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ABSTRACT

Reconstruction, Classification, and Segmentation for Computational Microscopy

by

Se Un Park

Chair: Professor Alfred O. Hero

This thesis treats two fundamental problems in computational microscopy: image

reconstruction for magnetic resonance force microscopy (MRFM) and image classi-

fication for electron backscatter diffraction (EBSD). In MRFM, as in many inverse

problems, the true point spread function (PSF) that blurs the image may be only

partially known. The image quality may suffer from this possible mismatch when

standard image reconstruction techniques are applied. To deal with the mismatch,

we develop novel Bayesian sparse reconstruction methods that account for possible

errors in the PSF of the microscope and for the inherent sparsity of MRFM images.

Two methods are proposed: a stochastic method and a variational method. They

both jointly estimate the unknown PSF and unknown image. Our proposed frame-

work for reconstruction has the flexibility to incorporate sparsity inducing priors,

thus addressing ill-posedness of this non-convex problem, Markov-Random field pri-

ors, and can be extended to other image models. To obtain scalable and tractable

solutions, a dimensionality reduction technique is applied to the highly nonlinear PSF

space. The experiments clearly demonstrate that the proposed methods have superior
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performance compared to previous methods.

In EBSD we develop novel and robust dictionary-based methods for segmenta-

tion and classification of grain and sub-grain structures in polycrystalline materials.

Our work is the first in EBSD analysis to use a physics-based forward model, called

the dictionary, to use full diffraction patterns, and that efficiently classifies patterns

into grains, boundaries, and anomalies. In particular, unlike previous methods, our

method incorporates anomaly detection directly into the segmentation process. The

proposed approach also permits super-resolution of grain mantle and grain bound-

ary locations. Finally, the proposed dictionary-based segmentation method performs

uncertainty quantification, i.e. p-values, for the classified grain interiors and grain

boundaries. We demonstrate that the dictionary-based approach is robust to in-

strument drift and material differences that produce small amounts of dictionary

mismatch.
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CHAPTER I

Introduction

This thesis treats two fundamental problems in computational microscopy: image

reconstruction and image segmentation. These problems are treated in the context

of the 3D reconstruction of magnetic resonance force microscopy (MRFM) images

and the segmentation of electron backscatter diffraction (EBSD) microscopy images,

respectively. MRFM is an emerging technology for volumetric imaging of atomic spin

systems, while EBSD is a mature technology for imaging polycrystalline structures in

materials science. In MRFM we develop new Bayesian sparse reconstruction methods

that account for errors in the point spread function (PSF) of the microscope. In

EBSD we develop novel and robust dictionary-based methods for segmentation and

classification of grain and sub-grain structures in polycrystalline materials.

Microscopic imaging technology has been one of the core driving forces in the

physical and engineering sciences. Most modern microscope technology uses computa-

tional imaging techniques to reconstruct images of the sample from blurred and noisy

physical measurements from the microscope. Computational microscopy consists of

using numerical algorithms and mathematical models to perform the reconstructions.

Among the many operations used in computational microscopy are: image reconstruc-

tion; image segmentation; image classification; object recognition; and quantitative

labeling. This thesis concentrates on the first three operations.
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Many algorithms for image reconstruction can be viewed mathematically as de-

convolution of the measured raw image, which is inherently degraded by a partially

unknown point spread function (PSF). The quality degradation of images caused by

the PSF is usually modeled as a linear convolution of an image with a blur function

or blur kernel. The observed image is usually corrupted by additive noise as well.

Image deconvolution must recover the unknown image from the PSF-degraded and

noise contaminated raw images.

The objective of image segmentation is to partition the image into contiguous

regions defined by a network of region boundaries. The objective of image classifica-

tion is to categorize all pixels into one of a number of pre-determined labels. Image

segmentation is a special case of image classification with two classes: a pixel is at

a boundary (class 1) or is not at a boundary (class 2). There are two categories of

classification methods: supervised and unsupervised methods. Supervised classifica-

tion involves training data where the true labels are provided with a set of training

data. The classifier is specified using the training data to best match the training

labels to the pixels under some criterion, e.g. 0-1 loss or hinge loss. Once trained,

the classifier is applied to classify test data with unknown labels. Examples of super-

vised classifiers include the maximum likelihood classifier, where labels are assigned

to the class of highest likelihood. Another type of supervised classifier is the nearest-

neighbor/minimum-distance classifier that finds the closest neighbor in the label set

for a pixel in the image. Unsupervised classification, unlike supervised classification,

does not require ground truth data for labeling; thus the classification is data-driven.

An example of unsupervised classification is clustering. In this thesis we mainly con-

sider unsupervised classification and segmentation problems. We next describe the

main problems that we consider in image reconstruction and in image segmentation.
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1.1 Semi-blind Image Reconstruction

Many deconvolution techniques require prior knowledge of the device response,

i.e., the PSF. However, in many practical situations, the true PSF is either unknown

or, at best, only partially known. For example, in an optical system uncertainties

in the PSF can be due to light diffraction, apparatus/lense aberration, defocusing,

or image motion [6, 7]. Such imperfections are common in general imaging systems

including MRFM, where there can exist additional errors in the PSF model under

the magnetic resonance condition [8]. In such circumstances, the PSF required in

the reconstruction process is mismatched with the true PSF. The quality of standard

image reconstruction techniques may suffer from this model mismatch. To deal with

this mismatch, blind deconvolution methods have been proposed to estimate the

unknown image and the PSF jointly. A blind deconvolution algorithm estimates the

image and PSF without exact prior knowledge of the PSF. Without further constraints

blind deconvolution is intrinsically ill-posed because the solution pairs for the image

and PSF are not unique. Thus, blind deconvolution algorithms typically require

additional constraints on the image or the PSF, e.g., the image has unit norm or the

PSF is smooth. When prior knowledge of the PSF is available, these methods are

referred to as semi-blind deconvolution [9, 10] or myopic deconvolution [11, 12, 13].

The ill-posedness of the semi-blind deconvolution problem depends on the extent to

which the prior knowledge of PSF is informed.

The primary objective of Chapters II-IV is to address semi-blind deconvolution of

MRFM images and explore ways to exploit prior knowledge of image or PSF models,

at the same time proposing computationally tractable algorithms. Our approach is

based on formulating the semi-blind deconvolution task as an image estimation prob-

lem in a Bayesian setting. Bayesian estimation offers a flexible framework to solve

complex model-based problems. Prior information can be easily included within the

model, leading to an implicit regularization of the ill-posed problem. In addition,
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the Bayes framework produces posterior estimates of uncertainty, via posterior vari-

ance and posterior confidence intervals. Bayesian inference can often involve difficult

analytical and numerical hurdles, such as, non-convex optimization, Monte Carlo

simulation, and numerical integration. One widely advocated Bayesian strategy uses

approximations to the minimum mean square error (MMSE) or maximum a posteriori

(MAP) estimators based on sampling from the posterior distribution. Generation of

these samples can often be accomplished using Markov chain Monte Carlo methods

(MCMC) [14]. Another approach bypasses Monte Carlo by replacing the posterior by

a simpler surrogate function which can be maximized numerically but that yields a

close approximation to the MAP estimator. Variational Bayes (VB) approximations

fall into this class of approximations. Chapter III takes the MCMC approach while

Chapter IV takes the VB approach to the MRFM blind deconvolution problem.

The MRFM semi-blind image restoration problem that we will address in this

work was previously studied within a hierarchical Bayesian framework [15] with par-

tially known blur functions in many applications of imaging [16, 17]. Several authors

[16, 17] model the deviation of the PSF as uncorrelated zero mean Gaussian noise.

The authors of [18] considered an extension of this model to a non-sparse, simultane-

ous autoregression (SAR) prior model for both the image and point spread function.

Papers on single motion deblurring in photography [19, 20] use heavier tailed distri-

butions for the image gradient and an exponential form for the PSF. The algorithm

in [19] separately identifies the PSF using a multi-scale approach to perform con-

ventional image restoration. The authors of [20] proposed an image prior to reduce

ringing artifacts from blind deconvolution of photo images.

This thesis considers an alternative image and PSF model, which is appropriate

for our data but significantly different from those developed for natural images, as-

tronomy, and photography. Our suggested model imposes sparsity on the image and

an empirical Bayes prior on the PSF. The contribution of this work is to develop
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and apply novel Bayesian approaches to a joint estimation of PSFs and images. We

initially assume the desired image is sparse, corresponding to the natural sparsity of

the molecular image of interest. We use the image prior as a weighted sum of a part

inducing sparsity and a continuous distribution, a positive truncated Laplacian and

atom at zero prior1 [21]. Similar priors have been applied to estimating mixtures of

densities [22, 23, 24] and sparse, nonnegative hyperspectral unmixing [25]. In the

MCMC approach, described in Chapter III, a Monte Carlo simulation is used to ap-

proximate the full posterior distribution, from which MAP estimates of the MRFM

image and the PSF can be easily computed. In our variational approach, described in

Chapter IV, we additionally introduce a hidden label variable for the contribution of

the discrete mass (empty pixel) along with a continuous density function (non-empty

pixel). Similar to our ‘hybrid’ mixture model, inhomogeneous gamma-Gaussian mix-

ture models have been proposed in [26].

In addition to proposing a new hierarchical MRFM image model, in Chapters III

and IV we propose solutions that exploit prior information on the MRFM PSF. We

represent the PSF on a truncated orthogonal basis, where the basis elements are

the singular vectors in the singular value decomposition of the family of perturbed

nominal PSFs. A Gaussian prior model specifies a log quadratic Bayes prior on

deviations from the nominal PSF. Also, a vague PSF prior of the improper uniform

distribution is used. Our approach is related to the recent papers of Tzikas et al. [27]

and Orieux et al. [28]. In [27] a pixel-wise, space-invariant Gaussian kernel basis is

assumed with a gradient based image prior. Orieux et al. introduced a Metropolis-

within-Gibbs algorithm to estimate the parameters that tune the device response.

Their strategy [28] focuses on reconstruction with smoothness constraints and requires

recomputation of the entire PSF at each step of the algorithm. This approach is

computationally expensive, especially for complex PSF models such as that in the

1A Laplace distribution as a prior distribution acts as a sparse regularization using `1 norm. This
can be seen by taking negative logarithm on the distribution.
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physical instrument for our MRFM application. We propose an alternative strategy

that consists of estimating the deviation from a given nominal PSF, and this has a

computational advantage over other previous methods, independent of complexity of

the PSF generation model. More precisely, the nominal point response of the device

is assumed to be known and the true PSF is modeled as a small perturbation around

the nominal response. Since we only need to estimate linear perturbations around the

nominal PSF relative to a low dimensional precomputed and truncated basis set, this

leads to reduction in computational complexity and an improvement in convergence

as compared to previous approaches [27] and [28].

In Chapter III the MCMC approach is developed for semi-blind deconvolution

of MRFM images. This optimization uses samples generated by a Markov Chain

Monte Carlo algorithm to estimate the unknown image, PSF, and parameters. This

MCMC approach has been successfully adopted in numerous imaging problems such

as image segmentation, denoising, and deblurring [29, 14]. With this framework we

approximate the full posterior distribution of the PSF and the image. However, these

sampling methods have one disadvantage: convergence is slow and the number of

samples that are needed in estimation can be large.

In Chapter IV the variational approximation to the posterior distribution is devel-

oped to address the drawbacks of Monte Carlo integration. This approach has been

widely applied with success to many different engineering problems [30, 31, 32, 33].

Within the semi-blind imaging literature, for instance, the VB framework has been

implemented with a Gaussian prior [34] or a Student’s-t prior [27] for the PSF mod-

eling.

This VB method approximates distributions directly by attempting to minimize

a distributional distance between the true posterior and a simple approximation, or

surrogate, for the true posterior. Specifically, the posterior is estimated by minimizing

the Kullback-Leibler (KL) distance between the model and the empirical distribution.
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This approximation has been extensively exploited to conduct inference in graphical

models [35]. If properly designed, this approach can produce an analytical posterior

distribution from which Bayesian estimators can be efficiently computed. Compared

to MCMC, VB methods are deterministic and have lower computational complexity,

since they avoid Monte Carlo simulations. Additionally, VB approaches do not require

as much storage space as does MCMC. However, unlike MCMC approaches, VB

approaches do not yield an estimate of the full posterior.

Variational Bayes approaches have other limitations. First, convergence to the

true parameters is not guaranteed, even though the VB parameter estimates will be

asymptotically normal and equal to the maximum likelihood estimator under suitable

conditions [36]. Second, global optimization might be infeasible due to non-convexity

in the parameter space. Third, the models that fit the method are limited. In other

words, variational Bayes approximations can be easily implemented for only a limited

number of statistical models. For example, this method is difficult to apply when

latent variables have distributions that do not belong to the exponential family or have

mixture distributions (e.g. a discrete distribution [37]), as they do in our proposed

sparse image model. For mixture distributions, variational estimators in Gaussian

mixtures and in exponential family converge locally to maximum likelihood estimator

[38, 39]. The theoretical convergence properties for sparse mixture models, such as

our proposed model, are as yet unknown. This has not hindered the application

of VB to problems in our sparse image mixture model. Another possible intrinsic

limit of the variational Bayes approach, particularly in (semi)-blind deconvolution, is

that the posterior covariance structure cannot be effectively estimated nor recovered,

unless the true joint distributions have independent individual distributions. This is

primarily because VB algorithms are based on minimizing the KL-divergence between

the true distribution and the VB approximating distribution, typically a separable

factorization approximation with respect to the individual parameters.
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Another contribution of this work is the development and implementation of a VB

algorithm for mixture distributions in a hierarchical Bayesian model. Our variational

Bayes algorithm iterates on a hidden variable domain associated with the mixture

coefficients. This results in an algorithm that is faster and more scalable for equiva-

lent image reconstruction qualities than the proposed MCMC approach described in

Chapter III.

We experimentally evaluate our MCMC and VB semi-blind algorithms on both

simulated and experimental MRFM data obtained from our collaborators in MRFM

at IBM. The proposed algorithms are quantitatively compared to state-of-the-art

algorithms including the total variation (TV) prior for the PSF [40] and natural

sharp edge priors for images with PSF regularization [41]. We also compare our

algorithm to basis kernels [27], the mixture model algorithm of Fergus et al. [19],

and the related method of Shan et al. [20] under a motion blur model. Both of our

suggested algorithms perform better than these algorithms for estimation of sparse

images and smooth PSF.

We illustrate the proposed methods on real data from magnetic resonance force

microscopy experiments. The principles of this new 3D imaging technology were

first introduced by Sidles [42, 43, 44], who described its potential for achieving 3D

atomic scale resolution. In 1992 and 1996, Rugar et al. [45, 46] reported experiments

that demonstrated the feasibility of MRFM and produced the first MRFM images.

More recently, MRFM volumetric spatial resolutions of less than 10nm have been

demonstrated for imaging a biological sample [4]. The signal provided by MRFM is

a so-called force map that is the 3D convolution of the atomic spin distribution and

the point spread function (PSF) [47]. This formulation casts the estimation of the

spin density from the force map as an inverse problem. Several approaches have been

proposed to solve this inverse problem, i.e., to reconstruct the unknown image from

the measured force map. Basic algorithms rely on Wiener filters [48, 49, 46] whereas
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others are based on iterative least-squares reconstruction approaches [47, 4, 50]. More

recently, this problem has been addressed within the Bayesian estimation framework

[21, 2]. The drawback of these approaches is that they require prior knowledge of

the PSF. However, in many practical situations of MRFM imaging, the exact PSF,

i.e., the response of the MRFM tip, is only partially known. Therefore, this MRFM

image reconstruction problem can be cast as a semi-blind deconvolution problem with

a high-resolution, sparse image model. In such circumstances, the PSF used in the

reconstruction algorithm is mismatched to the true PSF of the microscope and the

quality of standard MRFM image reconstruction will suffer if this mismatch is not

taken into account. To mitigate the effects of the PSF mismatch on MRFM sparse

image reconstruction, a non-Bayesian alternating minimization (AM) algorithm [3],

which showed robust performance though not scalable, was proposed by Herrity et

al. In this thesis, we apply our methods to real MRFM tobacco virus data and

demonstrate that our proposed semi-blind reconstruction methods better account for

this partial knowledge.

