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Motivation

» Separable approximations effective dimensionality reduction
techniques for high dimensional problems.

» Covariance estimation: reduced computational complexity &
improved estimation accuracy. Statistical estimation performance for
separable models in high dimensions? Model mismatch?

» Centralized controlled sensing leads to great performance gains at
the expense of query design. Separable approximations to optimal
joint policy? Performance degradation?

» Controlled sensing over a network of greedy agents. Separable
representation of information state? Separable representation of
policy? Convergence?




Application: Spatiotemporal Signal Processing
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Figure : U-component of wind speed as a function of time and
latitude/longitude for year 2008. (Source: National Centers for Environmental
Prediction, NOAA)




Application: Centralized Active Multisensor Target

Localization

Yo A

Figure : lllustration of basic centralized collaborative tracking system.




Application: Decentralized Active Multisensor Target
Localization

Figure : lllustration of basic decentralized collaborative tracking system.




Impact

» Engineering: collaborative on-road vehicle-recognition & tracking,
optimization & design of active sensing systems (e.g., frequency agile
radar, multicamera object tracking with PTZ cameras), conditions
on network structure for successful aggregation of information in
decentralized settings, human-in-the-loop decision making

» Signal Processing & Control: covariance decompositions for
multidimensional data with theoretical guarantees, centralized &
decentralized collaborative estimation with active queries,
non-Bayesian social learning with active queries over finite networks
leads to global consistency, decentralized stochastic search

» Social Sciences: social learning & opinion dynamics, adaptive
testing, recommendation systems, multitask learning, interview
design




Contributions of Thesis

1. Performance bounds for high-dimensional Kronecker-product
structured covariance matrix estimation

2. Optimal query design for a centralized collaborative controlled
sensing system for target localization

3. Global convergence theory for decentralized collaborative controlled
sensing for target localization
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Kronecker Graphical Lasso
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Mathematical setting

Observed d x n random matrix:

7y o Zin
7, = : : =[z1,...,2,]

Each column of Z is an independent realization of Gaussian random
vector
-
z=[z,...,24]

Of interest: estimate the d x d inverse covariance (precision) matrix of z
(and the covariance matrix)

©@=X"! X =cov(z) = E[zz"]

Gaussian graphical models: activity recognition, gene expression
networks, social networks, multiple financial time series.
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Gaussian Graphical Models

Consider a random vector measurement Z € RY. Joint probability
distribution of d measurements can be represented as an undirected
graph G = (V,&). Edge (i,)) ¢ € iff Z; and Z; are conditionally
independent given all the other variables.

» If Z is a Gaussian random vector, conditional independence
relationships between variables are encoded in precision matrix
(Lauritzen [1996]). Thus, estimating the Gaussian graphical model
is equivalent to estimating the precision matrix.

» Sparse GGM equivalent to sparse precision matrix.

Define sparsity parameter:

se, = card ({(/,J) : [@o]i,j # 0, # j})
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Sparse inverse covariance matrices and associated

graphical models
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Figure : Left: inverse correlation matrix. Right: associated graphical model
(Wiesel et al. [2010])
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Prior Work

» Many more unknown parameters (d(d + 1)/2) than measurements

(n).

» Sample covariance matrix S, = 1 37 | z,2[ is poor estimator of X:

> Large eigenvalue spread in high dimensional regime (Karoui [2008]).
» Estimation of eigenvectors of the SCM becomes impossible if the
ratio n/d is below a critical threshold (Paul [2007], Rao et al.

[2008]).
» Regularize:

> Parametric models: Toeplitz, AR, ARMA (Bickel and Levina [2008],
Huang et al. [2006], Cai et al. [2012]).

