Partially Observable Markov Decision Process
Approximations for Adaptive Sensing

Edwin K. P. Chong, Christopher M. Kreucher, and Alfred O. Hero IlI

Abstract

Adaptive sensing involves actively managing sensor resources to achieve a sensing task, such as object detection,
classification, and tracking, and represents a promising direction for new applications of discrete event system
methods. We describe an approach to adaptive sensing based on approximately solving a partially observable
Markov decision process (POMDP) formulation of the problem. Such approximations are necessary because of the
very large state space involved in practical adaptive sensing problems, precluding exact computation of optimal
solutions. We review the theory of POMDPs and show how the theory applies to adaptive sensing problems. We
then describe a variety of approximation methods, with examples to illustrate their application in adaptive sensing.
The examples also demonstrate the gains that are possible from nonmyopic methods relative to myopic methods,
and highlight some insights into the dependence of such gains on the sensing resources and environment.

|. INTRODUCTION
A. What is Adaptive Sensing?

In its broadest sensadaptive sensindpas to do with actively managing sensor resources to achieve
a sensing task. As an example, suppose our goal is to determine the presence or absence of an objec
and we have at our disposal a single sensor that can interrogate the scene with any<onawaforms.
Depending on which waveform is used to irradiate the scene, the response may vary greatly. After each
measurement, we can decide whether to continue taking measurements using that waveform, change
waveforms and take further measurements, or stop and declare whether or not the object is present. Ir
adaptive sensing, this decision making is allowed to take advantage of the knowledge gained from the
measurements so far. In this sense, the act of sensing “adapts” to what we know so far. What guides this
adaptation is a performance objective that is determined beforehand—in our example above, this might
be the average number of interrogations needed so that we can declare the presence or absence of tt
object with a confidence that exceeds some threshold (say, 90%).

Adaptive sensing problems arise in a variety of application areas, and represent a promising direction
for new applications of discrete event system methods. Here, we outline only a few.

Medical diagnostics.Perhaps the most familiar example of adaptive sensing takes place between a
doctor and a patient. The task here is to diagnose an illness from a set of symptoms, using a variety
of medical tests at the doctor’s disposal. These include physical examinations, blood tests, radiographs
(X-ray images), computerized tomography (CT) scans, and magnetic resonance imaging (MRI). Doctors
use results from tests so far to determine what test to perform next, if any, before making a diagnosis.

Nondestructive testing.In nondestructive testing, the goal is to use noninvasive methods to determine
the integrity of a material or to measure some characteristic of an object. A wide variety of methods
are used in nondestructive testing, ranging from optical to microwave to acoustic. Often, several methods
must be used before a determination can be made. The test results obtained so far inform what methoc
to use next (including what waveform to select), thus giving rise to an instance of adaptive sensing.

Edwin K. P. Chong is with Colorado State University. Email: edwin.chong@colostate.edu

Christopher M. Kreucher is with Integrity Applications Incorporated in Ann Arbor, MI. Email: ckreuche@umich.edu

Alfred O. Hero Il is with the University of Michigan. Email: hero@umich.edu

This material is based in part upon work supported by the Air Force Office of Scientific Research under Award FA9550-06-1-0324 and
by DARPA under Award FA8750-05-2-0285. Any opinions, findings, and conclusions or recommendations expressed in this publication are
those of the author(s) and do not necessarily reflect the views of the Air Force or of DARPA. Approved for Public Release, Distribution
Unlimited.

Sensor scheduling for target detection, identification, and trackinglmagine a group of airborne
sensors—say, radars on unmanned aerial vehicles (UAVs)—with the task of detecting, identifying, and
tracking one or more targets on the ground. For a variety of reasons, we can use at most one sensor a
any given time. These reasons include limitations in communication resources needed to transmit data
from the sensors, and the desire to minimize radar usage to maintain covertness. The selection of which
sensor to use over time is called sensor scheduling, and is an adaptive sensing problem.

Waveform selection for radar imaging. Radar systems have become sufficiently agile that they can be
programmed to use waveform pulses from a library of waveforms. The response of a target in the scene
can vary greatly depending on what waveform is used to radiate the area due to intrapulse characteristics
(e.g., frequency and bandwidth) or interpulse characteristics (e.g., pulse repetition interval). The main
issue in the operation of such agile radar systems is the selection of waveforms to use in a particular
scenario. If past responses can be used to guide the selection of waveforms, then this issue is an instanc
of adaptive sensing.

Laser pulse shaping.Similar to the last example, optical waveforms can also be designed to generate
a variety of responses, only at much smaller wavelengths. By carefully tailoring the shape of intense light
pulses, the interaction of light with even a single atom can be controlled [2]. The possibility of such
controlled interactions of light with atoms has many promising applications. As in the previous example,
these applications give rise to adaptive sensing problems.

B. Nonmyopic Adaptive Sensing

In our view, adaptive sensing is fundamentallyesource managememproblem, in the sense that the
main task is to make decisions over time on the use of sensor resources to maximize sensing performance
It is informative to distinguish betweemyopic and nonmyopic(also known asdlynamicor multistagé
resource management, a topic of much current interest (see, e.g., [32], [22], [5], [23], [27], [40], [41],
[25]). In myopic resource management, the objective is to optimize performance on a per-decision basis.
For example, consider the problem s#nsor schedulinpr tracking a single target, where the problem
is to select, at each decision epoch, a single sensor to activate. An example sensor-scheduling schem
is closest point of approachwhich selects the sensor that is perceived to be the closest to the target.
Another (more sophisticated) example is the method described in [34], where the authors present a senso
scheduling method using alpha-divergence (ényR divergence) measures. Their approach is to make the
decision that maximizes the expected information gain (in terms of the alpha-divergence).

Myopic adaptive sensing may not be ideal when the performance is measured over a horizon of time.
In such situations, we need to consider schemes that trade off short-term for long-term performance. We
call such schemesonmyopic Several factors motivate the consideration of nonmyopic schemes, easily
illustrated in the context of sensor scheduling for target tracking:

Heterogeneous sensordf we have sensors with different locations, waveform characteristics, usage
costs, and/or lifetimes, the decision of whether or not to use a sensor, and with what waveform, should
consider the overall performance, not whether or not its use maximizes the current performance.

Sensor motion.The future location of a sensor affects how we should act now. To optimize a long-term
performance measure, we need to be opportunistic in our choice of sensor decisions.

Target motion. If a target is moving, there is potential benefit in sensing the target before it becomes
unresolvable (e.g., too close to other targets or to clutter, or shadowed by large objects). In some scenarios
we may need to identify multiple targets before they cross, to aid in data association.

Environmental variation. Time-varying weather patterns affect target visibility in a way that potentially
benefits from nonmyopic decision making. In particular, by exploiting models of target visibility maps,
we can achieve improved sensing performance by careful selection of waveforms and beam directions
over time. We show an example along these lines in Section VIII.

The main focus of this paper is on nonmyopic adaptive sensing. The basic methodology presented here
consists of two steps:

1) Formulating the adaptive sensing problem as a partially observable Markov decision process
(POMDP); and

2) Applying an approximation to the optimal policy for the POMDP, because computing the exact
solution is intractable.

Our contribution is severalfold. First, we show in detail how to formulate adaptive sensing problems in

the framework of POMDPs. Second, we survey a number of approximation methods for such POMDPSs.
Our treatment of these methods includes their underlying foundations and practical considerations in their
implementation. Third, we illustrate the performance gains that can be achieved via examples. Fourth,
in our illustrative examples, we highlight some insights that are relevant to adaptive sensing problems:
(1) with very limited sensing resources, nonmyopic sensor and waveform scheduling can significantly
outperform myopic methods with only moderate increase in computational complexity; and (2) as the
number of available resources increases, the nonmyopic advantage decreases.

Significant interest in nonmyopic adaptive sensing has arisen in the recent robotics literature. For
example, the recent book by Thrun, Burgard, and Fox [54] describes examples of such approaches, unde
the rubric of probabilistic robotics Our paper aims to address increasing interest in the subject in the
signal processing area as well. Our aim is to provide an accessible and expository treatment of the subject
introducing a class of new solutions to what is increasingly recognized to be an important new problem.

C. Paper Organization

This paper is organized as follows. In Section Il, we give a concrete motivating example that advocates
the use of nonmyopic methods. We then describe, in Section Ill, a formulation of the adaptive sensing
problem as a partially observable Markov decision process (POMDP). We provide three examples to
illustrate how to formulate adaptive sensing problems in the POMDP framework. Next, in Section IV,
we review the basic principles behing-value approximation, the key idea in our approach. Then, in
Section V, we illustrate the basic lookahead control framework and describe the constituent components.
In Section VI, we describe a host d@p-value approximation methods. Among others, this section
includes descriptions of Monte Carlo sampling methods, heuristic approximations, rollout methods, and
the traditional reinforcement learning approach. In Sections VII and VIII, we provide simulation results
on model problems that illustrate several of the approximate honmyopic methods described in this paper.
We conclude in Section IX with some summary remarks.

In addition to providing an expository treatment on the application of POMDPs to the adaptive sensing
problem, this paper includes several new and important contributions. First, we introduce a model problem
that includes time-varying intervisibility which has all of the desirable properties to completely explore the
trade between nonmyopic and myopic scheduling. Second, we introduce several potentially tractable and
general numerical methods for generating approximately optimal nonmyopic policies, and show explicitly
how they relate to the optimal solution. These include belief-state simplification, completely observable
rollout, and reward surrogation, as well as a heuristic based on an information theoretic approximation
to the value-to-go function which is applicable in a broad array of scenarios (these contributions have
never appeared in journal publications). Finally, these new techniques are compared on a model problem,
followed by an in-depth illustration of the value of nonmyopic scheduling on the model problem.

[I. MOTIVATING EXAMPLE

We now present a concrete motivating example that will be used to explain and justify the heuristics
and approximations used in this paper. This example involves a remote sensing application where the goal
is to learn the contents of a surveillance region via repeated interrogation. (See [24] for a more complete
exposition of adaptive sensing applied to such problems.)

Consider a single airborne sensor which is able to image a portion of a ground surveillance region to
determine the presence or absence of moving ground targets. At each time epoch, the sensor is able t
direct an electrically scanned array so as to interrogate a small area on the ground. Each interrogation

E\eva{ion (m)

12 15 0 3 6

(a) Elevation map of the surveillance (b) Visibility mask for a sensor south (c) Visibility mask for a sensor west of
region of the region the region

Fig. 1. Top: A digital terrain elevation map for a surveillance region, indicating the height of the terrain in the region. Bottom: Visibility
masks for a sensor positioned to the south and to the west, respectively, of the surveillance region. We show binary visibility masks (nonvisible
areas are black and visible areas are white). In general, visibility may be between 0 and 1 indicating areas of reduced visibility, e.g., regions
that are partially obscured by foliage.

yields some (imperfect) information about the small area. The objective is to choose the sequence of
pointing directions that lead to the best ability to estimate the entire contents of the surveillance region.

Further complicating matters is the fact that at each time epoch the sensor position causes portions of the
ground to be unobservable due to the terrain elevation between the sensor and the ground. Given its positiol
and the terrain elevation, the sensor can compute a visibility mask which determines how well a particular
spot on the ground can be seen. As an example, in Figure 1 we give binary visibility masks computed from
a sensor positioned (a) south and (b) to the west of the topologically nonhomogeneous surveillance region
(these plots come from real digital terrain elevation maps). As can be seen from the figures, sensor position
causes “shadowing” of certain regions. These regions, if measured, would provide no information to the
sensor. A similar target masking effect occurs with atmospheric propagation attenuation from disturbances
such as fog, rain, sleet, or dust, as illustrated in Section VIII. This example illustrates a situation where
nonmyopic adaptive sensing is highly beneficial. Using a known sensor trajectory and known topological
map, the sensor can predict locations that will be obscured in the future. This information can be used to
prioritize resources so that they are used on targets that are predicted to become obscured in the future
Extra sensor dwells immediately before obscuration (at the expense of not interrogating other targets) will
sharpen the estimate of target location. This sharpened estimate will allow better prediction of where and
when the target will emerge from the obscured area. This is illustrated graphically with a six time-step
vignette in Figure 2.

Time =1

l-.-i
[]
| S
-'l‘q

5

I:P\%
.

Fig. 2.

y (km)

x
3

x (km)

Time =3

x (km)

Time =6

S

A six time step vignette where a target moves through an obscured area. Other targets are present elsewhere in the surveillance
region. The target is depicted by an asterisk. Areas obscured to the sensor are black and areas that are visible are white. Extra dwells jus

before becoming obscured (time = 1) aid in localization after the target emerges (time = 6).

[1l. FORMULATING ADAPTIVE SENSING PROBLEMS
A. Partially Observable Markov Decision Processes

An adaptive sensing problem can be posed formally partially observable Markov decision process
(POMDP). Before discussing exactly how this is done, we first need to introduce POMDPs. Our level
of treatment will not be as formal and rigorous as one would expect from a fullblown course on this
topic. Instead, we seek to describe POMDPs in sufficient detail to allow the reader to see how an adaptive
sensing problem can be posed as a POMDP, and to explore methods to approximate optimal solutions.
Our exposition assumes knowledge of probability, stochastic processes, and optimization. In particular,
we assume some knowledge of Markov processes, including Markov decision processes, a model that
should be familiar to the discrete event system community. For completeness, we will introduce POMDPs
in sufficient detail to allow the reader to see how an adaptive sensing problem can be posed as a POMDP.
and to explore methods to approximate optimal solutions. For a full treatment of POMDPs and related
background, see [6].

