, s = g (47)
other wordsb(u, MSE®) ~ 0.6821 ®(u, MSE™). It follows Py

that Assuming co-located transmitter and receiver arrays [54],
WCMSE® — o(ei- MSE(2)) [55] and multiple training periods available within the sam

) ) coherency time (quasi-static) to estimate the channelséhe
~ 0.6821 ®(e;+,MSE") = 0.6821 WCMSE" (45)  f received signals at thév time steps given byR,; =

and this performance can be achieved usingriadependent ©Xi+M;, i =1,2,..., N, can be rewritten in the following
strategy along similar lines to the derivation for the scaldorm: .

parameter case in Section IV [42]. The reduction in MSE in yi=H(X;)0 +n;, i=12... N, (48)
(45) holds for anyM, the number of unknown parameters, aShere yi = veqR,:),0 = ved®),n; = veqM,),ved-)

i*, the index of the worst case error, can always be compuigghstes the column-wise concatenation of the matrix, and

from (39) and (40) for anyM € N. A similar result can be H(X;) = (X; @ I)T is a linear function of the inpuX;,
derived for theN-step procedure.

which is the same model described(B). In [40], a method
of linearly combining the estimates from each of thiestages
was proposed and the MSE of thé stage estimator was
shown to be Msg) = o%t?r/P,, where P, is the total
A. MIMO Channel Estimation power used in theéV steps, i.e.> ", [|X;|2 < P. If there

It has been shown that multiple-input and muItipIe—outpLﬂre enoggh training samples, we could completely control
systems (MIMO) greatly increase the capacity of wirelegge matrle(Xl-). through the '”p“t?@' and makeH(X;)
systems [44]-[46] and hence MIMO has become an acti thogo.nal. In_this ca23e48) along with thg average power
area of research over the last decade [47], [48]. One imlpbrtgtonStramtE [Zz ”XiHFJ < . Po can benefit from adaptive
component in a MIMO system is the need to accurateﬁg'ergy aIIocgnon designs in S_ec“‘?”s IV-A and VA W_here
estimate the channel state information (CSI) at the trattsmi 1€ problem is then separable into independent estimation

and receiver. This estimate has shown to play a crucf?{IOblemS of scalar parameters. HaviNgsteps in the training

role in MIMO communications [49]. A recent and populaFequence suggests ahstep energy allocation strategy. Hence

approach to channel estimation has been through the uséth(f)(?llow_s thlat using our skt)rategs){é]m)/e are gu2ar2anteed tc;].aﬁh'e
training sequences, i.e., known pilot signals are trarterhit (N€ optimal error given by M ~ Gno”tor/ Py, whic

and channel is estimated using the received data and the pW8 have shown to be at lea&dB (in 50 steps) better than any

signals. A number of techniques for performing trainingdzhs non-adaptive strategy.

channel estimation have been proposed: maximum likelihood )

training method [50], least squares training [51], minimur®- Inverse Scattering Problem

mean squared estimation [52]. Recently, [40] proposed fourThe problem of imaging a medium using an array of
different training methods for the flat block-fading MIMOtransducers has been widely studied in many research areas
system including the least squares and best linear unbiasedh as mine detection, ultrasonic medical imaging [56],

VI. APPLICATIONS OF SEQUENTIAL ESTIMATION
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foliage penetrating radar, non-destructive testing [Sfid VII. CONCLUSIONS

active audip. The goal in imaging is to Qetect and image small| this paper we considered thé-step adaptive waveform
scatterers in a known background medium. A recent approggipiitude design problem for estimating parameters of an
[58] uses the concept of time reversal, which works bynknown channel under average energy constraints. For-a two
exploiting the reciprocity of a physical channel, e.g., @&, step problem, we found the optimal energy allocation at the
optical, or radio-frequency. One implication of recipttycis  second step as a function of the first measurement for a scalar
that a receiver can reflect back a time reversed signal,iierarameter in the linear Gaussian model. We showed that this
focusing the signal at the transmitter source [S9]. Furti@e, yo-step adaptive strategy resulted in an improvement of at
with suitable prefiltering and aperture, the signal ener@y Cleast1.65dB over the optimal non-adaptive strategy. We then
also be focused on an arbitrary spatial location. This aiim'ydesigned a suboptimaV-stage energy allocation procedure
assumes the noiseless scenario. For the noisy case, maxinyg&kd on the two-step approach and demonstrated gains of
likelihood estimation of point scatterers was performed fongre thansdB in N = 50 steps. We extended our results to
both the single scattering and the multiple scattering f$0dgne case of vector parameters and provided applicationarof o

in [41]. We apply our concept of designing a sequence gksjgn to MIMO and inverse scattering channel models.
measurements to image a medium of multiple scatterers using
an array of transducers under a near-field approximation of REFERENCES
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