> Sparse structured (inverse) covariance: Graphical lasso (Yuan and
Lin [2007])

» Kronecker structured covariance: Flip-Flop Kronecker covariance
estimator (Werner et al. [2008])
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Kronecker product model for covariance matrix
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Figure : A saturated model with 18 x 18 covariance matrix has
18*(18+1)/2=171 unknown covariance parameters. A Kronecker product
covariance model reduces number of parameters to 6 4+ 21 = 27 unknown
covariance parameters.
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Sparse Kronecker product model for covariance matrix
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Figure : A sparse Kronecker product covariance model reduces number of
parameters from 65 to 16 unknown covariance parameters.
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Applications of KP Covariance

geostatistics (Cressie [1993], Genton [2007])

genomics (Yin and Li [2012])

multi-task learning (Bonilla et al. [2008])

face recognition (Zhang and Schneider [2010])
recommendation systems (Allen and Tibshirani [2010])
collaborative filtering (Yu et al. [2009])

MIMO wireless communications (Werner and Jansson [2007])

vV V. v vV v v .Y
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Problem Formulation

» Available are n i.i.d. multivariate Gaussian observations {z;}]_;,
where z; € RP9, having zero-mean and covariance equal to

[AO]I,IBO . [AO]l,pBO
Y= A, ® By = : : ,
— —~ : :
pXp  gxq [Ao]p1Bo ... [Ao]p,sBo

where Ag € S, and Bg € S7 .
» Goal is to estimate the covariance matrix and its inverse @ = X1
(precision matrix).
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Graphical Lasso (Yuan and Lin [2007])

Penalized negative log-likelihood function for @ = X~1:

J(@®) :=tr(@S,) — log det(®) + A|O|; (1)
where §, = IS 1z:z] is the sample covariance matrix (SCM).
Minimizer @, € arg min J(©).

> Fast algorithms exist for minimizing (1) (Friedman et al. [2008],
Hsieh et al. [2011]) with worst-case computational complexity of

O(d*).
» High-dimensional MSE convergence rate (Rothman et al. [2008]):
5 d + sg, ) log(d
16, — B0} = Op ((en)g()> )
log(d)

where \ < —=.
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ML estimator of Kronecker structured covariance

Negative log-likelihood function when @ has Kronecker structure

O=XRY:
— plogdet(Y) (3)

tr((X ® Y)S,) — glog det(X)

J(X,Y) =
Alternating minimization yields Flip-Flop algorithm (Werner et al. [2008])
that generates updates of A=X"1, B=Y!

13
A -1
- = 8,.(I, k 4
(B) =1 Z: Ji8a(l. k) (4)
pXp
Z [Ai84(. 1) (5)
axq =1

where g,, = K;qgnprq
and K, ;vec(N) = vec(NT) for any p x g matrix N



Kronecker GLasso
0e00

Submatrix partitioning of SCM

Figure : SCM of size pq X pqg with p =4,q = 5. Blue: §,,(1,2), Red: gn(l, 1
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MSE Convergence Rate of FF (Tsiligkaridis et al. [2012])

Let Rrr(3) := A(B(Ajnit)) @ B(A(B(Ajni))) denote the 3-step
(noniterative) version of the flip-flop algorithm (Werner et al. [2008]).
More generally, let IA?,:,:(k) denote the k-step version of the flip-flop
algorithm.

Theorem

Let Ay, By, and A, have uniformly bounded spectra and define

M = max(p, f,n). Assume p > q > 2 and plog M < C"n for some finite
constant C"” > 0. Finally, assume n > % + 1. Then, for k > 2 finite,

[@e(k) — o[t = 0p (ZHETEM) ©)

as n — oQ.
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KGlasso Algorithm

minJA(X,Y) IJ(X,Y)+>\x‘X‘1+)\y|Y|1 (7)
where J(-,-) is given in (3) and Ax, Ay > 0.