A POMDP is specified by the following ingredients:

« A set of states (the state space) and a distribution specifying the random initial state.

« A set of possible actions (the action space).

« A state-transition law specifying the next-state distribution given an action taken at a current state.
« A reward function specifying the reward (real number) received given an action taken at a state.

« A set of possible observations (the observation space).

« An observation law specifying the distribution of observations given an action taken at a state.

A POMDRP is a controlled dynamical process in discrete time. The process begins &t finfewith
a (random) initial state. At this state, we perform an action and receive a reward, which depends on the
action and the state. At the same time, we receive an observation, which again depends on the actior
and the state. The state then transitions to some random next state, whose distribution is specified by the
state-transition law. The process then repeats in the same way—at each time, the process is at some stat
and the action taken at that state determines the reward, observation, and next state. As a result, the stal
evolves randomly over time in response to actions, generating observations along the way.

We have not said anything so far about the finiteness of the state space or the sets of actions and
observations. The advantage to leaving this issue open is that it frees us to construct models in the mosi
natural way. Of course, if we are to represent any such model in a computer, we can only do so in a
finite way (though the finite numbers that can be represented in a computer are typically sufficiently large
to meet practical needs). For example, if we model the motion of a target on the ground in terms of its
Cartesian coordinates, we can deal with this model in a computer only in a finite sense—specifically,
there are only a finite number of possible locations that can be captured on a standard digital computer.
Moreover, the theory of POMDPs becomes much more technically involved if we are to deal rigorously
with infinite sets. For the sake of technical formality, we will assume henceforth that the state space, the
action space, and the observation space are all finite (though not necessarily “small’—we stress that this
assumption is merely for technical reasons). However, when thinking about models, we will not explicitly
restrict ourselves to finite sets. For example, it is convenient to use a motion model for targets in which
we view the Cartesian coordinates as real numbers. There is no harm in this dichotomous approach as
long as we understand that ultimately we are computing only with finite sets.

B. Belief State

As a POMDP evolves over time, we do not have direct access to the states that occur. Instead, all we
have are the observations generated over time, providing us with clues of the actual underlying states
(hence the ternpartially observablg@ These observations might, in some cases, allow us to infer exactly
what states actually occurred. However, in general, there will be some uncertainty in our knowledge
of the states that actually occurred. This uncertainty is represented dyetieé state(or information

statg, which is thea posteriori (or posterion distribution of the underlying state given the history of
observations.

Let X denote the state space (the set of all possible states in our POMDP), afidbéethe set of
distributions overX'. Then a belief state is simply an element/®fJust as the underlying state changes
over time, the belief state also changes over time. At time 0, the (initial) belief state is equal to the
given initial state distribution. Then, once an action is taken and an observation is received, the belief state
changes to a new belief state, in a way that depends on the observation received and the state-transitio
and observation laws. This change in the belief state can be computed explicitly using Bayes’ rule.

To elaborate, suppose that the current timé,ignd the current belief state b € B. Note thatb,, is
a probability distribution overt—we use the notation,(z) for the probability that), assigns to state
x € X. Let A represent the action space. Suppose that at ime take actioni, € A and, as a result,
we receive observatiog.. Denote the state-transition law #,.,s, SO that the probability of transitioning
to stater’ given that actioru is taken at state is Py,..s(2'|x, a). Similarly, denote the observation law by
P,1s, SO that the probability of receiving observatiggiven that actionu is taken at state is Pys(y|z, a).

Then, the next belief state given actiap is computed using the following two-step update procedure:
1. Compute the “updated” belief stabe based on the observatiap of the stater, at time %, using
Bayes’ rule:
be(z) = Povs (Y |z, ax)br(x) |
> sex Povs(ykls, ax)bi(s)

2. Compute the belief statg ., using the state-transition law:

bi1(z) =Y bp(8) Prrans (@[5, 1), € X
seEX
This two-step procedure is commonly realized in terms of a Kalman filter or a particle filter [46].

It is useful to think of a POMDP as a random process of evolving belief states. Just as the underlying
state transitions to some random new state with the performance of an action at each time, the belief
state also transitions to some random new belief state. So the belief state process also has some “belief
state-transition” law associated with it, which depends intimately on the underlying state-transition and
the observation laws. But, unlike the underlying state, the belief state is fully accessible.

Indeed, any POMDP may be viewed asully observableMarkov decision process (MDP) with state
spaceb3, called thebelief-state MDPor information-state MDP(see [6]). To complete the description
of this MDP, we will show how to write its reward function, which specifies the reward received when
actiona is taken at belief-staté. Suppose € B is some belief state andis an action. LetR(x,a) be
the reward received if action is taken at underlying state. Then letr(b,a) = > _, b(z)R(x,a) be
the expected reward with respect to belief-statgiven actiona. This rewardr(b, a) then represents the
reward function of the belief-state MDP.

reX.

C. Optimization Objective

Given a POMDP, our goal is to select actions over time to maximize the expected cumulative reward
(we take expectation here because the cumulative reward is a random variable). To be specific, suppost
we are interested in the expected cumulative reward over a time horizon of IBngth=0,1,..., H —1.

Let 2, anda;, be the state and action at time and letR(zy, ai) be the resulting reward received. Then,
the cumulative reward over horizaH is given by

Z_ R(wx, ak)] ,
k=0

where E represents expectation. It is important to realize that this expectation is with respgat to. . ;
i.e., the random initial state and all the subsequent states in the evolution of the process, given the actions
ap, a1, as, . .. taken over time. The goal is to pick these actions so that the objective function is maximized.

Vy=E

We have assumed without loss of generality that the reward is a function only of the current state and
the action. Indeed, suppose we write the reward such that it depends on the current state, the next state
and the action. We can then take the conditional mean of this reward with respect to the next state, given
the current state and action (the conditional distribution of the next state is given by the state-transition
law). Because the overall objective function involves expectation, replacing the original reward with its
conditional mean in the way described above results in no loss of generality. Finally, notice that the
conditional mean of the original reward is a function of the current state and the action, but not the next
state.

Note that we can also represent the objective function in terms(thfe reward function of the belief-
state MDP) instead of:

bO] |

where B-|b] represents conditional expectation givgnThe expectation now is with respectiip by, . . . ;
i.e., the initial belief state and all the subsequent belief states in the evolution of the process. We leave
it to the reader to verify this expression involving belief states indeed gives rise to the same objective
function value as the earlier expression involving states. In Section IV we will discuss an equation, due
to Bellman, that characterizes this conditional form of the objective function.

It is often the case that the horizdh is very large. In such cases, for technical reasons relevant to the
analysis of POMDPs, the objective function is often expressed as a limit. A sensible limiting objective
function is theinfinite-horizon(or long-tern) averagereward:

|
I}IE;O E [E kz_; R(:pk,ak)] .

Another common limiting objective function is thefinite-horizon cumulative discountedward:

H-1
|3t a0
=0

where~ € (0,1) is called thediscount factor In this paper, our focus is not on analytical approaches
to solving POMDPs. Therefore, even when dealing with large horizons, we will not be concerned with
the technical considerations involved in taking the kinds of limits in the above infinite-horizon objective
functions [6]. Instead, we will often imagine that is very large but still use the nonlimiting form.

H-1

Vi(bo) = E [Z r(br, ax)

k=0

D. Optimal Policy

In general, the action chosen at each time should be allowed to depend on the entire history up to that
time (i.e., the action at timé is a random variable that is a function of all observable quantities up to
time k). However, it turns out that if an optimal choice of such a sequence of actions exists, then there is
an optimal choice of actions that depends only on “belief-state feedback” (see [52] and references therein
for the origins of this result). In other words, it suffices for the action at tinte depend only on the
belief-stateb;, at time k. So what we seek is, at each tinke a mappingr; : B — A such that if we
perform actiona;, = 7} (by), then the resulting objective function is maximized. As usual, we call such a
mapping apolicy. So, what we seek is aoptimal policy

E. POMDPs for Adaptive Sensing

POMDPs form a very general framework based on which many different stochastic control problems
can be posed. Thus, it is no surprise that adaptive sensing problems can be posed as POMDPSs.

To formulate an adaptive sensing problem as a POMDP, we need to specify the POMDP ingredients in
terms of the given adaptive sensing problem. This specification is problem specific. To show the reader

how this is done, here we provide some examples of what aspects of adaptive sensing problems influence
how the POMDP ingredients are specified. As a further illustration, in the next three sections we specify
POMDP models for three example problems, including the motivating example in Section Il and the
simulations.

States. The POMDP state represents those features in the system (directly observable or not) that
possibly evolve over time. Typically, the state is composed of several parts. These include target positions
and velocities, sensor modes of operation, sensor parameter settings, battery status, data quality, whicl
sensors are active, states that are internal to tracking algorithms, the position and connectivity of sensors
and communication resource allocation.

Actions. To specify the actions, we need to identify all the controllable aspects of the sensing system
(those aspects that we wish to control over time in our adaptive sensing problem). These include
sensor mode switching (e.g., waveform selection or carrier frequencies), pointing directions, sensor
tunable parameters, sensor activation status (on/off), sensor position changes, and communication resourc
reallocation.

State-transition law. The state-transition law is derived from models representing how states change
over time. Some of these changes are autonomous, while some are in response to actions. Example
of such changes include target motion, which sensors were most recently activated, changes in senso
parameter settings, sensor failures over time, battery status changes based on usage, and changes in t
position and connectivity of sensors.

Reward function. To determine the reward function, we need to first decide on our overall objective
function. To be amenable to POMDP methods, this objective function must be of the form shown before,
namely the mean sum of per-time-step rewards. Writing the objective function this way automatically
specifies the reward function. For example, if the objective function is the mean cumulative tracking
error, then the reward function simply maps the state at each time to the mean tracking error at that time.

Observations. The observation at each time represents those features of the system that depend on
the state and are accessible to the controlling agent (i.e., can be used to inform control decisions). These
include sensor outputs (e.g., measurements of target locations and velocities), and those parts of state the
are directly observable (e.g., battery status), including prior actions.

Observation law. The observation law is derived from models of how the observations are related to the
underlying states. In particular, we will need to use models of sensors (i.e., the relationship between the
sensor outputs and the quantities being measured), and also models of the sensor network configuration

In the next three sections, we provide examples to illustrate how to formulate adaptive sensing problems
as POMDPs. In the next section, we show how to formulate an adagdissificationproblem as a POMDP
(with detection problems being special cases). Then, in the section that follows, we show how to formulate
an adaptiveracking problem as a POMDP. Finally, we consider the airborne sensing problem in Section I
and describe a POMDP formulation for it. (which also applies to the simulation example in Section VII).

F. POMDP for an Adaptive Classification Problem

We now consider a simple classification problem and show how the POMDP framework can be used
to formulate this problem. In particular, we will give specific forms for each of the ingredients described
in Section IlI-E. This simple classification problem statement can be used to model problems such as
medical diagnostics, nondestructive testing, and sensor scheduling for target detection.

Our problem in illustrated in Figure 3. Suppose an object belongs to a particular unknowre,class
taking values in a sat of possible classes. We can take measurements on the object that provide us with
information from which we will infer the unknown class. These measurements come from a “controlled
sensor” at our disposal, which we can use at will. Each time we use the sensor, we first have to choose a
controlu € U. For each chosen contral we get a measurement whose distribution dependsand w.

Call this distributionP,.s.:(-|c, u) (repeated uses of the sensor generate independent measurements). Each
time we apply controk, we incur a cost of:(u) (i.e., the cost of using the controlled sensor depends on

/

%klaject R antrolled
ass ensor Class
/ N estimate

Fig. 3. An adaptive classification system.

the control applied). The controlled sensor may represent a particular measurement instrument that car
be controlled (e.g., with different configurations or settings) or may represent a set of fixed sensors from
which to choose (e.g., a seismic, radar, and induction sensor for landmine detection, as discussed in [50]).
Notice that detection (i.e., hypothesis testing) is a special case of our problem because it reduces the cas
where there are two classes: present and absent.

After each measurement is taken, we have to choose whether or not to produce a classification (i.e.,
an estimate: € C). If we choose to produce such a classification, the scenario terminates. If not, we can
continue to take another measurement by selecting a sensor control. The performance metric of interes
here (to be maximized) is the probability of correct classification minus the total cost of sensors used.

To formulate this problem as a POMDP, we must specify the ingredients described in Section IlI-E:
states, actions, state-transition law, reward function, observations, and observation law.

States. The possible states in our POMDP formulation of this classification problem are the possible
classes, together with an extra state to represent that the scenario has terminated, which we will denote
by . Therefore, the state space is given(y {7}. Note that the state changes only when we choose to
produce a classification, as we will specify in the state-transition law below.

Actions. The actions here are of two kinds: we can either choose to take a measurement, in which case
the action is the sensor controle U, or we can choose to produce a classification, in which case the
action is the class € C. Hence, the action space is given &ayJ C.