Lastly, as a blueprint for future work, we provide extensions to the image and

PSF model. At the end of Chapter III we extend our model to incorporate more

general image properties, particularly smoothness2. Specifically, we present the more

generalized image model using Markov random fields (MRFs). MRF type priors

have been widely used to exploit local information of inhomogeneous image regions,

such as feature, color, or texture, according to the specific neighborhood system

for adaptive image segmentation, denoising, interpolation, and deconvolution. The

technique using MRF priors promises a generalization of image modeling due to their

capacity to incorporate local correlations and desired constraints. For example, an

MRF image model using several information features can be used in segmentation

2Image smoothness is often assumed as an important feature in natural images, alongside the
flatness of the intensity level within boundaries of objects, piece-wise connectivity, and clear edge
structures. However, because our applications do not show these properties of boundary or flatness,
we do not focus on these.

9



[51, 52] and as a smoothness prior [53, 54]. Bayesian image reconstruction with MRF

priors using an expectation-maximization (EM) algorithm was previously investigated

in [55], and its variation using mean field theory was proposed in [56]. A widely-

used technique in MRF modeling involves computing images from tomography data

[57, 58] with several types of priors using a Bayesian approach. This random field

model also fits well into our Bayesian approach with the increased complexity of the

solution due to the correlation of sites. Evidently, unlike the spatially homogeneous

model in Chapter III, the suggested MRF model does not assume independence of

each site. As an extension to the PSF model, at the end of Chapter IV, we provide

several approaches to address the space variance of PSFs. This extension is motivated

by astronomical data where PSFs should be assumed spatially inhomogeneous but

can be approximately homogeneous locally. The PSFs can be found from stellar

images and then used for PSF estimation of other sites, usually for galaxies. Another

assumption for the data in computational astronomy is the sparsity nature of the

image. Thus, our Bayesian formulation casts this problem into again semi-blind

sparse image reconstruction.

1.2 Physics-based Dictionary-pursuit for Electron Backscat-

ter Diffraction

In Chapter V we turn to segmentation and classification of grain structures in

materials science EBSD microscopy. Electron backscatter diffraction (EBSD) is an

efficient and convenient tool, compared to other microscopes, to analyze the crys-

tal orientation, texture of materials, and the spatial locations of grains and grain

boundaries. EBSD is particularly helpful in analyzing microstructures of crystalline

materials. These crystalline materials have spatial symmetry or lattice patterns with

their forming elements. These orderly placed elements characterize backscattered
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diffraction patterns. However, there is irregularity in the structure of crystalline ma-

terials, which affects performance of materials. Such an analysis of the structures,

therefore, merits attention. Specifically, the identification of anomalous parts such as

pores, fracture, and additives, is critical in the use of the material.

Unlike the case for MRFM treated in Chapters II-IV, there is at this date no

accurate and tractable linear forward model for EBSD that can be used to mathe-

matically relate the crystal orientations to the measurements. However, an accurate

Monte Carlo simulation of the forward model has recently been developed by De-

Graef’s group [5, 59]. Using this simulation approach, a dictionary of diffraction

patterns can be generated. The dictionary consists of a set of diffraction patterns

and is densely indexed by crystal orientations over a dense but finite grid of Eu-

ler angles. This dictionary accounts for electron transport properties of the sample,

sample-detector geometry, and noise. With a computational forward model [5, 59]

that pre-computes simulated diffraction patterns, we can estimate the neighborhood

dictionary elements that are closest to a measured diffraction pattern at a location

in the sample. This neighborhood is the feature used to segment and classify the

pixels on the sample according to crystal orientations and possibly anomalous struc-

tures that are not in the dictionary. This anomaly detection is a novel feature of

the proposed method that cannot be performed in the conventional EBSD analysis,

thanks to the use of the dictionary. The dictionary design is matched to specific op-

erating parameters of the microscope, e.g., acceleration voltage and beam angle, and

the sample, e.g., crystal type (nickel, gold, diamond, etc). Thus there could exist a

mismatch between the dictionary and the observation when acquired under different

operating conditions. In this thesis we show preliminary results indicating that the

dictionary approach to segmentation is robust to mismatch.

In the dictionary approach, a point in the sample producing a diffraction pattern

is represented in two ways. One representation is the distribution of correlations
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between the observed pattern and the synthetic patterns of dictionary elements. The

other is a small number of indices corresponding to large correlations. From these

statistics, we identify all grains, grain boundaries, and anomalies.

We establish the robustness of the dictionary approach by applying the dictionary,

which was designed for a nickel-base alloy IN100, to a different alloy LSHR3 acquired

using a different microscope. We propose a method of uncertainty quantification

to define confidence intervals for the discovered grain/boundary structures. This

confidence interval is specifically adapted to the dictionary approach that we adopt

in Chapter V. The dictionary approach leads naturally to an algorithm for generating

super-resolution maps of grain structures and their boundaries from the low resolution

grain maps of the conventional EBSD analysis.

1.3 Outline of Thesis

The rest of this thesis is organized as follows. Chapter II provides the back-

ground details for MRFM and the (semi-)blind deconvolution problem. Chapter III

formulates and solves the imaging deconvolution problem in a hierarchical Bayesian

framework using stochastic samplers. Chapter IV covers the variational methodol-

ogy and our proposed solutions to the MRFM semi-blind deconvolution problem.

Chapter V provides solutions to the anomaly detection and classification problems in

EBSD imaging. Chapter VI discusses our findings and concludes.

1.4 Publications

The following publications were produced based on the work presented in this

dissertation.

3Low Solvus High Refractory: ‘low solvus’ property indicates that it contributes to material
resistance to crack quenching. ‘high refractory’ means that a material with this property has high
tensile strength and creep resistance. This is a nickel base superalloy and is used in the disks of gas
turbine engines.
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CHAPTER II

Semi-blind Deconvolution for Magnetic Resonance

Force Microscopy

In this chapter, we present a short background discussion on magnetic resonance

force microscopy (MRFM) as well as the need for sparse image reconstruction and

blind estimation.

2.1 A Brief Introduction to MRFM

Magnetic resonance imaging (MRI) is a powerful tool for imaging the density of

nuclear spins in materials, both living and inert. However, since conventional nuclear

magnetic resonance detectors are only capable of detecting and localizing large spin

ensembles, the spatial resolution and sensitivity of MRI has limited its use in atomic

scale microscopy. Indeed, while atomic force microscopy (AFM) is capable of spatial

resolution on the order of 10’s of Angstroms or less, the spatial resolution of MRI

is only on the order of 10’s of micrometers [60]. Thus conventional MRI cannot be

used to image at atomic scales. On the other hand, while MRI can be used to image

sub-surface spin density, AFM is limited to surface or near surface imaging.

Recently, AFM and MRI have been combined into a single modality, called mag-

netic resonance force microscopy (MRFM), to combine the high subsurface sensitivity
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of MRI with the high spatial resolution of AFM. MRFM has demonstrated sensivity

and resolution down to the single-spin level [42, 43]. MRFM was a major break-

through which enables nondestructive sub-nanometer-scale 3D imaging. MRFM is

capable of imaging small spin ensembles below the surface, to a depth of 100 nm,

with atomic resolution [1]. This capability could potentially be applied to imaging

the 3D chemical composition of nanostructures and biological structures [4]. The

applications may include deciphering the structure and interactions of proteins and

directly imaging macromolecules that cannot be easily analyzed by using other modal-

ities, such as X-ray and conventional MRI technologies. MRFM could complement

the established surface-scanning techniques including scanning electron micrograph

(SEM). In this thesis we develop robust statistical models and image reconstruction

algorithms for MRFM.

The principle of MRFM is based on the mechanical measurement of attonewton-

scale magnetic forces between a magnetic tip and spins in a target sample. The

detection of this extremely small force was recently realized with a ultrasensitive can-

tilever, by using spin relaxation processes and the detection of statistical polarization

in small spins [13] [61].

In [1], the basic elements of an MRFM apparatus are shown in Fig. 2.1; a silicon

cantilever and an attached magnetic tip are used to detect the interacting force be-

tween the electron spin in a sample and the magnetic tip. The sensing was performed

at a low temperature to reduce the noise and the relaxation rate of the spins.

A magnetic field and the inhomogeneous field from the magnetic tip determines

the “resonant slice” in the 3D space. This resonant slice corresponds to the point

spread function of this imaging system and measures the signal/spin energy if a

point in the sample matches the conditions for electron spin resonance. The non-

invasive penetration depth of MRFM depends on the size of the resonance slice that

is generated under the sensitive resonance condition.
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Figure 2.1: The magnetic tip is attached at the end of an ultrasensitive cantilever.
The resonant slice represents the area where the field from the magnetic
tip satisfies the condition for magnetic resonance. Under the resonance
condition, the frequency of the vibrating cantilever shifts correspondingly
to the exerted magnetic force caused by the inversion of the spin [1].

To generate a force map, a recently developed protocol, “iOSCAR” (oscillating

cantilever-driven adiabatic reversals), has been used [61]. In this protocol, the change

in the vibration frequency of the cantilever, corresponding to the tip-sample interac-

tions, is recorded. Then, the average of the square of the retrieved signal (the signal

energy) is evaluated, where this energy of the measurement is the sum of energy of

spin and noise.

To obtain 3D data, the magnetic tip mechanically scans in three dimensions with

respect to the sample. Due to the hemispherical shape of the resonance slice, the re-

trieved data does not directly exhibit the spin distribution in the sample. Rather, each

scanned data point is a weighted contribution of spin signals at different 3-dimensional

positions (both laterally and vertically), depending on the relative position of the tip

to the sample point.

The capability of MRFM has been made possible by numerous technical advances.

Among these advances are the physical modeling of the MRFM PSF and the decon-

volution algorithms, which convert magnetic force measurements into a 3D map of

particle density. In Chapter III and IV of this thesis, we will concentrate on the PSF
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modeling and the related deconvolution for further development of MRFM imaging.

2.2 Sparse Image Reconstruction for MRFM

The MRFM imaging problem is different from others due to the rather special

forward model that characterizes the MRFM point spread function and due to the

sparsity of atomic scale images of materials. The MRFM image is naturally sparse be-

cause molecules sparsely occupy 3D space. Thus, most of the image regions would be

empty and only few portions of the image would have significant, observable signals.

Sparse image reconstruction has been studied for over a decade. Recently, this

theme has been actively investigated in statistics (LASSO) and signal processing

(compressive sensing). The intuitive formulation of the sparse image reconstruction

problem is to combine the data fitting term, for deconvolution and denoising, with

the sparsity inducing term. A straightforward approach to produce sparse solutions

is to constrain the number of the nonzero elements in a solution. However, this

problem is non-convex, combinatorial, and NP-hard. Thus this exact approach is

usually replaced by a convex continuous optimization.

Among approaches that have been proposed to solve this difficult problem, match-

ing pursuit type algorithms can produce solutions with the desired number of nonzero

elements (desired l0 norm1 value). However, in image processing applications, these

greedy algorithms usually do not efficiently exploit the symmetry of the convolution

kernel matrix and the retrieved feasible solutions tend to be overly sparse.

Another approach used to induce sparse solutions is the convexification of the l0

norm to the l1 norm. A benefit of this relaxation from l0 to l1 is that, by using convex

programming, the solution can be efficiently obtained and it converges to the global

optimal point. Moreover, in the perspective of high dimensional data analysis [62],

the following lemma states that convex solutions, by using a l1 penalty, bound the

1This is not a real norm, but by convention we call it a l0 norm in this thesis.
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optimal solution, under the assumption that the solution is confined in a bounded

convex set.

Lemma Let Kn,s = {x ∈ Rn : ‖x‖2 ≤ 1, ‖x‖1 ≤
√
s} and Sn,s = {x ∈ Rn :

‖x‖2 ≤ 1, ‖x‖0 ≤ s}. Then, conv(Sn,s) ⊂ Kn,s ⊂ 2conv(Sn,s), where conv(K) is

defined to be the convex hull of a set K.

In this sense, Kn,s can be considered as a set of approximately sparse signals,

because it is almost the same as the convex hull of Sn,s.

One popular algorithm using the l1 norm is the LASSO type estimator [63]. The

improved version of this estimator traces the regularization parameter values along

the solution path. This tuning of the regularization parameter is not trivial and

requires an effort to produce appropriately sparse solutions.

This tuning issue can often be handled by adopting a data-driven approach. The

empirical Bayes approach has the capability to automatically estimate the tuning pa-

rameter values, provided that the suitable prior distributions are used. This prior

knowledge (a prior distribution P(X)) is compensated by the data fidelity term

(P(Y |X), the conditional distribution of Y given X) according to the Bayes rule,

as seen in Eq. (2.1). The resulting posterior distribution (P(X|Y )) is then maximized

to produce the maximum a posteriori (MAP) estimate.

Bayes Rule

P(X|Y ) = P(Y |X)P(X)/P(Y ), (2.1)

with well-defined random variables X and Y and a probability measure P.

To obtain sparse solutions, one can use connections between a Bayesian prior dis-

tribution and the convex penalty term; there is a clear link between a specific Bayesian

configuration and convex optimization using the l1 norm. Assuming a Laplacian dis-

tribution as a prior distribution for the true image, the maximization of the posterior
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distribution, proportional to the prior distribution and the likelihood function, is

equivalent to the minimization of the negative of the log (the argument of the expo-

nential function) of the distribution. For the positive signal values, we can use an

exponential distribution, or a positively truncated Laplacian distribution, as the prior

distribution for the image. However, the estimation method using random sampling

does not produce sparse solutions, because the probability measure at the value 0,

P(X = 0), is zero for Lebesgue continuous distributions such as the exponential dis-

tribution. To counter this, several authors have proposed putting a discrete mass at

0 to produce explicit zero values in the unknown signals. In the MRFM literature,

this approach was used for Bayesian sparse image reconstruction algorithms [21, 2].

This prior is the starting point for the Bayes sparse reconstruction approach taken in

this thesis.

2.3 Semi-blind Image Reconstruction Problems for MRFM

The physical MRFM PSF model, suggested by Mamin et al. [8], is represented by

a set of functions of several parameters, including the mass of the cantilever probe,

the ferromagnetic constant of the probe tip, and external field strength. Using this

model and specific parameter values, Mamin et al. assumed a nominal and fixed

PSF of the microscope for their experiments. The PSF parameters determine the

resonance condition to generate a valid PSF. If the condition is not satisfied, then

the PSF is degenerate and an observation cannot be made. Moreover, the variation

of the PSF with respect to the tuning parameters is large, so the suggested physical

PSF model is sensitive to parameter errors. The mismatch between the nominal PSF,

generated by the physical model [8], and the true, unknown response of the MRFM

tip can exist, due to the imperfection of the model and measurement errors. If this

mismatch is not compensated in the MRFM image reconstruction, the reconstruc-

tion result will exhibit induced artifacts due to the mismatch. A direct approach of
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estimating the parameters in the parametric form of the true PSF is difficult due to

the highly non-linear nature of the parametric PSF and the sensitivity of the tuned

PSF shape to the parameters. Furthermore, it not practical to take a brute-force

approach, which generates possible MRFM PSFs while estimating the ‘correct’ PSF

by trying several parameter values. This is because evaluating the highly non-linear

and complex equations of the tuning function is time-consuming and the convergence

is not guaranteed. In this thesis, we propose a different semi-blind deconvolution

approach to reconstruction of MRFM images with PSF mismatch.

2.4 Blind Deconvolution Problems and Ill-posedness

Before tackling the MRFM imaging problem with PSF mismatch, we review the

relevant background on blind deconvolution.

