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Abstract—This paper investigates the advantages of adaptive
waveform amplitude design for estimating parameters of an
unknown channel/medium under average energy constraints.We
present a statistical framework for sequential design (e.g., design
of waveforms in adaptive sensing) of experiments that improves
parameter estimation (e.g., unknown channel parameters) per-
formance in terms of reduction in mean-squared error (MSE).
We treat an N time step design problem for a linear Gaussian
model where the shape of theN input design vectors (one per
time step) remains constant and their amplitudes are chosen
as a function of past measurements to minimize MSE. For
N = 2, we derive the optimal energy allocation at the second step
as a function of the first measurement. Our adaptive two-step
strategy yields an MSE improvement of at least1.65dB relative
to the optimal non-adaptive strategy, but is not implementable
since it requires knowledge of the noise amplitude. We then
present an implementable design for the two-step strategy which
asymptotically achieves optimal performance. Motivated by the
optimal two-step strategy, we propose a suboptimal adaptive
N -step energy allocation strategy that can achieve an MSE
improvement of more than 5dB for N = 50. We demonstrate
our general approach in the context of MIMO channel estimation
and inverse scattering problems.

Index Terms—Parameter estimation, sequential design, energy
management, maximum likelihood, MMSE, inverse scattering,
channel estimation.

I. I NTRODUCTION

Adaptive sensing has been an important topic of research for
at least a decade. Many of the classical problems in statistical
signal processing such as channel estimation, radar imaging,
target tracking, and detection can be presented in the context
of adaptive sensing. One of the important components in these
adaptive sensing problems is the need for energy management.
Most applications are limited by peak power or average power.
For example, in sensor network applications, sensors have lim-
ited battery life and replacing them is expensive. Safety limits
the peak transmit power in medical imaging problems. Energy
is also a critical resource in communication systems where
reliable communication is necessary at low signal-to-noise
ratios. Hence it is important to consider energy limitations
in waveform design problems. Most of the effort in previous
research has focussed on waveform design under peak power
constraints, e.g., sensor management. There has been little
effort in developing adaptive waveform design strategies that
allocate different amounts of energy to the waveforms over
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time. Our goal in this paper is to perform waveform amplitude
design for adaptive sensing in order to estimate the set of
unknown channel parameters or scattering coefficients under
an average energy constraint. We formulate this problem as
an experimental design problem in the context of sequential
parameter estimation. We explain the methodology of experi-
mental design, derive optimal designs, and show performance
gains over non-adaptive design techniques. As a final step, we
describe in detail how some applications of adaptive sensing
such as channel estimation and radar imaging can be cast into
this experimental design setting thereby leading to attractive
performance gains compared to current literature. Next, we
present a review of waveform design and sequential estimation
literature to provide a context for our work.

Note: The term ‘sequential’ is used in different contexts in
the literature. In this paper, ‘sequential’ means that at every
time instant, the best signal to transmit is selected from a
library that depends on past observations.

A. Related Work - Waveform Design

Early work in waveform design focussed on selecting
among a small number of measurement patterns [1]. Radar
signal design using a control theoretic approach subject to
both average and peak power constraints was addressed in
[2] and [3]. The design was non-adaptive and the optimal
continuous waveforms were shown to be on-off measurement
patterns alternating between zero and peak power levels for
a tracking example. In our design, the energy allocation
to the waveforms over time are optimally chosen from a
continuum of values. Parameterized waveform selection for
dynamic state estimation was explored in [4] and [5] where
the shape of the waveforms were allowed to vary under con-
stant transmit power. Closed-form solutions to the parameter
selection problem were found for a very restrictive set of
cases such as one-dimensional target motions. More recently
a dynamic waveform selection algorithm for tracking using
a class of generalized chirp signals was presented in [6]. In
contrast to these efforts, we focus our work in finding optimal
waveform amplitudes under an average energy constraint for
static parameter estimation. Sensor scheduling can be thought
of as an adaptive waveform design problem under a peak
power constraint [7] where the goal is to choose the best
sensor at each time instant to provide the next measurement.
The optimal sensor schedule can be determined a priori and
independent of measurements for the case of linear Gaussian
systems [8], [9]. The problem of optimal scheduling for the
case of hidden Markov model systems was addressed in [10].
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Literature Type of parameters Type of design Type of constraint Type of control

D R LSD NLSD SQ NSQ EN SN NONE EN WV SN NONE

Waveform design [1] X X X X X

Sensor scheduling [8]–[10] X X X X X

Sequential estimation [11], [12] X X X X

Schweppe’s design [2], [3] X X X X

RLS [13] X X X X

Stein estimator [14], [15] X X X X

Kalman filter [16] X X X X

Our sequential approach X X X X

TABLE I
KEY TO THE TABLE: D-DETERMINISTIC, R-RANDOM, LSD-LINEAR STATE DYNAMICS, NLSD-NON LINEAR STATE DYNAMICS, SQ-SEQUENTIAL

DESIGN, NSQ-NON SEQUENTIAL DESIGN, EN-ENERGY, SN-SENSORS, WV-WAVEFORM PARAMETERS.

In table I, we compare our work with existing literature via
different categories.

B. Related Work - Sequential Design for Estimation

The concept of sequential design has been studied by
statisticians for many decades [17]–[22] and has found appli-
cations in statistics, engineering, biomedicine, and economics.
Sequential analysis has been used to solve important problems
in statistics such as change-point detection [23], [24], point and
interval estimation [25], multi-armed bandit problems [26],
quality control [27], sequential testing [28], and stochastic
approximation [29]. Robbins pioneered the statistical theory
of sequential allocation in his seminal paper [26]. Early
research on the application of sequential design to problems of
estimation was limited to finding asymptotically risk-efficient
point estimates and fixed-width confidence intervals [11], [12],
[30], i.e., sequential design was used to solve problems in
which a conventional estimate, based on a sample whose size
is determined by a suitably chosen stopping rule, achieves
certain properties such as bounded risk. For the problem of
estimating the mean under unknown variance, it was shown
that a sequential two-step method guaranteed specified pre-
cision [23], [31], [32], which is not possible using a fixed
sample. The statistical sequential design framework assumes a
fixed measurement setup while acquiring the data and does not
consider energy constraints. In this paper, we adaptively design
input parameters to alter the measurement patterns under an
average energy constraint to obtain performance gains over
non-adaptive strategies.