State-transition law. The state-transition law represents how the state evolves at each time step as a
function of the action. As pointed out before, as long as we are taking measurements, the state does no
change (because it represents the unknown object class). As soon as we choose to produce a classificatio
the state changes to the terminal stateherefore, the state-transition lai,..s iS given by

1 ifacld andz’ =z
Ptrans(x/|x, CL) = 1 faelC andz’ =1
0 otherwise.

Reward function. The reward function? here is given by

—k(a) facl andx #1
R(z,a) =< 1 if aeCandz =a
0 otherwise.

If we produce a classification, then the rewardl if the classification is correct, and otherwise it0is
Hence, the mean of the reward when producing a classification is the probability that the classification
is correct. If we use the finite-horizon objective function with horizén then the objective function
represents the probability of producing a correct classification within the time horizoH ¢.g.,
representing some maximum time limit for producing a classification) minus the total sensing cost.

Observations. The observations in this problem represent the sensor outputs (measurements). The
observation space is therefore the set of possible measurements.

Observation law. The observation law specifies the distribution of the observations given the state and
action. So, ifr € C anda € U, then the observation law is given W,so.(:|z, a). If x = 7, then we can
define the observation law arbitrarily, because it does not affect the solution to the problem (recall that
after the scenario terminates, represented by being in state no longer take any measurements).

10

Note that as long as we are still taking measurements and have not yet produced a classification,
the belief state for this problem represents thgosteriori distribution of the unknown class being
estimated. It is straightforward to show that the optimal policy for this problem will always produce a
classification that maximizes thee posteriori probability (i.e., is a “MAP” classifier). However, it is not
straightforward to deduce exactly when we should continue to take measurements and when we should
produce a classification. Determining such an optimal policy requires solving the POMDP.

G. POMDP for an Adaptive Tracking Problem

We now consider a simple tracking problem and show how to formulate it using a POMDP framework.
Our problem in illustrated in Figure 4. We have a Markov chain with state sfaeeolving according
to a state-transition law given ¥ (i.e., for s, s’ € S, T'(s'|s) is the probability of transitioning to state
s’ given that the state is). We assume thaf is a metric space—there is a functidn S x S — R such
that d(s, s') represents a “distance” measure betweend s’.! The states of this Markov chain are not
directly accessible—they represent quantities to be tracked over time (e.g., the coordinates and velocities
of targets).

To do the tracking, as in the last section, we exploit measurements from a “controlled sensor” over
time. At each time step, we first have to choose a contrel /. For each chosen contral we get a
measurement whose distribution depends on the Markov chainsstaie control:, denotedP,q,so. (- |s,)
as before (again, we assume that sensor measurements over time are independent). Each time we app
control u, we incur a cost of«(u) (i.e., as in the last example, the cost of using the controlled sensor
depends on the control applied). As in the last example, the controlled sensor may represent a particular
measurement instrument that can be controlled (e.g., with different configurations or settings) or may
represent a set of fixed sensor assets from which to choose (e.g., multiple sensors distributed over a
geographical region, where the control here is which subset of sensors to activate, as in [22], [23], [27],
[40], [41]).

Each measurement is fed to a tracker, which is an algorithm that produces an estin@t8§ of
the state at each time. For example, the tracker could be a Kalman filter or a particle filter [46]. The
tracker has an internal state, which we will dengtec Z. The internal state is updated as a function of
measurements:

Zk+1 — ftracker(zka yk);

wherey, is the measurement generated at tilnas a result of control,, (i.e., if the Markov chain state

at time k is s, theny, has distributionPiensor (+| Sk, ux)). The estimates, is a function of this internal
statez,. For example, in the case of a Kalman filter, the internal state represents a mean vector together
with a covariance matrix. The outpst is usually simply the mean vector. In the case of a particle filter,

the internal state represents a set of particles. See [46] for explicit equations to regrgsent

The performance metric of interest here (to be maximized) is the negative mean of the sum of the
cumulative tracking error and the sensor usage cost over a horizéhtohe steps. To be precise, the
tracking error at timek is the “distance” between the output of the tracker,and the true Markov chain
state,s,. Recall that the “distance” here is well-defined because we have assumefl tha metric
space. So the tracking error at tinkes d(8, si).

As in the last section, to formulate this adaptive tracking problem as a POMDP, we must specify the
ingredients described in Section IlI-E: states, actions, state-transition law, reward function, observations,
and observation law.

States.It might be tempting to define the state space for this problem simply to be the state space for
the Markov chainS. However, it is important to point out that the tracker also contains an internal state,
and the POMDP state should take both into account. Accordingly, for this problem we will take the state

For the case wher8 represents target kinematic states in Cartesian coordinates, we typically use the Euclidean norm for this metric.

11

/

Markov Chain ng:g!?d Tracker ——
Track-state
/ estimate

Fig. 4. An adaptive tracking system.

at time k to be the pairs;, 2|, wheres;, is the state of the Markov chain to be tracked, apds the
tracker state. Hence, the state spacé is Z.

Actions. The actions here are the controls applied to the controlled sensor. Hence, the action space is
simply U.

State-transition law. The state-transition law specifies how the state changes at each,tognen the
actiona,, at that time. Recall that the state at tifés the pairsy, z;]. The Markov chain state, makes a
transition according to the transition probabilify-|s;). The tracker state, makes a transition depending
on the observation,. In other words, the transition distribution for the next tracker state giyes the
distribution of fiacker (21, yx) (Which in turn depends on the measurement distribuffang.. (- |sk, ax))-
This completely specifies the distribution [8f.. 1, zx.1] as a function of(s, z;] anday.

Reward function. The reward function is given by

R([sk, 2], ax) = —(d(8k, k) + K(ax)),

where the reader should recall that the tracker oufpus a function ofz,. Notice that the first term in
the (per-time-step) reward, which represents tracking error, is not a function tristead, the tracking
errors depend on the actions applied over time through the track estigatesich in turn depend on
the actions through the distributions of the measurements).
Observations. As in the previous example, the observations here represent the sensor outputs
(measurements). The observation space is therefore the set of possible measurements.
Observation law. The observation law is given by the measurement distribuBQR,. (-|sk, ax). Note
that the observation law does not depend:zpnthe tracker state, even thoughis part of the POMDP
state.

H. POMDP for Motivating Example

In this section, we give mathematical forms for each of the ingredients listed in Section IlI-E for the
motivating example described in Section Il (these also apply to the simulation example in Section VII). To
review, the motivating example dealt with an airborne sensor charged with detecting and tracking multiple
moving targets. The airborne sensor is agile in that it can steer its beam to different ground locations.
Each interrogation of the ground results in an observation as to the absence or presence of targets in the
vicinity. The adaptive sensing problem is to use the collection of measurements made up to the current
time to determine the best place to point next.

States.In this motivating problem, we are detecting and trackisigmoving ground targets. For the
purposes of this discussion we assume tNais known and fixed, and that the targets are moving in 2
dimensions (a more general treatment, where the number of targets is both unknown and time varying,
is given elsewhere [35]). We denote these positions:as. ., xy wWherez; is a 2-dimensional vector
corresponding to target Furthermore, because of the terrain, the position of the sensor influences the
visibility of certain locations on the ground, so sensor position is an important component of the state.
Denote the (directly observabl8)dimensional sensor position lay Then the state spacE consists of
real-valued vectors ifR?V+3, i.e., each state takes the form

r=[x1,29,...,TN_1,ZN, 0]

12

Although not explicitly shown here, the surveillance region topology is assumed known and considered
part of the problem specification. This specification affects the observation law, as we shall see below.
Actions. The airborne sensor is able to measure a single detection cell and make an imperfect
measurement as to the presence or absence of a target in that cell. Therefore, the action..,C'}
is an integer specifying which of th€ discrete cells is measured.
State-transition law. The state-transition law describes the distribution of the next state vecter
[z}, xh, ..., 2y, 0'] conditioned on the current state vecior [x1, zs, ..., zx, o] and the actiorn. Because
our states are vectors R*V+3, we will specify the state-transition law as a conditional density function.
For simplicity, we have chosen to model the evolution of each of theargets as independent and
following a Gaussian law, i.e.,

1 1 N\NTy—1 /
) P —5(zi—al) B e —x)) .
Tsmgle target(xi|xz) - 27T|2|_1/2 exp 2) 1=]-7 ety N
(wherez; andz; are treated here as column vectors). In other words, each target moves according to a
random walk (purely diffusive). Because of our independence assumption, we can write the joint target-
motion law as

N
Tlcarget(x,lv s 7xIN’x17 ce 737N> = H 71single target(x;"xi)-
i=1

The temporal evolution of the sensor position is assumed deterministic and known precisely (i.e., the
aircraft if flying a pre-planned pattern). We ugéo) to denote the sensor trajectory function, which
specifies the next position of the sensor given current sensor positian, if the current sensor position
is o, then f(o) is exactly the next sensor position. Then, the motion law for the sensor is

Tiensor(0']|0) = 5(0' — f(a))
With these assumptions, the state-transition law is completely specified by
R;rans(x/‘xv CL) - 71target('rlly cee ;xlN|x17 e 7xN)Tsensor(U/|U)-

Note that according to our assumptions, the actions taken do not affect the state evolution. In particular,
we assume that the targets do not know they are under surveillance and consequently they do not take
evasive action (see [31] for a model that includes evasion).

Reward function. In previous work [34], we have found thatformation gainprovides a useful
metric that captures a wide variety of goals. Information gain is a metric that measures the relative
information increase between a prior belief state and a posterior belief state, i.e., it measures the benefit
a particular observation has yielded. An information theoretic metric is intuitively pleasing as it measures
different types of benefits (e.g., information about the number of targets present versus information about
the positions of individual targets) on an equal footing, that of information gain. Furthermore, it has
been shown that information gain can be viewed as a near universal proxy for any risk function [33].
Therefore, the reward used in this application is the gain in information between the belief state before
a measurement, and the (measurement updated) belief state after a measurement i$;msde use
a particular information metric called theeRyi divergence, defined as follows. Themi divergence of
two belief statep andq is given by

Da(pllg) = !

a—1

In) " p(x)*g(z)

wherea > 0. To define the reward(b, a) in our context, given a belief stateand an actioru, we first
write, R
Ay (bya,y) = Dy (b]|b),

wherey is an observation with distribution given by the observation Ry (-|b,) andb is the “updated”
belief state computed as described earlier in Section 1l1I-B using Bayes’ rule and knowledge:,of

13

and y. Note thatA,(b,a,y) is a random variable because it is a function of the random observation
y, and hence its distribution depends enWe will call this random variable thenyopic information
gain. The reward function is defined in terms of the myopic information gain by taking expectation:
r(b,a) = E[AL(b, a,y)|b, a.

Observations.When a cell is interrogated, the sensor receives return energy and thresholds this energy
to determine whether it is to be declared a detection or a nondetection. This imperfect measurement gives
evidence as to the presence or absence of targets in the cell. Additionally, the current sensor position
is directly observable. Therefore, the observation is givenzby|, wherez € {0,1} is the one-bit
observation representing detection or nondetection,cargdthe position of the sensor.

Observation law. Detection/nondetection is assumed to result from thresholding a Rayleigh-distributed
random variable that characterizes the energy returned from an interrogation of the ground. The
performance is completely specified by a probability of deteciipand a false alarm ratg:, which under
the Rayleigh assumption are linked by a signal-to-noise-plus-clutter W@, R, by Py = Pfl/(HSNCR).

To precisely specify the observation model, we make the following notational definitions. First, let
0q(x1,...,2xy) denote the occupation indicator function for celldefined as,(x1,...,zx) = 1 when
at least one of the targets projects into sensor c€ile., at least one of the; locations are within cell
a), andoy(z1,...,zx) = 0 otherwise. Furthermore, let,(c) denote the visibility indicator function for
cell a, defined as,(c) = 1 when cella is visible from a sensor positioned at(i.e., there is no line
of sight obstruction between the sensor and the cell),«afd) = 0 otherwise. Then the probability of
receiving a detection given state= [z4, ..., xy, 0| and actiona is

] Py ifog(z,.. . an)v(0) =1
Paet(x, a) = { Py if o4(x1,...,zn)ve(0) = 0.

Therefore, the observation law is specified completely by

- Pdet(maa) if z=1
Pobs(z|xva) - { 1— Pdet(:p7a) if z=0.

V. BASIC PRINCIPLE: (Q-VALUE APPROXIMATION
A. Overview and History

In this section, we describe the basic principle underlying approximate methods to solve adaptive sensing
problems that are posed as POMDPs. This basic principle is due to Bellman, and gives rise to a natural
framework in which to discuss a variety of approximation approaches. Specifically, these approximation
methods all boil down to the problem of approximatifygvalues.

Methods for solving POMDPs have their roots in the field of optimal control, which dates back to the end
of the seventeenth century with the work of Johann Bernoulli [58]. This field received significant interest
in the middle of the twentieth century, when much of the modern methodology was developed, most
notably by Bellman [3], who appliedynamic programmindgo bear on optimal control, and Pontryagin
[44], who introduced his celebratedaximum principlebased on calculus of variations. Since then, the
field of optimal control has enjoyed much fruit in its application to control problems arising in engineering
and economics.