Algorithm 1 KGlasso (Tsiligkaridis et al. [2012, 2013a])

1: Input: S,,,Ap, g, n Ax >0 Ay >0
2: Output: Okgasso
3: IAnitiaIize A;.i: to be positive definite.
4: A+ Ainit
5: repeat
6: BH ZIJ l[Ai]’J "(J )
7. Y < arg minycsa tr(YB) — logdet(Y) + Ay[Y]1
8: A — l Z/ 1 [éillk ( )
) -

S
9 X« arg minxese, tr(X XA) — log det(X) + Ax|X|;
10: until convergence

11: eKG/asso < X & Y

Cmmnmtitatimmal ~amamlavitg: A2 1 A3 (KClacen)
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KGlasso Convergence Rate (Tsiligkaridis et al. [2012])

Define Okgasso(k) as the output of the kth KGlasso iteration.

Theorem
Let Ag, Bo, Ajnir have uniformly bounded spectra. Let M = max(p, f, n).
Assume sparse Xo and Yy, i.e. sx, = O(p), sy, = O(f). Assume

max ( ) log M = o(n). If in the KGlasso algorithm

k o)
MO = (&5 + %) ay/BY and A() = (L + L) py/BM for al
k,k' > 1, then
+ q)log M
HG)KGIasso(k) - G)O”i‘ = OP ((pqz'g> (8)
as n — oo.

Assume p ~ gq. Comparing the KGlasso convergence rate (p + q)/n (8) with
others

» SCM rate: p®q?/n. Worse by 3 orders of magnitude
> FF rate: (p® + g°)/n. Worse by 1 order of magnitude

> Glasso rate: (pg + se,)/n. Worse by 1 order of magnitude.
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Large Sample MSE Convergence

We considered Xq and Yy large sparse matrices of dimension

p = g = 100 yielding a covariance matrix @¢ of dimension

10,000 x 10,000. This dimension was too large for implementation of
Glasso even when implemented using the state-of-the-art algorithm
(Hsieh et al. [2011]). However, we can run KGlasso and FF and compare
performances since they have considerably less computational burden.

% Y

0 W » 0 @ 0 8 @ o W2 W 0 @ 6 70 @ %0
2= ne=318

Figure : Sparse Kronecker matrix representation. Left panel: left Kronecker
factor. Right panel: right Kronecker factor. The sparsity factor for both
precision matrices is approximately 200.
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Large Sample MSE Convergence (Cont.)

Max number of iter. = 100, Trials = 40, (p,f)=(100,100)
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Figure : Normalized RMSE performance for precision matrix as a function of
sample size n. For n = 10, there is a 72% RMSE reduction from the FF to
KGLasso solution and a 70% RMSE reduction from the FF/Thres to KGLass
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Kronecker PCA
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Introduction

> Represent covariance as a Sum of Kronecker Products (SKP) of two
lower dimensional factor matrices.

o= Ao,®Bog, (9)
~y=1

where {Ag -} are p x p linearly independent matrices and {Bg ,} are
g X q linearly independent matrices.

» Note 1 < r < rp = min(p?, g°) and refer to r as the separation rank.
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Introduction

Applications of Sum of Kronecker Products (SKP) model (9)

» Spatiotemporal MEG/EEG covariance modeling (de Munck et al.
[2002, 2004], Bijma et al. [2005], Jun et al. [2006])

» Synthetic Aperture Radar (SAR) data analysis (Tebaldini [2009],
Rucci et al. [2010])

Van Loan and Pitsianis [1993]:

» Any pg x pg matrix Xy can be written as an orthogonal expansion
of Kronecker products of the form (9)

» Low separation rank is equivalent to low rank in a permuted space
defined by the reshaping operator R(-)
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Low separation rank < Low rank in permuted space

Original Covariance X
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Figure : Original (top) and permuted covariance (bottom) matrix. The original
covariance is £g = Ap ® Bo, where Ag is a 10 x 10 Toeplitz matrix and By is a
20 x 20 unstructured p.d. matrix. Note that the permutation operator R maps
a symmetric p.s.d. matrix o to a non-symmetric rank 1 matrix Ry = R(Xo).
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Permuted rank-penalized least-squares (PRLS)

(Tsiligkaridis and Hero [2013a,b])

1. Map SCM to a different linear space:
R, = R(S,) e RV 7
2. Solve least-squares problem with nuclear norm penalization:

R) carg min R, —R|;+\[R]. (10)
ReRA? xd?