Another class of problems in sequential estimation is online
estimation, where fast updating of parameter estimates are
made in real time, called recursive identification in control
theory, and adaptive estimation in signal processing. For
example, consider the problem of estimating parameterθ in
the following model

yi = xT
i θ + wi, i = 1, 2, . . . , n,

where {xi} are the sequence of inputs to the system,
{wi} are independent identically distributed (i.i.d) Gaus-
sian random variables with zero mean and{yi} are the
set of received signals. The maximum likelihood estimate

of θ is given by the least squares (LS) solution,θ̂LS =(∑n
i=1 xix

T
i

)−1
(
∑n

i=1 xiyi). One way of computing the LS
estimate is the recursive least squares approach (RLS) [13]
which can be written as

θ̂n = θ̂n−1 + Pnxn(yn − xT
n θ̂n−1)

Pn = Pn−1 −
Pn−1xnxT

nPn−1

1 + xT
nPn−1xn

,

wherePn =
(∑n

i=1 xix
T
i

)−1
. The recursive process avoids

the computational complexity of inverting the matrix.

In the above formulation it was assumed that the input
sequence{xi} remains fixed. The problem of waveform design
is relevant when inputxi can be adaptively chosen based
on the past measurementsy1, . . . , yi−1. Measurement-adaptive
estimation has application to a wide variety of areas such as
communications and control, medical imaging, radar systems,
system identification, and inverse scattering. By measurement-
adaptive estimation we mean that one has control over the
way measurements are made, e.g., through the selection of
waveforms, projections, or transmitted energy. The standard
solution for estimating parameters from adaptive measure-
ments is the maximum likelihood (ML) estimator. For the case
of classic linear Gaussian model, i.e., a Gaussian observation
with unknown mean and known variance, it is well-known
[16] that the ML estimator is unbiased and achieves the
unbiased Cramér Rao lower bound(CRB). Many researchers
have looked at improving the estimation of these parameters
by adding a small bias to reduce the MSE. Stein showed that
this leads to better estimators that achieve lower MSE than
the ML estimator for estimating the mean in a multivariate
Gaussian distribution with dimension greater than two [14],
[15]. Other alternatives such as the shrinkage estimator [33],
Tikhonov regularization [34] and covariance shaping least
squares (CSLS) estimator [35] have also been proposed in the
literature. While these pioneering efforts present interesting
approaches to improve static parameter estimation perfor-
mance by introducing bias, none of them incorporate the
notion of sequential design of input parameters. Our adaptive
design of inputs effectively adds bias to achieve reductionin
MSE.

In this paper, we formulate a problem of sequentially select-
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ing waveform amplitudes for estimating parameters of a linear
Gaussian channel model under an average energy constraint
over the waveforms and over the number of transmissions. In
Section II, the problem of experimental design [36], [37] for
sequential parameter estimation is outlined and the analogy
between this problem and the waveform design problem is
explained. In Section III, closed-form expressions for the
optimal design parameters and the corresponding minimum
MSE in the single parameter case are derived for a two-step
procedure (two time steps). Since the optimal solution requires
the knowledge of parameters to be estimated, it is shown in
Section IV that the performance of this omniscient solution
can be achieved with a parameter independent strategy. In
Section IV-A, we describe anN -step sequential energy al-
location procedure, which yields more than5dB gain over
non-adaptive methods. These results are extended to the vector
parameter case in Section V. Finally in Section VI, we show
the applicability of this framework for channel estimationand
radar imaging problems.

II. PROBLEM STATEMENT

We begin by introducing nomenclature commonly used
throughout the paper. We denote vectors inCM by bold-
face lowercase letters and matrices inCM×N by boldface
uppercase letters. The identity matrix is denoted byI. We use
(·)T and(·)H to denote the transpose and conjugate transpose
operators, respectively. We denote thel2-norm of a vector by
‖ · ‖, i.e., ‖x‖ =

√
xHx. A circularly symmetric complex

Gaussian random vector with meanµ and covariance matrix
C is denoted asCN (µ,C). E [·] and tr(·) denote the statistical
expectation and trace operators, respectively. The terms MSE
and SNR are abbreviations to mean-squared error and signal-
to-noise ratio, respectively.

Let θ = [θ1, . . . , θM ]T be theM -element vector of un-
known parameters. The problem of estimatingθ in noise can
then be written as

yi = f(xi, θ) + ni, i = 1, 2, . . . , N, (1)

where{ni} is an i.i.d. random process corrupting the function
of the parameters of interestf(xi, θ) and i denotes the time
index. TheT -element design parameter vectors,{xi}N

i=1 can
depend on the past measurements:xi = xi(y1, . . . ,yi−1),
where yi is the ith K-element observation vector. In the
context of adaptive sensing,f(xi, θ) represents the response
of the medium,T and K denote the number of transmit
and receive antennas respectively,{xi}N

i=1 are the set of
waveforms to be designed,θ are the set of channel parameters
or scattering coefficients to be estimated using the set of
received signals{yi}N

i=1. For the classic estimation problem
in a linear Gaussian model, we havef(xi, θ) = H(xi)θ,
H(xi) = [h1(xi),h2(xi), . . . ,hM (xi)] is a knownK × M
matrix and linear inxi andni is aCN (0, σ2I) random vector.
When H(x) is linear in x, we can writehl(x) = Hlx, l =
1, 2, . . . , M . In this caseH(·) is uniquely determined by the
matrices{H1, H2, . . . , HM}. The linear Gaussian model has
been widely adopted in many studies [38], [39] including
channel estimation [40] and radar imaging [41] problems. The

set of observations for the case of a scalar parameterθ1 are

yi = h1(xi)θ1 + ni, i = 1, 2, . . . , N. (2)

An N -step design procedure specifies a sequence of functions
{xi(y1,y2, . . . ,yi−1)}N

i=1 corresponding to theN transmitted
signal waveforms after receiving the previous measurements.
An optimal N -step procedure selects the design vectors so
that the MSE of the maximum likelihood (ML) estimator,
θ̂
(N)
1 (y1,y2, . . . ,yN ) is minimized subject to the average

energy constraint,E
[∑N

i=1 ‖xi‖2
]
≤ E0, whereE0 is the

total available energy. The ML estimator ofθ1 for theN -step
procedure is given by

θ̂
(N)
1 =

∑N
i=1 h1(xi)

