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Fig. 1. In cooperative localization (b), measurements made between any pairs of sensors can be used to aid in the location

estimate. Traditional multilateration or multi-angulation (a) is a special case in which measurements are made only between an

unknown-location sensor and known-location sensors.

Abstract

Accurate and low-cost sensor cooperative localization is a critical requirement for the deployment

of wireless sensor networks in a wide variety of applications. Sensors must be inexpensive and energy

efficient devices, and sensor networks must be scalable from dozens to millions of devices. Localization

methods must conform to these requirements and achieve a desired accuracy (from centimeters to me-

ters). In this article, we describe measurement-based statistical models useful to describe time-of-arrival

(TOA), angle-of-arrival (AOA), and received signal strength (RSS) measurements in wireless sensor

networks. Wideband & ultra-wideband (UWB) measurements, and RF & acoustic media are discussed.

Using the models, we show how to calculate a Cramér-Rao bound (CRB) on the location estimation ac-

curacy possible from a given set of measurements, a useful tool to help system designers and researchers

select measurement technologies and evaluate localization algorithms. We also briefly survey a large and

growing literature of sensor localization algorithms. This article is meant to emphasize the basic statis-

tical signal processing background necessary to understand the state of the art and to make progress in

the new and largely open areas of sensor network localization research.

I. I NTRODUCTION

Dramatic advances in RF and MEMS IC design have made possible the use of large networks of wire-

less sensors for a variety of new monitoring and control applications [1], [2], [3], [4]. For example, smart

structures will actively respond to earthquakes and make buildings safer; precision agriculture will re-

duce costs and environmental impact by watering and fertilizing only where necessary, and will improve

quality by monitoring storage conditions after harvesting; condition-based maintenance will direct main-
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Fig. 2. Cooperative localization is analogous to finding the resting point of (a) masses (spools of thread) connected by a

network of (b) springs. First, reference nodes are nailed to their known coordinates on a board. Springs have a natural length

equal to measured ranges and can be compressed or stretched. They are connected to the pair of masses whose measured range

they represent. After letting go, the equilibrium point (c) of the masses represent a minimum-energy localization estimate; the

actual node locations are indicated by⊗.

tenance exactly when and where needed based on data from wireless sensors; traffic monitoring systems

will better control stoplights and inform motorists of alternate routes in case of traffic jams; and environ-

mental monitoring networks will sense air, water and soil quality and identify the source of pollutants in

real time.

Automatic localization of the sensors in these wireless networks is a key enabling technology. The

overwhelming reason is that a sensor’s location must be known for its data to be meaningful. As an

additional motivation, sensor location information, if it is accurate enough, can be extremely useful for

scalable, ‘geographic’ routing algorithms. Note also that location itself is often the data that needs to

be sensed - localization can be the driving need for wireless sensor networks in applications such as

warehousing and manufacturing logistics.

To make these applications viable with possibly vast numbers of sensors, device costs will need to be

low (from a few dollars to a few cents depending on the application), sensors will need to last for years

or even decades without battery replacement, and the network will need to organize without significant

human moderation. Traditional localization techniques aren’t well suited for these requirements. Includ-

ing GPS on each device is cost and energy prohibitive for many applications, not sufficiently robust to

jamming for military applications, and limited to outdoor applications. Local positioning systems (LPS)

[5] rely on high-capability base stations being deployed in each coverage area, an expensive burden for

most low-configuration wireless sensor networks.

Instead, we consider the problem in which some small numberm of sensors,reference nodes, obtain



their coordinates - either via GPS, or from a system administrator during startup - and the rest,n unknown-

location nodes, must determine their own coordinates. If sensors were capable of high-power transmis-

sion, they would be able to make measurements to multiple reference nodes, and thus techniques similar

to those used in LPS or cellular E-911 could be applied. However, low-capability, energy-conserving

devices won’t include a power amplifier or the energy necessary for long-range communication. Instead,

wireless sensor networks, and thus localization techniques, will be multi-hop (a.k.a. ‘cooperative’ local-

ization), as shown in Fig. 1. Rather than solving for each sensor’s position one at a time, a location solver,

analogous to the system of masses connected by springs shown in Fig. 2, will estimate all sensor positions

simultaneously.

Network-aided localization systems are an extension of existing location systems such as LPS and cel-

lular E-911. We still allow unknown-location devices to make measurements with known-location refer-

ences, but in cooperative localization, we additionally allow unknown-location devices to make measure-

ments with other unknown-location devices. The additional information gained from these measurements

between pairs of unknown-location devices enhances the accuracy and robustness of the localization sys-

tem.

A. Motivating Application Example: Animal Tracking

If cooperative localization can be implemented as described above, many compelling new applications

can be enabled. For the purposes of biological research, it is very useful to track animals over time and

over very wide ranges [6]. Such tracking can answer questions about animal behavior and interactions

within their own and with other species. Using current practices, tracking is a very difficult, expensive

process, and requires bulky tags that rapidly run out of energy. A typical practice is to attach VHF

transmitter collars to animals to be tracked, and then triangulating their location by driving (or flying) to

various locations with a directional antenna. Alternatively, GPS-based collars can be used, but are limited

by cost concerns, and offer only a short lifetime due to high energy consumption. Using wireless sensor

networks can dramatically improve the abilities of biological researchers (as demonstrated by ‘ZebraNet’

[6]). Using multi-hop routing of location data through the sensor network enables low transmit powers

from the animal tags. Furthermore, inter-animal distances, which are of particular interest to animal be-

haviorists, can be estimated using pair-wise measurements and cooperative localization methods, without

resorting to GPS. The end result of the longer battery lifetimes is less frequent re-collaring of the animals

being studied.



B. Motivating Application Example: Logistics

As another example, consider deploying a sensor network in an office building, manufacturing floor,

and warehouse. Sensors already play a very important role in manufacturing. Monitor and control of

machinery has traditionally been wired, but making these sensors wireless reduces the high cost of ca-

bling and makes the manufacturing floor more dynamic. Automatic localization of these sensors further

increases automation.

Also, boxes and parts to be warehoused and factory and office equipment are all tagged with sensors

when first brought into the facility. These sensors monitor storage conditions (temperature, humidity) and

help control the HVAC system. Sensors on mobile equipment report their location when the equipment is

lost or needs to be found, and even contact security if it is about to ‘walk out’ of the building. Knowing

where things (parts or equipment) are when they are critically needed reduces the need to have duplicates

as back-up, savings which can pay for the system itself.

Radio-frequency identification (RFID) tags, such as those now required by Walmart on pallets and

cartons entering in its warehouses [7], represent a first step in warehouse logistics. RFID tags are only

located when they pass within a few feet of a reader, thus remain out of access most of their time in the

warehouse. Networked wireless sensors, however, can be queried and located as long as they are within

range (on the order of 10 m) of the closest other wireless sensors.

The accuracy of cooperative localization increases with the density of sensors, as we show in Section

III-E, so having heterogeneous sensors of varied purposes all participate in the same network helps drive

localization errors down.

