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Motivation

I Separable approximations effective dimensionality reduction
techniques for high dimensional problems.

I Covariance estimation: reduced computational complexity &
improved estimation accuracy. Statistical estimation performance for
separable models in high dimensions? Model mismatch?

I Centralized controlled sensing leads to great performance gains at
the expense of query design. Separable approximations to optimal
joint policy? Performance degradation?

I Controlled sensing over a network of greedy agents. Separable
representation of information state? Separable representation of
policy? Convergence?
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Application: Spatiotemporal Signal Processing

Figure : U-component of wind speed as a function of time and
latitude/longitude for year 2008. (Source: National Centers for Environmental
Prediction, NOAA)
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Application: Centralized Active Multisensor Target
Localization
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Figure : Illustration of basic centralized collaborative tracking system.
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Application: Decentralized Active Multisensor Target
Localization
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Figure : Illustration of basic decentralized collaborative tracking system.
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Impact

I Engineering: collaborative on-road vehicle-recognition & tracking,
optimization & design of active sensing systems (e.g., frequency agile
radar, multicamera object tracking with PTZ cameras), conditions
on network structure for successful aggregation of information in
decentralized settings, human-in-the-loop decision making

I Signal Processing & Control: covariance decompositions for
multidimensional data with theoretical guarantees, centralized &
decentralized collaborative estimation with active queries,
non-Bayesian social learning with active queries over finite networks
leads to global consistency, decentralized stochastic search

I Social Sciences: social learning & opinion dynamics, adaptive
testing, recommendation systems, multitask learning, interview
design
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Contributions of Thesis

1. Performance bounds for high-dimensional Kronecker-product
structured covariance matrix estimation

2. Optimal query design for a centralized collaborative controlled
sensing system for target localization

3. Global convergence theory for decentralized collaborative controlled
sensing for target localization
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Kronecker Graphical Lasso
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Mathematical setting

Observed d × n random matrix:

Z =

 z1,1 · · · z1,n

...
. . .

...
zd,1 · · · zd,n

 = [z1, . . . , zn]

Each column of Z is an independent realization of Gaussian random
vector

z = [z1, . . . , zd ]T

Of interest: estimate the d × d inverse covariance (precision) matrix of z
(and the covariance matrix)

Θ = Σ−1, Σ = cov(z) = E [zzT ]

Gaussian graphical models: activity recognition, gene expression
networks, social networks, multiple financial time series.
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Gaussian Graphical Models

Consider a random vector measurement Z ∈ Rd . Joint probability
distribution of d measurements can be represented as an undirected
graph G = (V, E). Edge (i , j) /∈ E iff Zi and Zj are conditionally
independent given all the other variables.

I If Z is a Gaussian random vector, conditional independence
relationships between variables are encoded in precision matrix
(Lauritzen [1996]). Thus, estimating the Gaussian graphical model
is equivalent to estimating the precision matrix.

I Sparse GGM equivalent to sparse precision matrix.

Define sparsity parameter:

sΘ0 = card ({(i , j) : [Θ0]i,j 6= 0, i 6= j})
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Sparse inverse covariance matrices and associated
graphical models

Figure : Left: inverse correlation matrix. Right: associated graphical model
(Wiesel et al. [2010])
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Prior Work

I Many more unknown parameters (d(d + 1)/2) than measurements
(n).

I Sample covariance matrix Ŝn = 1
n

∑n
t=1 ztzTt is poor estimator of Σ:

I Large eigenvalue spread in high dimensional regime (Karoui [2008]).
I Estimation of eigenvectors of the SCM becomes impossible if the

ratio n/d is below a critical threshold (Paul [2007], Rao et al.
[2008]).

I Regularize:
I Parametric models: Toeplitz, AR, ARMA (Bickel and Levina [2008],

Huang et al. [2006], Cai et al. [2012]).
I Sparse structured (inverse) covariance: Graphical lasso (Yuan and

Lin [2007])
I Kronecker structured covariance: Flip-Flop Kronecker covariance

estimator (Werner et al. [2008])
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Kronecker product model for covariance matrix

Figure : A saturated model with 18× 18 covariance matrix has
18*(18+1)/2=171 unknown covariance parameters. A Kronecker product
covariance model reduces number of parameters to 6 + 21 = 27 unknown
covariance parameters.
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Sparse Kronecker product model for covariance matrix

Figure : A sparse Kronecker product covariance model reduces number of
parameters from 65 to 16 unknown covariance parameters.
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Applications of KP Covariance

I geostatistics (Cressie [1993], Genton [2007])

I genomics (Yin and Li [2012])

I multi-task learning (Bonilla et al. [2008])

I face recognition (Zhang and Schneider [2010])

I recommendation systems (Allen and Tibshirani [2010])

I collaborative filtering (Yu et al. [2009])

I MIMO wireless communications (Werner and Jansson [2007])
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Problem Formulation

I Available are n i.i.d. multivariate Gaussian observations {zt}nt=1,
where zt ∈ Rpq, having zero-mean and covariance equal to

Σ = A0︸︷︷︸
p×p

⊗ B0︸︷︷︸
q×q

=

[A0]1,1B0 . . . [A0]1,pB0

...
. . .