Hyi∑N
i=1 ‖h1(xi)‖2

(3)

and the corresponding MSE
(
{xi}N

i=1

)
, E

[∣∣∣θ̂(N)
1 − θ1

∣∣∣
2
]

is

MSE(N)
(
{xi}N

i=1

)
= E




∣∣∣∣∣

∑N
i=1 h1(xi)

Hni∑N
i=1 ‖h1(xi)‖2

∣∣∣∣∣

2


 . (4)

Denote Ei(y1, . . . ,yi−1) = ‖xi(y1, . . . ,yi−1)‖2, where
Ei(y1, . . . ,yi−1) represents the energy allocated to each time
step i. Define E

[
{xi(y1, . . . ,yi−1)}N

i=1

]
as the average en-

ergy in the design parameters for theN -step procedure. The
average energy constraint can be written as

E
[
{xi(y1, . . . ,yi−1)}N

i=1

]
= E

[
N∑

i=1

‖xi‖2

]
≤ E0. (5)

Our goal is to find the best sequence of the design vectors
{xi}N

i=1 to minimize the MSE(N)
(
{xi}N

i=1

)
in (4) under the

average energy constraint in(5).

A. Non-adaptive strategy

As a benchmark for comparison, we consider the non-
adaptive case wherexi(y1, . . . ,yi−1) is deterministic, inde-
pendent ofy1,y2, . . . ,yi−1, ‖xi‖2 = Ei, and

∑N
i=1 Ei ≤ E0.

Simplifying the expression for MSE in(4), we have

MSE(N) =
σ2

∑N
i=1 ‖h1(xi)‖2

≥ σ2

E0λm(H1)
, (6)

where equality is achieved iff∀i xi ∝ vm, the nor-
malized eigenvector corresponding toλm(H1), the maxi-
mum eigenvalue of the matrixHH

1 H1. Note λm(H1) =
maxx(xHHH

1 H1x)/(xHx) = maxx ‖h1(x)‖2/‖x‖2. Fur-
thermore, the performance of the ML estimator does not
depend on the energy allocation. Hence, without loss of
generality we can assume all energy is allocated to the first
transmission which implies that anyN -step non-adaptive
strategy is no better than the optimal one-step strategy. We
define SNR

(
{xi}N

i=1

)
as

SNR(N) =
λm(H1)E

[
{xi(y1, . . . ,yi−1)}N

i=1

]

σ2
. (7)

Then the average energy constraint in(5) is equivalent to
SNR(N) ≤ SNR0, where SNR0 = λm(H1)E0/σ2. We show
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in [42] that the problem of minimizing MSE(N) subject to
SNR(N) ≤ SNR0 is equivalent to minimizing MSE(N) ×
SNR(N). Thus we use the two minimization criteria inter-
changeably in the remainder of this paper. The product of
MSE and SNR is

MSE(N) × SNR(N) = E




∣∣∣∣∣

∑N
i=1 h1(xi)

Hni∑N
i=1 ‖h1(xi)‖2

∣∣∣∣∣

2




×




λm(H1)E

[∑N
i=1 ‖xi‖2

]

σ2



 (8)

and the minimum MSE for the one-step (or non-adaptiveN -
step) strategy satisfies

MSE(1)
min × SNR0 = 1. (9)

While our goal is to find optimal input design parameters,
{xj(y1, . . . ,yj−1)}N

j=1 which achieve minimum MSE, any
suboptimal design that guarantees MSE(N) × SNR0 < 1 is
also of interest. We first look at a two-step sequential design
procedure. A word of caution: in Sections III and III-A we
develop optimal and suboptimal strategies where the solutions
require the knowledge of the unknown parameterθ1. However,
in Section IV we present aθ1-independent design which
asymptotically achieves the performance of the ‘omniscient’
strategies.

III. O MNISCIENT OPTIMAL TWO-STEPSEQUENTIAL

STRATEGY

In the two-step sequential procedure, we haveN = 2 time
steps where in each time stepi = 1, 2, we can control input
design parameterxi to obtain observationyi. For a two-step
process, we have

y1 = h1(x1)θ1 + n1 (10)

y2 = h1(x2(y1))θ1 + n2. (11)

The ML estimator ofθ1 for a two-step procedure from(3) is

θ̂
(2)
1 =

h1(x1)
Hy1 + h1(x2)

Hy2

‖h1(x1)‖2 + ‖h1(x2)‖2
(12)

and its MSE from(4) is given by

MSE(2)(x1,x2) = E

[ |h1(x1)
Hn1 + h1(x2)

Hn2|2
(‖h1(x1)‖2 + ‖h1(x2)‖2)2

]
. (13)

We assume that the shape of the optimal de-
signs, i.e., {xi/‖xi‖} is the one-step optimum given by
vm defined below (6) and minimize the MSE over the
energy of the design parameters. Denote‖x1‖ =

√
E0α1

and ‖x2(y1)‖ =
√

E0α2(y1). Under the sequential design
framework, we select

x1 =
√

E0 α1vm (14)

x2(y1) =
√

E0 α2(y1)vm, (15)

whereα1 andα2(·) are real-valued scalars. The average energy
constraint from(5) can then be written as

E
[
α2

1 + α2
2(y1)

]
≤ 1. (16)

We use Lagrangian multipliers to minimize the MSE in(13)
with respect toα1 and α2(·) under the energy constraint in
(16). The objective function to be minimized can then be
written as

E

[ |h1(x1)
Hn1 + h1(x2)

Hn2|2
(‖h1(x1)‖2 + ‖h1(x2)‖2)2

]
+ γ

(
α2

1 + E
[
α2

2(y1)
])

In [42], we show that the optimal solution toα2(y1) depends
on y1 only through the functioñn1(y1; θ1), where

ñ1(y1; θ1) =
h1(vm)H(y1 − h1(x1)θ1)

‖h1(vm)‖σ =
h1(vm)H

‖h1(vm)‖
n1

σ
(17)

∼ CN (0, 1). Hence we denote the solution asα2 (ñ1(y1; θ1)).