C. Cooperation Requirement: Standardization

One way to ensure that heterogeneous sensors can ‘cooperate’ to improve localization performance

is to pursue standardization of wireless sensor networks. Two major sensor network standards are the

IEEE 802.15.4 low data rate physical (PHY) layer and multiple-access (MAC) layer standards and the

ZigBeeTMnetworking and application layer standards [8]. These standards allow for localization infor-

mation to be measured between pairs of sensors. In particular, RSS can be measured in the 802.15.4

PHY standard via a physical layer mechanism, the Link Quality Indication (LQI), which reports to higher

layers the signal strength associated with a received packet. Finally, we note that these standards enable

low power operation required for long-life sensors - the 802.15.4 standard allows duty cycles of less than

0.1%, and when powered on, a transmitter or receiver will consume 40-60 mW.



D. Problem Statement

Before going into detail, it is useful to formally state the cooperative sensor location estimation prob-

lem. The 2-D localization problem demonstrated in Fig. 2 is the estimation of2n unknown-location node

coordinatesθ = [θx, θy],

θx = [x1, . . . , xn], θy = [y1, . . . , yn] (1)

given the known reference coordinates[xn+1, . . ., xn+m, yn+1, . . ., yn+m], and pair-wise measurements

{Xi,j}, whereXi,j is a measurement between devicesi andj. While we treat the 2-D case here, extension

to 3-D appends a vectorθz to parameter vectorθ [9]. MeasurementsXi,j could be any physical reading

that indicates distance or relative position, eg. time-of-arrival (TOA), angle-of-arrival (AOA), received

signal strength (RSS), or proximity (whether or not two devices can communicate). We do not assume full

measurements, so we define the setH(i) to be the set of sensors with which sensori makes measurements.

Clearly,i /∈ H(i), andH(i) ⊂ {1, . . . , n+m}. Note that these measurements could be done via different

modalities - eg. RF, infrared (IR), acoustics [10], [11], or a combination [12]. Finally, TOA can be

measured using different signaling techniques, such as direct-sequence spread-spectrum (DS-SS) [13],

[14] or ultrawideband (UWB) [15], [16], [17]. We discuss these measurement methods in Section II-A.

Some research has further assumed that some nodes may have imperfect prior information about their

coordinates - for example, that reference coordinates obtained from GPS may be random, but from a

known distribution. Also, other localization research has focused on truly ‘relative’ location, i.e., when

no references exist (m = 0), and an arbitrary coordinate system can be chosen. These are important

directions of research, but to simplify the discussion in this article, we leave these extensions to the

references [18], [10], [19].

E. Motivation and Outline

The main goal of this article is to provide an introduction, from a signal processing perspective, to the

sensor location estimation problem. We review both theoretical estimation bounds and methods and algo-

rithms being applied to the cooperative localization problem. We believe that signal processing methods

will be very useful both for aiding system design decisions and in localization algorithms themselves.

Section II discusses why there are unavoidable limits to localization accuracy, and presents measurement-

based statistical models for RSS, TOA, and AOA measurements. Section III uses these models to present

lower bounds on sensor location estimation variance. The scope of this article does not include a detailed



description of localization algorithms for sensor networks, however, in Section IV, we describe the main

categories of approaches and provide references to the growing literature on localization algorithms.

II. W HY ARE MEASUREMENTSRANDOM?

Range and angle measurements used for localization are measured in a physical medium that introduces

errors. Generally, these measurements are impacted by bothtime-varying errorsandstatic, environment-

dependent errors. Time-varying errors (e.g. due to additive noise and interference) can be reduced by

averaging multiple measurements over time. Environment-dependent errors are the result of the physical

arrangement of objects (e.g. buildings, trees, and furniture) in the particular environment which the sensor

network is operating. Since the environment is unpredictable, these errors are unpredictable and we model

them as random. However, in a particular environment, objects are predominantly stationary, and thus for

a network of mostly stationary sensors, environment-dependent errors will be largely constant over time.

The majority of applications of wireless sensor networks involve mostly stationary sensors, and thus the

delay required to make multiple measurements over time is acceptable. To determine how well such a lo-

calization system can perform, we must characterize the statistics of measurementsafter time-averaging,

that is, measurements primarily in error due to the effects of the environment of deployment.

In Sections II-B to II-E, we present what measurement experiments have indicated about the statistics

of RSS, TOA, and AOA measurements in sensor networks. We start in Section II-A by discussing the

methodology of these measurement experiments.

A. Measurement Characterization

Ideally, statistical characterization of sensor network measurements would proceed as follows: deploy

K wireless sensor networks, each withN sensors deployed with the identical geometry in the same type

of environment, but each network in a different place. For example, we might test a sensor network de-

ployed in a grid, inK different office buildings. In each deployment, make many measurements between

all possible pairs of devices. Repeat each measurement over a short time period and compute the time-

average. Then, the joint distribution (conditional on the particular sensor geometry) of the time-averaged

measurements could be characterized. To our knowledge, no such wide-scale measurements have been

presented, due to the huge scale of the task. First, a largeK would be required to characterize the joint

distribution. Secondly, the result would only be valid for that particularN and those particular sensor

coordinates - each different geometry would require a different measurement experiment!



Measurements made to date have made simplifying assumptions about the measurement model. Basi-

cally, it is assumed that measurements in a network are independent and from the same family of distribu-

tions. The independence assumption, which says that observing an error in one link does not provide any

information about whether or not errors occur in different links, is a simplifying assumption [20]. Large

obstructions may affect a number of similarly-positioned links in a network. Considering correlations

between links would make the analysis more difficult, and future research is needed to characterize the

effects of link dependencies.

The second simplifying assumption is the choice of a family of distributions. We tend to subtract from

each measurement its ensemble mean, and then assume that the error (the difference) is characterized by

a particular parameterized distribution, such as Gaussian, log-normal, or mixture distribution. We then

use the measurements to estimate the parameters of the distribution, such as the variance. By this method,

one set of parameters can be used to characterize the whole set of measurements.

As an online supplement to this article [21], we provide a set of TOA and RSS measured in a 44-

node indoor sensor network originally reported in [22] in order to allow researchers to test localization

algorithms on measured data. Next, we discuss what those measurements and many other measurements

of RSS, TOA, and AOA have indicated about the ensemble averages and the distributions of the error in

pair-wise sensor measurements.

B. Received Signal Strength

Received signal strength (RSS) technically refers to the voltage measured by a receiver’s received sig-

nal strength indicator (RSSI) circuit, but researchers typically also use RSS to refer to measured power.

We can consider the RSS of either acoustic or RF signals. Wireless sensors communicate with neigh-

boring sensors, and RSS can be measured by each receiver during normal data communication, without

presenting additional bandwidth or energy requirements. Since RSS measurements are relatively inex-

pensive, they are an important and popular topic of localization research. Yet RSS measurements are

notoriously unpredictable. If they are to be useful and part of a robust localization system, their sources

of error must be well-understood.