The objective function to minimize, for a simple blind deconvolution problem, can

be formulated as follows,

L := ‖y − κ ∗ x‖, (2.2)

where y is noisy blurred observation, κ is a PSF, ∗ is the convolution operator, and

x is the unknown true signal. There are infinitely many pairs of (κ,x) explaining the

observed y. Among these pairs, we call the pair of δ(·) function, or identity convolu-

tional kernel, and the observation itself y, the trivial solution: (κ,x) = (δ(·),y).

To appreciate the ill-posedness of the solution to minx,κ L, consider the one-

dimensional blind deconvolution problem that is formulated as follows:

L := |y − κx|, (2.3)

where the deconvolution in 1D is reduced to multiplication and y and x are scalar

variables. Evidently, there exist many solutions that minimize the objective function

L, in fact that make it equal to 0. We first note that the objective function L is not
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convex; the sublevel set inside the contour, for example L ≤ 0.5, is not a convex set

(Fig. 2.2), and the two by two Hessian matrix of L, by taking derivatives of L with

respect to x and κ, is not positive semi-definite.

Figure 2.2: A 1-dimensional blind deconvolution problem (y = 2). The solution set
(L = 0) is the blue solid line. The sublevel set inside the contour L = 0.5
in red dashes is not convex.

An approach to solving this ill-posed deconvolution problem is to add an `2-

distance image penalty to the objective function of the form ‖x‖. This strategy

avoids trivial solutions. However, this is not effective since the MAP estimator would

favor an image solution ‖x‖ → 0 and a PSF solution ‖κ‖ → ∞. This is because the

infinitesimal image norm always shrinks the penalty term and the attenuated scale

is compensated by the amplified norm of the PSF in the convolution term. This

necessitates the regularization of both the image and PSF. Additionally, the joint

maximum a posteriori (MAP) estimator (κ̂, x̂) suffers from being trapped into the

trivial solution. In other words, an MAP estimator, under a broad class of priors,

would favor a blurry image (x ≈ y) over a sharp one [64]. To remedy this situation, the

marginalized MAP solution for the blur kernel, κ̂, followed by an MMSE estimate for

the image seems promising [64]. Alternatively, an estimator based on edge detection

can be used to avoid trivial or degenerate solutions. This is, however, inapplicable

to the MRFM model, since the MRFM image characteristics and PSF model show

no evidence of image edges or natural motion-blurring type PSFs. In this thesis, the
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strategy to constrain the solution space is to reduce the feasible PSF space into much

lower dimensions, which is elaborated in the next chapter.

2.5 Minimax Optimization to Blind Deconvolution

As a demonstrative example of a general blind deconvolution solution, we briefly

present a minimax approach. The solution using this approach is optimal under the

worst case PSF. In the imaging literature, this approach is often criticized as being

too conservative and pessimistic. Nonetheless, it is instructive to consider minimax

solutions as they yield tight lower bounds on performance over the space of suitably

constrained unknown PSFs.

A minimax approach to blind deconvolution is formulated as follows:

min
x

max
‖D‖W≤ε

‖y − (H + D)x‖22 + c(x), (2.4)

where ‖D‖W =
√
tr(DWDT) is defined as a weighted Frobenius norm, c(x) is a

penalty term for x, and W is a diagonal matrix. This problem is also called a robust

penalized least squares (RPLS) problem. Here, we do not assume any parameteriza-

tion of point spread function or any prior knowledge of the system matrix. Rather,

we wish to retain the optimal solution under the maximum uncertainty level ε in the

unknown PSF. The variation D of the mismatch is constrained in terms of matrix

norm, which is stated in the minimax form.

2.5.1 General solution

Using the triangular inequality, we obtain

max
‖D‖W≤ε

‖y − (H + D)x‖2 = ‖y −Hx‖2 + ε‖x‖2, (2.5)
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if the following condition is satisfied

D = −εuxTR

‖x‖R
, ‖x‖R =

√
xTRx , R = W−1, (2.6)

u =


y−Hx
‖y−Hx‖ when y −Hx 6= 0

Any unit norm vector when y −Hx = 0 .

(2.7)

Since monotonicity of squared power is preserved, we obtain

max
‖D‖W≤ε

‖y − (H + D)x‖22 = (‖y −Hx‖2 + ε‖x‖2)2. (2.8)

Then, an equivalent optimization to (2.4) is:

min
x

(‖y −Hx‖2 + ε‖x‖2)2 + c(x), (2.9)

under the condition (2.6) and (2.7).

2.5.2 Solution with an `1 penalty

When c(x) = λ‖x‖1, a relaxation of the sparsity norm ‖x‖0, we can further sim-

plify the objective function. To deal with the square of sum, we express

(a+ b)2 = min
0≤t≤1

a2

t
+

b2

1− t
, (2.10)

where the minimization is achieved when t = a
a+b

and we interpret x/0 as 0 if x = 0

and ∞ otherwise.

Now the original problem in (2.4) is equivalent to

min
x

min
0≤t≤1

‖y −Hx‖22
t

+
ε2‖x‖22
1− t

+ λ‖x‖1, (2.11)
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where the minimization is achieved when t =
‖y−Hx‖2

‖y−Hx‖2+ε‖x‖R
.

2.5.2.1 Derivation of nonsingular case

When y 6= Hx and ‖x‖R 6= 0, we majorize the objective function as follows:

L1 := (‖y −Hx‖2 + ε‖x‖2)2

=
‖y−Hx‖22

topt
+

ε2‖x‖22
1−topt (where topt is the optimal minimizing t)

≤ ‖y−Hx‖22
t

+
ε2‖x‖22

1−t

=
‖y−Hx′‖22

t
+

ε2‖x′‖22
1−t +(x−x′)T [−2

t
HT(y −Hx′)+ 2ε2

1−tx
′]+(x−x′)T [1

t
HTH+ ε2

1−t
I](x−

x′)

≤ ‖y−Hx′‖22
t

+
ε2‖x′‖22

1−t + (x− x′)T [−2
t
HT(y −Hx′) + 2ε2

1−tx
′] + [C

t
+ ε2

1−t ]‖x− x′‖2

=: Q(x; x′) ,

where C ≥ ‖HTH‖, t :=
‖y−Hx‖2

‖y−Hx‖2+ε‖x‖R
, and the second inequality holds if x = x′.

Let a = C
t

+ ε2

1−t and e := y −Hx′ . For the evaluation of arg maxxQ(x; x′), the

terms of our interest in Q(x; x′) with respect to x are: a‖x‖2 + ( 2ε2

1−t − 2a)xTx′ −

xT 2
t
HTe. The ith component of this equation is ax2

i − 2axix
′
i + xi[−2

t
hT

i e + 2ε2

1−tx
′
i],

where hi is an ith column vector of H. Combining with regularization term, λ‖x‖1,

and using quadratic optimization technique with `1 penalty, we update xi by using

the following soft-thresholding rule:

xi ← Tλ/2a[
1

a
(
1

t
hTi e+

C

t
x′i)], (2.12)

where Tk(x) is a soft-threshold function of x with threshold level k.

2.5.2.2 Derivation of singular case

Two singular cases, y = Hx or ‖x‖R = 0, can happen when the estimate is a

perfect solution to the unconstrained optimization problem, or the initial guess is

zero vector, respectively. The former case is of less concern than the latter, because
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we have at least found a good solution to the unconstrained opimization. From the

latter case, restarting from 2.9, we can re-initialize x by using classical optimization

methods with a penalty term. For instance, we could use the iterative thresholding

with an `1 norm penalty.

2.5.3 Discussion on minimax approach

We formulate the general minimax problem and provide the solution to the prob-

lem with an `1 penalty for sparse deconvolution. The general tight lower bound is

derived in (2.9) with the conditions (2.6) and (2.7). For the minimax problem with

an `1 penalty, we derive an iterative algorithm in (2.12) to find the optimal solution.

However, we do not take this approach in this thesis because the minimax solution

does not capture the properties of convolution matrix, resulting inferior image quality

compared to that from standard deconvolution algorithms using a nominal, slightly

mismatched point spread function.
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CHAPTER III

A Stochastic Approach to Hierarchical Bayesian

Semi-blind Sparse Deconvolution1

In this chapter, we present a hierarchical Bayesian approach to semi-blind sparse

deconvolution. We construct a stochastic algorithm within a Markov chain Monte

Carlo (MCMC) framework. For this algorithm, basic principles of random sampling

methods are investigated. We also present a convergent sampling method for the

PSF estimation and an extension of the image model using Markov random fields.

We start to formulate forward imaging and PSF model.

3.1 Forward Imaging and PSF Model

Let X denote the l1 × . . . × ln unknown n-D positive spin density image to be

recovered (e.g., n = 2 or n = 3) and x ∈ RM denote the vectorized version of X

with M = l1l2 . . . ln. This image is to be reconstructed from a collection of P (= M)

measurements y = [y1, . . . , yP ]T via the following noisy transformation:

y = T (κ,x) + n, (3.1)

1This chapter is partially based on the papers [37, 13].
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where T (·, ·) is the n-dimensional convolution operator or the mean response function

E[y|κ,x], n is a P × 1 observation noise vector and κ is the kernel modeling the

response of the imaging device.

A typical PSF for MRFM is shown in Mamin et al.[8] for horizontal and vertical

MRFM tip configurations. In (3.1) n is an additive Gaussian2 noise, independent of

x, distributed according to n ∼ N (0, σ2IP ). The PSF is assumed to be known up to

a perturbation ∆κ about a known nominal κ0:

κ = κ0 + ∆κ. (3.2)

In the MRFM application the PSF is described by an approximate parametric

function that depends on the experimental setup. Based on the physical parameters

(gathered in the vector ζ) tuned during the experiment (external magnetic field, mass

of the probe, etc.), an approximation κ0 of the PSF can be derived. However, due

to model mismatch and experimental errors, the true PSF κ may deviate from the

nominal PSF κ0.

If a vector of the nominal values of parameters ζ0 for the parametric PSF model

κgen(ζ) is known, then direct estimation of a parameter deviation, ∆ζ, can be per-

formed by evaluation of κgen(ζ0 + ∆ζ). However, in MRFM, as shown by Mamin

et al. [8], κgen(ζ) is a nonlinear function with many parameters that are required

to satisfy ‘resonance conditions’ to produce a meaningful MRFM PSF. This makes

direct estimation of the PSF difficult.

In this thesis, we take a similar approach to the ‘basis expansions’ in [65, Chap.

5], [27] for approximation of the PSF deviation ∆κ as linear models. Our model for

this deviation is that ∆κ can be expressed as a linear combination of elements of an

2N (µ,Σ) denotes a Gaussian random variable with mean µ and covariance matrix Σ.
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a priori known basis κk, k = 1, . . . , K,

∆κ =
K∑
k=1

λkκk, (3.3)

where {κk}k=1,...,K is a set of basis functions for the PSF perturbations and λk, k =

1, . . . , K are unknown coefficients. To emphasize the influence of these coefficients

on the actual PSF, κ will be denoted κ (λ) with λ = [λ1, . . . , λK ]T . With these

notations, (3.1) can be rewritten:

y = T (κ(λ),x) + n = H (λ) x + n, (3.4)

where H (λ) is an P ×M matrix that describes convolution by the PSF kernel κ (λ).

We next address the problem of estimating the unobserved image x and the PSF

perturbation ∆κ under sparsity constraints given the measurement y and the bilinear

function T (·, ·).

3.2 Hierarchical Bayesian Model

3.2.1 Likelihood function

Under the hypothesis that the noise in (3.1) is Gaussian, the observation model

likelihood function takes the form

f
(
y|x,λ, σ2

)
=

(
1

2πσ2

)P
2

exp

(
−‖y − T (κ (λ) ,x)‖2

2σ2

)
, (3.5)

where ‖·‖ denotes the standard `2 norm: ‖x‖2 = xTx. This likelihood function will

be denoted f(y|θ), where θ = {x,λ, σ2}.
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3.2.2 Parameter prior distributions

In this section, we introduce prior distributions for the parameters θ.

3.2.2.1 Image prior

As the prior distribution for xi, we adopt a mixture of a mass at zero and a

single-sided exponential distribution:

f (xi|w, a) = (1− w)δ (xi) +
w

a
exp

(
−xi
a

)
1R∗+ (xi) , (3.6)

where w ∈ [0, 1], a ∈ [0,∞), δ (·) is the Dirac function, R∗+ is a set of real open interval

(0,∞) and 1E (x) is the indicator function of the set E:

1E (x) =

 1, if x ∈ E,

0, otherwise.
(3.7)

By assuming the components xi to be a conditionally independent (i = 1, . . . ,M)

given w, a, the following conditional prior distribution is obtained for the image x:

f (x|w, a) =
M∏
i=1

[
(1− w)δ (xi) +

w

a
exp

(
−xi
a

)
1R∗+ (xi)

]
. (3.8)

This image prior is similar to the LAZE distribution (weighted average of a Laplacian

probability density function (pdf) and an atom at zero) used, for example, in Ting

et al. [66, 21]. As motivated by Ting et al. and Dobigeon et al. [21, 2], the image

prior in (3.8) has the interesting property of enforcing some pixel values to be zero3,

reflecting the natural sparsity of the MRFM images. Furthermore, the proposed prior

in (3.6) ensures positivity of the pixel values (spin density) to be estimated.

3A Laplace distribution as a image prior distribution acting as a sparse regularization using `1
penalty does not produce zero values by using MCMC sampling methods because the Lebesque
measure at a point of this continuous density is zero.
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3.2.2.2 PSF parameter prior

We assume that the parameters λ1, . . . , λK are a priori independent and uni-

formly distributed over known intervals associated with error tolerances centered at

0. Specifically, define the interval

Sk = [−∆λk,∆λk] (3.9)

and define the distribution of λ as

f (λ) =
K∏
k=1

1

2∆λk
1Sk (λk) , (3.10)

with λ = [λ1, . . . , λK ]T . In our experiment, ∆λk’s are set to be large enough to be

non-informative, i.e., an improper, flat prior.

3.2.2.3 Noise variance prior

A non-informative Jeffreys’ prior is selected as prior distribution for the noise

variance:

f
(
σ2
)
∝ 1

σ2
(3.11)

This model is equivalent to an inverse gamma prior with a non-informative Jeffreys’

hyperprior, which can be seen by integrating out the variable corresponding to the

hyperprior [2].

3.2.3 Hyperparameter priors

Define the hyperparameter vector associated with the image and noise variance

prior distributions as Φ = {a, w}. In our hierarchical Bayesian framework, the esti-

mation of these hyperparameters requires prior distributions in the hyperparameters.
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3.2.3.1 Hyperparameter a

A conjugate inverse-Gamma distribution is assumed for hyperparameter a:

a|α ∼ IG (α0, α1) , (3.12)

with α = [α0, α1]
T . The fixed hyperparameters α0 and α1 have been chosen to

produce a vague prior, i.e., α0 = α1 = 10−10.

3.2.3.2 Hyperparameter w

A uniform distribution on the simplex [0, 1] is selected as prior distribution for

the mean proportion of non-zero pixels:

w ∼ U ([0, 1]) . (3.13)

Assuming that the individual hyperparameters are independent the full hyperpa-

rameter prior distribution for Φ can be expressed as:

f (Φ|α) = f (w) f (a)

∝ 1

aα0+1
exp

(
−α1

a

)
1[0,1] (w) 1R+ (a) ,

(3.14)

3.2.4 Posterior distribution

The posterior distribution of {θ,Φ} is:

f (θ,Φ|y) ∝ f (y|θ) f (θ|Φ) f (Φ) , (3.15)

with

f (θ|Φ) = f (x|a, w) f (λ) f
(
σ2
)
, (3.16)
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where f (y|θ) and f (Φ) have been defined in (3.5) and (3.14). The conjugacy of

priors in this hierarchical structure allows one to integrate out the parameters σ2,

and the hyperparameter Φ in the full posterior distribution (3.15), yielding:

f (x,λ|y, α0, α1) ∝
∫
f (θ,Φ|y) dwdadσ2 ∝ (3.17)

Be (1 + n1, 1 + n0)

‖y − T (κ (λ) ,x)‖N
Γ (n1 + α0)

(‖x‖1 + α1)n1+α0

K∏
k=1

1

2∆λk
1Sk (λk) ,

where Be is the beta function and Γ is the gamma function.