Let g (ñ1(y1; θ1)) =
(
1 +

α2

2
(ñ1(y1;θ1))

α2

1

)
. Setting the deriva-

tive of the objective function with respect tog to zero yields

g3 − 1

γ′
g + 2

1 − |ñ1|2
γ′

= 0, (18)

whereγ
′

= γα4
1SNR0. The functiong that minimizes MSE

is the root of the third-order polynomial in(18), real-valued
and greater than or equal to1. If more than one real-valued
solution greater than1 to the cubic equation exists, the
optimal solution tog will be the root that achieves minimum
MSE. The optimalg for every ñ1 and γ

′

is denoted by
gγ

′ (ñ1). Also E
[
gγ

′ (ñ1)
]

= 1
α2

1

. Therefore, findingα1 that

minimizes MSE is equivalent to findingγ
′

that minimizes
MSE. We obtain gγ

′ (ñ1) for every γ
′

and use a brute
force grid search to find the optimalγ

′

that minimizes the
objective function. The MSE is minimized atγ

′∗ ≈ 0.22,
or α∗

1 ≈ 0.7421. The optimalα2 is given by the relation

α∗
2 (ñ1(y1; θ1)) = α∗

1

√(
gγ

′
∗ (ñ1(y1; θ1)) − 1

)
. Since this

solution depends on the unknown parameterθ1, we call this
minimizer an “omniscient” energy allocation strategy. Forthe
optimal solution, the product of MSE× SNR is

MSE(2)
min × SNR0 ≈ 0.68. (19)

This corresponds to a32% improvement in performance or a
1.67dB gain in terms of SNR for the two-step design when
compared to the one-step procedure for which MSE(1)

min ×
SNR0 = 1.

The optimal energy allocation at the second step,
α∗2

2 (ñ1(y1; θ1)) as shown in Fig. 1 (solid) is a thresholding
function, i.e., α∗

2 is zero for |ñ1|2 ≤ 0.59. This solution
implies that when the actual realization of the normalized
noise alongh1(vm) in the first step is small enough, then
the second measurement becomes unnecessary. On the other
hand, when the normalized noise alongh1(vm) exceeds a
threshold, then there is some merit in incorporating the in-
formation from the second measurement. The solution also
suggests that the higher the noise magnitude at the first step,
the more the energy that needs to be used. However, the
probability of allocating energy greater than a particularvalue
decreases exponentially with that energy value. Nevertheless
in applications with a peak energy constraint, the transmission
of the optimal energy at the second stage may not always
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Fig. 1. Plot of the optimal and suboptimal solution to the normalized energy
transmitted at the second stage as functions of received signal at first stage.

be possible. Hence, in the following subsection we look at a
suboptimal solution which takes into account this constraint
and still achieves near optimal performance.

A. Omniscient Suboptimal Two-step Strategy

The optimal solution in Section III is a thresholding func-
tion, where energy allocated to the second stage is zero if
the noise magnitude at the first step is less than a threshold
and increases with increasing noise magnitudes otherwise.For
the suboptimal solution, we use a binary energy allocation
strategy at the second stage based on the noise magnitude at
the first step, i.e., we allocate a fixed nonzero energy if the
noise magnitude is greater than a threshold else we allocate
zero energy. The suboptimal solution to the design vectorsx1

andx2 is then of the form

x1 = vm

√
E0 α1 (20)

x2 = vm

√
E0 α2 I

(
|ñ1|2 > ρ

)
, (21)

where ñ1 is defined in(17), α1, α2 are design parameters
independent ofy1 and I (·) is the indicator function, i.e.,

I (A) =

{
1, A is true
0, A is false.

The SNR of the suboptimal two-step procedure is

SNR(2) = SNR0

(
α2

1 + α2
2P
(
|ñ1|2 > ρ

))
. (22)

The MSE of the ML estimator under this suboptimal solution
using (13) is

MSE(2) =
1

SNR0
E

[
α2

1|ñ1|2 + α2
2

(α2
1 + α2

2)
2 I

(
|ñ1|2 ≥ ρ

)
]

+
1

SNR0
E

[ |ñ1|2
α2

1

I
(
|ñ1|2 < ρ

)]
. (23)

Denote β =
α2

1

α2

1
+α2

2

, 0 ≤ β ≤ 1. Substituting for β

in the expressions for MSE(2) and SNR(2) in (23) and

(22), and using the fact thatE
[
I (|x|2 ≥ ρ)

]
= e−ρ and

E
[
|x|2I (|x|2 ≥ ρ)

]
= ρe−ρ whenx ∼ CN (0, 1), the expres-

sion MSE(2) × SNR(2) simplifies to

MSE(2) × SNR(2) = ((βρ + 1)e−ρ +
1

β
(1 − (1 + ρ)e−ρ))

×
(
β + (1 − β)e−ρ

)
. (24)

Minimizing MSE(2)×SNR(2) with respect toβ andρ through
a grid search forβ ∈ [0, 1] andρ ∈ [0,∞) yields β∗ ≈ 0.37,
ρ∗ ≈ 0.675. It follows that α∗

1 ≈ 0.7319 and α∗
2 ≈ 0.9550.

Substituting for the optimal values ofα∗
1, α

∗
2, β

∗, ρ∗ in (24)
and (22), and simplifying yields

MSE(2)
min × SNR0 ≈ 0.7143. (25)

This translates to a28.47% improvement in MSE performance
or a 1.5dB savings in terms of SNR. The suboptimal solution
to the energy design is shown in Fig. 1 by a dashed dotted line
indicated as Suboptimal-I. Thus, while the suboptimal strategy
limits the peak transmit power tomax

(
α∗2

1 , α∗2
2

)
E0, it is able

to achieve near optimal performance.
In the previous section, we addressed the problem of

minimizing MSE subject to an average energy constraint,
E
[
‖x1‖2 + ‖x2‖2

]
≤ E0. An average energy constraint

implies that the total allocated energy averaged over repeated
trials of the two-step experiment is constrained to be less than
or equal toE0. This is less restrictive than the strict energy
constraint‖x1‖2+‖x2‖2 ≤ E0, as any solution satisfying this
constraint satisfies the average energy constraint but not vice
versa. The problem of minimizing the MSE in(13) under this
strict energy constraint was addressed in the context of radar
imaging in [43]. We show in [42] that the optimal two-step
design under the strict constraint is given by

x1 = α∗
1

√
E0vm

x2 = α∗
2

√
E0 vm I

(
|ñ1|2 > ρ∗

)
,

where α∗
1 ≈ 0.628, α∗

2 ≈ 0.7782, and ρ∗ ≈ 0.2831. The
minimum MSE is then given by MSE(2)min × SNR0 ≈ 0.9219.
The optimal solution satisfies the strict energy constraintwith
equality but the average energy used isE0(α

∗2
1 +α∗2

2 e−ρ∗

) ≈
0.8550E0. The solution to the two-step strategy under this
strict energy constraint can also be derived by imposing an
additional constraint,α2

1 + α2
2 ≤ 1 to the suboptimal design

problem described earlier in this section. In the followingsec-
tion, we design aθ1-independent design strategy that achieves
the optimal performance asymptotically and allows for any
peak power constraint in the design.