1) Major Sources of Error: In free space, signal power decays proportional tod−2, whered is

the distance. In real-world radio channels, multipath signals and shadowing are two major sources of

environment-dependence in the measured RSS. Multiple signals with different amplitudes and phases

arrive at the receiver, and these signals add constructively or destructively as a function of the center fre-

quency, causing frequency-selective fading. The effect of this type of fading can be diminished by using a



spread-spectrum method (eg. direct-sequence or frequency hopping) which averages the received power

over a wide range of frequencies. Spread-spectrum receivers are an acceptable solution, since spread-

spectrum methods also reduce interference in the unlicensed bands in which wireless sensors typically

operate. The measured received power using a wideband method (as the bandwidth→ ∞) is equivalent

to measuring the sum of the powers of each multipath signal [23].

Assuming that frequency-selective effects are diminished, environment-dependent errors in RSS mea-

surements are caused by shadowing, i.e., the attenuation of a signal due to obstructions (furniture, walls,

trees, buildings, and more) that a signal must pass through or diffract around in its path between the

transmitter and receiver. As discussed at the start of this section, these shadowing effects are modeled as

random - as a function of the environment in which the network is deployed. A RSS model considers the

randomness across an ensemble of many deployment environments.

2) Statistical Model: Typically, the ensemble mean received power in a real-world, obstructed chan-

nel decays proportional tod−np , wherenp is the ‘path-loss exponent’, typically between 2 and 4. The

ensemble mean power at distanced is typically modeled as

P̄ (d) = P0 − 10np log
d

d0
(2)

whereP0 is the received power (dBm) at a short reference distanced0.

The difference between a measured received power and its ensemble average, due to the randomness of

shadowing, is modeled as log-normal (ie., Gaussian if expressed in dB). The log-normal model is based

on a wide variety of measurement results [24], [25], [26], [22] and analytical evidence [27]. The standard

deviation of received power (when received power is expressed in dBm),σdB, has units of (dB) and is

relatively constant with distance. Typically,σdB is as low as 4 and as high as 12 [25]. Thus, the received

power (dBm) at sensori transmitted byj, Pi,j is distributed as

f (Pi,j = p|θ) = N (
p; P̄ (di,j), σ2

dB

)
, (3)

whereN (x; y, z) is our notation for the value atx of a Gaussian p.d.f. with meany and variancez, θ

is the coordinate parameter vector from (1), and the actual transmitter-receiver separation distancedi,j is

given by

di,j =
√

(xi − xj)2 + (yi − yj)2. (4)

The most important result of the log-normal model is that RSS-based range estimates have variance

proportional to their actual range. This is not a contradiction of the earlier statement thatσdB is constant



with range. In fact, constant standard deviation in dB means that the multiplicative factors are constant

with range, which explains the proportionality. For example, consider a multiplicative factor of 1.5. At

an actual range of 100m, we would measure a range of 150m, an error of 50m; at 10m, the measured

range would be 15m, an error of 5m, a factor of 10 smaller. This is why RSS errors are referred to as

multiplicative, in comparison to the additive TOA errors presented in Section II-C. Clearly, RSS is most

valuable in high-density sensor networks.

3) Calibration and Synchronization:In addition to the path loss, measured RSS is also a function

of the calibration of both the transmitter and receiver. Depending on the expense of the manufacturing

process, RSSI circuits and transmit powers will vary from device to device. Also, transmit powers can

change as batteries deplete. Sensors might be designed to measure and report their own calibration data

to their neighbors.

Alternatively, each sensor’s transmit power can be considered an unknown parameter to be estimated.

This means that the unknown vectorθ described in Section I-D is augmented to include the actual transmit

power of each sensor along with its coordinates. Or, analogous to time-difference of arrival (TDOA)

measurements described in Section II-C, we can consider only the differences between RSS measured

at pairs of receivers [28]. The RSS difference between two sensors indicates information about their

relative distance from the transmitter, and removes the dependency on the actual transmit power. We

leave discussion of localization algorithms until Section IV.

C. Time-of-Arrival

Time-of-Arrival (TOA) is the measured time at which a signal (RF or acoustic) first arrives at a receiver.

The measured TOA is the time of transmission plus a propagation-induced time delay. This time delay,

Ti,j , between transmission at sensori and reception at sensorsj, is proportional to the TR separation

distance,di,j , by the propagation velocity,vp. This speed for RF is approximately106 times as fast as the

speed of sound – as a rule of thumb, for acoustic propagation, 1 ms translates to 1 ft (0.3 m), while for

RF, 1 ns translates to 1 ft.

The cornerstone of time-based techniques is the receiver’s ability to accurately estimate the arrival

time of the line-of-sight (LOS) signal. This estimation is hampered both by additive noise and multipath

signals: multiple time-delayed versions of the transmitted signal.

1) Major Sources of Error: Additive Noise:Even in the absence of multipath, the accuracy of the

arrival time is limited by additive noise. Estimation of time-delay in additive noise is a relatively ma-

ture field [29]. Typically, the TOA estimate is the time that maximizes the cross-correlation between the



received signals and the known transmitted signal. This estimator is known as a simple cross-correlator

(SCC). The generalized cross-correlator (GCC) derived by Knapp and Carter [30] (the maximum likeli-

hood estimator (MLE) for the TOA) extends the SCC by applying pre-filters to amplify spectral compo-

nents of the signal that have little noise and attenuate components with large noise. As such, the GCC

requires knowledge (or estimates) of the signal and noise power spectra.

For a given bandwidth and signal-noise ratio (SNR), our time-delay estimate can only achieve a certain

accuracy. The Craḿer-Rao bound (CRB) provides a lower bound on the variance of the TOA estimate in

a multipath-free channel. For a signal with bandwidthB in (Hz), whenB is much higher than the center

frequency,Fc (Hz), and signal and noise powers are constant over the signal bandwidth [31],

var(TOA) ≥ 1
8π2 B Ts F 2

c SNR
, (5)

whereTs is the signal duration (s), and SNR is the signal to noise power ratio. By designing the system

to achieve sufficiently high SNR, the bound predicted by the CRB (5) can be achieved in multipath-free

channels. Thus (5) provides intuition about how signal parameters like duration, bandwidth, and power

affect our ability to accurately estimate the TOA. For example, doubling either the transmission power

or the bandwidth will cut ranging variance in half. This CRB on TOA variance is complementary to the

bound that will be presented in Section III for location variance, because the location variance bound

requires, as an input, the variance of the TOA estimates.