3. Map back to original space:

§) = R1(R)) € RPI<P0

n

where A > 0 is a regularization parameter.
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Properties of PRLS Estimator (Tsiligkaridis and Hero

[2013b])

Theorem
> The solution ¥ is symmetric.

» If n > pq, then the solution )A:ﬁ is positive definite with probability 1.

Theorem
Define M = max(p, q, n). Set

2 2 2 2
A=A = 2c§t, max { pPrd ,T'ogM, \/W} for t > 0 large enough.

Then, with probability at least 1 — 2M~3c :

125 —ollp < inf _IR—Ro|;

2 log M 2+ logM
+C’rmax{<p 4"+ log ) )p—&—q—i—og } (11)
n n 3

for some absolute constant C' > 0.
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Setup

» NCEP Dataset: Daily average wind speeds collected at g = 144 x 73
weather stations spread throughout the world (Kalnay et al. [1996],
Tsiligkaridis and Hero [2013b])

» Considered a 10 x 10 grid of stations, corresponding to latitude
range 90°N-67.5°N and longitude range 0°E-22.5°E

» Prediction time lag p — 1 =7, full dimension d = pg = 800, number
of training samples n = 228.

» Training period: 2003 — 2007, Testing period: 2008 — 2012.
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Kronecker product decomposition: PRLS

KP Right Factor: Spatial
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Figure : Sample covariance matrix (SCM) (top left), PRLS covariance estimate
(top right), temporal Kronecker factor for first KP component (bottom left)
and spatial Kronecker factor for first KP component (bottom right).
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Kronecker Spectrum

Kronecker spectrum Eigenspectrum
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Figure : Kronecker spectrum of SCM (left) and Eigenspectrum of SCM (right).
The KP spectrum is more compact than the eigenspectrum.
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RMSE performance gains

181
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— PRLS
Reg. Tyler

161
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040 s~
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Station

Figure : RMSE prediction performance across g stations for linear estimators

using SCM (blue), PRLS (green) and regularized Tyler (magenta).

» Average gain of PRLS over SCM = 4.64 dB
> Average gain of Reg. Tyler over SCM = 3.41 dB
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Centralized Collaborative 20 Questions

TargetX' \\_/
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Motivation

x F

Al Fusion
" Center @
Yo Yo

Target X~

» What is the intrinsic value of adding a human-in-the-loop to an
autonomous learning machine?

> Insight into human-aided autonomous sensing for estimating an
unknown target location or identifying a target.




Centralized Collaborative 20 Q.

Motivation

Figure : PTZ IP camera. Source: en.wikipedia.org/wiki/Pan-tilt-zoom_ camera

> Sensor systems become more flexible, e.g. pan-tilt-zoom cameras:
where to look? different sensor waveforms & observations modes?
How to control these aspects for a common localization objective?
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Prior Work & Applications

Ask a sequence of questions and refine posterior distribution of target’s
location given the responses.

>

vV v vV

>

Probabilistic Bisection Algorithm (PBA) first introduced in (Horstein
[1963]).

Discretized PBA (Burnashev and Zigangirov [1974]).
Noisy Binary Search (Karp and Kleinberg [2007]).
Convergence rate for BZ algorithm (Castro and Nowak [2007]).

Noisy 20 questions game: PBA shown to be optimal under minimum
expected entropy criterion (Jedynak et al. [2012]).

Convergence rate for PBA (Waeber et al. [2013]).

Applications of PBA: stochastic root finding, combinatorial optimization,
road tracking, electron microscopy
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Single player setting

> Jedynak et al. [2012] considers 20 questions with noise, where a
noisy oracle is queried whether a target X* lies in a set A, C RY.