IV. PARAMETER INDEPENDENTTWO-STEPDESIGN

STRATEGY

Consider the optimal design for the two-step procedure

x1 =
√

E0 α∗
1vm

x2 =
√

E0 α∗
2(ñ1(y1; θ1))vm

=
√

E0 α∗
2

(∣∣∣∣
h1(vm)H

‖h1(vm)‖
(y1 −

√
E0α

∗
1h1(vm)θ1)

σ

∣∣∣∣

)
vm.

(26)
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Fig. 2. Plot of reduction in MSE versus percentage error in the guess of
parameterθ1 for various SNR.

We showed that by designingα1 and α2 optimally we can
gain up to32% improvement in estimator performance. But
the “omniscient” solution (26) depends on the parameter
to be estimated. Here, we prove that we can approach the
optimal two-step gain by implementing aθ1-independent
energy allocation strategy whenθ1 is bounded, i.e.,θ1 ∈
[θmin, θmax], θmin, θmax ∈ R. We describe the intuition behind
the proposed solution in this section. The details of the proof
can be found in [42]. Since we do not know the value of the
actual parameter, we replaceθ1 by a ‘guess’ ofθ1, sayθg, in
the optimal solution to the design at the second step given in
(26). The resulting suboptimal design is

x1 =
√

E0α
∗
1vm (27)

x2 =
√

E0α
∗
2

(∣∣∣∣
h1(vm)H

‖h1(vm)‖
(y1 −

√
E0α

∗
1h1(vm)θg)

σ

∣∣∣∣

)
vm

=
√

E0α
∗
2 (|ñ1 + z|) vm, (28)

where

z =
α∗

1

√
E0‖h1(vm)‖

σ
(θ1 − θg) = α∗

1

√
SNR0(θ1 − θg) (29)

andñ1, which is defined in(17) is CN (0, 1). Substituting the
above suboptimal solution in the expression for MSE(N) ×
SNR(N) in (8) and simplifying, we obtain

η(z) = MSE(2)(z) × SNR(2)(z)

= E

[
α∗2

1 |ñ1|2 + α∗2
2 (|ñ1 + z|)

(α∗2
1 + α∗2

2 (|ñ1 + z|))2
]

×E
[
α∗2

1 + α∗2
2 (|ñ1 + z|)

]
. (30)

Figure2 showsη(z) in (30) as a function of the percentage

error in the guess ofθ1, 100
(

θ1−θg

θ1

)
for varying SNR0. The

plot indicates that whenθg = θ1, the optimal performance
of the adaptive two-step strategy is achieved for all SNR. At
high SNR, for certain values of|θ1−θg|, the two-step strategy
defined by equations(27) and (28) performs worse than a

single step strategy with signal-to-noise ratio SNR0. This is
because the solution presented in(27) and (28) in terms of
scalarα∗

1 and thresholding functionα∗
2(·) were optimized for

ñ1 + z ∼ CN (0, 1), i.e., whenz = 0. When θg 6= θ1, the
following happens:z 6= 0, ñ1 + z ∼ CN (z, 1), and the design
parametersα∗

1 andα∗
2(·), which were found optimally for̃n1+

z ∼ CN (0, 1) (z = 0) are no longer optimal. When|θ1−θg| is
large,z in (29) is a large constant and henceñ1 is a negligible
term compared toz with high probability. In other words,
α∗

2(ñ1 + z) can be made arbitrarily close toα∗
2(z) with high

probability asz tends to infinity. This implies that the strategy
becomes equivalent to a two-step non-adaptive strategy with
a specific non-adaptive energy distribution between the two
steps whose performance is given by MSE(2) × SNR0 = 1
from Section II-A. Thus we observe that the performance of
the two-step strategy tends to1 for large |θ1 − θg|.

The optimal solution to MSE(2)(z)×SNR(2)(z) is achieved
whenz = 0. There are two ways that drivez → 0. If θ1 = θg,
then z = 0 and we haveη(0) = η∗ = MSE(2)

min × SNR0 ≈
0.68, the optimal two-step performance. Sinceθg is arbitrary,
|θ1−θg| > 0; the two-step design is not optimal and therefore
MSE(2) × SNR0 = η(z) > η∗. The other way to achieve
the optimal solution is to make SNR0 as small as possible.
Note that if SNR0 is sufficiently small MSE(2) × SNR(2)

approaches its minimal value. Since SNR(2) ≤ SNR0, driving
the SNR0 to zero, drives the MSE(2) to infinity. To overcome
this problem, we propose anN × 2-step procedureto allow
the SNR0 to be fixed while drivingz → 0. The N × 2-step
algorithm is outlined in Fig. 3. Any peak power constraint can
also be satisfied using theN × 2-step strategy by choosing a
sufficiently largeN . The most important information in Fig. 2
is the performance of the two-step strategy under the low SNR
regime since each2-step procedure in theN × 2-step strategy
works at (1/N)th of the total SNR. Hence asN becomes
large, SNR in each experiment is very small and the lack of
knowledge ofθ1 plays a negligible effect on the performance
asz is made close to zero through the SNR factor.

A. Design ofN -step procedure

In Sections III and IV, we derived the omniscient optimal
two-step design to minimize the MSE and proved that the
optimal performance can be achieved asymptotically using an
N × 2-step strategy. But theN × 2-step strategy is a specific
case of a2N -step design. In this subsection, we generalize the
suboptimal solution from the2-step case to theN -step case
as follows: we assume that the shape of the design vector
is fixed and look at the energy allocation among the various
steps. The set of observations are as defined in(2). Let the
shape of the design vectorxi bevm and the energy at stepi,
Ei = α2

i (y1, . . . ,yi−1), i.e., xi = vmαi(y1, . . . ,yi−1), 1 ≤
i ≤ N . Then

α1 = A1,

αi = AiI

(
|∑i−1

j=1 h1(xj)
Hnj |2

∑i−1
j=1 ‖h1(xj)‖2σ2

≥ ρi

)
, i ≥ 2, (31)

where{Ai, ρi} are design parameters. This approximate so-
lution is motivated from the suboptimal thresholding solution



SUBMITTED TO IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING 7

• Step 1: PerformN independent two-step suboptimal experiments with inputs1√
N

x1 and 1√
N

x2 wherex1 and x2 are
given in (27) and (28) respectively, i.e., use energyE0/N in each of theN experiments.