2) Major Sources of Error: Multipath: TOA-based range errors in multipath channels can be many

times greater than those caused by additive noise alone. Essentially, all late-arriving multipath are self-

interference that effectively decrease the SNR of the desired LOS signal. Rather than finding the highest

peak of the cross-correlation, in the multipath channel, the receiver must find the first-arriving peak,

because there is no guarantee that the LOS signal will be the strongest of the arriving signals. This can be

done by measuring the time that the cross-correlation first crosses a threshold. Alternatively, in template-

matching, the leading edge of the cross-correlation is matched in a least-squares sense to the leading

edge of the auto-correlation (the correlation of the transmitted signal with itself) in order to achieve sub-

sampling time resolutions [14]. Generally errors in TOA estimation are caused by two problems:

• Early-Arriving Multipath: Many multipath signals arrive very soon after the LOS signal, and their

contributions to the cross-correlation obscure the location of the peak from the LOS signal.

• Attenuated LOS: The LOS signal can be severely attenuated compared to the late-arriving multipath

components, causing it to be ‘lost in the noise’ and missed completely, causing large positive errors

in the TOA estimate.



In dense sensor networks, in which any pair of sensors can measure TOA, we have the distinct advantage

of being able to measure TOA between nearby neighbors. As the path length decreases, the LOS signal

power (relative to the power in the multipath components) generally increases [32]. Thus the severely

attenuated LOS problem is only severe in sparse networks.

While early-arriving multipath components cause smaller errors, they are very difficult to combat.

Generally, wider signal bandwidths are necessary for obtaining greater temporal resolution. The peak

width of the autocorrelation function is inversely proportional to the signal bandwidth. A narrow auto-

correlation peak enhances the ability to pinpoint the arrival time of a signal and helps in separating the

LOS signal cross-correlation contribution from the contributions of the early-arriving multipath signals.

Wideband direct-sequence spread-spectrum (DS-SS) or ultra-wideband (UWB) signals (see sidebar on

UWB) are popular techniques for high-bandwidth TOA measurements. However, wider bandwidths re-

quire higher speed signal processing, higher device and possibly higher energy costs. Standards proposals

to the IEEE 802.15.3 (see UWB sidebar) quote receiver power consumptions on the order of 200 mW

[33]. And, although high-speed circuitry typically means higher energy-consumption, the extra band-

width can be used to lower the time-average power consumption. Transferring data packets in less time

means spending more time in standby mode.

3) Statistical Model: Measurements have shown that for short-range measurements, measured time

delay can be roughly modelled as Gaussian,

f (Ti,j = t|θ) = N (
t; di,j/vp + µT , σ2

T

)
, (6)

whereµT andσ2
T are the mean and variance of the time delay error, andθ is defined in (1). Wideband

DS-SS measurements reported in [22] supported the Gaussian error model and showedµT = 10.9 ns and

σT = 6.1 ns. UWB measurements done in on a mostly-empty Motorola factory floor showedµT = 0.3

ns andσT = 1.9 ns. This mean errorµT can be estimated (as a nuisance parameter) by the localization

algorithm so that it can be subtracted out.

However, the presence of large errors can complicate the Gaussian model. These errors make the tails

of the distribution of measured TOA heavier than Gaussian, and have been modelled using a mixture

distribution: with a small probability, the TOA measurement results from a different, higher-variance

distribution [34]. Localization systems should be designed to be robust to these large errors, also called

non-line-of-sight (NLOS) errors. For TOA measurements made over time in a changing channel, the

TOAs which include excess delays can be identified and ignored [34]. Even in static channels, if the

number of range measurements to a device are greater than the minimum required, the redundancy can



be used to identify likely NLOS errors [35]. Localization algorithm robustness is further addressed in

Section IV.

4) Calibration and Synchronization:If wireless sensors have clocks that are accurately synchronized,

then the time delay is determined by subtracting from the measured TOA the known transmit time. Sensor

network clock synchronization algorithms have reported precisions on the order of 10µs [36]. Because of

the difference in propagation speed, such clock accuracies are adequate for acoustic signals [12], but not

for RF signals.

For time-of-arrival in asynchronous sensor networks, a common practice is to usetwo-way(or round-

trip) TOA measurements. In this method, a first sensor transmits a signal to a second sensor, which

immediately replies with its own signal. At the first sensor, the measured delay between its transmission

and its reception of the reply is twice the propagation delay plus a reply delay internal to the second sensor.

This internal delay is either known, or measured and sent to the first sensor to be subtracted. Multiple

practical two-way TOA methods have been reported in the literature [37], [38], [13], [16]. Generally

each pair of sensors measures round-trip TOA separately in time. But, if the first sensor has the signal

processing capability, multiple sensors can reply at the same time, and two-way TOAs can be estimated

simultaneously using multi-user interference cancellation [37].

The state of each sensor’s clock (its bias compared with absolute time) can also be considered to be

an unknown parameter and included in the parameter vectorθ. In this case, one-way TOA is mea-

sured and input to a localization algorithm which estimates both the sensor coordinates and the biases of

each sensor’s clock [39]. The difference between the arrival times of the same signal at two sensors is

called the time-difference of arrival (TDOA). A TDOA measurement doesn’t depend on the clock bias

of the transmitting sensor. TDOA methods have been used in source localization for decades for locat-

ing asynchronous transmitters, and has application in GPS and cellular localization. Under certain weak

conditions, it has been shown that TOA with clock bias (treated as an unknown parameter) is equivalent

to TDOA [40].

D. Ultra-Wideband and Localization

[This is intended to be a sidebar] Ultra Wideband (UWB) communication employs narrow pulses of

very short (sub-nanosecond) duration that result in radio signals that are broadly spread in the frequency

domain. A signal is considered to be UWB if itsfractional bandwidth, the ratio of its bandwidth to its

center frequency, is larger than 0.2. In 2003, the U.S. Federal Communications Commission (FCC) ap-

proved the commercialization and operation of UWB devices for public safety and consumer applications.



Among the envisaged applications are wireless networking and localization. Standardization of UWB is

underway, including the development of a high bit rate UWB physical layer that supports peer-to-peer

ranging, in IEEE task group 802.15.3a [33].

The very high bandwidth of UWB leads to very high temporal resolution, making it ideal for high

precision radiolocation applications. Implementations of UWB-based range measurements, reported in

[38], [17], [15], [16], have demonstrated RMS range accuracies from 3-5 feet (0.9-1.5 m) to 0.4 ft (12

cm).

E. Angle-of-Arrival

By providing information about the direction to neighboring sensors rather than the distance to neigh-

boring sensors, angle-of-arrival (AOA) measurements provide localization information complementary

to the TOA and RSS measurements discussed above.

There are two common ways that sensors measure AOA (as shown in Figure 3). The most common

method is to use asensor arrayand employ so-calledarray signal processingtechniques at the sensor

nodes. In this case, each sensor node is comprised of two or more individual sensors (e.g.,microphones

for acoustic signals or antennas for RF signals) whose locations with respect to the node center are known.

A four-element Y-shaped microphone array is shown in Figure 3(a). The AOA is estimated from the

differences in arrival times for a transmitted signal at each of the sensor array elements. The estimation

is similar to time-delay estimation discussed in Section II-C, but generalized to the case of more than two

array elements. When the impinging signal is narrowband (that is, its bandwidth is much less than its

center frequency), then a time delayτ relates to a phase delayφ by φ = 2πfcτ wherefc is the center

frequency, and AOA estimators are often formulated based on phase delay. See [41], [42], [43] for more

detailed discussions on AOA estimation algorithms and their properties.