The next section presents the Metropolis-within-Gibbs algorithm [67] that gen-

erates samples distributed according to the posterior distribution f (x,λ|y). These

samples are then used to estimate x and λ.

3.3 Metropolis-within-Gibbs Algorithm for Semi-blind Sparse

Image Reconstruction

We describe in this section a Metropolis-within-Gibbs sampling strategy that al-

lows one to generate samples
{

x(t),λ(t)
}
t=1,...

distributed according to the posterior

distribution in (3.17). As sampling directly from (3.17) is a difficult task, we will in-

stead generate samples distributed according to the joint posterior f (x,λ, σ2|y, α0, α1).

Sampling from this posterior distribution is done by alternatively sampling one of

x,λ, σ2 conditioned on all other variables [68, 2]. The contribution of this work to

[2] is to present an algorithm that simultaneously estimates both the image and PSF.

The algorithm results in consistently stable output images and PSFs.

The main steps of our proposed sampling algorithm are given in subsections 3.3.1

through 3.3.3 (see also Algorithm 1).
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Algorithm 1 Metropolis-within-Gibbs sampling algorithm for semi-blind sparse im-
age reconstruction

1: % Initialization:

2: Sample the unknown image x(0) from pdf in (3.8),
3: Sample the noise variance σ̃2(0) from the pdf in (3.11),
4: % Iterations:

5: for t = 1, 2, . . . , do
6: Sample hyperparameter w(t) from the pdf in (3.19),
7: Sample hyperparameter a(t) from the pdf in (3.20),

8: For i = 1, . . . ,M , sample the pixel intensity x
(t)
i from the pdf in (3.21),

9: For k = 1, . . . , K, sample the PSF parameter λ
(t)
k from the pdf in (3.23), by

using Metropolis-Hastings step (see Algo. 2),
10: Sample the noise variance σ̃2(t) from the pdf in (3.26),
11: end for

3.3.1 Generation of samples according to f (x |λ, σ2,y, α0, α1 )

To generate samples distributed according to f (x |λ, σ2,y, α0, α1 ), it is convenient

to sample according to f (x, w, a |λ, σ2,y, α0, α1 ) by the following 3-step procedure.

3.3.1.1 Generation of samples according to f (w |x, α0, α1 )

The conditional posterior distribution of w is

f (w |x) ∝ (1− w)n0+1−1wn1+1−1, (3.18)

where n1 = ‖x‖0 and n0 = M − ‖x‖0. Therefore, generation of samples according to

f (w |x) is achieved as follows:

w|x ∼ Be (1 + n1, 1 + n0) . (3.19)

3.3.1.2 Generation of samples according to f (a |x)

The joint posterior distribution (3.15) yields:

a |x, α0, α1 ∼ IG (‖x‖0 + α0, ‖x‖1 + α1) . (3.20)
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3.3.1.3 Generation of samples according to f (x |w, a, λ,σ2,y )

The posterior distribution of each component xi (i = 1, . . . ,M) given all other

variables is derived as:

f
(
xi|w, a, λ,σ2,x−i,y

)
∝ (1− wi)δ (xi) + wiφ+

(
xi|µi, η2

i

)
, (3.21)

where x−i stands for the vector x whose ith component has been removed and µi and

η2
i are defined as the following:

η2
i =

σ2

‖hi‖2
, µi = η2

i

(
hTi ei
σ2
− 1

a

)
, (3.22)

with hi and ei defined in Appendix 3.6.

In (3.21), φ+ (·,m, s2) stands for the pdf of the truncated Gaussian distribu-

tion defined on R∗+ with hidden mean m and hidden variance s2. Therefore, from

(3.21), xi|w, a, λ,σ2,x−i,y is a Bernoulli truncated-Gaussian variable with parameter

(wi, µi, η
2
i ).

To summarize, generation of samples distributed according to f (x |w, σ2, a, ,y )

can be performed by updating the coordinates of x using M Gibbs moves (requiring

generation of Bernoulli truncated-Gaussian variables). A pixel-wise fast and recursive

sampling strategy is presented in Appendix 3.6 and an accelerated sparsity enforcing

simulation scheme is described in Appendix 3.7. The methods in these two appendices

are proposed for efficient drawing of samples.
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3.3.2 Generation of samples according to f (λ |x, σ2,y )

The posterior distribution of the parameter λk conditioned on the unknown image

x, the noise variance σ2 and the other PSF parameters {λj}j 6=k is

f
(
λk|λ−k,x, σ2,y

)
∝ exp

[
−‖y − T (κ (λ) ,x)‖2

2σ2

]
1Sk (λk) , (3.23)

with λ−k = {λj}j 6=k. We summarize in Algorithm 2 a procedure for generating

samples distributed according to the posterior in (3.23) using a Metropolis-Hastings

step with a random walk proposition [67] from a centered Gaussian distribution. In

order to sample efficiently, the detailed procedure of how to choose an appropriate

value of the variance s2
k of the proposal distribution for λk is described in Section

3.3.4. At iteration t of the algorithm, the acceptance probability of a proposed state

λ?k is:

ρ
λ
(t)
k →λ

?
k

= min (1, ak1Sk (λ?k)) , (3.24)

with

2σ2 log ak =
∥∥∥y − T (κ(λ(t)

k

)
,x
)∥∥∥2

− ‖y − T (κ (λ?k) ,x)‖2 . (3.25)

Computing the transformation T (·, ·) at each step of the sampler can be computation-

ally costly. Appendix 3.6 provides a recursive strategy to efficiently sample according

to f (λ |x, σ2,y ).

Algorithm 2 Sampling according to f (λk|λ−k,x, σ2,y)

1: Sample ε ∼ N
(
0, s2

p

)
,

2: Propose λ?k according to λ?k = λ
(t)
k + ε,

3: Draw u ∼ U ([0, 1]),

4: Set λ
(t+1)
k =

{
λ?k, if u ≤ ρ

λ
(t)
k →λ

?
k
,

λ
(t)
k , otherwise.

where U (E) stands for the uniform distribution on the set E.
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3.3.3 Generation of samples according to f (σ2 |x,y,λ)

Samples (σ2)(t) are generated according to the inverse gamma posterior

f(σ2 |x,y,λ) = IG

(
P

2
,
‖y − T (κ(λ),x)‖2

2

)
. (3.26)

3.3.4 Adaptive tuning of an acceptance rate in the random-walk sampling

For an efficient sampling of λk, k = 1, . . . , K, from the desired distribution π(λk) =

f (λk|λ−k,x, σ2,y), we need to properly tune the acceptance rate of the samples from

the proposal distribution. A careful selection of a step size is critical for convergence

of the method. For example, if the step size is too large, most of the iterations will

be rejected and the sampling algorithm will be inefficient. On the other hand, if the

step size is too small, most of the random walk moves are accepted but these moves

are slow to cover the probable space of the desired distribution, and the method is

once again inefficient.

The transition density of Metropolis-Hastings sampling is q(λ(t), λ?(t))acc(λ(t), λ?(t)),

where q(λ(t), λ?(t)) is the proposal density from λ(t) and acc(λ(t), λ?(t)) is the accep-

tance probability for the move from λ(t) to λ?(t). Here we denote λk by λ without a

subscript for simplicity. We set q(λ(t), λ?(t)) to be a Gaussian density function of λ?(t),

denoted by q(λ(t), λ?(t)) = q(λ?(t) − λ(t)) = φ(λ?(t);λ(t), s2) with a mean λ(t) and a

variance s2, which produces a random walk sample path. Since q(·, ·) is symmetrical,

accs(λ
(t), λ?(t)) = min

(
1,
π(λ?(t))q(λ?(t), λ(t))

π(λ(t))q(λ(t), λ?(t))

)
= min

(
1,
π(λ?(t))

π(λ(t))

)
= ρλ(t)→λ?(t) , as

derived in (3.24). Then the acceptance probability from a parameter value λ(t) is

accs(λ
(t)) =

∫
λ?(t)

q(λ(t), λ?(t))accs(λ
(t), λ?(t))dλ?(t).

The acceptance rate with a scale parameter s, acting as a step size, can be expressed

as accs =
∫
λ
π(λ)accs(λ)dλ.

36



We evaluate these integrations by using Monte Carlo methods;

accs ≈ 1
n1

∑n1

t=1 accs(λ
(t)) with λ(t) ∼ π(λ(t)), and accs(λ

(t)) ≈ 1
n2

∑n2

t=1 accs(λ
(t), λ?(t))

with λ?(t) ∼ q(λ(t), λ?(t)). In practice, this empirical version of the integration value

is evaluated as

accs ≈
1

W

W∑
t=1

accs(λ
(t), λ?(t)), (3.27)

after the burn-in period. Therefore we can evaluate the acceptance rate with s by

averaging the Boolean variables of accs(λ
(t), λ?(t)), t = 1, . . . ,W , over a time-frame

window of length W with realizations {λ(t), λ?(t)}t. In short, we iteratively update s

to achieve an appropriate acceptance rate, accs, as described in Algorithm 3:

Algorithm 3 Tuning s in the Gaussian proposal density q(·, ·)
Select upper and lower limits accH and accL. At each time t = W, 2W, 3W, . . ., tune
s via the following steps:

1: Evaluate accs using (3.27) for the given time-frame window,

2: Update s←


s× c, if accs > accH ,
s÷ c, if accs < accL,
s, otherwise.

In practice, we fix the variance of the instrumental distribution at the end of a

burn-in period. Consequently, the transition kernel will be fixed and this guarantees

both ergodicity and stationary distribution. In our experiment, we set a conservative

acceptance range, accH = 0.6, accL = 0.4, referring to [67], and W = 20, c = 4. This

strategy can also be applied to the direct parameter estimation described in Section

3.3.5.

If one wants to update the variance after the burn-in period and ensure the er-

godicity and stationary distribution, one can use the proposed update rules. In [69],

an adaptive version of the random walk Metropolis algorithm is proposed. This algo-

rithm can automatically tunes s such that the asymptotic acceptance rate converges

to the target rate, under various regularity conditions. The adaptive random walk

step size s(t), the standard variation of the proposed distribution, is updated to s(t+1)
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as follows:

s′ = s(t) + γ(accs(t)(λ
(t), λ?(t))− τ), (3.28)

s(t+1) = p(s′), (3.29)

where τ is a target acceptance rate, (γ(t)) is a positive sequence of real numbers such

that γ(t) ∝ t−λ for 1/2 < λ ≤ 1, and p(s) is a projection function such that p(s) = s

for s ∈ [a, b] (0 < a < b), p(s) = a for s < a, and p(s) = b for s > b. The values for a

and b can be set in a conservative way to ensure the optimal s is in [a, b].

3.3.5 Direct sampling of PSF parameter values

As described in Section 2.3, in the MRFM experiments, the direct estimation of

PSF parameters is difficult because of the nonlinearity of κgen and the slow evaluation

of κgen(ζ ′) given a candidate value ζ ′. However, if κgen is simple and evaluated quickly,

then a direct sampling of parameter values can be performed. To apply this sampling

method, instead of calculating a linearized convolution kernel, κ (λ), we evaluate the

exact model PSF, κgen (ζ), in (3.23) and (3.25). Also the proposed parameter vector

ζ? correspondingly replaces a coefficient vector λ? and the updated PSF is used in the

estimation of other variables. This strategy turns out to be similar to the approach

adopted by Orieux et al. in [28].

3.4 Results

In this section we present simulation results that compare the proposed semi-blind

Bayesian deconvolution algorithms of Section 3.3 with the non-blind method [2], the

AM algorithm [3], and other blind deconvolution methods. Here a nominal PSF

κ0 was selected that corresponds to the mathematical MRFM point response model

proposed by Mamin et al. [8].
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Using our MCMC algorithm described in Sec. 3.3, the MMSE estimators of image

and PSF are approximated by ensemble averages over the generated samples after

the burn-in period. The joint MAP estimator is selected among the drawn samples,

after the stationary distribution is achieved, such that it maximizes the posterior

distribution f (x,λ|y) [70].

Table 3.1: Parameters used to compute the MRFM PSF.

Parameter
Value

Description Name

Amplitude of external magnetic field Bext 9.4× 103 G

Value of Bmag in the resonant slice Bres 1.0× 104 G

Radius of tip R0 4.0 nm

Distance from tip to sample d0 6.0 nm

Cantilever tip moment m 4.6× 105 emu

Peak cantilever oscillation oscillation xpk 0.8 nm

Maximum magnetic field gradient Gmax 125

3.4.1 Results on simulated sparse images

We performed simulations of MRFM measurements for PSF and image models

similar to those described in Dobigeon et al. [2]. The signal-to-noise ratio was set

to SNR = 10dB. Several 32 × 32 synthetic sparse images, one of which is depicted

in Fig. 3.1(a), were used to produce the data and were estimated using the proposed

Bayesian method. The assumed PSF κ0 is generated following the physical model

described in Mamin et al. [8] when the physical parameters are tuned to the values

displayed in Table 3.1. This yields a 11× 11 2-dimensional convolution kernel repre-

sented in Fig. 3.2(a). We assume that the true PSF κ comes from the same physical

model where the radius of the tip and the distance from tip to sample have been

mis-specified with 2% error as R = R0 − 2% = 3.92 and d = d0 + 2% = 6.12. This
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(a) Sparse true image (‖x‖0 =
11)

(b) Raw MRFM observation

Figure 3.1: Simulated true image and MRFM raw image exhibiting superposition of
point responses (see Fig. 3.2) and noise.

(a) Nominal MRFM PSF (b) True MRFM PSF

Figure 3.2: Assumed PSF κ0 and actual PSF κ.

leads to the convolution kernel depicted in Fig. 3.2(b). The observed measurements

y, shown Fig. 3.1(b) are a 32× 32 image of size P = 1024.

The proposed algorithm requires the definition ofK basis vectors κk, k = 1, . . . , K,

that span a subspace representing possible perturbations ∆κ. We empirically deter-

mined this basis using the following PSF variational eigendecomposition approach. A

set of 5000 experimental PSFs κ̃j, j = 1, . . . , 5000, were generated following the model

described in Mamin et al. [8] with parameters d and R randomly drawn according

to Gaussian distribution4 centered at the nominal values d0, R0, respectively. Then

4We used a PSF generator provided by Dan Rugar’s group at IBM [8]. The variances of the
Gaussian distributions are carefully tuned so that their standard deviations produce a minimal
volume ellipsoid that contains the set of valid PSF’s of the form specified in [8].
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a standard principal component analysis (PCA) of the residuals {κ̃j − κ0}j=1,...,5000

, by allowing the maximum variance over the parameters that produce valid MRFM

PSFs, was used to identify K = 4 principal axes that are associated with the basis

vectors κk. The necessary number of basis vectors, K = 4 here, was determined

empirically by detecting a knee at the scree plot shown in Fig. 3.3. The first four

eigenfunctions, corresponding to the first four largest eigenvalues, explain 98.69% of

the observed perturbations. The 4 principal patterns of basis vectors are depicted in

Fig. 3.4.

Figure 3.3: Scree plot of residual PCA approximation error in l2 norm (magnitude is
normalized up to the largest value, i.e. λmax := 1).

The proposed semi-blind Bayesian reconstruction algorithm was applied to esti-

mate both the sparse image and the PSF coefficients of κk’s, using the prior in (3.6).

From the observation shown in Fig. 3.1(b) the PSF estimated by the proposed al-

gorithm is shown in Fig. 3.5(a) and is in good agreement with the true one. The

corresponding maximum a posteriori estimate (MAP) of the unknown image is de-

picted in Fig. 3.6(a). The obtained coefficients of the PSF-eigenfunctions are close to
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Figure 3.4: The K = 4 principal vectors (κk) of the perturbed PSF, identified by
PCA.

true coefficients (Fig. 3.7).