– The SNR of the2N -step procedure is SNR(2N)(z) = NSNR(2),1(z) = SNR(2)(z/
√

N) where SNR(2),k is the
SNR of thekth two-step experiment. The first equality follows from the fact that {SNR(2),k}N

k=1 are identical as
the N experiments are independent while the second equality follows from the fact that each two-step experiment
uses only(1/N)th of the total energy.

• Step 2: Obtain ML estimate from each step asθ̂
(2),k
1 and average theN estimates to obtain the ML estimator of the

N × 2-step strategy aŝθ(2N)
1 = 1

N

∑N
k=1 θ̂

(2),k
1 .

– The MSE ofθ̂(2N)
1 is given by MSE(2N)(z) = 1

N
MSE(2),1(z) = MSE(2)(z/

√
N), where MSE(2),k is the MSE of

each two-step estimator̂θ(2),k
1 . The first equality follows from the fact that{MSE(2),k}N

k=1 are identical as theN
experiments are independent while the second equality follows from the fact that each two-step experiment uses
only (1/N)th of the total energy.

• From Steps 1 and 2, we have MSE(2N)(z)×SNR(2N)(z) = MSE(2)(z/
√

N)SNR(2)(z/
√

N). As N → ∞, z/
√

N → 0
and MSE(2N)(z) × SNR(2N)(z) → η∗, i.e., minimal MSE is achieved. The details of the proof can be found in [42].

Fig. 3. Description of theN× two-step procedure.

to the two-step case derived in Section III-A. Note that the
definition of the amplitudes at each stage is recursive, i.e., the
amplitude designαi depends on past inputsx1, . . . ,xi−1

which in turn depends onα1, . . . , αi−1. To simplify our
analysis, we make the assumptionρ1 ≤ ρ2 ≤ . . . ≤ ρN .
Then,

α2 = A2I

(∣∣∣∣
h1(x1)

H

‖h1(x1)‖
n1

σ

∣∣∣∣
2

≥ ρ2

)
= A2I

(
|ñ1|2 ≥ ρ2

)
,

(32)
where ñi = h1(vm)H

‖h1(vm)‖
ni

σ
are i.i.d CN (0, 1) random variables.

Following the same procedure, a general expression forαi can
be written as

αi = Ai

i−1∏

s=1

I

(
|ws|2 ≥ ρs+1

)
, (33)

wherews =
∑

s
j=1

Aj ñj√∑
s
j=1

|Aj |2
. This form states that the stopping

criteria at time steps is when the magnitude of the average
noise, ws drops below the thresholdρs+1. The goal is to
minimizeGN = MSE(N) × SNR(N) of this N -step procedure
with respect toA = [A1, . . . , AN ] andρ = [ρ1, . . . , ρN ].

Since there is no closed-form solution to this2N dimen-
sional optimization [42], we evaluate the performance of
suboptimal solutions to the design vectorsA andρ. For our
simulations, we chooseρi = (i−1)/(N−1) ρmax, 1 ≤ i ≤ N .
Furthermore, we chooseA as {Ai = d α∗

1, odd i; Ai =
d α∗

2, even i}, where α∗
1, α

∗
2 are optimal values from the

suboptimal solution presented in Section III-A andd is chosen
to satisfy the average energy constraint. The intuition behind
this choice ofA and ρ is motivated through an asymptotic
result derived in [42]. We evaluate the performance of the
N -step procedure with these parameters through theory and
verify the theory using simulations. Performance gains,GN (in
dB) are presented in Fig. 4. By designing thisN -step proce-
dure, we are essentially altering the Gaussian statistics of the
measurement noise to obtain improvements in performance.
In Fig. 5, we illustrate how the distribution of the estimation
residuals changes with the number of the steps. We see that
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Fig. 4. Plot of gains obtained through suboptimalN -step procedure as a
function of N through theory and simulations.

in 50 steps, we are able to achieve gains of more than5dB. In
Section IV, we showed that the two-step gain can be achieved
using anN × 2-step strategy, i.e., in2N steps. The basic
motivating factor was to reduce the SNR in each experiment
and achieve the diversity gain by increasing the number of
steps. For the generalN -step strategy, progressive reduction
in SNR of each experiment implies that as the number of
steps increases, the error of guessingθ1 has a reduced effect
on the overall performance. We demonstrate the achievability
of performance for anyN -step design through the following
theorem.

Theorem 4.1:For anN -step procedure, we need to design
a sequence of input vectors{xi}N

i=1 optimally under an
average energy constraint to minimize the MSE in (4). Let
S = {xi (y1, . . . ,yi−1; θ1)}N

i=1 be any design of the input
parameters satisfying the following conditions:

• Average energy constraint:
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Fig. 5. Distribution of noise versus number of steps.

E
[∑N

i=1 ‖xi (y1, . . . ,yi−1; θ1) ‖2
]
≤ E0.

• Continuity - The design vectorxi (y1, . . . ,yi−1; θ1) is a
continuous function of{yj}i−1

j=1 or can assume the form
of a thresholding function in (31).

Then there exists a θ1-independent strategy whose
performance can come arbitrarily close to MSE(N)(S)
which assumes the knowledge of parameterθ1.

Proof: The proof is similar to theN × 2-step strategy
presented in Section IV, where the actual value ofθ1 in the
optimal solution is replaced with a guess ofθ1. Refer to [42]
for details.

V. SEQUENTIAL DESIGN FORVECTORPARAMETERS

A generalN -step procedure for the case ofM unknown
parameters can be written as

yi = H(xi(y1, . . . ,yi−1))θ + ni, i = 1, 2, . . . , N, (34)

whereθ is anM -element vector,ni ∼ CN (0,Rn), andH(x)
is a K × M matrix. For the multiple parameter case, MSE
is no longer a scalar. Various criteria such as trace, minmax,
determinant of the MSE matrix can be considered as measures
of performance under the multiple unknown setting.

