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ABSTRACT

In ��� a methodology for incorporating extracted MRI
anatomical boundary information into penalized likeli�
hood �PL� ECT image reconstructions and tracer up�
take estimation was proposed� This methodology used
quadratic penalty based on Gibbs weights which en�
forced smoothness constraints everywhere in the image
except across the MRI�extracted boundary of the ROI�
When high quality estimates of the anatomical bound�
ary are available and MRI and ECT images are per�
fectly registered	 the performance of this method was
shown to be very close to that attainable using ideal
side information	 i�e� noiseless anatomical boundary
estimates� However when the variance of the MRI�
extracted boundary estimates becomes signi
cant this
penalty function method performs poorly� We give a
modi
ed Gibbs penalty function implemented with a
set of averaged Gibbs weights	 where the averaging is
performed with respect to a limiting form of the pos�
terior distribution of the MRI boundary parameters�

�� INTRODUCTION

Radio�tracer uptake estimation is an essential tool in
medicine and biological sciences for evaluatingmetabolic
function of living systems� Emission computed tomog�
raphy �ECT� is very useful in this regard due to its
ability to image in three dimensions� Critical to up�
take estimation accuracy is a reliable estimate of the
anatomical region of interest �ROI�	 e�g� a target or�
gan within the body� While it is possible to estimate
the ROI directly from the acquired radio�isotope image	
better estimates can be obtained from higher resolu�
tion imaging systems	 such as X�ray computed tomgra�
phy �CT� or magnetic resonance images �MRI�	 which
are speci
cally adapted to imaging anatomy� Many re�
searchers have suggested ways to incorporate such MRI
or CT side information into ECT image reconstructions
and tracer uptake estimates ��	 �	 
	 �	 �	 ��� Here we
present a method for using noisy MRI side information
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in ECT which is based on asymptotic marginalization
of the penalty likelihood method proposed in ��	 ���

The method of ��	 �	 �� performs ECT image recon�
strion using a penalized �Poisson� likelihood function
approach� A quadratic penalty based on Gibbs weights
is introduced which enforces smoothness constraints ev�
erywhere in the image except across the MRI�extracted
boundary of the ROI� When high quality estimates of
the anatomical boundary are available and MRI and
ECT images are perfectly registered	 the performance
of this method was shown ��� to be very close to that
attainable using ideal side information	 i�e� noiseless
anatomical boundary estimates� However when the
variance of the MRI�extracted boundary estimates be�
comes signi
cant this penalty function method per�
forms poorly� This poor performance is due in large
part to the fact that the Gibbs weights do not account
for estimation errors in the anatomical boundary esti�
mates� In ���� a technique called �variance corrected
weighting� was proposed which relied on a local Taylor
series expansion of the Gibbs weights about the esti�
mated spline parameters� This scheme applies only to
weight assignments that are smooth functions of the
spline parameters for which Taylor series can be ap�
plied� Furthermore	 even for the smooth weight assign�
ments presented in ���� the method is accurate only
when the uncertainty in the extracted boundary esti�
mates are less than a single MRI pixel width�

Here we derive a variance corrected weighting which
applies globally to non�smooth weights� The method is
based on marginalization ���	 Sec ������ which averages
the penalized likelihood over an asymptotic normal ap�
proximation to the posterior distribution of the side in�
formation� Jensen�s inequality provides a lower bound
on the resultant marginal which gives a simple penalty
function requiring averaging of the weight maps� This
averaging is performed with respect to the asymptotic
distribution of the boundary estimates which is a mul�
tivariate Gaussian density centered at the boundary
estimate f�r�g�������� and with covariance matrix equal
to the inverse �observed� Fisher information�



�� BACKGROUND

Let YE and YM be two random measurements corre�
sponding to �Poisson� ECT projections and �Gaussian�
NMR spin density images	 respectively� In ���� two
di�erent methodologies were proposed for extracting
anatomical boundary estimates from noisy MRI im�
ages for the purpose of incorporation into ECT� One
was based on non�linear maximum likelihood estima�
tion of coe�cients � in a periodic B�spline model for
the closed boundary� The other was based on direct es�
timation of the boundary de
ned by the radial distance
function r���� � � ��� ��� which speci
es the �polar�
coordinates �r� �� of the boundary relative to an origin
de
ned within the ROI� This latter method performed
a polar to rectangular coordinate conversion	 Canny or
Marr�Hildreth edge detection	 followed by smoothing
of the extracted edge by a median 
lter� It was ob�
served through simulations that both boundary extrac�
tion methdologies yielded boundary estimates which
were approximately unbiased over a wide range of SNR�
The Fisher information matrix was derived and it was
observed that the methods also came close to the CR
lower bound on attainable estimator variance for low
to moderate additive noise levels ��n less than ��� of
edge contrast��

The boundary estimates	 which are denoted by com�
mon notation �� for spline coe�cient parameterization
or for radial distance parameterization	 are incorpo�
rated into ECT image reconstruction via maximizing
the penalized likelihood �PL� objective over the ECT
intensity distribution �

J��� � ln f�YE j�� ���� �R��� ��� ���

where f�YE j�� is the ECT likelihood function in which

the penalty function R��� ��� depends on the MRI mea�
surements and is speci
ed to enforce smoothness within
the estimated boundary of the ROI� The penalty is of
the form of a Gibbs potential function

R��� ��� � ��
X
i�j

wij������i � �j�
�

where wij are Gibbs weights which depend on �� through
one of many possible functional assignments ���	 Ch�

��

�� A BAYESIAN SETTING

Assume that � and � are random parameters �ECT
intensity and MRI boundary estimates�� Under the as�
sumption that YM and YE are conditionally indepen�
dent given �	 and that � is a function of �	 the joint

density density function factors in the following man�
ner�

f��� YE � �� YM � � f�YE j��f��j��f��jYM �f�YM �	 ���

The 
rst three factors on the right hand side of the
above equation can be recognized as the likelihood func�
tion of � without side information	 the conditional den�
sity linking � to �	 and the posterior density of � given
YM �

When � is known exactly	 the posterior mode �MAP�

estimate �� of � maximizes the posterior loglikelihood
lnf��jYE � �� which is equivalent to maximizing the ob�
jective

J���� � ln f�YE j�� ��� � ln f��j��	

Comparing this to ��� we can identify f��j�� as a Gaus�
sian �Gibbs�type� distribution of ��

f��j�� � 
 exp f��R��� ��g ���

where 
 is a normalizing constant�

When � is not known exactly there are several ways
to approach the estimation of �� Many researchers ��	
�	 
	 �� have investigated joint estimation of � and �

under various models for the prior f��� and f��j���
While this is an important task for applications where
both � and � are of intrinsic interest	 this approach does
not generally yield Bayes optimal estimates of � which
are given by the posterior mode estimator of � obtained
by marginalizing f��� �jYE � YM� by integrating out ��

For random unknown � the posterior mode esti�
mate of � maximizes the posterior f��jYE � YM� which
is equivalent to maximizing the following joint density
function over ��

f��� YE � YM � �

Z
f��� YE � �� YM �d�

� f�YE j�� � f�YM � �
Z

f��j��f��jYM �d�

� ln f�YE j�� � ln

Z
f��j��f��jYM �d�

Using the Gibbs conditional distribution ��� for f��j��
this becomes

�� � argmax�

�
ln f�YE j�� � ln

Z
exp f��R��� ��g f��jYM �d�

�
�
�

This is of the form of a penalized likelihood estimator
��� where the penalty is obtained by taking the log
of the f��jYM ��averaged exponentiated Gibbs penalty
function� This penalty is convex in � and for piecewise



constant ��� �� weights wij can be expressed as�

ln

Z
exp f��R��� ��g f��jYM �d�

� ln
X
l

exp f��R��� �l�g
Z
�l

f��jYM �d����

where f�lgl is a partition of IRp into sets over which
R��� �� is constant and �l is a point within the set �l�

�� SIMPLIFICATION BY JENSENS

INEQUALITY

Because of the exponential form of the average in 
� or
��� the copmputation of the penalty function is numeri�
cally unstable for even moderate vaules of teh smooth�
ing constant �� A simpli
cation to �
� can be made
by applying Jensen�s inequality to lower bound this
penalty term

ln

Z
exp f��R��� ��g f��jYM �d�

� ��
Z

R��� ��f��jYM �d�

� ��E�jYM �R��� ���

� ��
X
ij

 wij��i � �j�
�

where E�jYM denotes expectation with respect to the
posterior density f��jYM � and  wij � E�jYM �wij���� are
average weights� Therefore	 use of the simpler penalty
��E�jYM �R��� ��� instead of ln