...
[A0]p,1B0 . . . [A0]p,pB0

 ,
where A0 ∈ Sp

++ and B0 ∈ Sq
++.

I Goal is to estimate the covariance matrix and its inverse Θ = Σ−1

(precision matrix).
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Graphical Lasso (Yuan and Lin [2007])

Penalized negative log-likelihood function for Θ = Σ−1:

J(Θ) := tr(ΘŜn)− log det(Θ) + λ|Θ|1 (1)

where Ŝn = 1
n

∑n
t=1 ztzTt is the sample covariance matrix (SCM).

Minimizer Θ̂n ∈ arg min J(Θ).

I Fast algorithms exist for minimizing (1) (Friedman et al. [2008],
Hsieh et al. [2011]) with worst-case computational complexity of
O(d4).

I High-dimensional MSE convergence rate (Rothman et al. [2008]):

‖Θ̂n −Θ0‖2
F = OP

(
(d + sΘ0 ) log(d)

n

)
(2)

where λ �
√

log(d)
n .
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ML estimator of Kronecker structured covariance

Negative log-likelihood function when Θ has Kronecker structure
Θ = X⊗ Y:

J(X,Y) = tr((X⊗ Y)Ŝn)− q log det(X)− p log det(Y) (3)

Alternating minimization yields Flip-Flop algorithm (Werner et al. [2008])
that generates updates of A = X−1, B = Y−1

Â(B)︸ ︷︷ ︸
p×p

=
1

q

q∑
k,l=1

[B−1]k,l Ŝn(l , k) (4)

B̂(A)︸ ︷︷ ︸
q×q

=
1

p

p∑
i,j=1

[A−1]i,j Ŝn(j , i) (5)

where Ŝn = KT
p,qŜnKp,q

and Kp,qvec(N) = vec(NT ) for any p × q matrix N.
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Submatrix partitioning of SCM
Ŝn(1,2) Ŝn͞(1,1)

Figure : SCM of size pq × pq with p = 4, q = 5. Blue: Ŝn(1, 2). Red: Ŝn(1, 1).
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MSE Convergence Rate of FF (Tsiligkaridis et al. [2012])

Let R̂FF (3) := Â(B̂(Ainit))⊗ B̂(Â(B̂(Ainit))) denote the 3-step
(noniterative) version of the flip-flop algorithm (Werner et al. [2008]).
More generally, let R̂FF (k) denote the k-step version of the flip-flop
algorithm.

Theorem
Let A0,B0, and Ainit have uniformly bounded spectra and define
M = max(p, f , n). Assume p ≥ q ≥ 2 and p log M ≤ C ′′n for some finite
constant C ′′ > 0. Finally, assume n ≥ p

q + 1. Then, for k ≥ 2 finite,

‖ΘFF (k)−Θ0‖2
F = OP

(
(p2 + q2) log M

n

)
(6)

as n→∞.
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KGlasso Algorithm

min Jλ(X,Y) = J(X,Y) + λX |X|1 + λY |Y|1 (7)

where J(·, ·) is given in (3) and λX , λY ≥ 0.

Algorithm 1 KGlasso (Tsiligkaridis et al. [2012, 2013a])

1: Input: Ŝn, p, q, n, λX > 0, λY > 0
2: Output: Θ̂KGlasso

3: Initialize Ainit to be positive definite.
4: Â← Ainit

5: repeat
6: B̂← 1

p

∑p
i,j=1 [Â−1]i,j Ŝn(j , i)

7: Y̌ ← arg minY∈Sq
++

tr(YB̂)− log det(Y) + λY |Y|1
8: Â← 1

q

∑q
k,l=1 [B̂−1]k,l Ŝn(l , k)

9: X̌← arg minX∈Sp
++

tr(XÂ)− log det(X) + λX |X|1
10: until convergence
11: Θ̂KGlasso ← X̌⊗ Y̌

Computational complexity: O(p4 + q4) (KGlasso)

vs O(p4q4) (Glasso).
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KGlasso Convergence Rate (Tsiligkaridis et al. [2012])

Define ΘKGlasso(k) as the output of the kth KGlasso iteration.