» Starting with a prior distribution on the target's location po(+),
minimize expected entropy of the posterior distribution:

inf B [H(pn) (12)

where m = (7, 71, ... ) denotes the policy. The posterior
mean/median of py(-) is the target location estimate.

» Jedynak et al. [2012] shows the bisection policy is optimal under the
minimum entropy criterion. Assuming the noisy channel is a BSC,
optimal policies are characterized by:

Pa(Ap) = / pn(x)dx =1/2 (13)

n




Centralized Collaborative 20 Q.
oe

Noisy 20 Questions with Collaborative Players: Model

(Tsiligkaridis et al. [2013c])

» M collaborating players can be asked questions at each time instant.

> mth player's query at time n: “does X™ lie in the region A c R

> Query is the binary variable Z{™ = I(X* € A{™) € {0,1} to which the
player yields provides a noisy response Y,fﬂ € {0,1}.

> Define the M-tuples Yo = (Y1, ..., Yy and A, = {AD,... A}

Assumption

Players’ responses are conditionally independent:
M
P(Yni1 = y|An, X" = x, Fo) = [[ (YD) =y |AT), X" = x, ) (14)
m=1

Ay ™ em), x € AT
A ™ em), x & AT

(m) —

(me(my y_ ) 1—€m y™=
£y Iem)f{ . ym —

(15)

P(Y(T) =y A X = x, F,) = {

J
1—j




Centralized Collaborative 20 Q.
®00000000000

Optimal Joint Query Design: Setup

» Joint controller chooses M queries AE,"’) at time n. Define the set of
subsets of R¢:

YAD, . AMY = { (M] (Am)im - i e 0, 1}}

where (A)? := A€ and (A)! := A. The cardinality of this set of
subsets is 2 and these subsets partition RY.

» Define the density parameterized by A, pn, i1, - - ., ipm:
M
g (YD, yMIA,, ) = [T A7 (™A, F,)
m=1

where j; € {0,1}.
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Sequential Query Design

An 0 fn‘l

Controller 1 Player 1 PS,fgtlgr T

An.l 'n.2

Controller 2 Player 2 Pgsgtlgr T

Pn

o

An M1 7 Y,y

L» Controller M Player M Pgsg;rtlgr T

» Query region A, chosen at time n; = (n, t), where n=10,1,...
indexes over cycles and t =0,..., M — 1 indexes within cycles.

> Nested sequence of sigma-algebras G, ¢, Gt C Gnyieqj forall i >0
and j € {0,...,M — 1 — t}, generated by sequence of queries and

the players’ responses.
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Optimal Joint Query Design

1) ~(1)
Al ¥
Pn Joint )
Controller Fusion
Center
M (M)
4% ) n+1

Player M

> Joint controller chooses a batch of M queries {Afvm)} at time n.

» As in sequential query design, joint queries chosen based on
accumulation information at controller. Since full batch of joint
queries are determined at start of nth cycle, the joint controller only
has access to a coarser filtration F,, F,_1 C F,, as compared to

gn,t-
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Equivalence Theorem (Tsiligkaridis et al. [2013c])

Theorem
(Equivalence, Known Error Probabilities)

1. The expected entropy loss under an optimal joint query design is the
same as the greedy sequential query design. This loss is given by:

M M
€= Clew)= (1 holem)) (17)

where hp(em) = —€mlog(em) — (1 — €m) log(1 — €m) is the binary
entropy function.
2. All jointly optimal control laws equalize the posterior probability over

the dyadic partitions induced by A, = {AE,I), ce Af,M) }:

PAR) = [ prlx)dx =2 MR EA(A). (1)
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Consequences of Equivalence Theorem

» Optimal policy can be implemented using the simpler sequential
query design.

> Despite the fact that all players are conditionally independent, the
joint policy does not decouple into separate single player optimal
policies (analogous to the non-separability of the optimal

vector-quantizer in source coding even for independent sources
Gersho and Gray [1992]).