The recent history of methods to solve optimal stochastic decision problems took an interesting turn
in the second half of the twentieth century with the work of computer scientists in the field of artificial
intelligence seeking to solve “planning” problems (roughly analogous to what engineers and economists
call optimal control problems). The results of their work most relevant to the POMDP methods discussed
here are reported in a number of treatises from the 80s and 90s [14], [29], [61], [30]. The methods
developed in the artificial intelligence (machine learning) community aim to provide computationally
feasible approximations to optimal solutions for complex planning problems under uncertainty. The
operations research literature has also continued to reflect ongoing interest in computationally feasible
methods for optimal decision problems [39], [11], [45].

14

The connection between the significant work done in the artificial intelligence community and those
of the earlier work on optimal control is noted by Bertsekas and Tsitsiklis in their 1996 book [4]. In
particular, they note that the developmentsréiforcement learning-the approach taken by artificial
intelligence researchers for solving planning problems—is most appropriately understood in the framework
of Markov decision theory and dynamic programming. This framework is now widely reflected in the
artificial intelligence literature [29], [61], [30], [54]. Our treatment in this paper rests on this firm and
rich foundation (though our focus is not on reinforcement learning methods).

B. Bellman’s Principle and)-values

The key result in Markov decision theory relevant here is Bellman'’s principleV];é,) be the optimal
objective function value (over horizoH) with b, as the initial belief state. Themellman’s principle
states that

Vir(bo) = max(r(bo, a) + E[Vyr_,(b1)]bo, a])

where b; is the random next belief state (with distribution dependingapnand H:|by, a] represents
conditional expectation with respect to the random next gtate’hose distribution depends ép anda.
Moreover,

mo(bo) = argmaxr(bo, a) + E[Vi_,(b1)[bo, a])

is an optimal policy.
Define the@-value of taking actiona at stateb, as

Qu—k(br,a) = (b, a) + E[Vi_;_1 (bk41)|bx, al,
whereb,, is the random next belief state (which depends on the observagtiantime k, as described
in Section 1lI-B). Then, Bellman’s principle can be rewritten as
7 (b)) = argmaxQy . (bg, a)

i.e., the optimal action at belief-stabg (at time k, with a horizon-to-go off — k) is the one with largest
@-value at that belief state. This principle, calledkahead is the heart of POMDP solution approaches.

C. Stationary Policies

In general, an optimal policy is a function of tinte If H is sufficiently large, then the optimal policy
is approximatelystationary(independent of). This is intuitively clear: if the end of the time horizon is
a million years away, then how we should act today given a belief-state is the same as how we should
act tomorrow with the same belief state. Said differently/iis sufficiently large, the difference between
@y andQy_ is negligible. Moreover, if needed we can always incorporate time itself into the definition
of the state, so that dependence on time is captured simply as dependence on state.

Henceforth we will assume for convenience there is a stationary optimal policy, and this is what we
seek. We will use the notation for stationary policies (with no subscrip)—this significantly simplifies
the notation. Our approach is equally applicable to the short-horizon, nonstationary case, with appropriate
notational modification (to account for the time dependence of decisions).

D. Receding Horizon
AssumingH is sufficiently large and that we seek a stationary optimal policy, at any kinve write:

7 (b) = argmaxQ g (b, a).

Notice that the horizon is taken to be fixed/af regardless of the current tinke This is justified by our
assumption that{ is so large that at any time, the horizon is still approximately/ time steps away.
This approach of taking the horizon to be fixedratis calledreceding horizon controlFor convenience,
we will also henceforth drop the subscrifitfrom our notation (unless the subscript is explicitly needed).

15

Sensing System

Observables

1
1 1
1]
! | Measurement Action !
1 Filter »| Selector 1
1
. i
1 1
]]

Measurements > Actions
Posterior distribution
of unobservables

Controller

Fig. 5. Basic lookahead framework.

E. Approximatingl-values

Recall Q(b,a) is the rewardr(b,a) of taken actiona at belief-stateb plus the expected cumulative
reward of applying the optimal policy for all future actions. This second term irHvalue is in general
difficult to obtain, especially when the belief-state is large. For this reason, approximation methods are
necessary to obtaip-values. Note that the quality of an approximation is not so much in the accuracy
of the actual-values obtained, but in thenking of the actions reflected by theielative values.

In Section VI, we describe a variety of methods to approxindgtealues. But before discussing such
methods, we first describe the basic control framework for uélagalues to inform control decisions.

V. BAsSIC CONTROL ARCHITECTURE

By Bellman’s principle, knowing th€)-values allows us to make optimal control decisions. In particular,
if we are currently at belief-state we need only find the actiom with the largest) (b, a). This principle
yields a basic control framework that is illustrated in Figure 5. The top-most block represents the sensing
system, which we treat as having an input and two forms of output. The input represents actions (external
control commands) we can apply to control the sensing system. Actions usually include sensor-resource
controls, such as which sensor(s) to activate, at what power level, where to point, what waveforms to use,
and what sensing modes to activate. Actions may also include communication-resource controls, such as
the data rate for transmission from each sensor.

The two forms of outputs from the sensing system represent:

1) Fully observable aspects of the internal state of the sensing system (@adlecvables and
2) Measurements (observations) of those aspects of the internal state that are not directly observable
(which we refer to simply asneasuremenys

We assume that the underlying state-space is the Cartesian product of two sets, one representing unok
servables and the other representing observables. Target states are prime examples of unobservables. S
measurements are typically the outputs of sensors, representing observations of target states. Observabl
include things like sensor locations and orientations, which sensors are activated, battery status readings
etc. In the remainder of this section, we describe the components of our control framework. Our description
starts from the architecture of Figure 5 and progressively fills in the details.

A. Controller

At each decision epoch, theontroller takes the outputs (measurements and observables) from the
sensing system and, in return, generates an action that is fed back to the sensing system. This basi
closed-loop architecture is familiar to mainstream control system design approaches.

16

Observables | o o o o o o e M ___

Candidate
action

1
1
1
Measurement ' Q-Value - Search
1
1

Filter =p Approximator »| Algorithm

Posterior distribution
of unobservables

Action Selector

Fig. 6. Basic components of the action selector.

The controller has two main components. The first isrfeasurement filterwhich takes as input the
measurements, and provides as output @hgosteriori (posterior) distribution of unobservable internal
states (henceforth callathobservablgs In the typical situation where the unobservables are target states,
the measurement filter outputs a posterior distribution on target states given the measurement history. The
measurement filter is discussed further below. The posterior distribution of the unobservables in addition
to the observables form the belief state, the posterior distribution of the underlying state. The second
component is theaction selectorwhich takes the belief state and computes an action (the output of the
controller). The basis for action selection is Bellman’s principle, ugirgalues. This is discussed below.

B. Measurement Filter

The measurement filter computes the posterior distribution given measurements. This component is
present in virtually all target-tracking systems. It turns out that the posterior distribution can be computed
iteratively: each time we obtain a new measurement, the posterior distribution can be obtained by updating
the previous posterior distribution based on knowing the current action, the transition law, and the
observation law. This update is based on Bayes’ rule, described earlier in Section 111-B.

The measurement filter can be constructed in a number of ways. If the posterior distribution always
resides within a family of distributions that is conveniently parameterized, then all we need to do is keep
track of the belief-state parameters. This is the case, for example, if the belief state is Gaussian. Indeed,
if the unobservables evolve in a linear fashion, then these Gaussian parameters can be updated using
Kalman filter. In general, however, it is not practical to keep track of the exact belief state. Indeed, a
variety of options have been explored for belief-state representation and simplification (e.g., [49], [48],
[60]). We will have more to say about belief-state simplification in Section VI-K.

Particle filtering is a Monte Carlo sampling method for updating posterior distributions. Instead of
maintaining the exact posterior distribution, we maintain a set of representative samples from that
distribution. It turns out that this method dovetails naturally with Monte Carlo sampling-based methods
for Q-value approximation, as we will describe later in Section VI-H.

C. Action Selector

As shown in Figure 6, the action selector consists of a search (optimization) algorithm that optimizes an
objective function, the&)-function with respect to an action. In other words, tefunction is a function
of the action—it maps each action, at a given belief state, t@it&lue. The action that we seek is one
that maximizes th&)-function. So, we can think of th@-function as a kind of “action-utility” function
that we wish to maximize. The search algorithm iteratively generates a candidate action and evaluates the
@-function at this action (this numerical quantity is tfevalue), searching over the space of candidate
actions for one with the large§l-value. Methods for obtaining (approximating) t@evalues is described
in the next section.

17

VI. @Q-VALUE APPROXIMATION METHODS
A. Basic Approach
Recall the definition of th&)-value,

Q<b7 a) = T(ba CL) + E[V* (b,)|b7 a]? (1)

wheret' is the random next belief state (with distribution depending)orin all but very special problems,

it is impossible to compute thé-value exactly. In this section, we describe a variety of methods to
approximate the&)-value. Because the first term on the right-hand side of (1) is usually easy to compute,
most approximation methods focus on the second term. As pointed out before, it is important to realize
that the quality of an approximation to tlig-value is not so much in the accuracy of the actual values
obtained, but in theanking of the actions reflected by theielative values.

We should point out that each of the approximation methods presented in this section has its own domain
of applicability. Traditional reinforcement learning approaches (Section VI-F), predicated on running a
large number of simulations to “train,” are broadly applicable as they only require a generative model.
However, these methods often have infeasible computational burden owing to the long training time
required for some problems. Furthermore, there is an extensibility problem, where a trained function
may perform very poorly if the problem changes slightly between the training stage and the application
stage. To address these concerns, we present several sampling techniques (Sections VI-B, VI-H, VI-I,
VI-K) which are also very broadly applicable as they only require a generative model. These methods
do not require a training phase, per se, but do on-line estimation. However, in some instances, these
too may require more computations than desirable. Similarly, parametric approximations (Section VI-E)
and action-sequence approximations (Section VI-G) are general in applicability but may entail excessive
computational requirements. Relaxation methods (Section VI-C) and heuristics (Section VI-D) may provide
reduced computation but require advanced domain knowledge.

B. Monte Carlo Sampling

In general, we can think of Monte Carlo methods simply as the use of computer generated random
numbers in computing expectations of random variables through averaging over many samples. With this
in mind, it seems natural to consider using Monte Carlo methods to compute the value function directly
based on Bellman’s equation:

Vi (bo) = H}Z%X(T(bm ao) + E[Vir_1(b1)]bo, ao)).

Notice that the second term on the right-hand side involves expectations (one per action canglidate
which can be computed using Monte Carlo sampling. However, the random variable inside each expectation
is itself an objective function value (with horizai — 1), and so it too involves a max of an expectation
via Bellman’s equation:

bo, CL():|) .

Notice we now have two “layers” of max and expectation, one “nested” within the other. Again, we
see the inside expectation involves the value function (with horiZon 2), which again can be written
as a max of expectations. Proceeding this way, we can Wijte,) in terms of H layers of max and
expectations. Each expectation can be computed using Monte Carlo sampling. The remaining question is
how computationally burdensome is this task?

Kearns, Mansour, and Ng [28] have provided a method to calculate the computational burden of
approximating the value function using Monte Carlo sampling as described above, given some prescribed
accuracy in the approximation of the value function. Unfortunately, it turns out that for practical POMDP
problems this computational burden is prohibitive, even for modest degrees of accuracy. So, while

Vi (by) = max (r(bg, ap) + E [max(r(bl, ar) + E[V5_o(ba)|b1, a1])

al

18

Bellman’s equation suggests a natural Monte Carlo method for approximating the value function, the
method is not useful in practice. For this reason, we seek alternative approximation methods. In the next
few subsections, we explore some of these methods.

C. Relaxation of Optimization Problem

Some problems that are difficult to solve become drastically easier ifel@& certain aspects of the
problem. For example, by removing a constraint in the problem, the “relaxed” problem may yield to
well-known solution methods. This constraint relaxation enlarges the constraint set, and so the solution
obtained may no longer be feasible in the original problem. However, the objective function value of the
solution boundsthe optimal objective function value of the original problem.

The @Q-value involves the quantity* ('), which can be viewed as the optimal objective function value
corresponding to some optimization problem. The method of relaxation, if applicable, gives rise to a bound
on V*(¥'), which then provides an approximation to tijevalue. For example, a relaxation of the original
POMDP may result in a bandit problem (see [36], [37]), or may be solvable via linear programming
(see [18], [19]). (See also specific applications to sensor management [10], [56].) In general, the quality
of this approximation is a function of the specific relaxation and is very problem specific. For example,
Castanon [10] suggests that in his setting his relaxation approach is feasible for generating near-optimal
solutions. Additionally, Washburn et al. [56] show that the performance of their index rule is eclipsed by
that of multi-step lookahead under certain conditions of the process noise, while being much closer in the
low-noise situation. While it is sometimes possible to apply analytical approaches to a relaxed version
of the problem, it is generally accepted that problems that can be posed as POMDPs are unlikely to be
amenable to analytical solution approaches.

Bounds on the optimal objective function value can also be obtained by approximating the state space.
Lovejoy [38] shows how to approximate the state space by a finite grid of points, and use that grid to
construct upper and lower bounds on the optimal objective function.