Theorem
Let A0,B0,Ainit have uniformly bounded spectra. Let M = max(p, f , n).
Assume sparse X0 and Y0, i.e. sX0 = O(p), sY0 = O(f ). Assume

max
(

p
q ,

q
p

)
log M = o(n). If in the KGlasso algorithm

λ
(k)
X �

(
1√
p + 1√

q

)
q
√

log M
n and λ

(k′)
Y �

(
1√
p + 1√

q

)
p
√

log M
n for all

k , k ′ ≥ 1, then

‖ΘKGlasso(k)−Θ0‖2
F = OP

(
(p + q) log M

n

)
(8)

as n→∞.

Assume p ∼ q. Comparing the KGlasso convergence rate (p + q)/n (8) with
others

I SCM rate: p2q2/n. Worse by 3 orders of magnitude

I FF rate: (p2 + q2)/n. Worse by 1 order of magnitude

I Glasso rate: (pq + sΘ0 )/n. Worse by 1 order of magnitude.



Kronecker GLasso Kronecker PCA Centralized Collaborative 20 Q. Decentralized Collaborative 20 Q. Conclusion References

Large Sample MSE Convergence

We considered X0 and Y0 large sparse matrices of dimension
p = q = 100 yielding a covariance matrix Θ0 of dimension
10, 000× 10, 000. This dimension was too large for implementation of
Glasso even when implemented using the state-of-the-art algorithm
(Hsieh et al. [2011]). However, we can run KGlasso and FF and compare
performances since they have considerably less computational burden.

Figure : Sparse Kronecker matrix representation. Left panel: left Kronecker
factor. Right panel: right Kronecker factor. The sparsity factor for both
precision matrices is approximately 200.
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Large Sample MSE Convergence (Cont.)
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Figure : Normalized RMSE performance for precision matrix as a function of
sample size n. For n = 10, there is a 72% RMSE reduction from the FF to
KGLasso solution and a 70% RMSE reduction from the FF/Thres to KGLasso.
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Kronecker PCA
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Introduction

I Represent covariance as a Sum of Kronecker Products (SKP) of two
lower dimensional factor matrices.

Σ0 =
r∑

γ=1

A0,γ ⊗ B0,γ (9)

where {A0,γ} are p× p linearly independent matrices and {B0,γ} are
q × q linearly independent matrices.

I Note 1 ≤ r ≤ r0 = min(p2, q2) and refer to r as the separation rank.
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Introduction

Applications of Sum of Kronecker Products (SKP) model (9)

I Spatiotemporal MEG/EEG covariance modeling (de Munck et al.
[2002, 2004], Bijma et al. [2005], Jun et al. [2006])

I Synthetic Aperture Radar (SAR) data analysis (Tebaldini [2009],
Rucci et al. [2010])

Van Loan and Pitsianis [1993]:

I Any pq × pq matrix Σ0 can be written as an orthogonal expansion
of Kronecker products of the form (9)

I Low separation rank is equivalent to low rank in a permuted space
defined by the reshaping operator R(·)
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Low separation rank ⇔ Low rank in permuted space

Original Covariance Σ0
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Figure : Original (top) and permuted covariance (bottom) matrix. The original
covariance is Σ0 = A0 ⊗ B0, where A0 is a 10× 10 Toeplitz matrix and B0 is a
20× 20 unstructured p.d. matrix. Note that the permutation operator R maps
a symmetric p.s.d. matrix Σ0 to a non-symmetric rank 1 matrix R0 = R(Σ0).
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Permuted rank-penalized least-squares (PRLS)
(Tsiligkaridis and Hero [2013a,b])

1. Map SCM to a different linear space:

R̂n = R(Ŝn) ∈ Rp2×q2

2. Solve least-squares problem with nuclear norm penalization:

R̂λn ∈ arg min
R∈Rp2×q2

‖R̂n − R‖2
F + λ‖R‖∗ (10)

3. Map back to original space:

Ŝλn = R−1(R̂λn ) ∈ Rpq×pq

where λ ≥ 0 is a regularization parameter.
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Properties of PRLS Estimator (Tsiligkaridis and Hero
[2013b])

Theorem

I The solution Σ̂λ
n is symmetric.

I If n ≥ pq, then the solution Σ̂λ
n is positive definite with probability 1.