» Optimal queries must be overlapping-i.e., ﬂ’\m/lzl Alm) = (), but not
identical.

» Optimal query A, is not unique.
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Example of optimal queries for M = 2

Figure : Jointly optimal queries under uniform prior.
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Lower Bounds on MSE via Entropy Loss

Theorem
(Lower Bound on MSE) Assume the entropy H(py) is finite. Then, the
MSE of the joint or sequential query policies satisfies:

K 2nC .
agdee (- 250 ) < B[ X~ X, B (19)

where K = e2H(m) and X, is the posterior mean. The expected entropy
loss per iteration is C =% C(em).
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Upper Bounds on MSE: Setup

» Performance analysis of PBA is difficult primarily due to the
continuous nature of the posterior Castro and Nowak [2007].

“The probabilistic bisection algorithm seems to work extremely well
in practice, but it is hard to analyze and there are few theoretical
guarantees for it, especially pertaining error rates of convergence.”

> A discretized version of PBA was proposed in (Burnashev and
Zigangirov [1974]) (BZ algorithm), which imposes a piecewise
constant structure on the posterior (see Castro and Nowak [2007],
App. A in Castro [2007]).

> Recently, an answer for the continuous PBA was given in (Waeber
et al. [2013]) for one-dimensional target search.
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Upper Bounds on MSE: Setup

» For simplicity, assume the target location is constrained to the unit
interval X = [0, 1].
> A step size A > 0 is defined such that A~ € N and the posterior
after j iterations is p; : X — R, given by
142
pix) = 5 D ailj)l(x € )

i=1
where I; = [0, A],l; = ((i — 1)A, iA] for i = 2,..., A7, The initial
posterior is a;(0) = A. The posterior is characterized completely by

the pseudo-posterior a(j) = [a1(j), - .., aa-1(j)] which is updated at
each iteration via Bayes rule.
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Upper Bounds on MSE

Theorem

(Upper Bound on MSE) Consider the sequential bisection algorithm for
M players in one-dimension, where each bisection is implemented using
the BZ algorithm. Then, we have:

P(IX* — X,| > A) < (% —1)exp (—nC)

E[(X* — )A<n)2] < (2—2/3 n 21/3)exp (§n6> (20)

where C ="M Clem), Cle) = 1/2 — \/e(1 — o).
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Bounds on MSE: Human-in-the-loop

Player 1 (machine) has constant error probability ¢; € (0,1/2)

> Player 2 (human) has error probability depending on the target

localization error:

PV =yP|1z =1 - y®) = = — min(o, X" = X|*")  (21)

N =

% = human "resolution” (k > 1)
do = reliability parameter (0 < do < p < 1/2)

MSE upper bound for “player 1 + human” system:
]E[(X* _ )’\<n)2] < e*%"E(EI)

2 3. 0713 202 o
x (277 4 2% exp (—%(73 24 )2 2"67"C(51)232)} (22)

which is no greater than the “player 1" MSE bound.

Both bounds converge to zero at the same rate as n — co.

Human gain ratio (HGR) = ratio of MSE upper bounds associated with
“player 1" and “player 1 + human”.

2-2/3 4 91/3

2-2/3 4 21/3 exp (_%(32;1/3 )2n72ne*’7&(51)2n3_2)

Rn(x) (23R
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Upper Bounds on MSE: Human-Gain Ratio

» The larger ¢; is, the larger is the HGR.
> As k decreases to 1, the ratio increases, meaning that the human becomes
more like the machine and helps more.