D. Heuristic Approximation

In some applications we are unable to comp@tealues directly, but can use domain knowledge to
develop an idea of its behavior. If so, we can heuristically constragffianction based on this knowledge.

Recall from (1) that the&)-value is the sum of two terms, where the first term (the immediate reward)
is usually easy to compute. Therefore, it often suffices to approximate only the second term in (1), which
is the mean optimal objective function value starting at the next belief state, which we cehkpbeted
value-to-go(EVTG). (Note the EVTG is a function of bothhand a, because the distribution of the next
belief state is a function df anda.) In some problems, it is possible to construct a heuristic EVTG based
on domain knowledge. If the constructed EVTG properly reflects tradeoffs in the selection of alternative
actions, then the ranking of these actions via tligivalues will result in the desired “lookahead.”

For example, consider the motivating example of tracking multiple targets with a single sensor. Suppose
we can only measure the location of one target per decision epoch. The problem then is to decide which
location to measure and the objective function is the aggregate (multi-target) tracking error. The terrain
over which the targets are moving is such that the measurement errors are highly location dependent,
for example because of the presence of topological features which cause some areas to be invisible fromr
a future sensor position. In this setting, it is intuitively clear that if we can predict sensor and target
motion so that we expect a target is about to be obscured, then we should focus our measurements on the
target immediately before the obscuration so that its track accuracy is improved and the overall tracking
performance maximized in light of the impending obscuration.

The same reasoning applies in a variety of other situations, including those where targets are predicted
to become unresolvable to the sensor (e.g., two targets that cross) or where the target and sensor motion i
such that future measurements are predicted to be less reliable (e.g., a bearings-only sensor that is movin
away from a target). In these situations, we advocate a heuristic method that replaces the EVTG by a

19

function that captures the long-term benefit of an action in terms of an “opportunity cost” or “regret.”
That is, we approximate th@-value as

Q(b,a) =~ r(b,a) +wN(b,a)

whereN (b, a) is an easily computed heuristic approximation of the long-term valueyaisda weighting

term that allows us to trade the influence of the immediate value and the long-term value. As a concrete
example of a useful heuristic, we have used the “gain in information for waiting” as a choi¥ébof)

[32]. Specifically, letg® denote the expected value of th&fyi divergence between the belief state at
time k£ and the updated belief state at tirheafter taking actior:, as defined in Section IlI-H (i.e., the
myopic information gain Note that this myopic information gain is a random variable whose distribution
depends omu, as explained in Section Ill-H. Let*(-) denote the distribution of this random variable.
Then a useful approximation of the long-term value of taking actiaa the gain (loss) in information
received by waiting until a future time step to take the action,

M
N(b.a) = Y 7"sgn(ds — o) Da (pa()lps ™ ()
m=1

where M is the number of time steps in the future that are considered.
Each term in the summand 6f(b,) has two components. Firsgn(gfj—g§+m) signifies if the expected
reward for taking actiom in the future is more or less than the present. A negative value implies that the
future is better and that the action ought to be discouraged at present. A positive value implies that the
future is worse and that the action ought to be encouraged at present. This may happen, for example, whel
the visibility of a given target is getting worse with time. The second teP(p’(-)||pf™(-)), reflects
the magnitude of the change in reward using the divergence between the density on myopic rewards at
the current time step and at a future time step. A small number implies the present and future rewards
are very similar, and therefore the nonmyopic term should have little impact on the decision making.
Therefore,N (b, a) is positive if an action is less favorable in the future (e.g., the target is about to
become obscured). This encourages taking actions that are beneficial in the long term, and not just taking
actions based on their immediate reward. Likewise, the term is negative if the action is more favorable in
the future (e.g., the target is about to emerge from an obscuration). This discourages taking actions now
that will have more value in the future.

E. Parametric Approximation

In situations where a heuristiQ-function is difficult to construct, we may consider methods where
the Q-function is approximated by a parametric function (by this we mean that we have a function
approximator parameterized by one or more parameters). Let us denote this approximatjoh &y
where? is a parameter (to be tuned appropriately). For this approach to be useful, the computation of
Q(b,0) has to be relatively simple, givel and 6. Typically, we seek approximations for which it is
easy to set the value of the paramefeappropriately, given some information of how tlgvalues
“should” behave (e.g., from expert knowledge, empirical results, simulation, or on-line observation). This
adjustment or tuning of the parameters calledtraining. In contrast to on-line approximation methods
discussed in this section, the training process in parametric approximation is often done off-line.

As in the heuristic approximation approach, the approximation of@Henction by the parametric
function approximator is usually accomplished by approximating the EVTG, or even directly approximat-
ing the objective functior/*.2 In the usual parametric approximation approach, the belief stadirst
mapped to a set deatures The features are then passed through a parametric function to approximate
V*(b). For example, in the problem of tracking multiple targets with a single sensor, we may extract
from the belief state some information on the location of each target relative to the sensor, taking into

2In fact, given a POMDP, th€)-value can be viewed as the objective function value for a related problem; see [4].

20

account the topology. These constitute features. For each target, we then assign a numerical value to thes
features, reflecting the measurement accuracy. Finally, we take a linear combination of these numerical
values, where the coefficients of this linear combination serve the role of the parameters to be tuned.

The parametric approximation method has some advantages over methods based only on heuristic
construction. First, the training process usually involves numerical optimization algorithms, and thus well-
established methodology can be brought to bear on the problem. Second, even if we lack immediate exper:
knowledge on our problem, we may be able to experiment with the system (e.g., by using a simulation
model). Such empirical output is useful for training the function approximator. Common training methods
found in the literature go by the names of reinforcement learrdparning, neurodynamic programming,
and approximate dynamic programming. We have more to say about reinforcement learning in the next
section.

The parametric approximation approach may be viewed as a systematic method to implement the
heuristic approach. But note that even in the parametric approach, some heuristics are still needed in the
choice of features and in the form of the function approximator. For further reading, see [4].

F. Reinforcement Learning

A popular method for approximating th@-function based on the parametric approximation approach
is reinforcement learningr Q-learning [57]. Recall that the)-function satisfies the equation

Q(b,a) =r(b,a) + E mgx@(b’,a)‘ b, a] . 2)

In Q-learning, theQ-function is estimated from multiple trajectories of the process. Assuming as usual
that the number of states and actions are finite, we can repr@sént) as a lookup table. In this case,
given an arbitrary initial value of)(b, a), the one-step)-learning algorithm [53] is given by the repeated
application of the update equation:

Qb,a) — (1= B)Q(ba) + B (r(b,a) + max Q¥ a)) 3)

where 3 is a parameter irf0, 1) representing a “learning rate,” and each of the 4-tugkes,t’,r} are
examples of states, actions, next states, and rewards incurred during the training phase. With enougf
examples of belief states and actions, pdunction can be “learned” via simulation or on-line.

Unfortunately, in most realistic problems (the problems considered in this paper included) it is infeasible
to represent thé)-function as a lookup table. This is either due to the large number of possible belief
states (our case), actions, or both. Therefore, as pointed out in the last section, function approximation
is required. A standard and simplest classbfunction approximators are linear combinations of basis
functions (also called features):

Q(b,a) = 0(a)" $(b), (4)

where ¢(b) is a feature vector (often constructed by a domain expert) associated withh siatk the
coefficients off(a) are to be estimated, i.e., the training data is used to learn the best approximation to
Q(b,a) among all linear combinations of the features. Gradient descent is used with the training data to
update the estimate @fa):

B(a) — 6(a) + 3 (r(b, a) + max Q¥ a') - Q(b, a)) VeQ(b, a)
—0(a) + 8 (r(b,a) + max0(a)) oK) — 0(a) T 6(b)) 4(0).

Note that we have taken advantage of the fact that for the case of a linear function approximator, the
gradient is given byWQ(b,a) = ¢(b). Hence, at every iteratiorfj(a) is updated in the direction that
minimizes the empirical error in (2). When a lookup table is used in (4), this algorithm reduces to
(3). Once the learning of the vecté(a) is completed, optimal actions can be computed according to

21

arg max, 0(a) " ¢(b). Determining the learning ratef) and the number of training episodes required is a
matter of active research.

Selecting a set of features that simultaneously provide both an adequate description of the belief state anc
a parsimonious representation of the state space requires domain knowledge. For the illustrative example
that we use in this paper (see Section IlI-H), the feature vettby should completely characterize the
surveillance region and capture its nonstationary nature. For consistency in comparison to other approaches
we appeal to features that are based on information theory, although this is simply one possible design
choice. In particular, we use the expected myopic information gain at the current time step and the expected
myopic information gain at the next time step as features which characterize the state. Specifically, let
r(b,a) = E[A.(b,a,y)|b,a] be defined as in Section Ill-H. Next, defibeto be the belief state at the
hypothetical “next” time step starting at the current belief stateomputed using the second of the
two-step update procedure in Section 1lI-B. In other wordds what results in the next step if only a
state transition takes place, without an update based on incorporating a measurement. Then, the featur
vector is

o) = [r(b,1),...,7(,C),r(¥,1),....,r(,C)]

where(' is the number of cells (and also the number of actions). In the situation of time-varying visibility,
these features capture the immediate value of various actions and allow the system to learn the long-term
value by looking at the change in immediate value of the actions over time. In a more general version
of this problem, actions might include more than just which cell to measure—for example, actions might
also involve which waveform to transmit. In these more general cases, the feature vector will be have
more components to account for the larger set of possible actions.

G. Action-Sequence Approximations
Let us write the value function (optimal objective function value as a function of belief state) as

V*(b) = max E [Z r (b, (b)) b, W(b)]

s
k=0

H-1
= max r(bg,ar)| b| , 5
[ao aH_lzak:ﬂ(bk)kZ:O (b k)] ()
where the notatiomax,,, . ., ,:.a,—=(»,) MEANS Maximization subject to the constraint that each aation
is a (fixed) function of the belief statg. If we relax this constraint on the actions and allow them to be
arbitrary random variables, then we have an upper bound on the value function:

b]_

In some applications, this upper bound provides a suitable approximation to the value function. The
advantage of this method is that in certain situations the computation of the “max” above involves solving
a relatively easy optimization problem. This method is calt@aisight optimizatiorj17], [59].

One implementation involves averaging over many Monte Carlo simulation runs to compute the
expectation above. In this case, the “max” is computed for each simulation run by first generating all the
random numbers for that run, and then applying a static optimization algorithm to compute optimal actions
ap,...,ag_1. It is easy now to see why we call the method “hindsight” optimization: the optimization of
the action sequence is done after knowing all uncertainties over time, as if making decisions in hindsight.

As an alternative to relaxing the constraint in (5) (that each actjois a fixed function of the belief
stateb;,), suppose we furtherestrict each action to be simply fixed (not random). This restriction gives
rise to a lower bound on the value function:

Vro(b) = max E[r(bo,ap) + -+ 7(bg—1,am-1)|b, a, .. .,ag_1].

gy GH 1

H-1
Vio(b) = E [max Z (i, ax)
k=0

aQ;..,AFH—1

22

To use analogous terminology to “hindsight optimization,” we call this metbagkight optimizatior-we
make decisions before seeing what actually happens, based on our expectation of what will happen. The
method is also calledpen loop feedback contr¢b]. For a tracking application of this, see [15].

We should also point out some alternatives to the simple hindsight or foresight approaches above. In
[60], more sophisticated bounds are described that do not involve simulation, but instead rely on convexity.
The method in [43] also does not involve simulation, but approximates the future belief-state evolution
using a single sample path.

H. Rollout

In this section, we describe the methodpalicy rollout (or simplyrollout) [7]. The basic idea is simple.
First letVV™(by) be the objective function value corresponding to poticyRecall thatV* = max, V™. In
the method of rollout, we assume that we have a candidate paolicy (called thebase policy, and we
simply replaceV* in (1) by V™= In other words, we use the following approximation to thevalue:

Q™==<(b,a) = r(b,a) + E[V™=(V')|b, al.

We can think ofl/ ™= as the performance of applying... in our system. In many situations of interest,
V7ease is relatively easy to compute, either analytically, numerically, or via Monte Carlo simulation.
It turns out that the policyr defined by

m(b) = arg maxQ™=<(b, a) (6)

is at least as good as,... (in terms of the objective function); in other words, this step of using one policy
to define another policy has the property mdlicy improvementThis result is the basis for a method
known aspolicy iteration where we iteratively apply the above policy-improvement step to generate a
sequence of policies converging to the optimal policy. However, policy iteration is difficult to apply in
problems with large belief-state spaces, because the approach entails explicitly representing a policy anc
iterating on it (remember that a policy is a mapping with the belief-state sBaa=its domain).