3.4.2 Comparison to other methods

For comparison to a non-blind method, Fig. 3.6(b) shows the estimate using the

Bayesian non-blind method [2] with a mismatched PSF. Fig. 3.6(c) shows the estimate

generated by the AM algorithm. The nominal PSF described in Section 3.4.1 is

used in the AM algorithm and hereafter in other semi-blind algorithms, and the

parameter values of AM algorithm were set empirically according to the procedure

in [3]. Our proposed algorithm visually appears to outperform the others (Fig. 3.6)

while preserving fast convergence (Fig. 3.7).

Quantitative comparisons were obtained by generating different noises in 100 in-

dependent trials for a fixed true image. Here, six different true images with six cor-

responding different sparsity levels (‖x‖0 = 6, 11, 18, 30, 59, 97) were tested. Fig. 3.8

presents the two histograms of the results with the six sets in the corresponding two
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(a) Proposed method (b) Amizic’s method (c) Almeida’s method

(d) Tzikas’ method

Figure 3.5: Estimated PSF of MRFM tip using our semi-blind method, Amizic’s
method (using TV prior), Almeida’s method (using progressive regular-
ization), and Tzikas’ method (using the kernel basis PSF model), respec-
tively. For fairness, we used sparse image priors for the methods. (See
Section 3.4.2 for details on the methods.)

error criteria, ‖x̂ − x‖2, ‖x̂‖0, respectively, both of which indicate that our method

performs better and is more stable than the other two methods.

Fig. 3.9 shows reconstruction error performance for several measures of error used

in Ting et al. [21] and Dobigeon et al. [2] to compare different reconstruction algo-

rithms for sparse MRFM images. Notably, compared to the AM algorithm that aims

to compensate ‘blindness’ of the unknown PSF and the previous non-blind method,

our method reveals a significant performance gain under most of the investigated

performance criteria and sparsity conditions.

In addition to the AM and non-blind comparisons shown in Fig. 3.8, we made

direct comparisons between our sparse MRFM reconstruction method and several
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(a) MAP, proposed method (b) MAP, Bayesian non-blind
method with κ0

(c) AM

(d) Almeida’s method (e) Tzikas’ method

Figure 3.6: The true sparse image and estimated images from Bayesian non-blind,
AM, our semi-blind, Almeida’s, and Tzikas’ methods.

Figure 3.7: Estimated PSF coefficients for 4 PCs over 200 iterations. These curves
show fast convergence of our algorithm. ‘Ideal coefficients’ are the pro-
jection values of the true PSF onto the space spanned by four principal
PSF basis.

state-of-the-art blind image reconstruction methods [40, 41, 27, 19, 20]. In all cases

the algorithms were initialized with the nominal, mismatched PSF and were applied

to a sparse MRFM-type image like in Fig. 3.1. For a fair comparison, we made a
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(a) Histograms of the normalized l2 norm errors. x-axis is ‖ x
‖x‖ −

x̂
‖x̂‖‖

2
2/‖x‖0.

(b) Histograms of the l0 measures. x-axis is ‖x̂‖0.

Figure 3.8: Histograms of l2 and l0 norm of the reconstruction error. Note that the
proposed semi-blind reconstructions exhibit smaller mean error and more
concentrated error distribution than the non-blind method of [2] and the
alternating minimization method of [3].
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(a) ‖x̂‖0/‖x‖0: estimated sparsity. Nor-
malized true level is 1.

(b) ‖ x
‖x‖ −

x̂
‖x̂‖‖

2
2/‖x‖0: normalized error

in reconstructed image

(c) ‖y − ŷ‖22/‖x‖0: residual (projection)
error

(d) ‖ κ̂
‖κ̂‖−

κ
‖κ‖‖

2
2, as a performance gauge

of our myopic method. At the initial
stage of the algorithm, ‖ κ0

‖κ0‖ −
κ
‖κ‖‖

2
2 =

0.5627

Figure 3.9: Error bar graphs of results from our myopic deconvolution algorithm. For
several image x’s of different sparsity levels, errors are illustrated with
standard deviations. (Some of the sparsity measure and residual errors
are too large to be plotted together with results from other algorithms.)

sparse prior modification in the image model of other algorithms. The total variation

(TV) based prior for the PSF suggested by Amizic et al. [40] was also implemented.

The obtained PSF from this method was considerably worse than the one estimated

by our proposed method (see Fig. 3.5(b)) resulting in an extremely poor quality image
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deconvolution5.

The recent blind deconvolution method proposed by Almeida et al. [41] utilizes

the ‘sharp edge’ property in natural images, with initial, high regularization in order

to effectively evaluate the PSF. This iterative approach has a sequentially decreasing

regularization parameter to reconstruct fine details of the image. Adapted to sparse

images, this method performs worse than our method, in terms of image and PSF es-

timation errors. The PSF and image estimates from Almeida’s method are presented

in Fig. 3.5(c) and 3.6(d), respectively.

Tzikas et al. [27] uses a similar PSF model to our method using basis kernels.

However, no sparse image prior was assumed in [27] making it unsuitable for sparse

reconstruction problems such as the MRFM problem considered in this work. For

a fair comparison, we applied the suggested PSF model [27] along with our sparse

image prior. The results of PSF and image estimation and the performance graph

are shown in Fig. 3.5(d), Fig. 3.6(e), and Fig. 3.9, respectively. In terms of PSF

estimation error, our algorithm outperforms the others.

We also compared against the mixture model-based algorithm of Fergus et al. [19],

and the related method of Shan et al. [20], which are proposed for blind deconvolution

of shaking/motion blurs and do not incorporate any sparsity penalization. When

applied to the sparse MRFM reconstruction problem the algorithms of [19] and [20]

performed extremely poorly (produced divergent or trivial solutions). This poor

performance is likely due to the fact that the shape of the MRFM PSF and the

sparse image model are significantly different from those in blind deconvolution of

camera shaking/motion blurs. The generalized PSF model of [19] and [20] with the

sparse image prior is Tzikas’ model [27], which is described above.

We used the Iterative Shrinkage/Thresholding (IST) algorithm with a true PSF

to lower bound our myopic reconstruction algorithm. The IST algorithm effectively

5Because this PSF is wrongly estimated and similar to the 2D delta function, the image estimate
looks similar to the denoised version of observation, so we omit the image estimate.
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reconstructs images with a sparsity constraint [71]. From Fig. 3.9(b) the performance

of our result is as good as that of the oracle IST. In Table 3.2 we present comparisons

of computation time6 of the proposed sparse semi-blind Bayes reconstruction to that

of several other algorithms.

Table 3.2: Computation time of algorithms (in seconds), for the data in Fig. 3.1.

Proposed method 19.06

Bayesian nonblind [2] 3.61

IST [71] 0.09

AM [3] 0.40

Almeida’s method [41] 5.63

Amizic’s method [40] 5.69

Tzikas’ method [27] 20.31

3.4.3 Application to 3D MRFM image reconstruction

In this section, we apply the semi-blind Bayesian reconstruction algorithm to the

3D MRFM tobacco virus data [4] shown in Fig. 3.10. The necessary modification for

our algorithm to apply to 3D data is simple because the extension of our 2D pixel-

wise sampling method requires only one more added dimension to extend to 3D basis

vectors and 3D convolution kernel. As seen in Appendix 3.6, the voxel-wise update

of a vectorized image x can be generalized to nD data. This scalability is another

benefit of our algorithm. The implementation of AM algorithm is impractical due to

its slow convergence rates [3]. Here we only consider Bayesian methods. The additive

noise is assumed Gaussian consistently with [45, 4], so the noise model in paragraph

3.2.1 is applied here.

The PSF basis vectors were obtained from a standard PCA and the number of

principal components (PC) in the PSF perturbation was selected as 4 based on de-

tecting the knee in a scree plot. The same interpolation method as used in [2] was

6Matlab is used under Windows 7 Enterprise and HP-Z200 (Quad 2.66 GHz) platform.
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Figure 3.10: Observed data at various tip-sample distances z.

adopted to account for unequal spatial sampling rates in the supplied data for the

PSF domain and the image domain.

In the PSF and image domains, along z axis, the grid in PSF signal space is 3

times finer than the observation sampling density, because the PSF sampling rate

along z-axis is 3 times higher than the data sampling rate is. To interpolate this

lower sampled data, we implemented a version of the Bayes MC reconstruction that

compensates for unequal projection sampling in z directions using the interpolation

procedure [2].

(a) Ground truth synthetic
virus image obtained from data
in Degen et al [4].

(b) Semi-blind reconstruction
of the synthetic virus data.
Only the z-planes that have
non-zero image intensity are
shown.)

Figure 3.11: Results of applying the proposed semi-blind sparse image reconstruction
algorithm to synthetic 3D MRFM virus image.
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(a) True PSF. (b) Initial, mismatched PSF. (c) Estimated PSF.

Figure 3.12: PSF estimation result.

To demonstrate that the proposed 3D MCMC semi-blind reconstruction algorithm

is capable of reconstruction in the presence of significant MRFM PSF mismatch, we

first applied it to a simulated version of the experimental data shown in Fig. 3.10. We

used the scanning electron microscope (SEM) virus image reported in Degen et al. [4]

to create a synthetic 3D MRFM virus image (by following the forward model in (3.1)),

one slice of which is shown in Fig. 3.11(a). This 3D image was then passed through

the MRFM forward model, shown in Fig. 3.12(a), and 10dB Gaussian noise was

added. The mismatched PSF (Fig. 3.12(b)) was used to initialize our proposed semi-

blind reconstruction algorithm. After 40 iterations the algorithm reduced the initial

normalized PSF error ‖ κ0

‖κ0‖−
κ
‖κ‖‖

2 from 0.7611 to ‖ κ̂
‖κ̂‖−

κ
‖κ‖‖

2 = 0.0295. Fig. 3.11(b)

and Fig. 3.12(c) show the estimated image and the estimated PSF, respectively.

We next applied the proposed semi-blind reconstruction algorithm to the actual

experimental data shown in Fig. 3.10 for which there is neither ground truth on the

MRFM image or on the MRFM PSF. The image reconstruction results are shown in

Fig. 3.13. The small difference between the nominal PSF and the estimated PSF in-

dicates that the estimated PSF is close to the assumed PSF. We empirically validated

this small difference by verifying that multiple runs of the Gibbs sampler gave low

variance PSF residual coefficients. We conclude from this finding that the PSF model

of Degen et al. [4] is in fact nearly Bayes optimal for this experimental data. The

blind image reconstruction shown in Fig. 3.13 is similar to the image reconstruction
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(a) MAP estimate in 3D and the estimated image on 6th plane, showing
a virus particle.

(b) Estimated (left) and nominal (right) PSFs. ‖ κ̂
‖κ̂‖−

κ0
‖κ0‖‖

2 = 0.0212.
The difference between two is small. (Hard thresholding with level
= max(PSF )× 10−4 is applied for visualization. )

Figure 3.13: Semi-blind MC Bayes method results and PSF coefficient curves. ∆z =
4.3nm, pixel spacing is 8.3nm×16.6nm in x×y, respectively. The size of
(x, y) plane is 498nm×531.2nm. Smoothing is applied for visualization.
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(a) MMSE solution. Gray level
image intensity values range
from 0 (black) to 7.34 × 10−12

(white).

(b) The pixel-wise square root
of the image variance. White
color indicates a high variance.
Gray level image intensity val-
ues range from 0 (black) to
3.29× 10−12 (white).

Figure 3.14: The posterior mean and variance at the 6th plane of the estimated image
(Fig. 3.13(a)).

in Degen et al. [4] obtained from applying the Landweber reconstruction algorithm

with the nominal PSF.

Using the MCMC generated posterior distribution obtained from the experimental

MRFM data, we generated confidence intervals, posterior mean and posterior vari-

ance of the pixel intensities of the unknown virus image. The posterior mean and

variance are presented in Fig. 3.14 for selected pixels. In addition, to demonstrate

the match between the estimated region occupied by the virus particle and the actual

region we evaluated Bayesian p-values for object regions. The Bayesian p-value for a

specific region Ri having non-zero intensity is pv(Ri) = P({Ik = 1}k∈Ri |y) where P

is a probability measure and Ik is an indicator function at the kth voxel. Assuming

voxel-wise independence, the p-values are easily computed from the posterior distri-

bution and provide a level of a posteriori confidence in the statistical significance of

the reconstruction. We found that over 95% of the Bayesian p-values were greater

than 0.5 for the non-zero regions of the reconstruction.
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3.4.4 Discussion

Joint identifiability is a common issue underlying all blind deconvolution methods.

(e.g., scale ambiguity.) Even though the unicity of our solution is not proven, given

the conditions that 1) span(κ) = κ0 + span(
∑

κi) does not cover a kernel of a delta

function, κ = δ(·), and 2) the PSF solution is restricted to this linear space of κ0,κi’s,

the equation (3.17) for the MAP criteria promises a reasonable solution that is not

trivial such as x̂ = y. Due to this restriction and the sparse nature of the image to

be estimated, we can reasonably expect that the solution provided by the algorithm

is close to the true PSF. A study of unicity of the solution would be worthwhile but

is beyond the scope of the current work as it would require study of the complicated

and implicit fixed points of the proposed Bayes objective function.

Note that proposed sparse image reconstruction algorithm can be extended to

exploit sparsity in other domains, such as the wavelet domain. In this case, if we

define W to be the transformation matrix on x, the proposed semi-blind approach

can be applied to reconstruct the transformed signal x′ = Wx. However, instead

of assigning the single sided exponential distribution as prior for x′, a double sided

Laplacian distribution might be used to cover the negative values of the pixels. The

estimation procedure for PSF coefficients, noise level, and hyperparameters would be

the same. For image estimation, the vector hi used in (3.22) would be replaced with

the ith column of HW−1.

To investigate the sensitivity to the number of principal PSF components K,

we evaluate the corresponding performances in Fig. 3.15. The number of principal

PSF components K = 4 used in our experiments was determined from the scree

plot of relative eigenvalues. Our choice K = 4 is validated by the fact that for

K ≥ 4 the performance saturates (see Fig. 3.15). Generally, the selection of the

number of the necessary components can be formulated as a model selection problem.

Within our Bayesian MCMC framework, we could adopt a reversible jump Markov
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chain Monte Carl (RJMCMC) approach [72] to estimate K. In this approach, a

reversible Markov chain sampler chooses or jumps between parameter subspaces of

different dimensionality. This method produces the probability for each model, which

is an empirical distribution of accepted K values along the Markov chain. This is

more flexible than our current algorithm but a drawback of this approach is that the

computational requirements are high: successive reconstructions need to be performed

for the different values of K generated by the Markov chain.

(a) ‖x̂‖0/‖x‖0 (b) ‖ x
‖x‖ −

x̂
‖x̂‖‖

2
2/‖x‖0

(c) ‖y − ŷ‖22/‖x‖0 (d) ‖ κ̂
‖κ̂‖ −

κ
‖κ‖‖

2
2

Figure 3.15: Mean-performance graphs for the different number of principal PSF com-
ponents (K in x axis) from 100 independent trials for each K value and
‖x‖0 = 11. Vertical bars are standard deviations. (d) Initial condition:
‖ κ0

‖κ0‖ −
κ
‖κ‖‖

2
2 = 0.5627.
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3.5 Conclusion and Future Work

3.5.1 Conclusion

We have proposed an extension of the method of the non-blind Bayes reconstruc-

tion in Dobigeon et al. [2] that simultaneously estimates a partially known PSF and

the unknown but sparse image. The method uses a prior model on the PSF that

reflects a nominal PSF and uncertainty about the nominal PSF. In our algorithm the

values of the parameters of the convolution kernel were estimated by a Metropolis-

within-Gibbs algorithm, with an adaptive mechanism for tuning random-walk step

size for fast convergence. Our approach can be used to empirically evaluate the ac-

curacy of assumed nominal PSF models in the presence of model uncertainty. In our

sparse reconstruction simulations, we demonstrated that the semi-blind Bayesian al-

gorithm has improved performance as compared to the AM reconstruction and other

blind deconvolution algorithms and non-blind Bayes method under several criteria.