L2 —Opt.k=15
—Opt.k=2
Opt.k =25

MSE Human Gain Ratio

. | | | . | | , . .
o 100 200 300 400 500 600 700 800 900 1000
Iteration (n)

Figure : Human gain ratio as a function of k. The human provides the largest
gain in the beginning few iterations and its value of information decreases as
n — o0o. The predictions well match the optimized bounds.
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Simulation (Known error probabilities): Initial Distribution

X 107 Iteration = 0
O
7 n
6
5
4
3
2
' J \_M
0
0 0.2 0.4 0.6 0.8 1

Figure : Initial distribution is a mixture of three Gaussians with means 0.25, 0.
and 0.75, and variances 0.02, 0.05 and 0.08, respectively. The target was set
be the center of the mode at X* = 0.75 with the largest variance.
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Simulation (Known error probabilities): MSE Decay
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Figure : Monte Carlo simulation for MSE performance of the sequential

estimator as a function of iteration and €; € (0,1/2). 2000 Monte Carlo trials
were used. The human parameters were set to kK = 1.5, 4 = 0.42, 5 = 0.4, th
length of pseudo-posterior was A~! = 1618. The target was set to X* = 0.75
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Decentralized Collaborative 20 Questions

Target X"
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Motivation

Consider a collection of agents in a network with the objective of
localizing a target collectively.

» What is the value of collaboration when there is no central authority?

» Local in-network querying and processing leads to global
equilibrium? Deterministic or random limit? Unbiasedness?
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Intractability of fully Bayesian methodology

> limited observability (observations of an agent not observable by
others) & lack of global knowledge of observation statistics

> if agents have only partial information on the network structure and
the probability distribution of the signals observed by other agents,
the Bayesian approach becomes more complicated because agents
would need to form and update beliefs on the states of the world, in
addition to the networks struture and the rest of the agents’ signal
structures

> even if the network structure is known, agents would still need to

update beliefs on the information of every other agent in the
network, given only the neighbors’ beliefs at each iteration
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Prior Work on Distributed Averaging

Consensus, gossip algorithms, distributed averaging: messages distributed
around network through local processing.

>

>
>
>
| 4

>

averaging under randomized gossip (Boyd et al. [2006])
geographic gossip (Dimakis et al. [2006])

randomized path averaging (Benezit et al. [2010])

gossip algorithms for sensor networks (Dimakis et al. [2010])

randomized gossip broadcast algorithms for consensus (Aysal et al.
[2009])

gossip distributed estimation for linear parameter estimation (Kar
and Moura [2011])

consensus for wireless medium (Nokleby et al. [2013])

Applications: distributed optimization (Tsitsiklis [1984], Tsitsiklis et al.
[1986]), load-balancing (Cybenko [1989]), distributed detection
(Saligrama et al. [2006])

Our work differs because we consider new information injected into the
dynamical system described by averaging and because we consider
controlled observations.
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Prior Work on Social Learning

Dynamic model of opinion formation.
» opinion formation model (DeGrout [1974])

» convergence of dynamics generated by non-Bayesian decentralized
estimation scheme (Jadbabaie et al. [2012])

» rate of convergence analysis (Molavi et al. [2013])

Our work differs because we consider continuous-valued target space and
controlled observations.
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Prior Work on Computerized Adaptive Testing

Given current estimate of proficiency, how to choose next test item?

» dynamic selection of test items via item-response theory &
maximum information or maximum expected precision criterion
(Wainer [2000], Owen [1975])

Our work differs because we consider continuous-valued query regions, no
practical constraints necessary, and a different objective function.
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Prior Work on Active Stochastic Search /20 Questions

Active querying for sequential estimation.

» single-player 20 questions for target localization (Jedynak et al.
[2012])

» convergence rate for discretized version of single-player 20 questions
(Castro and Nowak [2007])

> convergence rate for continuous-space single-player PBA (Waeber
et al. [2013])

> (centralized) multi-player 20 questions for target localization
(Tsiligkaridis et al. [2013b])

Our work differs because we consider intermediate local belief sharing
between agents after each local bisection and Bayesian update (entropy
no longer monotonically decreasing for each agent!). Also, each agent
incorporates beliefs of neighbors in a way that is agnostic of neighbors’
error probabilities.
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Notation