In the method of policy rollout, we do not explicitly construct the policyn (6). Instead, at each time
step, we use (6) to compute the output of the policy at the current belief-state. For example, the term
E[V7™e(0')|b,a] can be computed using Monte Carlo sampling. To see how this is done, observe that
Vmease () is simply the mean cumulative reward of applying poligy.., @ quantity that can be obtained by
Monte Carlo simulation. The term[E™== (V') |b, a] is the mean with respect to the random next belief-state
b’ (with distribution that depends ohanda), again obtainable via Monte Carlo simulation. We provide
more details in Section VI-J. In our subsequent discussion of rollout, we will focus on its implementation
using Monte Carlo simulation. For an application of the rollout method to sensor scheduling for target
tracking, see [22], [23], [27], [40], [41].

|. Parallel Rollout

An immediate extension to the method of rollout is to use multiple base policies. So suppose that
g = {x!,..., 7"} is a set of base policies. Then repldce in (1) by

~

V(b) = max VT(b).
We call this methodparallel rollout [12]. Notice that the larger the sétp, the tighterf/(b) becomes
as a bound orv*(b). Of course, ifllz contains the optimal policy, thelWw = V*. It follows from our
discussion of rollout that the policy improvement property also holds here. As with the rollout method,
parallel rollout can be implemented using Monte Carlo sampling.

23

Sensing System

Observables

1

1 1

! _ I

+»| Particle Action !
Measurements : Filter > Selector : Actions

1 Samples of 1

' unobservables !

Controller
Fig. 7. Basic control architecture with particle filtering.

Observables | o o o o o e o e o e
Candidate :
action :
Particle Simulator - Search 1
Filter — u »| Algorithm :
Samples of | Q-Value '

unobservables! === === === =-----—--——-————— -
Action Selector

Fig. 8. Components of the action selector.

J. Control Architecture in the Monte Carlo Case

The method of rollout provides a convenient turnkey (systematic) procedure for Monte-Carlo-based
decision making and control. Here, we specialize the general control architecture of Section V to the use
of particle filtering for belief-state updating and a Monte Carlo method Jeralue approximation (e.g.,
rollout). We note that there is increasing interest in Monte Carlo methods for solving Markov decision
processes [54], [11]. Particle filtering, which is a Monte Carlo sampling method for updating posterior
distributions, dovetails naturally with Monte Carlo methods @walue approximation. An advantage of
the Monte Carlo approach is that it does not rely on analytical tractability—it is straightforward in this
approach to incorporate sophisticated models for sensor characteristics and target dynamics.

Figure 7 shows the control architecture specialized to the Monte Carlo setting. In contrast to Figure 5,
a particle filter plays the role of the measurement filter, and its output consists of samples of the
unobservables. Figure 8 shows the action selector in this setting. Contrasting this with Figure 6, we
see that a Monte Carlo simulator plays the role of ¢h@alue approximator (e.g., via rollout). Search
algorithms that are suitable here include the method of [51], which is designed for such problems, dovetails
well with a simulation-based approach, and accommodates heuristics to guide the search within a rigorous
framework.

As a specific example, consider applying the method of rollout. In this case, the evaluation(pf the
value for any given candidate action relies on a simulation model of the sensing system with some base
policy. This simulation model is a “dynamic” model in that it evaluates the behavior of the sensing system
over some horizon of time (specified beforehand). The simulator requires as inputs the current observables
and samples of unobservables from the particle filter (to specify initial conditions) and a candidate action.
The output of the simulator is @-value corresponding to the current measurements and observables, for
the given candidate action. The output of the simulator represents the mean performance of applying the
base policy, depending on the nature of the objective function. For example, the performance measure of

24

the system may be the negative mean of the sum of the cumulative tracking error and the sensor usage
cost over a horizon off time steps, given the current system state and candidate action.

To elaborate on exactly how th@-value approximation using rollout is implemented, suppose we are
given the current observables and a set of samples of the unobservables (from the particle filter). The
current observables together with a single sample of unobservables represent a candidate current underlyin
state of the sensing system. Starting from this candidate current state, we simulate the application of the
given candidate action (which then leads to a random next state), followed by application of the base
policy for the remainder of the time horizon—during this time horizon, the system state evolves according
to the dynamics of the sensing system as encoded within the simulation model. For this single simulation
run, we compute the “action utility” of the system (e.g., the negative of the sum of the cumulative tracking
error and sensor usage cost over that simulation run). We do this for each sample of the unobservables
and then average over the performance values from these multiple simulation runs. This average is what
we output as thé&)-value.

The samples of the unobservables from the patrticle filter that are fed to the simulator (as candidate
initial conditions for unobservables) may include all the particles in the particle filter (so that there is one
simulation run per particle), or may constitute only a subset of the particles. In principle, we may even
run multiple simulation runs per particle.

The above Monte Carlo method for approximating POMDP solutions has some beneficial features. First,
it is flexible in that a variety of adaptive sensing scenarios can be tackled using the same framework. This
is important because of the wide variety of sensors encountered in practice. Second, the method does no
require analytical tractability; in principle, it is sufficient to simulate a system component, whether or not
its characteristics are amenable to analysis. Third, the framework is modular in the sense that models of
individual system components (e.g., sensor types, target motion) may be treated as “plug-in” modules.
Fourth, the approach integrates naturally with existing simulators (e.g., Umbra [20]). Finally, the approach
is inherently nonmyopic, allowing the tradeoff of short-term gains for long-term rewards.

K. Belief-State Simplification

If we apply the method of rollout to a POMDP, we need a base policy that maps belief states to actions.
Moreover, we need to simulate the performance of this policy—in particular, we have to sample future
belief states as the system evolves in response to actions resulting from this policy. Because belief states
are probability distributions, keeping track of them in a simulation is burdensome.

A variety of methods are available to approximate the belief state. For example, we could simulate
a patrticle filter to approximate the evolution of the belief state (as described previously), but even this
may be unduly burdensome. As a further simplification, we could use a Gaussian approximation and keep
track only of the mean and covariance of the belief state using a Kalman filter or any of its extensions,
including extended Kalman filterandunscented Kalman filted26]. Naturally, we would expect that the
more accurate the approximation of the belief state, the more burdensome the computation.

An extreme special case of the above tradeoff is to use a Dirac delta distribution for belief states in
our simulation of the future. In other words, in our lookahead simulation, we do away with keeping track
of belief states altogether and instead simulate ontyompletely observableersion of the system. In
this case, we need only consider a base policy that maps underlying states to actions—we could simply
apply rollout to this policy, and not have to maintain any belief states in our simulation. Call this method
completely observable (CO) rollaut turns out that in certain applications, such as in sensor scheduling
for target tracking, a CO-rollout base policy is naturally available (see [22], [23], [27], [40], [41]). Note
that we will still need to keep track of (or estimate) the actual belief state of the system, even if we use
CO rollout. The benefit of CO rollout is that it allows us to avoid keeping track of (simulated) belief
states in ousimulationof the future evolution of the system.

In designing lookahead methods with a simplified belief state, we must ensure the simplification does
not hide the good or bad effects of actions. The resultirgalue approximation must properly rank

25

current actions. This requires a carefully designed simplification of the belief state together with a base
policy that appropriately reflects the effects of taking specific current actions.

For example, suppose that a particular current action results in poor future rewards because it leads to
belief states with large variances. Then, if we use the method of CO rollout, we have to be careful to
ensure that this detrimental effect of the particular current action be reflected as a cost in the lookahead.
(Otherwise, the effect would not be accounted for properly, because in CO rollout we do not keep track
of belief states in our simulation of the future effect of current actions.)

Another caveat in the use of simplified belief states in our lookahead is that the resulting rewards in the
lookahead may also be affected (and this may have to be taken into account). For example, consider agair
the problem of sensor scheduling for target tracking, where the per-step reward is the negative mean of
the sum of the tracking error and the sensor usage cost. Suppose that we use a particle filter for tracking
(i.e., for keeping track of the actual belief state). However, for our lookahead, we use a Kalman filter to
keep track of future belief states in our rollout simulation. In general, the tracking error associated with
the Kalman filter is different from that of the particle filter. Therefore, when summed with the sensor
usage cost, the relative contribution of the tracking error to the overall reward will be different for the
Kalman filter compared to the patrticle filter. To account for this, we will need to scale the tracking error
(or sensor usage cost) in our simulation so that the effect of current actions are properly reflected in the
@-value approximations from the rollout with the simplified belief state calculation.

L. Reward Surrogation

In applying a POMDP approximation method, it is often useful to substitute the reward function for
an alternative gurrogatg, for a number of reasons. First, we may have a surrogate reward that is much
simpler (or more reliable) to calculate than the actual reward (e.g., the method of reduction to classification
[8], [9]). Second, it may be desirable to have a single surrogate reward for a range of different actual
rewards. For example, [34], [24] shows that averag@ayR information gain can be interpreted as a near
universal proxy for any bounded performance metric. Third, reward surrogation may be necessitated by
the use of a belief-state simplification technique. For example, if we use a Kalman filter to update the
mean and covariance of the belief state, then the reward can only be calculated using these entities.

The use of a surrogate reward can lead to many benefits. But some care must be taken in the desigr
of a suitable surrogate reward. Most important is that the surrogate reward be sufficiently reflective of
the true reward that the ranking of actions with respect to the approxi@at@ues be preserved. A
superficially benign substitution may in fact have unanticipated but significant impact on the ranking of
actions. For example, recall the example raised in the previous section on belief-state simplification, where
we substitute the tracking error of a particle filter for the tracking error of a Kalman filter. Superficially,
this substitute appears to be hardly a “surrogate” at all. However, as pointed out before, the tracking error
of the Kalman filter may be significantly different in magnitude from that of a patrticle filter.

VIl. | LLUSTRATION: SPATIALLY ADAPTIVE AIRBORNE SENSING

In this section, we illustrate the performance of several of the strategies discussed in this paper on a
common model problem. The model problem has been chosen to have the characteristics of the motivating
example given earlier, while remaining simple enough so that the workings of each method are transparent.

In the model problem, there are two targets, each of which is described by a one-dimensional position
(see Figure 9). The state is therefore a 2-dimensional real number describing the target locations plus
the sensor position, as described in Section IllI-H. Targets move according to a pure diffusion model
(given explicitly in Section -H aslyingle target (¥|)), @and the belief state is propagated using this model.
Computationally, the belief state is estimated by a multi-target particle filter, according to the algorithm
given in [35].

The sensor may measure any onel6fcells, which span the possible target locations (again, see
Figure 9). The sensor is capable of making three (not necessarily distinct) measurements per time step

26

receiving binary returns independent from dwell to dwell. The three measurements are fused sequentially:
after each measurement, we update the belief state by incorporating the measurement using Bayes’ rule
as discussed in Section 1lI-B. In occupied cells, a detection is received with probdhikty0.9. In cells

that are unoccupied a detection is received with probabfity(set here ab.01). This sensor model is

given explicitly in Section IlI-H byP,s(z|z, a).

At the onset, positions of the targets are known only probabilistically. The belief state for the first
target is uniform across sensor cefts, ..., 6} and for the second target is uniform across sensor cells
{11,...,15}. The particle filter used to estimate the belief state is initialized with this uncertainty.

Visibility of the cells changes with time as in the motivating example of Section IlI-H. At time
all cells are visible. At timeg, 3, and4, cells {11,...,15} become obscured. At timg, all cells are
visible again. This time varying visibility map is known to the sensor management algorithm and should
be exploited to best choose sensing actions.

Cell 1| Cell2[Cell3[Cell4| Cell5]| Cell 6| Cell 7| Cell 8] Cell 9|Cell 10[Cell 11[Cell 12[Cell 13|Cell 14|Cell 15|Cell 16|
Time 1 X X

Time 2
Time 3
Time 4
Time 5

b

Fig. 9. The model problem. At the onset, the belief state for target 1 is uniformly distributed acros§2¢ells, 6} and the belief state
for target 2 is uniformly distributed across cefl$1,...,15}. At time 1 all cells are visible. At times 2, 3, and 4, ce{lsl,...,15} are
obscured. This is a simple case where a target is initially visible, becomes obscured, and then reemerges.

Sensor management decisions are made by using the belief state to predict which actions are mosi
valuable. In the following paragraphs, we contrast the decisions made by a number of different strategies
that have been described earlier.

At time 1 a myopic strategy, using no information about the future visibility, will choose to measure
cells uniformly from the sef2,...,6} U {11,...,15} as they all have the same expected immediate
reward. As a result, target 1 and targewill on the average be given equal attention. A nonmyopic
strategy, on the other hand, will choose to measure cells from. .., 15} as they are soon to become
obscured. That is, the policy of looking for targett time 1 followed by looking for targetl is best.

Figure 10 shows the performance of several of the on-line strategies discussed in this paper on this
common model problem. The performance of each scheduling strategy is measured in terms of the mear
squared tracking error at each time step. The curves represent averagd$,0verrealizations of the
model problem. Each realization has randomly chosen initial positions of the targets and measurements
corrupted by random mistakes as discussed above. The five policies are as follows.

« A random policy that simply chooses one of the 16 cells randomly for interrogation. This policy
provides a worst-case performance and will bound the performance of the other policies.

« A myopic policy that takes the action expected to maximize immediate reward. Here the surrogate
reward is myopic information gain as defined in Section VI-D, measured in terms of the expected
Rényi divergence withh = 0.5 (see [34]). So the value of an action is estimated by the amount of
information it gains. The myopic policy is sub-optimal because it does not consider the long term
ramifications of its choices. In particular, at time 1 the myopic strategy has no preference as to which
target to measure because both are unobscured and have uncertain position. Therefore, half of the
time, target 1 is measured, resulting in an opportunity cost because target 2 is about to disappear.