Theorem
Define M = max(p, q, n). Set

λ = λn = 2C0t
1−2ε′ max

{
p2+q2+log M

n ,
√

p2+q2+log M
n

}
for t > 0 large enough.

Then, with probability at least 1− 2M−
t

4C :

‖Σ̂λ
n −Σ0‖2

F ≤ inf
R:rank(R)≤r

‖R− R0‖2
F

+ C ′r max

{(
p2 + q2 + log M

n

)2

,
p2 + q2 + log M

n

}
(11)

for some absolute constant C ′ > 0.
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Setup

I NCEP Dataset: Daily average wind speeds collected at q = 144× 73
weather stations spread throughout the world (Kalnay et al. [1996],
Tsiligkaridis and Hero [2013b])

I Considered a 10× 10 grid of stations, corresponding to latitude
range 90◦N-67.5◦N and longitude range 0◦E-22.5◦E

I Prediction time lag p − 1 = 7, full dimension d = pq = 800, number
of training samples n = 228.

I Training period: 2003− 2007, Testing period: 2008− 2012.
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Kronecker product decomposition: PRLS
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Figure : Sample covariance matrix (SCM) (top left), PRLS covariance estimate
(top right), temporal Kronecker factor for first KP component (bottom left)
and spatial Kronecker factor for first KP component (bottom right).
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Kronecker Spectrum

Figure : Kronecker spectrum of SCM (left) and Eigenspectrum of SCM (right).
The KP spectrum is more compact than the eigenspectrum.
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RMSE performance gains
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Figure : RMSE prediction performance across q stations for linear estimators
using SCM (blue), PRLS (green) and regularized Tyler (magenta).

I Average gain of PRLS over SCM = 4.64 dB

I Average gain of Reg. Tyler over SCM = 3.41 dB
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Centralized Collaborative 20 Questions
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Motivation

Fusion 
Center

An
(1)

An
(2)

Target X*

Yn+1
(1) Yn+1

(2)

I What is the intrinsic value of adding a human-in-the-loop to an
autonomous learning machine?

I Insight into human-aided autonomous sensing for estimating an
unknown target location or identifying a target.
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Motivation

Figure : PTZ IP camera. Source: en.wikipedia.org/wiki/Pan-tilt-zoom camera

I Sensor systems become more flexible, e.g. pan-tilt-zoom cameras:
where to look? different sensor waveforms & observations modes?
How to control these aspects for a common localization objective?
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Prior Work & Applications

Ask a sequence of questions and refine posterior distribution of target’s
location given the responses.

I Probabilistic Bisection Algorithm (PBA) first introduced in (Horstein
[1963]).

I Discretized PBA (Burnashev and Zigangirov [1974]).

I Noisy Binary Search (Karp and Kleinberg [2007]).

I Convergence rate for BZ algorithm (Castro and Nowak [2007]).

I Noisy 20 questions game: PBA shown to be optimal under minimum
expected entropy criterion (Jedynak et al. [2012]).

I Convergence rate for PBA (Waeber et al. [2013]).

Applications of PBA: stochastic root finding, combinatorial optimization,
road tracking, electron microscopy
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Single player setting

I Jedynak et al. [2012] considers 20 questions with noise, where a
noisy oracle is queried whether a target X ∗ lies in a set An ⊂ Rd .

I Starting with a prior distribution on the target’s location p0(·),
minimize expected entropy of the posterior distribution:

inf
π
Eπ [H(pN)] (12)

where π = (π0, π1, . . . ) denotes the policy. The posterior
mean/median of pN(·) is the target location estimate.

I Jedynak et al. [2012] shows the bisection policy is optimal under the
minimum entropy criterion. Assuming the noisy channel is a BSC,
optimal policies are characterized by:

Pn(An) :=

∫
An

pn(x)dx = 1/2 (13)
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Noisy 20 Questions with Collaborative Players: Model
(Tsiligkaridis et al. [2013c])

I M collaborating players can be asked questions at each time instant.

I mth player’s query at time n: “does X ∗ lie in the region A
(m)
n ⊂ Rd?”

I Query is the binary variable Z
(m)
n = I (X ∗ ∈ A

(m)
n ) ∈ {0, 1} to which the

player yields provides a noisy response Y
(m)
n+1 ∈ {0, 1}.

I Define the M-tuples Yn+1 = (Y
(1)
n+1, . . . ,Y

(M)
n+1 ) and An = {A(1)

n , . . . ,A
(M)
n }.