» X* €[0,1] = true target location

» NV'={1,..., M} = agent set of network

» G = (N, E) directed graph capturing agent interactions

» Ni={j €N :(j,i) € E} = local neighborhood of ith agent
> pi:(-) = belief of ith agent at time t
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Decentralized Estimation

Algorithm 2 Decentralized Estimation Algorithm

Dlnput: G = (NLE),A={a;;:(i,j) EN x N} {ei:i e N}
. Output: {X,v,t,)v(,-,t i €N}
. Initialize p;o(-) to be positive everywhere.
repeat
For each agent i € N: .
Bisect posterior density at median: X; . = Fftl(l/2).
Obtain (noisy) binary response y; ;11 € {0, 1}.
Belief update:

N s wh

i(yi,e1] %, K1)
Pi,e+1(x) = ai,ipi,e(x) Z-H(y- l)t + D ape(x), x€X (24)
i t(Vi e+ JEN,

where the observation p.m.f. is:
ylx, %) = (0I(x < K + K201 > Xie),  y ey (25)
and £7(y) = (1 = )"0, () =1 - £0(y).

9: Calculate target estimate: )v(,-wt = fx xpi,(x)dx.
10: until convergence
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Assumptions

» (Conditional Independence) Assume conditional independence:

M
P(Yerr = yIFe) = [ [P(Yie01 = vil Fr) (26)
=1

and each player's response is governed by:
fi(l)(yi)7 X € A

i (27)
£(), x ¢ Aie

li(yilx, Aie) == P(Yi 41 = yil Aie, X* =x) = {

» (Memoryless Binary Symmetric Channels) Model players’ responses as
independent BSC’s with crossover probabilities ¢; € (0,1/2).

Dy ) 1—€, yi=z
" (y')—{ 6 vtz
fori=1,...,M,z=0,1.

> (Strong Connectivity & Positive Self-reliances) Assume that the network is
strongly connected and all self-reliances a; ; are strictly positive.
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Global Convergence Theory

Theorem

(Asymptotic Agreement/Consensus) Consider Algorithm 2. Let

B = [0, b] € B([0,1]). Then, consensus of the agents’ beliefs is asymptotically
achieved across the network:

Ve(B) = maxP; (B) — minP; .(B) 2= 0
ast — oo.

Theorem
(Convergence of Beliefs to a Deterministic Limit & Consistency) Consider
Algorithm 2. Let B = [0, b] € B([0,1]). Then, we have:

1. Foreachi € N:

0, b<X*

Fie(b) =P ¢(B) = Fus(b) = { L b>X*

2. Foralli e N:

1
Xit = / xpi,e(x)dx £ X*
x=0
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Simulation: Three network topologies

a) Fully connected graph b) Cyclic graph ¢) Star graph
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MSE Performance, ¢; = 0.4, Vi
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MSE Performance, ¢; = 0.05, ¢; = 0.45, Vi
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Conclusion

Main Contributions

1. Kronecker Graphical Lasso

» Sparse covariance estimation algorithm (KGlasso) introduced for the
high-dimensional setting for Kronecker product structure.

» High-dimensional MSE convergence rate analysis.
» Analysis prescribes selection of regularization parameters.
2. Covariance Estimation via Kronecker Product Expansions

> Scalable covariance estimation algorithm (PRLS) introduced for the
high-dimensional setting.

» Tradeoff between approximation error and estimation error.
» High-dimensional MSE convergence rate analysis.

» Analysis prescribes selection of regularization parameter.




Conclusion

Main Contributions

3. Centralized Collaborative 20 Questions
» Introduced model for centralized collaborative 20 questions.
» Characterized optimal policies & proved equivalence theorem that
simplifies policy implementation.
» Incorporated human-in-the-loop by treating him as a collaborative
player.
> Linked information theoretic gains to MSE convergence rates.
4. Decentralized Collaborative 20 Questions
» Introduced model for decentralized collaborative 20 questions.

» Proved consensus of agents’ beliefs & global consistency of
decentralized estimation algorithm.




Conclusion

Thank you!
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