3.5.2 Future work: image model using Markov random fields

We have developed semi-blind sparse deconvolution methods for MRFM data

under the sparsity assumption at a high resolution. However, if the resolution is low,

this sparsity assumption needs to be replaced with a smoothness assumption on image

objects. In this section, we formulate general image models that produce continuous,

smooth image objects using Markov random fields, as opposed to our independent

pixel model. We reserve the development and application to real data as our future

work.

The assumption of smoothness in image objects implies a high spacial correlation

between the adjacent pixels. However, the image priors we have suggested so far

assume independent pixel distributions, thus leading to effective sparse estimation.

To extend this model to capture the spacial correlation with a similar Bayesian per-
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spective, we first propose prior distributions based on Markov random field (MRF)

models. These models exploit correlation information in local regions with defined

neighborhood relationships for pixels or sites of an image. The MRF model fits well

with our site-wise update algorithms, even though neither the posterior nor prior dis-

tribution of an entire image is in the closed form. The difficulty in obtaining closed

form solutions for the whole image is no obstacle in our estimation process because

we use a pixel-wise sampling technique, for which a closed form posterior distribution

exists in the form of a Bernoulli truncated exponential distribution family.

We first introduce notations in our Markov Random Field (MRF) image model

and state the relevant definitions and theories in MRF.

3.5.2.1 Markov random fields

We hereby consider the image variable x as a MRF, following the definitions below.

Definition: Random Field

Let S be a finite set, with elements denoted by s and called sites, and let Λ be a

finite set called the phase space. A random field on S with phases in Λ is a collection

X = {X(s)}s∈S of random variables X(s) with values in Λ.

Note that Ns, a subset of S, is the neighborhood of site s, where the neighbors

are mutual. Roughly speaking, C is a clique if and only if any two distinct sites of it

are mutual neighbors.

Definition: Markov Random Field

The random field X is called a Markov random field (MRF) with respect to the

neighborhood system N = {Ns}, if for all sites s ∈ S the random variables X(s) and

X(S − ({s} ∪ Ns)) are independent given X(Ns).

Definition: Gibbs Potential

A Gibbs Potential on ΛS relative to the neighborhood system N is a collection {VC}C⊂S
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of functions VC : ΛS → R ∪ {∞} such that

(i) VC ≡ 0 is not a clique

(ii) for all x, x′ ∈ ΛS and all C ⊂ S, (x(C) = x′(C))⇒ (VC(x) = VC(x
′)).

Definition: Gibbs distribution

The energy function E : ΛS → R ∪ {∞} is said to derive from the potential {VC}C⊂S

if E =
∑
C VC(x).

With this energy function, we call a probability distribution

πT (x) =
1

ZT
exp(− 1

T
E(x)) (3.30)

a Gibbs distribution.

Hammersley-Clifford Theorem

X is a MRF and ∀x,P(X = x) > 0 if and only if P(X = x) has the form of a Gibbs

distribution.

Finally, we use the fact that the simulated distributions converge to stationary

distributions. In other words, in simulation of random fields with an appropriate

stochastic sampler, the state gets to the most stable state in terms of the energy E

[68].

3.5.2.2 An adaptive image model

The image prior can be categorized into two classes in terms of spatial intra-

dependency of pixels: 1) a spatially homogeneous prior and 2) a spatially inhomo-

geneous prior. By decomposing image density into the parts of the background and

foreground, the following mixture forms of density are obtained.

1) An independent prior: f(x) =
∏

i δ(xi)(1 − w) + 1
a

exp(−xi
a

)w. This image

prior distribution is used in Chapter III.
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2) A spatially dependent prior:

f(xi|x−i,Φ) = (1− wi)f(xi|xi = 0) + wif(xi|xi 6= 0,x−i,Φ) (3.31)

= (1− wi)δ(x) + wig(xi|x−i,Φ), (3.32)

where xi is ith component of x, wi = P(xi 6= 0|x−i) is pixel occupancy probability,

g(xi|x−i,Φ) is conditional density given hyperparameters Φ, x−i = {xj}j∈Ni , and Ni

is neighborhood indices of xi. Compared to the spatially independent prior, this prior

does not have a closed form for the whole sites or x.

In this section, we investigate the spatially dependent prior distribution. This

prior distribution can be configured from two aspects. Firstly, the sparsity rate wi can

be defined to be dependent on neighborhood. This spatially adaptive wi would help in-

duce sparsity among zero-dominant neighbors and smoothness among signal/nonzero-

dominant neighbors. Secondly, the conditional density, the signal prior distribution

g(·), can be set up as a function of neighbors. For example, g(·) can be a normal

distribution with the mean from the mean of neighbors and the variance from the

variance of sampled neighbor values.

A prior with a spatially invariant conditional density

In (3.32), we can set a non-sparsity rate wi = h(
|{xj :j∈Ni,xj 6=0}|

|Ni| ) and g(xi) = ga(xi),

where h(·) is an increasing function mapping from [0, 1] to [0, 1], and ga(xi) is an

exponential distribution with parameter 1/a. We expect the h function to be almost

linear for the non-sparsity rate to be approximately proportional to the non-sparsity

ratio of neighborhood. (In practice, a small margin (ε) from 0 and 1 seems necessary

to avoid stability of estimation. Thus, the range of h(·) is [ε, 1− ε]. )

The pixel-wise posterior image density is

f(xi|y, x−i, σ2, a) = (1− w′i)δ(xi) + w′iφ+(xi|µi, η2
i ), (3.33)
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where φ+(·|µi, η2
i ) is truncated Gaussian distribution, w′i = w(xi, xNi) = uiwi

uiwi+(1−wi)wi,

and ui is similarly derived as in Section 3.3.1.3. In short, xi has a posterior distribution

which has a spatial-variant rate w′i, different from the rate wi in the prior distribution,

which is, again, the conditionally Bernoulli-truncated Gaussian distribution.

A prior with a spatially variant conditional density g(xi|x−i,Φ)

The more general image prior density than the one proposed in (3.33) has a

spatially variant conditional density g(·). We define g(xi|x−i,Φ) to be normal distri-

bution with mean and variance (mi, σ
2
i ), where mi is the mean of nonzero neighbors,

σ2
i = cmin(|Ni|/|Ni ∩ I1|, |Ni|), I1 is a set of sites of (estimated) foreground pixels

(I0 is similarly defined for background pixels), and c is a variable to be estimated.

The result posterior distribution has the same functional form as the one in (3.33)

with different coefficient values, which are similarly derived. The scaling factor for

the variance in the prior density c is assumed to follow the inverse gamma distribu-

tion with parameter values (1, lc/2), where the hyperparameter f(lc) ∝ 1
lc

. Then, the

posterior for c becomes IG(c; |I1|
2
,
∑

xs 6=0
(xs−ms)2

2σ2
i

)

3.5.2.3 MAP criteria

We present the MAP criteria for the prior of a spatially variant conditional den-

sity. Because the closed form criteria, for the whole sites x, to determine MAP

is difficult to obtain due to the intercorrelation of pixels, we suggest an approxi-

mation of f(x|y). We can define Z(c) to be a normalization constant such that

f(x|c) = 1
Z(c)

∏
i f(xi|c, xNi). This partition function Z(c) is evaluated by integrating∏

i f(xi|c, xNi) over x = [x1, ..., xP ]T , which is almost infeasible. Thus, we approxi-

mate f(x|c) by assuming that the partition function is independent of c. Also, after

reaching the steady state of the Markov Chain, we assume
∏

i∈I0(1−wi)
∏

i∈I1 wi and∏
i∈I1(ki)

−0.5 can be treated as constants, thus independent of c and x. Under these

assumptions, f(x|c)∝̃
∏

i f(xi|c, xNi) ∝
∏

i∈I1 kic
−n1

2 exp(−
∑

i∈I1
(xi−mi)2

2kic
), where ∝̃
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means ‘approximately proportional to’.

The result MAP criteria is then approximated as

f(x|y)∝̃||y −Hx||N2
Γ(α1)

βα1
1

∏
i∈I1

1

k0.5
i

, (3.34)

with α1 = n1

2
, β1 = −

∑
i∈I1

xi−mi
2ki

, and Γ(·) a gamma function.

3.6 Appendix 1: Fast Recursive Sampling Strategy

In our proposed iterative Bayesian algorithm, repeated evaluations of the transfor-

mation T (κ (λ) ,x) can be computationally expensive. For example, at each iteration

of the proposed Bayesian myopic deconvolution algorithm, one must generate xi from

its conditional distribution f (xi|w, a, λ,σ2,x−i,y), which requires the calculation of

T (κ, x̃i) where x̃i is the vector x whose ith element has been replaced by 0. Moreover,

sampling according to the conditional posterior distributions of σ2 and λk (3.26) and

(3.23) requires computations of T (κ,x).

By exploiting the bilinearity of the transformation T (·, ·), we can reduce the

complexity of the algorithm. We describe below a strategy, similar to those presented

in [2, App. B], which only requires computation of T (·, ·) at most M× (K+1) times.

First, let IM denote the M ×M identity matrix and ui its ith column. In a first step

of the analysis, the M vectors h
(0)
i (i = 1, . . . ,M)

h
(0)
i = T (κ0,ui) , (3.35)

and KM vectors h
(k)
i (i = 1, . . . ,M, k = 1, . . . , K)

h
(k)
i = T (κk,ui) , (3.36)

are computed. Then one can compute the quantity T (κ, x̃i) and T (κ,x) at any stage
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of the Gibbs sampler without evaluating T (·, ·), based on the following decomposition

T (κ,x) =
M∑
i=1

xih
(0)
i +

K∑
k=1

λk

M∑
i=1

xih
(k)
i . (3.37)

The resulting procedure to update the ith coordinate of the vector x is described

in Algorithm 4 below.

Algorithm 4 Efficient simulation according to f (x |w, a, σ2,y )

At iteration t of the Gibbs sampler, for i = 1, . . . ,M, update the ith coordinate of
the vector

x(t,i−1) =
[
x

(t)
1 , . . . , x

(t)
i−1, x

(t−1)
i , x

(t−1)
i+1 , . . . , x

(t−1)
M

]T
via the following steps:

1: compute hi = h
(0)
i +

∑K
k=1 λkh

(k)
i ,

2: set T
(
κ, x̃

(t,i−1)
i

)
= T

(
κ,x(t,i−1)

)
− x(t−1)

i hi,

3: set ei = x− T
(
κ, x̃

(t,i−1)
i

)
,

4: compute µi, η
2
i and wi as defined in [6],

5: draw x
(t)
i according to (3.21),

6: set x(t,i) =
[
x

(t)
1 , . . . , x

(t)
i−1, x

(t)
i , x

(t−1)
i+1 , . . . , x

(t−1)
M

]T
,

7: set T
(
κ,x(t,i)

)
= T

(
κ, x̃

(t,i−1)
i

)
+ x

(t)
i hi.

Note that in step 7. of the algorithm above, T (κ,x) is recursively computed.

Once all the coordinates have been updated, the current T (κ,x) can be directly

used to sample according to the posterior distribution of the noise variance in (3.26).

Moreover, this quantity can be used to sample according to the conditional posterior

distribution of λk in (3.23). More precisely, evaluating T (κ (λ?k) ,x) in the acceptance

probability (3.25) can be recursively evaluated as follows

T (κ (λ?k) ,x) = T
(
κ
(
λ

(t)
k

)
,x
)
−
(
λ

(t)
k − λ

?
k

) M∑
i=1

xih
(k)
i . (3.38)
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3.7 Appendix 2: Sparsity Enforcing Selective Sampling

Since we have estimated the ‘overall sparsity’, 1 − ŵ, of x from (3.19), we can

expedite the sampling procedure of x by selectively sampling only significant portions

of entire pixels of x. As a result, we expect (1 − ŵ) × 100% of pixel domain of x to

be zero, which will not need to be re-sampled.

At time t, in order to approximate the quantile (1− ŵ) of {w(t)
i }i=1,...,M in (3.21)

we evaluate the (1 − ŵ) quantile value of the previously obtained {w(t−1)
i }i=1,...,M .

This approximation accelerates the computation because the exact calculation of

{w(t)
i }i=1,...,M requires sampling of all xi’s. Let q = quantile({w(t−1)

i }i=1,...,M , 1 − ŵ)

and wthr = max(q, 1− ŵ). When w
(t)
i for x

(t)
i from (3.21) is less than wthr, then x

(t)
i is

not updated or is set to zero. Because MCMC sampling is computationally expensive,

especially for large size images, this suggestion can be restricted to the burn-in period

to save computations.

In our experiment, the selective sampling of x applied after 3 or 4th iterations

produce equally good results compared to the conventional MCMC sampling methods,

while reducing computation time by 30−50% for non-blind sparse reconstruction with

a fixed PSF and by 10− 30% for the semi-blind sparse reconstruction.
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CHAPTER IV

Variational Bayesian Semi-blind Deconvolution1

In this chapter, we present a variational Bayesian method of joint image recon-

struction and PSF estimation when the PSF of the imaging device is only partially

known. The variational principle allows minimization of the distributional distance

between the target posterior distribution and the approximate distribution. This

minimization produces feasible solutions when appropriate factorization of approxi-

mated distributions is assumed. However, the mixture-model type distributions that

are adopted for the image prior distributions require label variables to fit into the

variational Bayes framework. Therefore, we introduce this latent variable for image

labeling into background and foreground groups. To exploit the sparsity of images as

performed in Chapter III, the similar sparsity inducing prior distribution is used for

the individual pixel values.

Simulation results clearly demonstrate that the semi-blind deconvolution algo-

rithm compares favorably with previous Markov chain Monte Carlo (MCMC) version

of myopic sparse reconstruction. It significantly outperforms mismatched non-blind

algorithms that rely on the assumption of the perfect knowledge of the PSF. This

algorithm is faster, more scalable for equivalent image reconstruction qualities in Ch-

pater III. The algorithm is illustrated on real data from magnetic resonance force

1This chapter is partially based on the papers [73, 74].
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microscopy (MRFM). Lastly, as an extension to the space-invariance assumption of

the PSF, we consider possible solutions and reserve for a future work.

4.1 Formulation

The formulation in this section is the almost same as the one introduced in Chap-

ter III except the latent variable z. For completeness, the formulation is briefly

reproduced.

4.1.1 Image model

As in Chapter III, the image model is defined as:

y = Hx + n = T (κ,x) + n, (4.1)

where y is a P × 1 vectorized measurement, x = [x1, . . . , xM ]T � 0 is an M × 1

vectorized sparse image to be recovered, T (κ, ·) is a convolution operator with the

PSF κ, H = [h1, . . . ,hM ] is an equivalent system matrix, and n is the measurement

noise vector assumed to be Gaussian, n ∼ N (0, σ2IP ). Again, the PSF κ is assumed

to be unknown but a nominal PSF estimate κ0 is available.

4.1.2 PSF basis expansion

The nominal PSF κ0 is assumed to be generated with known parameters (gathered

in the vector ζ0) tuned during imaging experiments. However, due to model mismatch

and experimental errors, the true PSF κ may deviate from the nominal PSF κ0. If

the generation model for PSFs is complex, direct estimation of a parameter deviation,

∆ζ = ζtrue − ζ0, is difficult.

As proposed in Chapter III, we model the PSF κ (resp. {H}) as a perturbation

about a nominal PSF κ0 (resp. {H0}) with K basis vectors κk, k = 1, . . . , K, that

64



span a subspace representing possible perturbations ∆κ. We empirically determined

this basis using the variational eigendecomposition approach. If there is no PSF

generation model, then we can decompose the support region of the true (suspected)

PSF to produce an orthonormal basis. The necessary number of the bases is again

chosen to explain most support areas that have major portion/energy of the desired

PSF. This approach is presented in our experiment with Gaussian PSFs.