Assumption
Players’ responses are conditionally independent:

P(Yn+1 = y|An,X
∗ = x ,Fn) =

M∏
m=1

P(Y
(m)
n+1 = y (m)|A(m)

n ,X ∗ = x ,Fn) (14)

P(Y
(m)
n+1 = y (m)|A(m)

n ,X ∗ = x ,Fn) =

{
f

(m)
1 (y (m)|εm), x ∈ A

(m)
n

f
(m)

0 (y (m)|εm), x /∈ A
(m)
n

(15)

f
(m)
j (y (m)|εm) =

{
1− εm, y (m) = j

εm, y (m) = 1− j
(16)
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Optimal Joint Query Design: Setup

I Joint controller chooses M queries A
(m)
n at time n. Define the set of

subsets of Rd :

γ(A(1), . . . ,A(M)) =

{
M⋂

m=1

(A(m))im : im ∈ {0, 1}

}

where (A)0 := Ac and (A)1 := A. The cardinality of this set of
subsets is 2M and these subsets partition Rd .

I Define the density parameterized by An, pn, i1, . . . , iM :

gi1:iM (y (1), . . . , y (M)|An,Fn) :=
M∏

m=1

f
(m)
im

(y (m)|A(m)
n ,Fn)

where ij ∈ {0, 1}.
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Sequential Query Design

Player 1
Posterior 

Update
Controller 1

Controller M Player M
Posterior 

Update

Player 2
Posterior 

Update
Controller 2

.

.

.

I Query region Ant chosen at time nt = (n, t), where n = 0, 1, . . .
indexes over cycles and t = 0, . . . ,M − 1 indexes within cycles.

I Nested sequence of sigma-algebras Gn,t , Gn,t ⊂ Gn+i,t+j for all i ≥ 0
and j ∈ {0, . . . ,M − 1− t}, generated by sequence of queries and
the players’ responses.
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Optimal Joint Query Design

Player 1

Player M

Fusion 

Center

Joint 

Controller

.

.

.

I Joint controller chooses a batch of M queries {A(m)
n } at time n.

I As in sequential query design, joint queries chosen based on
accumulation information at controller. Since full batch of joint
queries are determined at start of nth cycle, the joint controller only
has access to a coarser filtration Fn, Fn−1 ⊂ Fn, as compared to
Gn,t .
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Equivalence Theorem (Tsiligkaridis et al. [2013c])

Theorem
(Equivalence, Known Error Probabilities)

1. The expected entropy loss under an optimal joint query design is the
same as the greedy sequential query design. This loss is given by:

C =
M∑

m=1

C (εm) =
M∑

m=1

(1− hb(εm)) (17)

where hb(εm) = −εm log(εm)− (1− εm) log(1− εm) is the binary
entropy function.

2. All jointly optimal control laws equalize the posterior probability over

the dyadic partitions induced by An = {A(1)
n , . . . ,A

(M)
n }:

Pn(R) =

∫
R

pn(x)dx = 2−M ,∀R ∈ γ(An). (18)
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Consequences of Equivalence Theorem

I Optimal policy can be implemented using the simpler sequential
query design.

I Despite the fact that all players are conditionally independent, the
joint policy does not decouple into separate single player optimal
policies (analogous to the non-separability of the optimal
vector-quantizer in source coding even for independent sources
Gersho and Gray [1992]).

I Optimal queries must be overlapping-i.e.,
⋂M

m=1 A
(m)
n 6= ∅, but not

identical.

I Optimal query An is not unique.
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Example of optimal queries for M = 2

Figure : Jointly optimal queries under uniform prior.
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Lower Bounds on MSE via Entropy Loss

Theorem
(Lower Bound on MSE) Assume the entropy H(p0) is finite. Then, the
MSE of the joint or sequential query policies satisfies:

K

2πe
d exp

(
−2nC

d

)
≤ E[‖ X ∗ − Xn ‖2

2] (19)

where K = e2H(p0) and Xn is the posterior mean. The expected entropy
loss per iteration is C =

∑
m C (εm).
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Upper Bounds on MSE: Setup

I Performance analysis of PBA is difficult primarily due to the
continuous nature of the posterior Castro and Nowak [2007].

“The probabilistic bisection algorithm seems to work extremely well
in practice, but it is hard to analyze and there are few theoretical
guarantees for it, especially pertaining error rates of convergence.”

I A discretized version of PBA was proposed in (Burnashev and
Zigangirov [1974]) (BZ algorithm), which imposes a piecewise
constant structure on the posterior (see Castro and Nowak [2007],
App. A in Castro [2007]).

I Recently, an answer for the continuous PBA was given in (Waeber
et al. [2013]) for one-dimensional target search.
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Upper Bounds on MSE: Setup

I For simplicity, assume the target location is constrained to the unit
interval X = [0, 1].