A. Trace Criteria

For the multiple parameter case, the MSE is a ma-
trix and we consider the trace as a measure of perfor-
mance, i.e.,min{xi}N

i=1

tr(MSE(N)(θ)). The problem of multi-
ple parameter estimation is more complicated than estimation
of a single parameter for the following reason. We showed in
Section II-A that independent of the shape ofxi, any non-
adaptive energy allocation strategy is to assign all energyto
the first step, i.e., a one-step strategy with energyE0. But this
is not true for the multiple parameter setting. Let us consider
a simple example of estimating two parametersθ = [θ1 θ2]

T

in the modely = H(x)θ + n, where

H(x) =

[
x1 x2

0 x2

]
, (35)

x = [x1 x2]
T , y = [y1 y2]

T , n = [n1 n2]
T ∼ CN (0,Rn),

and Rn = σ2I. Then for a one-step process, we have
MSE(1)(θ1) = 2σ2/x2

1 and MSE(1)(θ2) = σ2/x2
2. Minimizing

tr(MSE(1)(θ)) = MSE(1)(θ1) + MSE(1)(θ2) over the energy
constraint‖x‖2 ≤ E0 = 1, we obtainx1 = x2 = 1/

√
2

and tr(MSE(1)
min) = 6σ2. Now consider the following two-step

non-adaptive strategy,

Step1. x = [x1 0]T , y1 = x1θ1 + n1,

Step2. x = [0 x2]
T , [1 1]y2 = 2x2θ2 + [1 1]n2.

Minimizing the tr(MSE(2)(θ)) = MSE(2)(θ1)+MSE(2)(θ2) =
σ2/x2

1 + σ2/2x2
2 over the energy constraint, we obtainx1 =

x2 = 1/
√

2 and tr(MSE(2)
min) = 3σ2. This translates to

a 3dB gain in SNR for the two-step non-adaptive strategy
over the one-step approach. We control the shape of the
input x = [x1 x2]

T such that we have different energy
allocation for each column of the matrixH. By specifically
designing the two-step non-adaptive strategy given in steps 1
and2, we have reduced the estimation of the vector parameter
θ = [θ1, θ2] to two independent problems of estimating scalar
parametersθ1 and θ2 respectively. For each of these scalar
estimators, we design twoN -step sequential procedures (2N
steps in total) as in Section IV-A for scalar controlsx1 and
x2 to obtain an improvement in performance of estimating
θ. Applying the N -step design to bothx1 and x2, we have
MSE(N)(θ1) = GN MSE(2)

min(θ1) for the first N steps and
MSE(N)(θ2) = GNMSE(2)

min(θ2) for the nextN steps. Hence
tr(MSE(2N)) = GN tr(MSE(2)

min), whereGN is defined below
(33). In other words, the MSE gains of theN -step procedure
carry over to the vector parameter case as well.

B. Worst Case Error - Min Max Approach

The component wise MSE for estimating specific parame-
ters is given by the diagonal elements of the matrix MSE=

E
[
(θ − θ̂)(θ − θ̂)H

]
. We seek to find the optimal energy

allocation between the two design vectors,xi({yj}i−1
j=1) =

um
√

E0αi({yj}i−1
j=1), i = 1, 2, that minimizes the worst case

mean-squared error (WC-MSE) of the unknown parameters,
whereum is any unit norm vector independent of past mea-
surements, e.g.,um is chosen to minimize the one-step MSE.
The ML estimate for a one-step process with energyE0 and
its corresponding MSE are given by

θ̂
(1)

=
1√
E0

WumH(um)HR−1
n y1, MSE(1) =

1

E0
Wum,

(36)
where

Wum = (H(um)HR−1
n H(um))−1. (37)

DefineΦ(u, MSE) = uHMSEu. Then

WC-MSE = max
i

eH
i MSEei = max

i
Φ(ei, MSE), (38)

whereei is anM -element vector with all zeros except for1
in the ith position. Then for a one-step process

WC-MSE(1) = max
i

Φ(ei, MSE(1)) = Φ(ei∗ , MSE(1)), (39)
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wherei∗ indicates thearg maxi Φ(ei, MSE(1)) and

Φ(u, MSE(1)) =
1

E0
uHWumu. (40)

The set of observations for the two-step process are

y1 =
√

E0α1H(um)θ + n1 (41)

y2 =
√

E0α2(y1)H(um)θ + n2. (42)

For a two-step procedure, we need to designα1 and α2(y1)
to minimizeWC-MSE(2). We show in [42] that

Φ(u, MSE(2)) = Φ(u, MSE(1))

E

[
α2

1 |ñ1(y1; θ)|2 + α2
2(ñ1(y1; θ))

(α2
1 + α2

2(ñ1(y1; θ))2

]
, (43)

where

ñ1(y1; θ) =
uHWumH(um)HR−1

n (y1 − H(x1)θ)√
uHWumu

(44)

is a CN (0, 1) random variable. The error in (43) when
minimized under the constraintα2

1+E
[
α2

2(ñ1)
]
≤ 1 is exactly

the same minimization derived for the single parameter casein
Section III. It follows that the optimal and suboptimal solutions
to α1 andα2(·) will hold for the multiple parameter case. In
other wordsΦ(u, MSE(2)) ≈ 0.6821 Φ(u, MSE(1)). It follows
that

WC-MSE(2) = Φ(ei∗ , MSE(2))

≈ 0.6821 Φ(ei∗ , MSE(1)) = 0.6821 WC-MSE(1) (45)

and this performance can be achieved using aθ-independent
strategy along similar lines to the derivation for the scalar
parameter case in Section IV [42]. The reduction in MSE in
(45) holds for anyM , the number of unknown parameters, as
i∗, the index of the worst case error, can always be computed
from (39) and (40) for anyM ∈ N. A similar result can be
derived for theN -step procedure.

VI. A PPLICATIONS OF SEQUENTIAL ESTIMATION

A. MIMO Channel Estimation

It has been shown that multiple-input and multiple-output
systems (MIMO) greatly increase the capacity of wireless
systems [44]–[46] and hence MIMO has become an active
area of research over the last decade [47], [48]. One important
component in a MIMO system is the need to accurately
estimate the channel state information (CSI) at the transmitter
and receiver. This estimate has shown to play a crucial
role in MIMO communications [49]. A recent and popular
approach to channel estimation has been through the use of
training sequences, i.e., known pilot signals are transmitted
and channel is estimated using the received data and the pilot
signals. A number of techniques for performing training based
channel estimation have been proposed: maximum likelihood
training method [50], least squares training [51], minimum
mean squared estimation [52]. Recently, [40] proposed four
different training methods for the flat block-fading MIMO
system including the least squares and best linear unbiased

estimator (BLUE) approach for the case of multiple LS
channel estimates.