We use a basis expansion to present κ(λ) as the following linear approximation

to κ,

κ(λ) = κ0 +
K∑
i=1

λiκi. (4.2)

The objective is to estimate the unknown image, x, and the linear expansion coeffi-

cients λ = [λ1, . . . , λK ]T .

4.1.3 Determination of priors

The priors on the PSF, the image, and the noise are constructed as latent variables

in a hierarchical Bayesian model. We use a notation p(·) as a probability measure

function, instead of f(·) used in Chapter III, to differentiate our use of p(·) and q(·),

the approximation of p(·).

4.1.3.1 Likelihood function

Under the hypothesis that the noise in (4.1) is white Gaussian, the likelihood

function takes the form

p
(
y|x,λ, σ2

)
=

(
1

2πσ2

)P
2

exp

(
−‖y − T (κ (λ) ,x)‖2

2σ2

)
, (4.3)
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4.1.3.2 Image and label priors

We start from the prior that is a convex combination of an atom at zero and an

exponential distribution:

p(xi|a, w) = (1− w)δ(xi) + wg(xi|a). (4.4)

In (4.4), w = P (xi 6= 0) is the prior probability of a non-zero pixel and g(xi|a) =

1
a

exp
(
−xi

a

)
1R∗+(xi) is a single-sided exponential distribution.

A distinctive property of the image prior (4.4) is that it can be expressed as a

latent variable model

p(xi|a, zi) = (1− zi)δ(xi) + zig(xi|a), (4.5)

where the binary variables {zi}N1 are independent and identically distributed and

indicate if the pixel xi is active

zi =

 1, if xi 6= 0;

0, otherwise.
(4.6)

and have the Bernoulli probabilities: zi ∼ Ber(w).

The prior distribution of pixel value xi in (4.4) can be rewritten conditionally

upon latent variable zi

p (xi|zi = 0) = δ (xi) ,

p (xi|a, zi = 1) = g (xi|a) ,

which can be summarized in the following factorized form

p(xi|a, zi) = δ(xi)
1−zig(xi|a)zi . (4.7)
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By assuming each component xi to be conditionally independent given zi and a, the

following conditional prior distribution is obtained for x:

p(x|a, z) =
N∏
i=1

[
δ(xi)

1−zig(xi|a)zi
]

(4.8)

where z = [z1, . . . , zM ].

This factorized form will turn out to be crucial for simplifying the variational

Bayes reconstruction algorithm in Section 4.2.

4.1.3.3 PSF parameter prior

We assume that the PSF parameters λ1, . . . , λK are independent and each is uni-

formly distributed over intervals

Sk = [−∆λk,∆λk] . (4.9)

These intervals are specified a priori and are associated with error tolerances of the

imaging instrument. The joint prior distribution of λ is therefore:

p (λ) =
K∏
k=1

1

2∆λk
1Sk (λk) . (4.10)

4.1.3.4 Noise variance prior

A conjugate inverse-Gamma distribution with parameters ς0 and ς1 is assumed as

the prior distribution for the noise variance (See Appendix 4.6 for the details of this

distribution):

σ2|ς0, ς1 ∼ IG (ς0, ς1) . (4.11)

The parameters ς0 and ς1 will be fixed to a number small enough to obtain a vague

hyperprior, unless we have good prior knowledge.
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4.1.4 Hyperparameter priors

The values of the hyperparameters {a, w} greatly impact the quality of the de-

convolution, leading to a second level of hierarchy in the Bayesian paradigm. The

definitions of distributions for hyperpriors are presented below.

4.1.4.1 Hyperparameter a

A conjugate inverse-Gamma distribution is assumed for the Laplacian scale pa-

rameter a:

a|α ∼ IG (α0, α1) , (4.12)

with α = [α0, α1]
T . The parameters α0 and α1 will be fixed to a number small enough

to obtain a vague hyperprior, unless we have good prior knowledge.

4.1.4.2 Hyperparameter w

We assume a Beta random variable with parameters (β0, β1), which are iteratively

updated in accordance with data fidelity. The parameter values will reflect the degree

of prior knowledge and we set β0 = β1 = 1 to obtain a non-informative prior. (See

Appendix 4.7 for the details of this distribution)

w ∼ B(β0, β1). (4.13)

4.1.5 Posterior distribution

The conditional relationships between variables is illustrated in Fig. 4.1. The

resulting posterior of hidden variables given the observation is

p(x, a, z, w,λ, σ2|y) ∝ p(y|x, σ2,λ) × p(x|a, z)p(z|w)p(w)p(a)p(λ)p(σ2). (4.14)
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Figure 4.1: Conditional relationships between variables. A node at an arrow tail
conditions the node at the arrow head.

Since it is too complex to derive exact Bayesian estimators from this posterior, a

variational approximation of this distribution is proposed in the next section.

4.2 Variational Approximation

4.2.1 Basics of variational inference

In this section, we show how to approximate the posterior densities within a

variational Bayes framework. Denote by U the set of all hidden parameter variables

including the image variable x in the model, denoted by M. The hierarchical model

implies the Markov representation p(y,U|M) = p(y|U,M)p(U|M). Our objective

is to compute the posterior p(x|y,M) =
∫
p(y|U,M)p(U|M)dU\x/p(y|M), where

U\x is a set of variables in U except x. Let q be any arbitrary distribution of U.

Then

ln p(y|M) = L(q) + KL(q‖p) (4.15)

with

L(q) =

∫
q(U|M) ln

(
p(y,U|M)

q(U|M)

)
dU (4.16)

KL(q‖p) = −
∫
q(U|M) ln

(
p(U|y,M)

q(U|M)

)
dU. (4.17)

We observe that maximizing the lower bound L(q) is equivalent to minimizing the
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Kullback-Leibler (KL) divergence KL(q‖p). Consequently, instead of directly eval-

uating p(y|M) given M, we will specify a distribution q(U|M) that approximates

the posterior p(U|y,M). The best approximation maximizes L(q). We present Al-

gorithm 5 that iteratively increases the value of L(q) by updating posterior surrogate

densities. To obtain a tractable approximating distribution q, we will assume a factor-

ized form as q(U) =
∏

j q(Uj) where U has been partitioned into disjoint groups Uj.

Subject to this factorization constraint, the optimal distribution q∗ (U) =
∏

j q
∗(Uj)

is given by

ln q∗j (Uj) = E\Uj
[ln p(U,y)] + (const), ∀j (4.18)

where E\Uj
denotes the expectation2 with respect to all factors Ui except i = j. We

will call q∗(U) the posterior surrogate for p.

4.2.2 Suggested factorization

Based on our assumptions on the image and hidden parameters, the random vector

is U , {θ,φ} = {x, a, z, w,λ, σ2} with θ = {x, z,λ} and φ = {a, w, σ2}. We propose

the following factorized approximating distribution

q(U) = q(x, a, z, w,λ, σ2) = q(x, z,λ)q(a, w, σ2). (4.19)

Ignoring constants3, (4.18) leads to

ln q(a, w, σ2) = E\a ln p(x|a, z)p(a)︸ ︷︷ ︸
ln q(a)

+

E\w ln p(z|w)p(w)︸ ︷︷ ︸
ln q(w)

+ E\σ2 ln p(y|x, σ2)p(σ2)︸ ︷︷ ︸
ln q(σ2)

(4.20)

2In the sequel, we use both E [·] and 〈·〉 to denote the expectation. To make our expressions
more compact, we use subscripts to denote expectation with respect to the random variables in
the subscripts. These notations with the subscripts of ‘\v’ denote expectation with respect to all
random variables except for the variable v. e.g. E\Uj

3In the sequel, constant terms with respect to the variables of interest can be omitted in equations.

70



which induces the factorization

q(φ) = q(a)q(w)q(σ2). (4.21)

Similarly, the factorized distribution for x, z and λ is

q (θ) =

[∏
i

q(xi|zi)

]
q(z)q(λ) (4.22)

leading to the fully factorized distribution

q (θ,φ) =

[∏
i

q(xi|zi)

]
q(a)q(z)q(w)q(λ)q(σ2) (4.23)

4.2.3 Approximating distribution q

In this section, we specify the marginal distributions in the approximated pos-

terior distribution required in (4.23). More details are described in Appendix 4.9.

The parameters for the posterior distributions are evaluated iteratively due to the

mutual dependence of the parameters in the distributions for the hidden variables, as

illustrated in Algorithm 5.

4.2.3.1 Posterior surrogate for a

q(a) = IG(α̃0, α̃1), (4.24)

with α̃0 = α0 +
∑
〈zi〉, α̃1 = α1 +

∑
〈zixi〉.

4.2.3.2 Posterior surrogate for w

q(w) = B(β̃0, β̃1), (4.25)
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with β̃0 = β0 +N −
∑
〈zi〉, β̃1 = β1 +

∑
〈zi〉.

4.2.3.3 Posterior surrogate for σ2

q(σ2) = IG(ς̃0, ς̃1), (4.26)

with ς̃0 = P/2 + ς0, ς̃1 = 〈‖y −Hx‖2〉/2 + ς1, and 〈‖y −Hx‖2〉 = ‖y − 〈H〉〈x〉‖2 +∑
var[xi] [‖〈κ〉‖2 +

∑
l σcl‖κl‖2] +

∑
l σcl‖Hl〈x〉‖2, where σcl is the variance of the

Gaussian distribution q(cl) given in (4.32) and var[xi] is computed under the distri-

bution q(xi) defined in the next section and described in Appendices 4.9.3.

4.2.3.4 Posterior surrogate for x

We first note that

ln q(x, z) = ln q(x|z)q(z) = E
[
ln p(y|x, σ2)p(x|a, z)p(z|w)

]
. (4.27)

The conditional density of x given z is p(x|a, z) =
∏N

i gzi(xi), where g0(xi) ,

δ(xi), g1(xi) , g(xi|a). Therefore, the conditional posterior surrogate for xi is

q(xi|zi = 0) = δ(xi), (4.28)

q(xi|zi = 1) = φ+(µi, ηi), (4.29)

where φ+(µ, σ2) is a positively truncated-Gaussian density function with the hidden

mean µ and variance σ2, ηi = 1/[〈‖hi‖2〉〈1/σ2〉], µi = ηi[〈hTi ei〉〈1/σ2〉 − 〈1/a〉], ei =

y−Hx−i, x−i is x except for the ith entry replaced with 0, and hi is the ith column

of H. Therefore,

q(xi) = q(zi = 0)δ(xi) + q(zi = 1)φ+(µi, ηi), (4.30)
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which is a Bernoulli truncated-Gaussian density.

4.2.3.5 Posterior surrogate for z

For i = 1, . . . , N ,

q(zi = 1) = 1/[1 + C ′i] and q(zi = 0) = 1− q(zi = 1), (4.31)

with C ′i = exp(Ci/2 × ς̃0/ς̃1 + µiα̃0/α̃1 + ln α̃1 − ψ(α̃0) + ψ(β̃0) − ψ(β̃1)). ψ is the

digamma function and Ci = 〈‖hi‖2〉(µ2
i + ηi)− 2〈eTi hi〉µi.

4.2.3.6 Posterior surrogate for c

For j = 1, . . . , K,

q(cj) = φ(µcj , σcj), (4.32)

where φ(µ, σ) is the probability density function for the normal distribution with

the mean µ and variance σ, µcj =
〈xTHjTy − xHjTH0x−

∑
l 6=j xTHjTHlclx〉

〈xTHjTHjx〉
, and

1/σcj = 〈1/σ2〉〈xTHjTHjx〉.

Algorithm 5 VB semi-blind image reconstruction algorithm
1: % Initialization:

2: Initialize estimates 〈x(0)〉, 〈z(0)〉, and w(0), and set λ = 0 to have κ̂(0) = κ0,
3: % Iterations:

4: for t = 1, 2, . . . , do
5: Evaluate α̃

(t)
0 , α̃

(t)
1 in (4.24) by using 〈x(t−1)〉, 〈z(t−1)〉,

6: Evaluate β̃
(t)
0 , β̃

(t)
1 in (4.25) by using 〈z(t−1)〉,

7: Evaluate ς̃
(t)
0 , ς̃

(t)
1 in (4.26) from 〈‖y −Hx‖2〉,

8: for i = 1, 2, . . . , N do
9: Evaluate necessary statistics (µi, ηi) for q(xi|zi = 1) in (4.28),

10: Evaluate q(zi = 1) in (4.31),
11: Evaluate 〈xi〉, var[xi],
12: For l = 1, . . . , K, evaluate µcl , 1/σcl for q(cl) in (4.32),
13: end for
14: end for

The final iterative algorithm is presented in Algorithm 5, where required shap-
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ing parameters under distributional assumptions and related statistics are iteratively

updated.

4.3 Simulation Results

We first present numerical results obtained for Gaussian and typical MRFM PSFs,

shown in Fig. 4.2 and Fig. 4.6, respectively. Then the proposed variational algorithm

is applied to a tobacco virus MRFM data set. There are many possible approaches

to selecting hyperparameters, including the non-informative approach of [37] and the

expectation-maximization approach of [23]. In our experiments, hyper-parameters

ς0, ς1, α0, and α1 for the densities are chosen based on the framework advocated in

Chapter III. This leads to the vague priors corresponding to selecting small values

ς0 = ς1 = α0 = α1 = 1. For w, the noninformative initialization is made by setting

β0 = β1 = 1, which gives flexibility to the surrogate posterior density for w. The

resulting prior Beta distribution for w is a uniform distribution on [0, 1] for the mean

proportion of non-zero pixels.

w ∼ B(β0, β1) ∼ U ([0, 1]) . (4.33)

The initial image used to initialize the algorithm is obtained from one Landweber

iteration [75].

4.3.1 Simulation with Gaussian PSF

The true image x used to generate the data, observation y, the true PSF, and the

initial, mismatched PSF are shown in Fig. 4.2. Some quantities of interest, computed

from the outputs of the variational algorithm are depicted as functions of the iteration

number in Fig. 4.3. These plots indicate that convergence to the steady state is

achieved after few iterations. In Fig. 4.3, E [w] and E [1/a] get close to the true level
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but E [1/σ2] shows a deviation from the true values. This large deviation implies that

our estimation of noise level is conservative; the estimated noise level is larger than

the true level. This relates to the large deviation in projection error from noise level

(Fig. 4.3(a)). The drastic changes in the initial steps seen in the curves of E [1/a] ,E [w]

are due to the imperfect prior knowledge (initialization). The final estimated PSF and

reconstructed image are depicted in Fig. 4.4, along with the reconstructed variances

and posterior probability of zi 6= 0. We decomposed the support region of the true

PSF to produce orthonormal bases {κi}i shown in Fig. 4.5. We extracted 4 bases

because these four PSF bases clearly explain the significant part of the true Gaussian

PSF. In other words, little energy resides outside of this basis set in PSF space.

The reconstructed PSF clearly matches the true one, as seen in Fig. 4.2 and Fig. 4.4.

Note that the restored image is slightly attenuated while the restored PSF is amplified

because of intrinsic scale ambiguity.

(a) True image x (b) Observation (c) True PSF

(d) Mismatched PSF

Figure 4.2: Experiment with Gaussian PSF: true image, observation, true PSF, and
mismatched PSF (κ0).

4.3.2 Simulation with MRFM type PSFs

The true image x used to generate the data, observation y, the true PSF, and

the initial, mismatched PSF are shown in Fig. 4.6. The PSF models the PSF of the
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(a) log ‖y − EHEx‖2
(solid line) and noise
level (dashed line)

(b) log ‖xtrue − Ex‖2 (c) E[1/a] (solid line)
and true value (dashed
line)

(d) E
[
1/σ2

]
(solid line)

and true value (dashed
line)

(e) E[w] (solid line) and
true value (dashed line)

(f) E[c]. Four PSF co-
efficients.