R
exp f��R��� ��g f��jYM �d�

entails an overall reduction in the in!uence of the penalty
factor for any given �� However	 the underpenalization
can be be compensated by increasing the value of ��

The computation of the penalty requires averaging
over a posterior density f��jYM � which requires know�
ing the prior distribution f���� When multiple real�
izations of f�YM � �� are available empirical Bayes tech�
niques can be used to accurately estimate the posterior
density� Empirical Bayes techniques were formalized by
Robbins ���� as a methodology for dealing with uncer�
tain parameters� Empirical Bayes results in the substi�
tution of an empirically determined distribution for the
unknown prior distribution required for Bayes parame�
ter estimation	 e�g� the conditional mean or the poste�
rior mode �maximuma posteriori� estimators� Another
technique that eliminates the need for an explicit prior
f��� are use of asymptotic approximations to f��jYM ��

�� ASYMPTOTIC MARGINALIZATION

Let �� � argmax�f�YM j�� be the maximum likelihood
estimate of � based on YM � We now state the following

limit theorem which can be shown using techniques of
����	 and ��
	 Secs ���
 and ������

Theorem � Assume that f�YM j�� is a smooth func�
tion of � in the sense of satisfying the regularity con�
ditions ���� p� ���� and that f��� is a smooth function

in the neighborhood of ��� Then �� is an asymptotically
consistent estimator of � � IRp and

f��jYM � �
jF��j

�

�

�
p
���p

�exp
n
� �

�
�� � ���TF���� � ���

o�
� � O�"��

�

where F�� is the observed Fisher information matrix

F�� � �r�
��
ln f�YM j���

and O�"�� decays to zero faster than "� � k� � ��k��
This theorem gives an asymptotic Gaussian form for

the posterior f�YM j�� which depends on the estimate
�� and the observed Fisher information at �� but is inde�
pendent of the explicit form of the prior density f����
This form is identical to the pro
le posterior approxi�
mation proposed in ���� when the joint distribution is
specialized to the factorization ���� In some cases it is
reasonable to use the �expected� Fisher information in

place of F � In particular F ���� can be approximated by

the Fisher information evaluated at �� �����

I�� � �
Z

f�YM j��r�
� ln f�YM j��dYM j����	

�� BACK TO PENALIZED LIKELIHOOD

Application of the above results gives the following
form for the variance compensated penalized likelihood
estimator

�� � argmax�

��
�lnf�YE j�� � �

X
ij

 wij������i � �j�
�

	

�

where

 wij���� � jF��j
�

�

Z
wij�����F

�
�

�

��
�� � ����d�

Note that the weight averaging corresponds to consid�
ering � as a p�variate Gaussian random vector with
mean �� and covariance matrix F��

��
and ��x�� 	 	 	 � xp� is

the standard p�dimensional Gaussian density function
with zero mean and identity covariance� This average
is over the the posterior uncertainty region of ��

For the binary weight scheme the computation of
 wij can be performed directly in the pixel domain by
averaging the weight map over all perturbations of �



which produce changes in the boundary by at least
a single pixel� Since this average may be di�cult	 it
may be better to use the reparametrization wij���� �
wij��r� ��	 where �r� � index the locations of the bound�
ary in polar coordinates	 and do the averaging in the
pixel domain

 wij���� �
jF�rj

�

�

�
p
���p

�
X
r

wij��r� �� exp
�� �

�
�r � �r�TF�r�r � �r�




where the sum is over the variation of radii r� which
give rise to di�erent weight maps and F	

�r denotes the
pseudo�inverse F�r�

F�r � BF��B
T 	

As a practical approximation	 the sum can be trun�
cated by extracting p principle components ��� 	 	 	 � �p
�eigenvalues ordered in increasing rank �� � �� � 	 	 	�
from the eigendecomposition of F�r and summing over
the variations in �r � �r�T �i which� i� produce changes
in the weight maps� ii� have magnitude changes over
range� j�r � �r�T �ij� � 


�i
	 i � �� 	 	 	 � p� This will cover

a range of changes in r which will account for the ma�
jority of the mass in the averaging distribution �plus or
minus � standard deviations from the mean��
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