1) Problem Formulation: In order to estimate ther × t
channel matrixΘ for a MIMO system witht transmit andr
receive antennas,N ≥ t training vectorsX = [x1, . . . ,xN ]
are transmitted. The corresponding set of received signalscan
be expressed as [40], [53]

R = ΘX + M, (46)

where R = [r1, . . . , rN ] is a r × N matrix, M =
[m1, . . . ,mN ] is the r × N matrix of sensor noise,xi is
the t × 1 complex vector of transmitted signals, andmi is
the r × 1 complex zero mean white noise vector. LetP0 be
the transmitted training power constraint, i.e.,‖X‖2

F = P0,
‖·‖F indicates Frobenius norm (‖X‖F =

√
tr(XHX)) andσ2

denote the variance of receiver noise. ThoughΘ is random,
we estimateΘ for a particular realization corresponding to
the block of received data. The task of channel estimation
is to recover the channel matrixΘ based on the knowledge
of X and R as accurately as possible under a transmit
power constraint onX. The standard LS solution and the
corresponding estimation error can then be written as

Θ̂LS = RXH(XXH)−1, MSELS =
σ2t2r

P0
. (47)

Assuming co-located transmitter and receiver arrays [54],
[55] and multiple training periods available within the same
coherency time (quasi-static) to estimate the channel, theset
of received signals at theN time steps given byRi =
ΘXi +Mi, i = 1, 2, . . . , N , can be rewritten in the following
form:

yi = H(Xi)θ + ni, i = 1, 2, . . . , N, (48)

where yi = vec(Ri), θ = vec(Θ),ni = vec(Mi), vec(·)
denotes the column-wise concatenation of the matrix, and
H(Xi) = (Xi ⊗ I)T is a linear function of the inputXi,
which is the same model described in(34). In [40], a method
of linearly combining the estimates from each of theN stages
was proposed and the MSE of theN stage estimator was
shown to be MSE(N)

LS = σ2t2r/P0, where P0 is the total
power used in theN steps, i.e.,

∑N
i=1 ‖Xi‖2

F ≤ P0. If there
are enough training samples, we could completely control
the matrix H(Xi) through the inputXi and makeH(Xi)
orthogonal. In this case (48) along with the average power
constraintE

[∑
i ‖Xi‖2

F

]
≤ P0 can benefit from adaptive

energy allocation designs in Sections IV-A and V-A, where
the problem is then separable intort independent estimation
problems of scalar parameters. HavingN steps in the training
sequence suggests anN -step energy allocation strategy. Hence
it follows that using our strategy we are guaranteed to achieve
the optimal error given by MSE(N) ≈ GNσ2t2r/P0, which
we have shown to be at least5dB (in 50 steps) better than any
non-adaptive strategy.

B. Inverse Scattering Problem

The problem of imaging a medium using an array of
transducers has been widely studied in many research areas
such as mine detection, ultrasonic medical imaging [56],
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foliage penetrating radar, non-destructive testing [57],and
active audio. The goal in imaging is to detect and image small
scatterers in a known background medium. A recent approach
[58] uses the concept of time reversal, which works by
exploiting the reciprocity of a physical channel, e.g., acoustic,
optical, or radio-frequency. One implication of reciprocity is
that a receiver can reflect back a time reversed signal, thereby
focusing the signal at the transmitter source [59]. Furthermore,
with suitable prefiltering and aperture, the signal energy can
also be focused on an arbitrary spatial location. This analysis
assumes the noiseless scenario. For the noisy case, maximum
likelihood estimation of point scatterers was performed for
both the single scattering and the multiple scattering models
in [41]. We apply our concept of designing a sequence of
measurements to image a medium of multiple scatterers using
an array of transducers under a near-field approximation of
the scatterers in the medium.

1) Problem Setting:We haveN transducers located at po-
sitions{ra

k}N
k=1, that transmit narrowband signals with center

frequencyω rad/sec. The imaging area (or volume) is divided
into V voxels at positions{rv

k}V
k=1. The channel, denotedai,

between a candidate voxeli and theN transducers is given
by the homogeneous Green’s function as

ai =

[(
exp(−jω/c‖ra

k − rv
i ‖)

‖ra
k − rv

i ‖

)

k=1...N

]T

, (49)

where c is the speed of light andj =
√
−1. This channel

model is a narrowband near-field approximation, which ig-
nores the effect of multiple scattering and has been widely
adopted in other scattering studies, e.g., [60]. Each voxel
can be characterized by its scatter coefficient, e.g., radar
cross-section (RCS),{θv}V

v=1, which indicates the proportion
of the received field that is re-radiated. Thus the channel
between the transmitted field and the measured backscattered
field at the transducer array isAdiag(θ)AT , where A =
[a1,a2, · · · ,aV ], θ = [θ1, . . . , θV ]T , and diag(θ) denotes a
V × V diagonal matrix withθi as itsith diagonal element.

The probing mechanism for imaging of the scatter cross-
section follows a sequential process, generating the following
sequence of noise contaminated signals,

yi = Adiag(θ)AT xi + ni

= H(xi)θ + ni, i = 1, 2, . . . , N, (50)

where H(xi) = Adiag(AT xi). The noises{ni} are i.i.d
CN (0, σ2I) random vectors. The goal is to find estimates
for the scattering coefficientsθ under the average energy
constraint to minimize the MSE. IfA is a square matrix, then
we can condition diag(AT xi) to have a single non zero com-
ponent on any one of the diagonal elements, which translatesto
isolating theith column ofH for anyi. As in Section V-A, we
can performV independentN -step experiments to guarantee
the N -step gains of at least5dB over the standard single
step ML estimation for imaging [41]. If we are interested in
optimally estimating any linear combination of the scattering
coefficients, then the sequential strategy proposed in Section
V-B can be used to achieve improvement in performance.

VII. C ONCLUSIONS

In this paper we considered theN -step adaptive waveform
amplitude design problem for estimating parameters of an
unknown channel under average energy constraints. For a two-
step problem, we found the optimal energy allocation at the
second step as a function of the first measurement for a scalar
parameter in the linear Gaussian model. We showed that this
two-step adaptive strategy resulted in an improvement of at
least1.65dB over the optimal non-adaptive strategy. We then
designed a suboptimalN -stage energy allocation procedure
based on the two-step approach and demonstrated gains of
more than5dB in N = 50 steps. We extended our results to
the case of vector parameters and provided applications of our
design to MIMO and inverse scattering channel models.
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