« Thereinforcement learning approach described in Section VI-F. Tgefunction was learned using
a linear function approximator, as described in detail in Section VI-F, by running a large number
(10°) of sample vignettes. Each sample vignette proceeds as follows. An action is taken randomly.
The resulting immediate gain (as measured by the expected information gain) is recorded and the
resulting next-state computed. This next-state is used to predict the long-term gain using the currently
available@-function. The@-function is then refined given this information (in practice this is done
in blocks of many vignettes, but the principle is the same). Training(lHfanction is a very time

27

consuming process. In this case, for each oflfitfesample vignettes, the problem was simulated from
beginning to end, and the state and reward variables were saved along the way. It is also unclear as
to how the performance of the trainégtfunction will change if the problem is perturbed. However,

with these caveats in mind, once tefunction has been learned, decision making is very quick and

the resulting policy in this case is very good.

« Theheuristic EVTG approximation described in Section VI-D favors actions expected to be more
valuable now than in the future. In particular, actions corresponding to measuring target 2 have
additional value because target 2 is predicted to be obscured in the future. This makes the ranking of
actions that measure target 2 higher than those that measure target 1. Therefore, this policy (like the
other nonmyopic approximations described here) outperforms the myopic policy. The computational
burden is on the order aoff times the myopic policy, wheré/ is the horizon length.

« Therollout policy described in Section VI-H. The base policy used here is to take each of the three
measurements sequentially at the location where the target is expected to be, which is a function of
the belief state that is current to the particular measurement. This expectation is computed using the
predicted future belief state, which requires the belief state to be propagated in time. This is done
using a particle filter. We again use information gain as the surrogate reward to approgiviaiees.

The computational burden of this method is on the ordeNd{ times that of the myopic policy,
where H is the horizon length and/ is the number of Monte Carlo trials used in the approximation
(hereH =5 and N = 25).

« Thecompletely observable rolloutpolicy described in Section VI-K. As in the rollout policy above,
the base policy here is to take measurements sequentially at locations where the target is expected tc
be, but enforces the criterion that the sensor should alternate looking at the two targets. This slight
modification is necessary due to the delta-function representation of future belief states. Since the
completely observable policy does not predict the posterior into the future, it is significantly faster
than standard rollout (an order of magnitude faster in these simulations). However, it requires a
different surrogate reward (one that does not require the posterior like the information gain surrogate
metric). Here we have chosen as a surrogate reward to count the number of detections received,
discounting multiple detections of the same target.

Our main intent here is simply to convey that, from Figure 10, the nonmyopic policies perform similarly,
and are better than the myopic and random policies, though at the cost of additional computational burden.
The nonmyopic techniques perform similarly since they ultimately choose similar policies. Each one
prioritizes measuring the target that is about to dissapear over the target that is in the clear. On the other
hand, the myopic policy is “losing” the target more often, resulting in higher mean error as there are more
catastrophic events.

VIII. | LLUSTRATION: MULTI-MODE ADAPTIVE AIRBORNE SENSING

In this section, we turn our attention to adaptive sensing with a waveform-agile sensor. In particular,
we investigate how the availability of multiple waveform choices effects the myopic/nonmyopic trade.
The model problem considered here again focuses on detection and tracking in a visibility impaired
environment. The target dynamics, belief-state update, and observation law are identical to that described
in the first simulation. However, in this section we look at a sensor that is agile over waveform as
well as pointing direction (i.e., can choose both where to interrogate as well as what waveform to use).
Furthermore, the different waveforms are subject to different (time-varying) visibility maps. Simulations
show that the addition of waveform agility (and corresponding visibility differences) changes the picture.
In this section, we restrict our attention to the EVTG heuristic for approximate nonmyopic planning.
Earlier simulations have shown that in model problems of this type, the various approaches presented
here perform similarly.

28

==+ Random Policy

------ Myopic Policy

— Rollout

35k o —— Completely Observable Rollout
Ses == Heruistic EVTG Approximation
== Q-learning

-~
L.
-
-
~ -

N
3}

Tracking Error
N

Fig. 10. The performance of the five policies discussed above. Performance is measured in terms of mean squared tracking error at eact
time step, averaged overl®* Monte Carlo trials.

A. A Study with a Single Waveform

We first present a baseline result comparing random, myopic, and heuristic EVTG (HECTG) approxima-
tion based performance in the (modified) model problem. The model problem again covers a surveillance
area broken into 16 regions with a target that is to be detected and tracked. The single target moves
according to a purely diffusive model, and the belief state is propagated using this model. However, in
this simulation the model problem is modified in that there is only one sensor allocation per time step
and the detection characteristics are severely degraded. The region is occluded by a time-varying visibility
map that obscures certain sub-regions at each time step, degrading sensor effectiveness in those regior
at that time step. The visibility map is known exac#ypriori and can be used both to predict which
portions of the region are useless to interrogate at the present time (because of current occlusion) anc
to predict which regions will be occluded in the future. The sensor management choice in the case of a
single waveform is to select the pointing direction (one of the 16 sub-regions) to interrogate. If a target
is present and the sub-region is not occluded, the sensor reports a detectign withb. If the target
is not present or the sub-region is occluded the sensor reports a detectiopy witi)1.

Both the myopic and nonmyopic information based methods discount the value of looking at occluded
sub-regions. Prediction of myopic information gain uses visibility maps to determine that interrogating
an occluded cell provides no information because the outcome is certain (it follows the false alarm
distribution). However, the nonmyopic strategy goes further: It uses future visibility maps to predict
which sub-regions will be occluded in the future and gives higher priority to their interrogation at present.

The simulation results shown in Figure 11 indicate that the HEVTG approximation to the nonmyopic
scheduler provides substantial performance improvement with respect to a myopic policy in the single
waveform model problem. The gain in performance for the policy that looks ahead is primarily ascribable to
the following. It is important to promote interrogation of sub-regions that are about to become occluded
over those that will remain visible. If a sub-region is not measured and then becomes occluded, the
opportunity to determine target presence in that region is lost until the region becomes visible again. This
opportunity cost is captured in the HEVTG approximation as it predicts which actions will have less value
in the future and promotes them at the present. The myopic policy merely looks at the current situation
and takes the action with maximal immediate gain. As a result of this greediness, it misses opportunities

29

100

90+]
80r]
ge]
c =
>
RS,
D 60F 0000 /) aememesssscsssssssss .-
2
S i
w0
T gl A]
© |
S
—HEVTG
= = =Myopic
----- Random
O 1 1 1 I
0 20 40 60 80 100

Time Tick

Fig. 11. Performance of the scheduling policies with a pointing-agile single waveform sensor.

that have long term benefit. As a result of this greediness, the myopic policy may outperform the HEVTG
in the short term but ultimately underperforms.

B. A Study with Multiple Independent Waveforms

This subsection explores the effect of multiple waveforms on the nonmyopic/myopic trade. We consider
multiple independentwaveforms, where independent means the time-varying visibility maps for the
different waveforms are not coupled in any way. This assumption is relaxed in the following subsection.

Each waveform has an associated time-varying visibility map drawn independently from the others.
The sensor management problem is one of selecting both pointing direction and the waveform. All
other simulation parameters are set identically to the previous simulation (i.e., detection and false alarm
probabilities, and target kinematics). Figure 12 shows performance curves for two and five independent
waveforms. In comparison to the single waveform simulation, these simulations (a) have improved overall
performance, and (b) have a narrowed gap in performance between nonmyopic and myopic schedulers.

Figure 13 provides simulation results as the number of waveforms available is varied. These results
indicate that as the number of independent waveforms available to the scheduler increase, the performanc:
difference between a myopic policy and a nonmyopic policy narrows. This is largely due to the softened
opportunity cost the myopic policy suffers. In the single waveform situation, if a region became occluded
it could not be observed until the visibility for the single waveform changed. This puts a sharp penalty
on a myopic policy. However, in the multiple independent waveform scenario, the penalty for myopic
decision making is much less severe. In particular, if a region becomes occluded in wavatasntikely
that some other waveform is still viable (i.e., the region is unoccluded to that waveform) and a myopic
policy suffers little loss. As the number of independent waveforms available to the sensor increases, this
effect is magnified until there is essentially no difference in the two policies.

C. A Study with Multiple Coupled Waveforms

A more realistic multiple waveform scenario is one in which the visibility occlusions between waveforms
are highly coupled. Consider the case where a platform may choose between the following 5 waveforms

30

100
901

)

S 9l =090 foemmmmemsmsmsmsmssmssssss====

>

o

©

2

S

®

g

S

BN
—HEVTG
= = =Myopic |
- Random

00 20 40 60 80 100
Time Tick
100

)

o=

>

o

©

2

S

®

g

S

BN
—HEVTG
= = =Myopic |
- Random

00 20 40 60 80 100

Time Tick

Fig. 12. Top: Performance of the strategies with a two-waveform sensor. Bottom: Performance curves with a five-waveform sensor.

(modalities) for interrogation of a region: electro-optical (EO), infra-red (IR), synthetic aperture radar
(SAR), foliage penetrating radar (FOPEN), and moving target indication radar (MTI). In this situation,
the visibility maps for the 5 waveforms are highly coupled through the environmental conditions (ECs)
present in the region. For example, clouds effect the visibility of both EO and IR. Similarly, tree cover
effects the performance of all modes except FOPEN, and so on.

Therefore, a more realistic study of multiple waveform performance is to model the time-varying nature
of a collection of environmental conditions and generate the (now coupled) waveform visibility maps from
the ECs. For this simulation study, we choose the nominal causation map shown in Figure 14(L).

The time-varying maps of each EC are chosen to resemble a passover, where for example the initial
cloud map is chosen randomly and then it moves at a random orientation and random velocity through
the region over the simulation time. The waveform visibility maps are then formed by considering all
obscuring ECs and choosing the maximum obscuration. This setup results in fewer than five independent
waveforms available to the sensor because the viability maps are coupled through the ECs.

Figure 14 (right) shows a simulation result of the performance for a five waveform sensor. The simulation
shows the gap between the myopic policy and the nonmyopic policy widens from where it was in the

31

©
o
T
1
1
)
1
)
1
|

D (o] ~ ~ (o] [0¢]
o (8, o a1 o al
w T T T T T

~
~
~
-
A}
.
A}
.

1

1
1

| | | | | |

[(6)]
(8]
T

|

| =——HEVIG|]
== = MYOPIC | e
Lo Random i

2 3 4 5 6 7 8 9 10
Number of (independent) waveforms

O
c
=]
@]

2

=
>

=
0
N
Q
O
o ’
>
%)

—
[0)
(<]
S
]
S

K2
]

=
=

S

(&)
o

I
(6]

—_

12

1.18

1.16

1.14

1.12

11

1.08

1.06

Nonmyopic gain relative to myopic

1 2 3 4 5 6 7 8 9 10
Number of (independent) waveforms

Fig. 13. Top: The terminal performance of the scheduling algorithms versus number of waveforms. Bottom: The gain (performance
improvement) of the nonmyopic policy with respect to the myopic policy.

independent waveform simulation. In fact, in this scenario, the 5 dependent waveforms have performance
characteristics that are similar to 2 independent waveforms, as measured by the ratio of nonmyopic
scheduler performance to myopic scheduler performance. Figure 15 illustrates the difference among the
three policies being compared here, highlighting the “lookahead” property of the nhonmyopic scheme.

IX. CONCLUSIONS

This paper has presented methods for adaptive sensing based on approximations for partially observable
Markov decision processes, a special class of discrete event system models. Though we have nof
specifically highlighted the event-driven nature of these models, our framework is equally applicable
to models that are more appropriately viewed as event driven. The methods have been illustrated on the
problem of waveform-agile sensing, wherein it has been shown that intelligently selecting waveforms based
on past outcomes provides significant benefit over naive methods. We have highlighted, via simulation,
computationally approaches based on rollout and a particular heuristic related to information gain. We
have detailed some of the design choices that go into finding appropriate approximations, including choice

32

Cloud | Rain| Wind | Fog | Foliage
EO X X X X X
SAR X X
FOPEN X X
IR X X X X
GMTI X X
100
90}
80}
©
2
g ____________________________
8
k%)
g
5
X
—HEVTG |
= ==Myopic |
- Random
% 20 40 60 80 100
Time Tick

Fig. 14. Top: EC Causation map. Bottom: Performance of the scheduling strategies with a pointing-agile five waveform sensor, where the
visibility maps are coupled through the presence of environmental conditions.

of surrogate reward and belief-state representation.

Throughout this paper we have taken special care to emphasize the limitations of the methods. Broadly
speaking, all tractable methods require domain knowledge in the design process. Rollout methods require
a base policy specially designed for the problem at hand; relaxation methods require one to identify the
proper constraint(s) to remove; heuristic approximations require identification of appropriate value-to-
go approximations, and so on. That being said, when domain knowledge is available it can often yield
dramatic improvement in system performance over traditional methods at a fixed computational cost.
Formulating a problem as a POMDP itself poses a number of challenges. For example, it might not be
straightforward to cast the optimization objective of the problem into an expected cumulative reward (with
stagewise additivity).