I A step size ∆ > 0 is defined such that ∆−1 ∈ N and the posterior
after j iterations is pj : X → R, given by

pj(x) =
1

∆

∆−1∑
i=1

ai (j)I (x ∈ Ii )

where I1 = [0,∆], Ii = ((i − 1)∆, i∆] for i = 2, . . . ,∆−1. The initial
posterior is ai (0) = ∆. The posterior is characterized completely by
the pseudo-posterior a(j) = [a1(j), . . . , a∆−1 (j)] which is updated at
each iteration via Bayes rule.



Kronecker GLasso Kronecker PCA Centralized Collaborative 20 Q. Decentralized Collaborative 20 Q. Conclusion References

Upper Bounds on MSE

Theorem
(Upper Bound on MSE) Consider the sequential bisection algorithm for
M players in one-dimension, where each bisection is implemented using
the BZ algorithm. Then, we have:

P(|X ∗ − X̂n| > ∆) ≤ (
1

∆
− 1) exp

(
−nC̄

)
E[(X ∗ − X̂n)2] ≤ (2−2/3 + 21/3) exp

(
−2

3
nC̄

)
(20)

where C̄ =
∑M

m=1 C̄ (εm), C̄ (ε) = 1/2−
√
ε(1− ε).



Kronecker GLasso Kronecker PCA Centralized Collaborative 20 Q. Decentralized Collaborative 20 Q. Conclusion References

Upper Bounds on MSE: Human-in-the-loop

I Player 1 (machine) has constant error probability ε1 ∈ (0, 1/2)

I Player 2 (human) has error probability depending on the target
localization error:

P(Y
(2)
n+1 = y (2)|Z (2)

n = 1− y (2)) =
1

2
−min(δ0, µ|X ∗ − Xn|κ−1) (21)

I κ = human ”resolution” (κ > 1)

I δ0 = reliability parameter (0 < δ0 < µ < 1/2)

I MSE upper bound for “player 1 + human” system:

E[(X ∗ − X̂n)2] ≤ e−
2
3
nC̄(ε1)

×
[

2−2/3 + 21/3 exp

(
−µ

2

50

(3 · 2−1/3

4

)2κ−2

ne−nC̄(ε1) 2κ−2
3

)]
(22)

which is no greater than the “player 1” MSE bound.

I Both bounds converge to zero at the same rate as n→∞.

I Human gain ratio (HGR) = ratio of MSE upper bounds associated with
“player 1” and “player 1 + human”.

Rn(κ) =
2−2/3 + 21/3

2−2/3 + 21/3 exp
(
−µ2

50
( 3·2−1/3

4
)2κ−2ne−nC̄(ε1) 2κ−2

3

) (23)
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Upper Bounds on MSE: Human-Gain Ratio

I The larger ε1 is, the larger is the HGR.

I As κ decreases to 1, the ratio increases, meaning that the human becomes
more like the machine and helps more.
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Figure : Human gain ratio as a function of κ. The human provides the largest
gain in the beginning few iterations and its value of information decreases as
n→∞. The predictions well match the optimized bounds.
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Simulation (Known error probabilities): Initial Distribution
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Figure : Initial distribution is a mixture of three Gaussians with means 0.25, 0.5
and 0.75, and variances 0.02, 0.05 and 0.08, respectively. The target was set to
be the center of the mode at X ∗ = 0.75 with the largest variance.
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Simulation (Known error probabilities): MSE Decay
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Figure : Monte Carlo simulation for MSE performance of the sequential
estimator as a function of iteration and ε1 ∈ (0, 1/2). 2000 Monte Carlo trials
were used. The human parameters were set to κ = 1.5, µ = 0.42, δ0 = 0.4, the
length of pseudo-posterior was ∆−1 = 1618. The target was set to X ∗ = 0.75.
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Decentralized Collaborative 20 Questions
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Motivation

Consider a collection of agents in a network with the objective of
localizing a target collectively.

I What is the value of collaboration when there is no central authority?

I Local in-network querying and processing leads to global
equilibrium? Deterministic or random limit? Unbiasedness?
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Intractability of fully Bayesian methodology

I limited observability (observations of an agent not observable by
others) & lack of global knowledge of observation statistics

I if agents have only partial information on the network structure and
the probability distribution of the signals observed by other agents,
the Bayesian approach becomes more complicated because agents
would need to form and update beliefs on the states of the world, in
addition to the networks struture and the rest of the agents’ signal
structures

I even if the network structure is known, agents would still need to
update beliefs on the information of every other agent in the
network, given only the neighbors’ beliefs at each iteration
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Prior Work on Distributed Averaging

Consensus, gossip algorithms, distributed averaging: messages distributed
around network through local processing.