A second approach to AOA estimation uses the RSS ratio between two (or more) directional antennas

located on the sensor (see Figure 3(b). Two directional antennas pointed in different directions such that

their main beams overlap can be used to estimate the AOA from the ratio of their individual RSS values.

Either AOA approach requires multiple antenna elements, which can contribute to sensor device cost

and size. However, acoustic sensor arrays may already be required in devices for many environmental

monitoring and security applications, in which the purpose of the sensor network is to identify and locate

acoustic sources [44]. Locating the sensors themselves using acoustics in these applications is a natural

extension. RF antenna arrays imply large device size unless center frequencies are very high. However,

available bandwidth and decreasing manufacturing costs at millimeter-wave frequencies may make them
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Fig. 3. Angle-of-arrival (AOA) estimation methods. (a) AOA is estimated from the time-of-arrival differences among sensor

elements embedded in the node; a 4-element Y-shaped array is shown. (b) AOA can also be estimated from the received signal

strength (RSS) ratioRSS1/RSS2 between directional antennas.

desirable for sensor network applications. For example, at 60 GHz, higher attenuation due to oxygen

absorption helps to mitigate multipath, and accurate indoor AOA measurements have been demonstrated

[45].

1) Major Sources of Error and Statistical Model:AOA measurements are impaired by the same

sources discussed in the TOA section above - additive noise and multipath. The resulting AOA measure-

ments are typically modeled as Gaussian, with ensemble mean equal to the true angle to the source and

standard deviationσα. Theoretical results for acoustic-based AOA estimation show standard deviation

bounds on the order ofσα = 2◦ to σα = 6◦ depending on range [46]. Estimation errors for RF AOA on

the order ofσα = 3◦ have been reported using the RSS ratio method [47].

2) Calibration and Synchronization:It is not likely that sensors will be placed with known orientation.

When sensor nodes have directionality, the network localization problem must be extended to consider

each sensor’s orientation as an unknown parameter, to be estimated along with position. In this case, the

unknown vectorθ (see Section I-D) is augmented to include the orientation of each sensor.

The models presented in Sections II-B-II-E are sufficient to find bounds on localization performance

in cooperative localization. These lower bounds are not a function of the particular localization algorithm

employed. Thus we present some of these performance limits first, in the following section, before

discussing current algorithm research in Section IV.



III. L IMITS ON LOCALIZATION COVARIANCE

The Craḿer-Rao bound provides a means for calculating a lower bound on the covariance of any un-

biased location estimator which uses RSS, TOA, or AOA measurements. Such a lower bound provides a

useful tool for researchers and system designers. Without testing particular estimation algorithms, a de-

signer can quickly find the ‘best-case’ possible using particular measurement technologies. Researchers

who are testing localization algorithms, like those presented in Section IV, can use the CRB as a com-

parison for a particular algorithm. If the bound is nearly achieved, then there is little reason to continue

working to improve that algorithm’s accuracy. Furthermore, the bound’s functional dependence on par-

ticular parameters helps to provide insight into the behavior of cooperative localization.

The bound on estimator covariance is a function of the following:

1) Number of unknown-location and known-location sensors,

2) Sensor geometry,

3) Whether localization is in two or three dimensions,

4) Measurement type(s) implemented (i.e., RSS, TOA, or AOA),

5) Channel parameters (such asσdB andnp in RSS,σT in TOA, or σα in AOA measurements),

6) Which pairs of sensors make measurements (network connectivity),

7) ‘Nuisance’ (unknown) parameters which must also be estimated (such as clock bias for TOA or

orientation for AOA measurements).

As an online supplement to this article, we provide public access to a multi-featured Matlab-based code

and GUI for the calculation of the localization CRB, as shown in Figure 4. This code can consider any

combination of RSS, TOA, and AOA measurement methods to be employed. It allows the inclusion of

device orientation and clock biases as unknown ‘nuisance’ parameters. Sensors can be arranged visually

using the GUI and the bound can be calculated. For each sensor, the GUI displays the CRB by plotting

the lower bound on the 2-σ uncertainty ellipse. The tool also includes the ability to run Monte-Carlo

simulations which estimate sensor parameters and coordinates using the Maximum-likelihood estimator

that will be discussed in Section IV. The Monte-Carlo coordinate estimates are plotted on screen for

comparison with the covariance bound.

In this section, we present some analytical results for the CRB. Our purpose is both to show that it

is simple to calculate and as a means to compare the three measurement methods presented in Section

II. To keep the formulation short, we make two simplifying assumptions. First, we address 2-D (rather

than 3-D) localization. Second, we assume that channel and device parameters (orientation for AOA,



transmit powers andnp for RSS, and clock biases for TOA) are known. Analysis of bounds without these

assumptions are left to the references [9], [48], [10], [49], [39] which have presented details of these

analytical CRBs, for a variety of different measurement types.

A. Calculating the CRB in Three Steps

The resulting CRB (under these two simplifying assumptions) shows remarkable similarities between

the CRBs using RSS, TOA, and AOA measurements. Particular differences can be seen that show how

localization performance varies by measurement type. We show how to calculate the CRB for the estimate

of θ as given in (1) in three steps:

1) Calculate Fisher information sub-matrices:First, form threen× n matrices:Fxx, Fxy, andFxx.

Thek, l element of each matrix is calculated as follows:

[
Fxx

]
k,l

=





γ
∑

i∈H(k)(xk − xi)2/ds
k,i k = l

−γ IH(k)(l)(xk − xl)2/ds
k,l k 6= l

[
Fxy

]
k,l

=





γ
∑

i∈H(k)(xk − xi)(yk − yi)/ds
k,i k = l

−γ IH(k)(l)(xk − xl)(yk − yl)/‖ds
k,l k 6= l

[
Fyy

]
k,l

=





γ
∑

i∈H(k)(yk − yi)2/ds
k,i k = l

−γ IH(k)(l)(yk − yl)2/ds
k,l k 6= l

(7)

Here,γ is a channel constant, ands is an exponent, which are a function of the measurement type and

are given in Table I,dij is the true distance betweeni andj given in (4), andIH(k)(l) is the indicator

function, (which allows us to include the information only if sensork made a measurement with sensor

l), IH(k)(l) = 1 if l ∈ H(k), or 0 if not.

2) Merge sub-matrices to form the FIM:Next, we form the2n× 2n Fisher information matrix (FIM)

F. For TOA or RSS, we selectF = FTR, while for AOA, we selectF = FA, where

FTR =


 Fxx Fxy

FT
xy Fyy


 , FA =


 Fyy −Fxy

−FT
xy Fxx


 , (8)

whereFxx, Fxy, andFxx are given in (7), and we use the superscriptT to indicate matrix transpose.