A number of extensions to the basic POMDP framework are possible. First, of particular interest to
discrete event systems is the possibility of event-driven sensing, where actions are taken only after some
event occurs or some condition is met. In this case, the state evolution is more appropriately modeled as
a semi-Markov process (though with some manipulation it can be converted into an equivalent standard
Markovian model) [55, Ch. 7]. A second extension is to incorporate explicit constraints into the decision-
making framework [1], [13], [62].

Fig. 15.

33

Waveform 1 Waveform 2 Waveform 3

Time k

Time k+1

Time k+2

Three time steps from a three waveform simulation. Obscured areas are shown with filled black squares and unobscured areas

are white. The true target position is shown by an asterisk for reference. The decisions (waveform choice and pointing direction) are shown
with solid-bordered squares (myopic policy) and dashed-bordered squares (nonmyopic policy). This illustrates “lookahead,” where regions

that are about to be obscured are measured preferentially by the nonmyopic policy.

(1]
(2]

(3]
(4]
(5]
(6]
(7]
(8]
&)
[10]
[11]
[12]
[13]

[14]
[15]

[16]
[17]

(18]

REFERENCES

E. Altman, Constrained Markov Decision Processé&shapman and Hall/CRC, 1998.

R. Bartels, S. Backus, E. Zeek, L. Misoguti, G. Vdovin, I. P. Christov, M. M. Murnane, and H. C. Kapteyn, “Shaped-pulse optimization
of coherent soft X-rays,Nature vol. 406, pp. 164-166, 2000.

R. Bellman,Dynamic ProgrammingPrinceton, NJ: Princeton Univ. Press, 1957.

D. P. Bertsekas and J. N. Tsitsiklisleuro-Dynamic ProgrammindBelmont, MA: Athena Scientific, 1996.

D. P. Bertsekas, “Dynamic programming and suboptimal control: A survey from ADP to MP@tdo. Joint 44th IEEE Conf. on
Decision and Control and European Control Corfeville, Spain, December 12-15, 2005.

D. P. BertsekasDynamic Programming and Optimal Contrdelmont, MA: Athena Scientific, Vol. I, 3rd Ed., 2005; Vol. I, 3rd Ed.,
2007.

D. P. Bertsekas and D. A. Castanon, “Rollout algorithms for stochastic scheduling problexnsyal of Heuristicsvol. 5, pp. 89-108,

1999.

D. Blatt and A. O. Hero lll, “From weighted classification to policy search,’Aidvances in Neural Information Processing Systems
(NIPS) 18 2006, pp. 139-146.

D. Blatt and A. O. Hero lll, “Optimal sensor scheduling via classification reduction of policy search (CROPBJddnint. Conf. on
Automated Planning and Scheduling (ICAP2)06.

D. Castanon,“Approximate dynamic programming for sensor managenfeat’ 36th IEEE Conf. on Decision and Contr8an Diego,
December 1997, pp. 1202-1207.

H. S. Chang, M. C. Fu, J. Hu, and S. |. Marc&mulation-based Algorithms for Markov Decision Proces&winger series in
Communications and Control Engineering, 2007.

H. S. Chang, R. L. Givan, and E. K. P. Chong, “Parallel rollout for online solution of partially observable Markov decision processes,”
Discrete Event Dynamic Systenwsl. 14, no. 3, pp. 309-341, 2004.

R. C. Chen and K. Wagner, “Constrained partially observed Markov decision processes for adaptive waveform schedBliog,” in

Int. Conf. on Electromagnetics in Advanced Applicatioharino, September 17-21, 2007, pp. 454-463.

H. T. Cheng Algorithms for Partially Observable Markov Decision Procesd@isD dissertation, University of British Columbia, 1988.

A. Chhetri, D. Morrell, and A. Papandreou-Suppappola, “Efficient search strategies for non-myopic sensor scheduling in target tracking,”
Asilomar Conf. on Signals, Systems, and Computéeyember 2004.

E. Cinlar, Introduction to Stochastic Processdanglewood Cliffs, NJ: Prentice-Hall, 1975.

E. K. P. Chong, R. L. Givan, and H. S. Chang, “A framework for simulation-based network control via hindsight optimiz2itomm,”

39th IEEE Conf. on Decision and Conty@ydney, Australia, Dec. 12-15, 2000, pp. 1433-1438.

D. P. de Farias and B. Van Roy. “The linear programming approach to approximate dynamic progran@pieigtions Research
vol. 51, no. 6, pp. 850-865, 2003.

[19]
[20]
[21]
[22]
(23]

[24]
[25]

[26]
[27]
(28]
[29]
[30]
[31]
[32]
[33]
[34]
[35]
[36]
[37]
(38]
[39]
[40]
[41]
[42]
[43]
[44]

[45]
[46]

[47]
[48]

[49]
[50]
[51]

[52]

34

D. P. de Farias and B. Van Roy, “On constraint sampling in the linear programming approach to approximate dynamic programming,”
Mathematics of Operations Reseaysiol. 29, no. 3, pp. 462—478, August 2004.

E. Gottlieb and R. Harrigan, “The Umbra Simulation Framework,” Sandia Tech. Report SAND2001-1533 (Unlimited Release), June
2001.

J. A. GubnerProbability and Random Processes for Electrical and Computer Engindlens York, NY: Cambridge University Press,
2006.

Y. He and E. K. P. Chong, “Sensor scheduling for target tracking in sensor networkBfom 43rd IEEE Conf. on Decision and
Control (CDC’04) December 14-17, 2004, pp. 743—-748.

Y. He and E. K. P. Chong, “Sensor scheduling for target tracking: A Monte Carlo sampling apprDagitg! Signal Processingvol.

16, no. 5, pp. 533-545, September 2006.

A. Hero, D. Castanon, D. Cochran, and K. Kastella, EBsundations and Applications of Sensor Managem8ptinger, 2008.

S. Ji, R. Parr, and L. Carin, “Nonmyopic multiaspect sensing with partially observable Markov decision pro¢Egfegrans. Signal
Processingvol. 55, no. 6, Part 1, pp. 2720-2730, June 2007.

S. Julier and J. Uhlmann, “Unscented filtering and nonlinear estimatimg. IEEE vol. 92, no. 3, pp. 401-422, March 2004.

L. W. Krakow, Y. Li, E. K. P. Chong, K. N. Groom, J. Harrington, and B. Rigdon, “Control of perimeter surveillance wireless sensor
networks via partially observable Markov decision processPiioc. 2006 IEEE Int. Carnahan Conf. on Security Technology (ICCST)
Lexington, Kentucky, October 17—20, 2006.

M. J. Kearns, Y. Mansour, and A. Y. Ng, “A sparse sampling algorithm for near-optimal planning in large Markov decision processes,”
Proc. 16th Int. Joint Conf. on Artificial Intelligencd999, pp. 1324-1331.

L. P. Kaelbling, M. L. Littman and A. W. Moore, “Reinforcement learning: A survelgurnal of Artificial Intelligence Research

vol. 4, pp. 237-285, 1996.

L. P. Kaelbling, M. L. Littman and A. R. Cassandra, “Planning and acting in partially observable stochastic domwifisial
Intelligence vol. 101, pp. 99-134, 1998.

C. M. Kreucher, D. Blatt, A. O. Hero Ill, and K. Kastella, “Adaptive multi-modality sensor scheduling for detection and tracking of
smart targets,Digital Signal Processing2006.

C. M. Kreucher, A. O. Hero, K. Kastella, and D. Chang, “Efficient methods of non-myopic sensor management for multitarget tracking,”
in Proc. 43rd IEEE Conf. on Decision and Control (CDC’'04)ecember 14-17, 2004.

C. M. Kreucher, A. Hero, and K. Kastella, “A Comparison of task driven and information driven sensor management for target tracking,”
in Proc. 44th IEEE Conf. on Decision and Control (CDC'0B®ecember 12-15, 2005.

C. M. Kreucher, K. Kastella, and A. O. Hero lll, “Sensor management using an active sensing appBigwehl,"Processingvol. 85,

no. 3, pp. 607-624, March 2005.

C. M. Kreucher, K. Kastella, and A. O. Hero llI, “Multitarget tracking using the joint multitarget probability denkyE Transactions

on Aerospace and Electronic Systemal. 41, no. 4, pp. 1396-1414, October 2005.

V. Krishnamurthy and R. J. Evans, “Hidden Markov model multiarm bandits: A methodology for beam scheduling in multitarget
tracking,” IEEE Transactions on Signal Processingl. 49, no. 12, pp. 2893-2908, December 2001.

V. Krishnamurthy, “Emission management for low probability intercept sensors in network centric walEEE" Transactions on
Aerospace and Electronic Systemsl. 41, no. 1, pp. 133-151, January 2005.

W. S. Lovejoy, “Computationally feasible bounds for partially observed Markov decision proce€gegations Researchsol. 39,

pp. 162-175, 1991.

W. S. Lovejoy, “A survey of algorithmic methods for partially observed Markov decision procegsassls of Operations Research

vol. 28, no. 1, pp. 47-65, December 1991.

Y. Li, L. W. Krakow, E. K. P. Chong, and K. N. Groom, “Dynamic sensor management for multisensor multitarget traé&ing,”

40th Annual Conf. on Information Sciences and Systériaceton, New Jersey, March 22—-24, 2006 pp. 1397-1402.

Y. Li, L. W. Krakow, E. K. P. Chong, and K. N. Groom, “Approximate stochastic dynamic programming for sensor scheduling to track
multiple targets,’Digital Signal Processing2007, in press. doi:10.1016/j.dsp.2007.05.004

S. P. Meyn and R. L. Tweedi&jarkov Chains and Stochastic Stabilityondon: Springer-Verlag, 1993.

S. A. Miller, Z. A. Harris, and E. K. P. Chong, “A POMDP framework for coordinated guidance of autonomous UAVs for multitarget
tracking,” EURASIP Journal on Applied Signal Processisgecial issue olignal Processing Advances in Robots and Autonamy
press, to appear 2009.

L. S. Pontryagin, V.G. Boltyansky, R.V. Gamkrelidze, and E. F. Mishchefike Mathematical Theory of Optimal Processigw

York: Wiley, 1962.

W. B. Powell, Approximate Dynamic Programming: Solving the Curses of Dimension&lgw York: Wiley-Interscience, 2007.

B. Ristic, S. Arulampalam, and N. GorddBeyond the Kalman Filter: Particle Filters for Tracking Applicatioméorwood, MA: Artech
House, 2004.

S. M. Ross Applied Probability Models with Optimization Applicatioridew York, NY: Dover Publications, 1970.

N. Roy, G. Gordon, and S. Thrun, “Finding approximate POMDP solutions through belief compredsignal of Artificial Intelligence
Researchvol. 23, pp. 1-40, 2005.

J. Rust, “Using randomization to break the curse of dimensionalygnometricavo. 65, no. 3, pp. 487-516, May 1997.

W. R. Scott, Jr., K. Kim, G. D. Larson, A. C. Gurbuz, and J. H. McClellan, “Combined seismic, radar, and induction sensor for
landmine detection,” inProc. 2004 Int. IEEE Geoscience and Remote Sensing Sympo&nshorage, Alaska, September 20-24,
2004, pp. 1613-1616.

L. Shi and C.-H. Chen, “A new algorithm for stochastic discrete resource allocation optimizdlisofete Event Dynamic Systems

vol. 10, pp. 271-294, 2000.

R. D. Smallwood and E. J. Sondik, “The optimal control of partially observable Markov processes over a finite h@penations
Researchvol. 21, pp. 1071-1088, no. 5, 1973.

[53]
[54]
[55]
[56]

[57]
[58]

[59]
[60]
[61]

[62]

35

R. S. Sutton and A. G. Bart&keinforcement LearningvIT Press, 1998.

S. Thrun, W. Burgard and D. FoRrobabilistic RoboticsCambridge, MA: The MIT Press, 2005.

H. C. Tijms, A First Course in Stochastic Modelslew York: Wiley, 2003.

R. Washburn, M. Schneider, and J. Fox. “Stochastic dynamic programming based approaches to sensor resource mastagemment,”
Conf. on Information Fusign2002.

C. J. C. H. Watkins, “Learning from Delayed Rewards,” Ph.D. dissertation, King’s College, University of Cambridge, England 1989.
J. C. Willems, “1969: The birth of optimal control,” iRroc. 35th IEEE Conf. on Decision and Control (CDC'96)ecember 1996,

pp. 1586-1587.

G. Wu, E. K. P. Chong, and R. L. Givan, “Burst-level congestion control using hindsight optimizdf#E’ Transactions on Automatic
Control, special issue osystems and Control Methods for Communication Netwardds 47, no. 6, pp. 979-991, June 2002.

H. Yu and D. P. Bertsekas, “Discretized approximations for POMDP with average coBrdin 20th Conf. on Uncertainty in Artificial
Intelligence Banff, Canada, 2004, pp. 619-627.

N. L. Zhang and W. LiuPlanning in Stochastic Domains: Problem Characteristics and Approximaliech. Report HKUST-CS96-31,
Dept. of Computer Science, Hong Kong University of Science and Technology, 1996.

Z. Zhang, S. Moola, and E. K. P. Chong, “Approximate stochastic dynamic programming for opportunistic fair scheduling in wireless
networks,” inProc. 47th IEEE Conf. on Decision and Contr@ancun, Mexico, December 9-11, 2008, pp. 1404-1409.