I averaging under randomized gossip (Boyd et al. [2006])

I geographic gossip (Dimakis et al. [2006])

I randomized path averaging (Benezit et al. [2010])

I gossip algorithms for sensor networks (Dimakis et al. [2010])

I randomized gossip broadcast algorithms for consensus (Aysal et al.
[2009])

I gossip distributed estimation for linear parameter estimation (Kar
and Moura [2011])

I consensus for wireless medium (Nokleby et al. [2013])

Applications: distributed optimization (Tsitsiklis [1984], Tsitsiklis et al.
[1986]), load-balancing (Cybenko [1989]), distributed detection
(Saligrama et al. [2006])
Our work differs because we consider new information injected into the
dynamical system described by averaging and because we consider
controlled observations.
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Prior Work on Social Learning

Dynamic model of opinion formation.

I opinion formation model (DeGrout [1974])

I convergence of dynamics generated by non-Bayesian decentralized
estimation scheme (Jadbabaie et al. [2012])

I rate of convergence analysis (Molavi et al. [2013])

Our work differs because we consider continuous-valued target space and
controlled observations.
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Prior Work on Computerized Adaptive Testing

Given current estimate of proficiency, how to choose next test item?

I dynamic selection of test items via item-response theory &
maximum information or maximum expected precision criterion
(Wainer [2000], Owen [1975])

Our work differs because we consider continuous-valued query regions, no
practical constraints necessary, and a different objective function.
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Prior Work on Active Stochastic Search/20 Questions

Active querying for sequential estimation.

I single-player 20 questions for target localization (Jedynak et al.
[2012])

I convergence rate for discretized version of single-player 20 questions
(Castro and Nowak [2007])

I convergence rate for continuous-space single-player PBA (Waeber
et al. [2013])

I (centralized) multi-player 20 questions for target localization
(Tsiligkaridis et al. [2013b])

Our work differs because we consider intermediate local belief sharing
between agents after each local bisection and Bayesian update (entropy
no longer monotonically decreasing for each agent!). Also, each agent
incorporates beliefs of neighbors in a way that is agnostic of neighbors’
error probabilities.
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Notation

I X ∗ ∈ [0, 1] = true target location

I N = {1, . . . ,M} = agent set of network

I G = (N ,E ) directed graph capturing agent interactions

I Ni = {j ∈ N : (j , i) ∈ E} = local neighborhood of ith agent

I pi,t(·) = belief of ith agent at time t
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Decentralized Estimation

Algorithm 2 Decentralized Estimation Algorithm

1: Input: G = (N , E),A = {ai,j : (i, j) ∈ N ×N}, {εi : i ∈ N}
2: Output: {X̂i,t , X̌i,t : i ∈ N}
3: Initialize pi,0(·) to be positive everywhere.
4: repeat
5: For each agent i ∈ N :
6: Bisect posterior density at median: X̂i,t = F−1

i,t (1/2).

7: Obtain (noisy) binary response yi,t+1 ∈ {0, 1}.
8: Belief update:

pi,t+1(x) = ai,ipi,t(x)
li (yi,t+1|x, X̂i,t)

Zi,t(yi,t+1)
+

∑
j∈Ni

ai,jpj,t(x), x ∈ X (24)

where the observation p.m.f. is:

li (y |x, X̂i,t) = f
(i)

1 (y)I (x ≤ X̂i,t) + f
(i)

0 (y)I (x > X̂i,t), y ∈ Y (25)

and f
(i)

1 (y) = (1− εi )I (y=1)ε
I (y=0)
i , f

(i)
0 (y) = 1− f

(i)
1 (y).

9: Calculate target estimate: X̌i,t =
∫
X xpi,t(x)dx .

10: until convergence
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Assumptions

I (Conditional Independence) Assume conditional independence:

P(Yt+1 = y|Ft) =
M∏
i=1

P(Yi,t+1 = yi |Ft) (26)

and each player’s response is governed by:

li (yi |x ,Ai,t) := P(Yi,t+1 = yi |Ai,t ,X
∗ = x) =

{
f

(i)
1 (yi ), x ∈ Ai,t

f
(i)

0 (yi ), x /∈ Ai,t

(27)

I (Memoryless Binary Symmetric Channels) Model players’ responses as
independent BSC’s with crossover probabilities εi ∈ (0, 1/2).

f
(i)
z (yi ) =

{
1− εi , yi = z
εi , yi 6= z

for i = 1, . . . ,M, z = 0, 1.