3) Invert the FIM to get the CRB:The CRB matrix is equal toF−1, the matrix inverse of the FIM.

The diagonal ofF−1 contains2n values which are the variance bounds for the2n parameters ofθ. To say

this more precisely, let an estimator of sensori’s coordinates bêzi = [x̂i, ŷi]T . If we define the location

variance of the estimator to beσ2
i ,

σ2
i , tr {covθ(ẑi)} = Varθ(x̂i) + Varθ(ŷi), (9)



then the Craḿer-Rao bound asserts that,

σ2
i ≥ (

F−1
)
i,i

+
(
F−1

)
i+n,i+n

. (10)

TABLE I

DIFFERENCES INCRB BY MEASUREMENTTYPE.

Channel Constantγ Exponents FIM F

TOA γ = 1/(cσT )2 s = 2 F = FTR

RSS γ =
(

10np

σdB log 10

)2
s = 4 F = FTR

AOA γ = 1/σ2
α s = 4 F = FA

B. Results Seen from the CRB

Even without calculating the CRB for a particular sensor network geometry, we can talk about the

scaling characteristics of the variance bound. What happens when the geometry and connectivity of the

network is kept constant, but the dimensions of the network are scaled up proportionally?

• TOA: TOA bounds will remain constant with a scaling of the dimensions. Note that sinces = 2 for

TOA, the fractions in (7) are unitless - if units of the coordinates were (ft) or even (cm) instead of

(m), the ratios would be identical. Instead, the units come from the variance of ranging error,cσT .

• RSS and AOA: These bounds on standard deviation are proportional to the size of the system. Since

s = 4 for RSS and AOA, the geometry ratios in (7) have units of1/distance2, so the variance bound

(the inverse) takes its units of distance2 directly from this ratio. Note that the channel constantγ is

unitless for both RSS and AOA.

Of course, channel parameters will change slowly as the path lengths change (TOA measurements over

kilometer links would have higher variance than over 10 m links), but these scaling characteristics are

good first order approximations.

Finally, note that the bound on standard deviation of localization error is proportional to
√

1/γ. It

makes sense that the localization error is proportional toσT for TOA andσα for AOA. It isn’t as obvious,

but we also find from the CRB that for RSS, the proportionality is toσdB/np. A RSS-based localization

system operating in a high path-loss exponent environment (often found when using ground-level anten-

nas), while requiring higher transmit powers from sensors, also allows more accurate sensor localization.



Fig. 4. Lower bounds and Monte-carlo ML estimates can be calculated interactively using this Matlab-based GUI developed

by Joshua Ash at Ohio State University and freely available online [21]. Sensors can be placed arbitrarily, and their capabilities

anda priori location information given. The user may select measurements from AOA, TOA, RSS, and Proximity.

C. What is the Craḿer-Rao Bound?

[Intended as a sidebar] The Cramér-Rao Bound (CRB) provides a lower bound on the variance achiev-

able by any unbiased location estimator. The bound is useful as a guideline: knowing the best an estimator

can possibly do helps us judge the estimators that we implement. Essentially, the CRB is a general un-

certainty principle for estimation problems, which we apply in this article to location estimation. It is

surprising, to those withouta priori knowledge of the CRB, that we can calculate the lower bound on

estimation variance without ever considering a single estimation method. Without providing a proof [50],

we give an intuitive argument on why the CRB does so.

Consider an estimator in which perfect, error-free measurements result in a perfect, error-free position

estimate from the localization algorithm. It makes sense that if measurements have a smallε error in

them, then the location estimate will also have some small error proportional toε. The study of the effect

of small errors, i.e. sensitivity analysis, considers the derivatives of the coordinate estimates with respect

to changes in the measurements.

The CRB similarly considers derivatives. However, the CRB takes the derivative of the log of the prob-

ability density function (pdf) of the measurements (conditioned on the unknown coordinates), a.k.a. the

log-likelihood function. If the log-likelihood changes rapidly as a function of the unknown coordinates,
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Fig. 5. The CRB can be calculated from the conditional probability density function using a few operators.

then the measurements we observe will provide a great deal of information about the coordinates. We

will be able to better guess (with lower errors) the unknown coordinates. Conversely, if the log-likelihood

changes slowly with respect to the unknown coordinates, then observing measurements doesn’t help much

in their estimation. Note that:

• Information is accurately measured by the ‘order of magnitude’ of a probability. For example, the

change from a probability of 0.4 to 0.2 is just as dramatic as a change in probability from 0.2 to 0.1,

since in each case the change makes an event half as likely. Taking the logarithm of the probabilities

prior to calculating the difference, we get the desired property that the change in log-probability for

both cases is the same.

• To bound variance (the expected value of the squared error), the CRB is determined from the ex-

pected value of the squared value of the derivatives.

• There are regularity conditions on the density functions - see [50] for details.

The basis for the lower bound is the limitation to unbiased estimators. Such estimators provide coor-

dinate estimates that on average, if we average over enough realizations, are the same as the true coordi-

nates. This unbiasedness must hold regardless of the true value of the coordinates. The limitation serves

the same purpose as the requirement given in the above discussion of sensitivity analysis, that when there

is no error in the measurements, the estimate is correct. Although unbiased estimation is a very desirable

property, there are cases in which we are willing to trade some bias in order to improve upon the variance

performance – in such cases, the bound can be adapted [51].



D. What’s the difference between the CRB and the GDOP?

[Intended as a sidebar] The ‘geometric dilution of precision’ (GDOP) has been used to characterize

the location estimation accuracy of many TOA and TDOA systems as a function of the geometry of the

sensors and the source [52], [53]. The GDOP is defined as the ratio of the standard deviation of location

error (achieved by a particular estimator) to the standard deviation of ranging error. Essentially, it provides

a multiplicative factor which shows how many times more uncertain our location estimate will be than

our range estimate.

The square-root of the CRB bounds the standard deviation of localization error of any unbiased esti-

mator. In some cases, the standard deviation bound is proportional to the standard deviation of ranging

error (proportionality), and thus provides us with a means to lower bound the GDOP. Further, if the lower

bound can be achieved by a particular estimator (efficiency), then the GDOP of that location estimator

and the CRB will have the same form. Both of these conditions, proportionality and efficiency, are met

in the case of Gaussian-distributed TOA measurements and least-squares estimator (LSE) [53], and the

lower bound on standard deviation and the GDOP take the same form [22].

E. Numerical Example
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Fig. 6. Diagram showing layout of theK2 sensors of the example described in Section III-E, with four reference sensors (×)

andK2 − 4 unknown-location sensors (•) in aL× L square area.

Consider a sensor network in a 20m by 20m area, withK2 sensors arranged intoK rows andK

columns, as shown in Fig. 6. The four sensors in the corners are reference nodes, while the remaining
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Fig. 7. Lower bounds for localization variance for the example described in Section III-E when measurements are RSS (with

σdB/np = 1.7 [22]), TOA (with σdB/np = 1.7 [22]), and AOA (withσα = 5o). Parameterr is the radius of connectivity -

only pairs of sensors closer thanr make measurements, and forr = ∞, all pairs make measurements.

K − 4 are unknown-location nodes. Let’s consider what happens to the localization variance bound asK

increases, for the cases when measurements are:

1) RSS withσdB/np = 1.7 [22],

2) TOA with σT = 6.1 ns [22],and

3) AOA with σα = 5o (see Section II-E.1).

As presented above, the lower bounds for RSS, TOA, and AOA are proportional to these three channel

parameters. We start by assuming that each sensor makes measurements with every other sensor in the

network. We calculate the RMS value of the localization bound, i.e.,
√

1
n tr F−1, which gives an average

of the bound over the entireK2 − 4 unknown-location sensors. The result is shown in the solid lines

in Fig. 7 labelled as ‘r = ∞’. Next, we consider the realistic case in which each sensor only makes

measurements to those sensors located withinr = 10 m of itself1. In this case, the bound is shown as

dotted lines in Fig. 7 and labelled as ‘r = 10 m’.

Comparing performance of the measurement methods for the chosen parameters, AOA outperforms

TOA and RSS, while RSS can perform as well as TOA at high sensor densities. Of course, these compar-

isons are based on the chosen values of the channel parameters and the chosen geometry shown in Fig. 6

1Of course, sensors won’t really knowexactlywhich sensors are within 10 m, but the connectivity implied by the 10 m radius

is still a good test.



– these plots are proportional to the channel parameters as described in Section III-B. Note that RSS

and AOA bounds decrease more rapidly than TOA as the density increases. Also for RSS and AOA, the

difference between ther = 10m andr = ∞ lines decreases dramatically as density increases. At high

densities, the results show that little additional information comes from the distant sensors (> 10 m). For

TOA, however, even distant sensors’ measurements can provide significant localization information.

IV. L OCATION ESTIMATION ALGORITHMS

So far in this article, we haven’t mentioned any particular localization estimators, only a lower bound on

their performance. There is a considerable literature in sensor localization algorithms for wireless sensor

networks, described alternatively as ‘cooperative’, ‘relative’, ‘distributed’, ‘GPS-free’, ‘multi-hop’, or

’network’ localization; ‘self-localization’; or ‘ad-hoc’ or ‘sensor’ positioning.

While positioning and navigation have a long history (as evidenced in this issue), cooperative localiza-

tion algorithms must extend existing methods by finding ways to use the measurements (range or angle)

measured between pairs of unknown-location nodes. The challenge is to allow sensors which aren’t in

range of any known-location devices to be located, and further, to improve the location estimates of all

sensors.

If all sensors were in range of multiple reference nodes, they could directly calculate their own loca-

tions. For example, in [54], nodes measure RSS from a dense network of reference nodes and calculate

their location to be the mean of the locations of the in-range reference nodes. In most wireless sensor net-

works, though, to minimize installation expenses, reference nodes will be sparse, and low-energy sensors

generally won’t be in range of enough references (3 or 4 for 2-D or 3-D localization, respectively).

Several cooperative localization algorithms are reviewed in [19]. Here, we divide methods into central-

ized algorithms, which collect measurements at a central processor prior to calculation, and distributed

algorithms, which require sensors to share information only with their neighbors, but possibly iteratively.

A. Centralized Algorithms

If the data is known to be described well by a particular statistical model (eg. Gaussian or log-normal),

then the maximum likelihood estimator can be derived and implemented [22], [10]. One reason that

these estimators are used is that their variance asymptotically (as the signal-to-noise ratio goes high)

approaches the lower bound given by the CRB (in Section III). As indicated by the name, the maximum

of a likelihood function must be found. There are two difficulties with the MLE:



1) Local Maxima: Unless we initialize the MLE to a value close to the correct solution, it is possible

that our maximization search may not find the global maxima.

2) Model Dependency: If measurements deviate from the assumed model (or model parameters), the

results are no longer guaranteed to be optimal.

One way to prevent local maxima is to formulate the localization as a convex optimization problem. In

[55], convex constraints are presented that can be used to require a sensor’s location estimate to be within

a radiusr and/or angle range[α1, α2] from a second sensor. In [39], linear programming using a ‘taxi

metric’ is suggested to provide a quick means to obtain rough localization estimates. More general con-

straints can be considered if semi-definite programming (SDP) techniques are used [56]. One difficulty

which must be overcome in both techniques is their high computational complexity. Towards this end, a

distributed SDP-based localization algorithm was presented in [57].

Multi-dimensional scaling (MDS) algorithms (and Isomap [58]) formulate sensor localization from

range measurements as a least-squares (LS) problem [59], [60]. In classical MDS, the LS solution is found

by eigen-decomposition, which doesn’t suffer from local maxima. In order to linearize the localization

problem, the classical MDS formulation works with squared distance rather than distance itself, and the

end result is very sensitive to range measurement errors. Other MDS-based techniques, not based on

eigen-decomposition, can be made more robust by allowing measurements to be weighted according to

their perceived accuracy [18].

While MDS and Isomap have complexityO(N3), whereN = n + m is the total number of sen-

sors, other manifold learning methods, such as local linear embedding (LLE) [61], are also based on

eigen-decomposition, but of sparse matrices, and areO(N2). Manifold learning performance has been

presented for the case when sensor data records are used as location information [62], and will likely play

an important role when using other types of measurements. Also adapted from the statistical learning area,

’supervised learning’ approaches localization as a series of detection problems [63]. The covered area is

split into smaller, overlapping regions, and based on the measurements, each region detects whether or

not the sensor is within its boundaries.

B. Distributed Algorithms

There are two big motivations for developing distributed localization algorithms. First, for some appli-

cations, no central processor, or none with enough computational power, is available to handle the calcu-

lations. Second, for large sensor networks, centralized algorithms cause a communication bottleneck at

and near the central processor, due to the forwarding of messages containing the pair-wise measurements.



Distributed algorithms for cooperative localization generally fall into one of two categories:

1) Network Multilateration: Each sensor estimates its multi-hop range to the nearest reference nodes.

These ranges can be estimated via the shortest path between the sensor and reference nodes,

i.e., proportional to the number of hops, or the sum of measured ranges along the shortest path

[64][65][66]. Note that finding the shortest path is readily distributed across the network. When

each sensor has multiple range estimates to known positions, its coordinates are calculated locally

via multilateration [52][67].

2) Successive Refinement: These algorithms try to find the optimum of a global cost function, eg.,

least squares (LS), weighted LS (WLS) [18], or maximum likelihood (ML). Each sensor estimates

its location and then transmits that assertion to its neighbors [68][69][70]. Neighbors must then

recalculate their location and transmit again, until convergence. A device starting without any

coordinates can begin with its own local coordinate system and later merge it with neighboring co-

ordinate systems [71]. Typically, better statistical performance is achieved by successive refinement

compared to network trilateration, but convergence issues must be addressed.