I (Strong Connectivity & Positive Self-reliances) Assume that the network is
strongly connected and all self-reliances ai,i are strictly positive.
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Global Convergence Theory

Theorem
(Asymptotic Agreement/Consensus) Consider Algorithm 2. Let
B = [0, b] ∈ B([0, 1]). Then, consensus of the agents’ beliefs is asymptotically
achieved across the network:

Vt(B) = max
i

Pi,t(B)−min
i

Pi,t(B)
p.−→ 0

as t →∞.

Theorem
(Convergence of Beliefs to a Deterministic Limit & Consistency) Consider
Algorithm 2. Let B = [0, b] ∈ B([0, 1]). Then, we have:

1. For each i ∈ N :

Fi,t(b) = Pi,t(B)
p.−→ F∞(b) =

{
0, b < X ∗

1, b > X ∗

2. For all i ∈ N :

X̌i,t :=

∫ 1

x=0

xpi,t(x)dx
p.−→ X ∗
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Simulation: Three network topologies

a) Fully connected graph b) Cyclic graph
c) Star graph
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MSE Performance, εi = 0.4,∀i

0 100 200 300 400 500 600 700 800 900 1000

10−4

10−3

10−2

10−1

100

Iteration

M
S

E

 

 
I: avg
I: min
I: max
A: avg
A: min
A: max

0 100 200 300 400 500 600 700 800 900 1000
0

0.2

0.4

0.6

0.8

1

Iteration

δ 
pr

ob
ab

ili
ty

 m
as

s

 

 
I: avg
I: min
I: max
A: avg
A: min
A: max

0 100 200 300 400 500 600 700 800 900 1000
0

2

4

6

8

10

Iteration

E
nt

ro
py

 

 
I: avg
I: min
I: max
A: avg
A: min
A: max

0 100 200 300 400 500 600 700 800 900 1000

10−4

10−3

10−2

10−1

100

Iteration

M
S

E

 

 
I: avg
I: min
I: max
A: avg
A: min
A: max

0 100 200 300 400 500 600 700 800 900 1000
0

0.2

0.4

0.6

0.8

1

Iteration

δ 
pr

ob
ab

ili
ty

 m
as

s

 

 
I: avg
I: min
I: max
A: avg
A: min
A: max

0 100 200 300 400 500 600 700 800 900 1000
0

2

4

6

8

10

Iteration

E
nt

ro
py

 

 
I: avg
I: min
I: max
A: avg
A: min
A: max

0 100 200 300 400 500 600 700 800 900 1000

100

Iteration

M
S

E

 

 

I: avg
I: min
I: max
A: avg
A: min
A: max

0 100 200 300 400 500 600 700 800 900 1000
0

0.2

0.4

0.6

0.8

1

Iteration

δ 
pr

ob
ab

ili
ty

 m
as

s

 

 
I: avg
I: min
I: max
A: avg
A: min
A: max

0 100 200 300 400 500 600 700 800 900 1000
0

2

4

6

8

10

Iteration

E
nt

ro
py

 

 
I: avg
I: min
I: max
A: avg
A: min
A: max



Kronecker GLasso Kronecker PCA Centralized Collaborative 20 Q. Decentralized Collaborative 20 Q. Conclusion References

MSE Performance, ε1 = 0.05, εi = 0.45,∀i 6= 1
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Main Contributions

1. Kronecker Graphical Lasso

I Sparse covariance estimation algorithm (KGlasso) introduced for the
high-dimensional setting for Kronecker product structure.

I High-dimensional MSE convergence rate analysis.

I Analysis prescribes selection of regularization parameters.

2. Covariance Estimation via Kronecker Product Expansions

I Scalable covariance estimation algorithm (PRLS) introduced for the
high-dimensional setting.

I Tradeoff between approximation error and estimation error.

I High-dimensional MSE convergence rate analysis.

I Analysis prescribes selection of regularization parameter.
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Main Contributions

3. Centralized Collaborative 20 Questions

I Introduced model for centralized collaborative 20 questions.

I Characterized optimal policies & proved equivalence theorem that
simplifies policy implementation.

I Incorporated human-in-the-loop by treating him as a collaborative
player.

I Linked information theoretic gains to MSE convergence rates.

4. Decentralized Collaborative 20 Questions

I Introduced model for decentralized collaborative 20 questions.

I Proved consensus of agents’ beliefs & global consistency of
decentralized estimation algorithm.
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Thank you!
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