Bayesian networks (or factor graphs) provide another distributed successive refinement method to esti-

mate the probability density of sensor network parameters. These methods are particularly promising for

sensor localization - each sensor stores a conditional density on its own coordinates, based on its measure-

ments and the conditional density of its neighbors [72]. Alternatively, particle filtering (or Monte-Carlo

estimation methods) methods have each sensor store a set of ‘particles’,i.e., candidate representations

of its coordinates, weighted according to their likelihood [73], [74]. These methods have been used

to accurately locate and track mobile robots [75], and they will likely find application in future sensor

localization and tracking research.

C. Comparison

Both centralized and distributed algorithms must face the high relative costs of communication. The

energy required per transmitted bit could be used, depending on the hardware and the range, to execute

1,000 to 30,000 instructions [44]. Centralized algorithms in large networks require each sensor’s mea-

surements to be passed over many hops to a central processor, while distributed algorithms have sensors

send messages only one hop (but possibly make multiple iterations). When the average number of hops

to the central processor exceeds the necessary number of iterations, distributed algorithms will likely save

communication energy costs.



There may be hybrid algorithms which combine centralized and distributed features in order to reduce

the energy consumption beyond what either one could do alone. For example, if the sensor network is

divided into small clusters, an algorithm could select a processor from within each cluster to estimate a

map of the cluster’s sensors. Then, cluster processors could operate a distributed algorithm to merge and

optimize the local estimates. Such algorithms are an open topic for future research.

V. FUTURE RESEARCHNEEDS AND CONCLUSION

Ultimately, actual localization performance will depend on many things, including the localization

algorithm used, size and density of the network, the quantity of prior coordinate information, the mea-

surement method chosen, and the accuracies possible from those measurements in the environment of

interest (theγ of Table I). However, based on the characteristics of the variance bounds presented in

Section III, we can make some broad generalizations. It appears that TOA measurements will be most

useful in low-density sensor networks, since it is not as sensitive to increases in inter-device distances as

RSS and AOA. Both AOA and TOA are generally able achieve higher accuracy than RSS; however, that

accuracy can come with higher device costs. Because of their scaling characteristics, localization based

on RSS and AOA measurements can, without sacrificing much accuracy, avoid taking measurements on

longer-distance links and focus on those links between nearest neighbors. RSS measurements will allow

accurate localization in very dense networks, and will be very attractive to system designers due to their

low costs.

Considerable literature has studied cooperative localization with an emphasis on algorithms, less re-

search has placed the emphasis on localization as estimation. Accordingly, bias and variance performance

is often a secondary concern. While a notable algorithm comparison is seen in [76], in general, it is dif-

ficult to compare the performance of localization algorithms in the literature. Reporting both bias and

variance performance along with the Cramér-Rao lower bound will help provide a reference for compar-

ison.

While simulation will be very valuable, the next step in cooperative localization research is to test

algorithms using measured data. However, measurements of RSS, TOA, and AOA in wireless sensor

networks have only begun to be reported, largely because of the complexity of such measurement cam-

paigns. To conduct measurements in aN sensor network requiresO(N2) measurements, and multiple

sensor networks must be measured in order to develop and test statistical models. Despite the complexity,

data from such measurement campaigns will be of key importance to sensor network researchers.



Three other future directions for cooperative localization research are suggested: mobile sensor track-

ing, the use of connectivity measurements, and routing using virtual coordinates.

1) Mobile Sensor Tracking:This article has not discussed sensor mobility. Mobility creates the prob-

lem of locating and tracking moving sensors in real time, and also the opportunity to improve sensor

localization. Detecting movement of a sensor in a network of communication or energy-constrained

nodes is a distributed detection problem yet to be fully explored. For the problem of passive tracking of

sources in the environment, a review is presented in [44], but the problem of tracking active sensors has

not been sufficiently addressed as a collaborative signal processing problem. The sensor tracking prob-

lem is an important aspect of many applications, including the animal tracking and logistics applications

discussed in Sections I-B and I-A.

If a sensor makes multiple measurements to its neighbors as it moves across space, it has the oppor-

tunity to reduce environment-dependent errors by averaging over space. The multiple measurements are

useful to help improve coordinate estimates for other sensors in the network, not just the mobile node. Re-

searchers have tested schemes which use mobile sources and sensors to achieve cooperative localization

[77], [78], and further opportunities to exploit mobility remain to be explored.

2) Connectivity Measurements:Connectivity (a.k.a. proximity) is a binary measurement of whether

or not two devices are in communication range of each other. Typical digital receivers have a minimum

received power below which it is unlikely that a packet will be correctly demodulated. Connectivity can be

considered to be a binary quantization of RSS. As a good approximation, when the RSS is below a power

threshold, two devices will not be ‘connected’, and when the RSS is above the threshold, two devices will

be connected . As a binary quantization of RSS, it is clear that connectivity is less informative than RSS

and will result in higher localization variance bounds [79]. Research in connectivity-based localization

is often called ‘range-free’ localization. The assumption that connectivity does not suffer from the same

fading phenomena as RSS, and instead that radio coverage is a perfect circle around the transmitter, can

be a valuable simplification during algorithm development; however, this assumption cannot be used to

accurately test the performance of such algorithms. Range-free localization algorithms can be simulated

by generating measurements of RSS between each pair of sensors using the log-normal model of (3), and

then considering each pair with an RSS measurement above a threshold power to be connected.

3) Routing using Virtual Coordinates:Geographic routing is an application of sensor localization.

The use of the coordinates of sensors can reduce routing tables and simplify routing algorithms. Local-

ization errors, however, can adversely impact routing algorithms, leading to longer paths and delivery



failures [80]. For the purposes of routing efficiency, actual geographical coordinates may be less useful

than ‘virtual’ coordinates [81],i.e., a low-dimensional representation of a sensor’s ‘location’ in the graph

of network connectivity. There are often paths in multi-hop wireless networks that consume less power

than the shortest, straightest-line path between two nodes, and virtual coordinates may provide a better

representation of the network connectivity. The virtual coordinate estimation problem is a dimension

reduction problem which inputs each sensor’s connectivity or RSS measurement vector and outputs a vir-

tual coordinate in an arbitrary low dimension, optimized to minimize a communication cost metric. Such

research could enable more energy-efficient, scalable routing protocols for very large sensor networks.

A. Conclusion

Cooperative localization research will continue to grow as sensor networks are deployed in larger

numbers and as applications become more varied. Localization algorithms must be designed to achieve

low bias and as low of variance as possible, and at the same time, be scalable to very large network sizes

without dramatically increasing energy requirements.

This article has provided a window into cooperative localization, which has found considerable appli-

cation in ad-hoc and wireless sensor networks. We have presented measurement-based statistical models

of TOA, AOA, and RSS, and used them to generate localization performance bounds. Such bounds are

useful, among other design considerations, as design tools to help choose among measurement methods,

select neighborhood size, set minimum reference node densities, and compare localization algorithms.
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