Figure 4.3: Result of Algorithm 5: curves of residual, error,
E [1/a] ,E [1/σ2] ,E [w] ,E [c], as functions of number of iterations.
These curves show how fast the convergence is achieved.

MRFM instrument, derived by Mamin et al. [8]. The convergence of the algorithm

is achieved after the 10th iteration. The reconstructed image can be compared to

the true image in Fig. 4.7, where the pixel-wise variances and posterior probability

of zi 6= 0 are rendered. The PSF bases are obtained by the procedure proposed in

Section 4.1.2 with the simplified MRFM PSF model and the nominal parameter values

[21]. Specifically, by detecting a knee K = 4 at the scree plot, explaining more than

98.69% of the observed perturbations as described in Chapter III, we use the first

four eigenfunctions, corresponding to the first four largest eigenvalues. The resulting

K = 4 principal basis vectors are depicted as in Chapter III. The reconstructed PSF

with the bases clearly matches the true one, as seen in Fig. 4.6 and Fig. 4.7.

4.3.3 Comparison with PSF-mismatched reconstruction

The results from the variational deconvolution algorithm with a mismatched Gaus-

sian PSF and a MRFM type PSF are presented in Fig. 4.9 and Fig. 4.10, respectively;

the relevant PSFs and observations are presented in Fig. 4.2 in Section 4.3.1 and in

Fig. 4.6 in Section 4.3.2, respectively. Compared with the results of our VB semi-blind
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(a) Estimated PSF (b) Estimated image (c) Variance map

(d) Weight map

Figure 4.4: (a) Restored PSF, (b) image, (c) map of pixel-wise (posterior) variance,
and (d) weight map. κ̂ = Eκ is close to the true one. A pixel-wise weight
shown in (d) is the posterior probability of the pixel being a nonzero
signal.

algorithm (Algorithm 5), shown in Fig. 4.4 and Fig. 4.7, the reconstructed images

from the mismatched non-blind VB algorithm in Fig. 4.9 and Fig. 4.10, respectively,

inaccurately estimate signal locations and blur most of the non-zero values.

Additional experiments (not shown here) establish that the PSF estimator is very

accurate when the algorithm is initialized with the true image.

4.3.4 Comparison with other algorithms

To quantify the comparison, we performed experiments with the same set of four

sparse images and the MRFM type PSFs as used in Chapter III. By generating

100 different noise realizations for 100 independent trials with each true image, we

measured errors according to various criteria. We tested four sparse images with

sparsity levels ‖x‖0 = 6, 11, 18, 30.

Under these criteria4, Fig. 4.11 visualizes the reconstruction error performance for

4Note that the `0 norm has been normalized. The true image has value 1; ‖x̂‖0/‖x‖0 is used for
MCMC method; E [w] × N/‖x‖0 for variational method since this method does not produce zero
pixels but E [w].
Note also that, for our simulated data, the (normalized) true noise levels are ‖n‖2/‖x‖0 =
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(a) The first basis κ1 (b) The second basis κ2 (c) The third basis κ3

(d) The fourth basis κ4

Figure 4.5: PSF bases, κ1, . . . ,κ4, for Gaussian PSF.

several measures of error. From these figures we conclude that the VB semi-blind

algorithm performs at least as well as the previous MCMC semi-blind algorithm. In

addition, the VB method outperforms AM [3] and the mismatched non-blind MCMC

[2] methods. In terms of PSF estimation, for very sparse images the VB semi-blind

method seems to outperform the MCMC method. Also, the proposed VB semi-blind

method converges more quickly and requires fewer iterations. For example, the VB

semi-blind algorithm converges in approximately 9.6 seconds after 12 iterations, but

the previous MCMC algorithm takes more than 19.2 seconds after 40 iterations to

achieve convergence5.

In addition, we made comparisons between our sparse image reconstruction method

and other state-of-the-art blind deconvolution methods [34, 40, 41, 27, 19, 20], as

shown in Chapter III. These algorithms were initialized with the nominal, mismatched

PSF and were applied to the same sparse image as our experiment above. For a fair

comparison, we made a sparse prior modification in the image model of other algo-

rithms, as needed. Most of these methods do not assume or fit into the sparse model

0.1475, 0.2975, 0.2831, 0.3062 for ‖x‖0 = 6, 11, 18, 30, respectively.
5The convergence here is defined as the state where the change in estimation curves over time is

negligible.
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(a) True image x (b) Observation (c) True PSF

(d) Mismatched PSF

Figure 4.6: Experiment with simplified MRFM PSF: true image, observation, true
PSF, and mismatched PSF (κ0).

in our experiments, thus leading to poor performance in terms of image and PSF

estimation errors. Among these tested algorithms, two of them, proposed by Tzikas

et al. [27] and Almeida et al. [41], produced non-trivial and convergent solutions and

the corresponding results are compared to ours in Fig. 4.11. By using basis kernels

the method proposed by Tzikas et al. [27] uses a similar PSF model to ours. Be-

cause a sparse image prior is not assumed in their algorithm [27], we applied their

suggested PSF model along with our sparse image prior for a fair comparison. The

method proposed by Almeida et al. [41] exploits the sharp edge property in natural

images and uses initial, high regularization for effective PSF estimation. Both of these

perform worse than our VB method as seen in Fig. 4.11. The remaining algorithms

[34, 40, 19, 20], which focus on photo image reconstruction or motion blur, either

produce a trivial solution (x̂ ≈ y) or are a special case of Tzikas’s model [27].

To show lower bound our myopic reconstruction algorithm, we used the IST algo-

rithm with a true PSF to effectively restore sparse images with a sparsity constraint.

We demonstrate comparisons of the computation time6 of our proposed reconstruction

algorithm to that of others in Table 4.1.

6Matlab is used under Windows 7 Enterprise and HP-Z200 (Quad 2.66 GHz) platform.
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(a) Estimated PSF (b) Estimated image (c) Variance map

(d) Weight map

Figure 4.7: Restored PSF and image with pixel-wise variance and weight map. κ̂ =
Eκ is close to the true one.

Table 4.1: Computation time of algorithms (in seconds), for the data in Fig. 4.6.

Our method 9.58

semi-blind MC in Chapter III 19.20

Bayesian nonblind [2] 3.61

AM [3] 0.40

Almeida’s method [41] 5.63

Amizic’s method [40] 5.69

Tzikas’s method [27] 20.31

(oracle) IST [71] 0.09

4.3.5 Application to tobacco mosaic virus (TMV) data

We applied the proposed variational semi-blind sparse deconvolution algorithm to

the tobacco mosaic virus data, made available by our IBM collaborators [4], shown

in Fig. 3.10 of Chapter III. Our algorithm is easily modifiable to these 3D raw image

data and 3D PSF with an additional dimension in dealing with basis functions to

evaluate each voxel value xi. The noise is assumed Gaussian [45, 4] and the four PSF

bases are obtained by the procedure proposed in 4.1.2 with the physical MRFM PSF

model and the nominal parameter values [8]. The reconstruction of the 6th layer is
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(a) The first basis κ1 (b) The second basis κ2 (c) The third basis κ3

(d) The fourth basis κ4

Figure 4.8: PSF bases, κ1, . . . ,κ4, for MRFM PSF.

(a) True image (b) Estimated image (c) Variance map

(d) Weight map

Figure 4.9: (mismatched) Non-blind result with a mismatched Gaussian PSF.

shown in Fig. 4.12(a), and is consistent with the results obtained by other methods.

(see [37, 2].) The estimated deviation in PSF is small, as predicted in Chapter III.

While they now exhibit similar smoothness, the VB and MCMC images are still

somewhat different since each algorithm follows different iterative trajectory in the

high dimensional space of 3D images, thus converging possibly to slightly different

stopping points near the maximum of the surrogate distribution. We conclude that

the two images from VB and MCMC are comparable in that both represent the 2D

SEM image well, but VB is significantly faster.
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(a) True image (b) Estimated image (c) Variance map

(d) Weight map

Figure 4.10: (mismatched) Non-blind result with a mismatched MRFM type PSF.

4.4 Discussion

4.4.1 Solving scale ambiguity

In blind deconvolution, joint identifiability is a common issue. For example, be-

cause of scale ambiguity, the unicity cannot be guaranteed in a general setting. It is

not proven in our solution either. However, the shift/time ambiguity issue noticed in

[76] is implicitly addressed in our method using a nominal and basis PSFs. Moreover,

our constraint on the PSF space using a basis approach effectively excludes a delta

function as a PSF solution, thus avoiding the trivial solution. Secondly, the PSF so-

lution is restricted to this linear spanning space, starting form the initial, mismatched

PSF. We can, therefore, reasonably expect that the solution provided by the algo-

rithm is close to the true PSF, away from the trivial solution or the initial PSF.

To resolve scale ambiguity in a MCMC Bayesian framework, stochastic samplers are

proposed in [76] by imposing a fixed variance on a certain distribution7. Another

approach to resolve the scale ambiguity is to assume a hidden scale variable that

is multiplied to the PSF and dividing the image (or vice versa.), where the scale is

7We note that this MCMC method designed for 1D signal deconvolution is not efficient for
analyzing 2D and 3D images, since the grouped and marginalized samplers are usually slow to
converge requiring hundreds of iterations [76].
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(a) ‖x̂‖0/‖x‖0 (b) ‖ x
‖x‖ −

x̂
‖x̂‖‖

2
2/‖x‖0

(c) ‖y − ŷ‖22/‖x‖0 (d) ‖ κ̂
‖κ̂‖ −

κ
‖κ‖‖

2
2

Figure 4.11: For various image sparsity levels (x-axis: log10 ‖x‖0), performance of
several blind, semi-blind, and nonblind deconvolution algorithms: the
proposed method (red), AM (blue), Almeida’s method (green), Tzikas’s
method (cyan), semi-blind MC (black), mismatched nonblind MC (ma-
genta). Errors are illustrated with standard deviations. (a): Estimated
sparsity. Normalized true level is 1 (black circles). (b): Normalized er-
ror in reconstructed image. For the lower bound, information about the
true PSF is only available to the oracle IST (black circles). (c): Residual
(projection) error. The noise level appears in black circles. (d): PSF
recovery error, as a performance gauge of our semi-blind method. At
the initial stage of the algorithm, ‖ κ0

‖κ0‖ −
κ
‖κ‖‖

2
2 = 0.5627. (Some of the

sparsity measure and residual errors are too large to be plotted together
with results from other algorithms.)
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(a) VB estimate (b) MC estimate (c) SEM [4]

Figure 4.12: (a) estimated virus image by VB, (b) estimated virus image by our
stochastic method in Chapter III, and (c) virus image from electron
microscope [4].

drawn along each iteration of the Gibbs sampler [77].

4.4.2 Exploiting spatial correlations

Our Bayesian hierarchical model (Fig. 4.1) does not account for possible spatial

dependencies that might exist in the image. Spatial dependency can be easily in-

corporated in the model by adding a spatial latent variable with an associated prior

distribution. This can be accomplished, for example, by adding a hidden Markov

random field model to the vector x in Fig. 4.1 and we investigate this MRF image

model using MCMC at the end of Chapter III. Examples of Markov random field

models that have been applied to imaging problems similar to ours are Ising or Potts

models [78], Gauss-Markov random fields [79], and Hierarchical Dirichlet processes

[80]. Bayesian inference of the hidden parameters of such model is feasible using

Monte Carlo and Gibbs sampling, as in [81] and [80], and using variational Bayes

EM [82]. Spatial dependency extensions of our model using VB is a worthwhile and

interesting topic for future study but will not be pursued further in this work.
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4.5 Conclusion and Future Work

4.5.1 Conclusion

We suggested a novel variational solution to a semi-blind sparse deconvolution

problem. Our method uses Bayesian inference for image and PSF restoration with a

sparsity-inducing image prior via the variational Bayes approximation. The proposed

variational Bayes algorithm iterates on a hidden variable domain associated with

the mixture coefficients, as an extension of Chapter III. Its power in automatically

producing all required parameter values from the data merits further attention for

the extraction of image properties and retrieval of necessary features.

From the simulation results, we conclude that the performance of the VB method

competes with MCMC methods in sparse image estimation, while requiring fewer

computations. Compared to a non-blind algorithm whose mismatched PSF leads

to imprecise and blurred signal locations in the restored image, the VB semi-blind

algorithm correctly produces sparse image estimates. The benefits of this solution

compared to our stochastic solution in Chapter III are: 1) faster convergence, 2)

stability of the method, and 3) memory efficiency.

4.5.2 Future work: extension to PSF model for application to computa-

tional astronomy

In this section, the global invariance assumption of the point spread function is

relaxed. This work is inspired by computational astronomy, where the PSF is space-

variant, even in an observation acquired from one charge-coupled device (CCD). This

imperfection of the telescope modality challenges the joint PSF and image estima-

tion process, because the violation of the PSF invariance further exacerbates the

ill-conditioned problem of semi-blind deconvolution. We address this problem by as-

suming local invariance near the astronomical object of interest, rather than working
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on the direct simultaneous estimation of the PSF and image.

4.5.2.1 PSF model extension for SDSS project

The extension of the PSF model is motivated by the recent success of the Sloan

Digital Sky Survey (SDSS), the global project that retrieves a huge amount of as-

tronomical image data to map the universe [83]. Within this project, we focus on

estimating galactic objects and their light profiles or shapes. In observations from

ground telescopes, the galaxies recorded are adversely affected by the turbulence of

the media, the imperfection of optical instruments, the variable observational condi-

tions, the limit of the imaging resolution, and additive noise. In order to offset some

of these adverse effects, the raw data from optical telescopes are pre-processed to

remove artificial receiver effects and eliminate satellite scratches. Especially, because

there are multiple CCDs that may have different light sensitivity (receiver efficiency)

and that may overlap in the imaging scope, this CCD effect is re-calibrated [84]. In

these pre-processed images, the stars and galaxies are represented as small dots and

ellipses set within a void space, which appears as a black background.

Although the pre-processing has removed some of the adverse effects in the im-

ages, additional procedures are required to eliminate residual noise and blur effects

caused by some inherent characteristics of optics. The first necessary process is de-

noising, which typically involves applying classical least-square type approaches with

appropriate regularization. The second is deblurring, which involves deconvolution in

usual circumstances where a known point spread function (PSF) or sensor response

is used to sharpen the image. The main problems associated with deconvolution of

the galactic objects are two-fold: first, the conventional assumption of a known PSF

does not apply to our astronomical data and second, the PSF is not generally space-

invariant over the image ranges in our data. The second issue especially exacerbates

the deblurring process. Therefore, unlike suppressing noise, deblurring requires more
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caution and different approaches from standard deconvolution methods.

By addressing these two problems, we propose a solution to the estimation of both

the galaxy image and the PSF. One key assumption of our solution is to consider a

stellar light response as a candidate PSF of the region. If the region of interest is

relatively small or the variation of the PSFs is negligible, we can assume local space

invariance of the PSF to be estimated. Under this premise, our proposed semi-blind

image reconstruction method can apply to the data.

4.5.2.2 Estimation of a spatially variant PSF

Assuming local space invariance of the PSF, we can initialize PSFs near the image

region of interest. Since the data points (measured PSFs) are not regularly spaced

nor dense, but sparsely located, we should resort to interpolation/extrapolation ap-

proaches that do not require such a restriction. There are several strategies for guess-

ing an initial PSF satisfying this condition.

The simplistic approach is to assume the light profile of the nearest star8 as the

initial guess of the PSF. This is equivalent to the interpolation using nearest neighbors

(Voronoi tessellation). The second approach is to take the weighted average of the

stars nearby. Since we have a catalog of the coordinates of galaxies and stars, it seems

reasonable to use this distance information. This averaging can be applied to the

generalized nearest-neighbor approach (natural neighbor interpolation) with distance-

dependent weights for neighbors. For the weights, different powers of distance can be

considered and the inverse distance weighting (IDW) provides the model, as follows.

If we have measured data points on {xi}i=1,...,N , e.g. the PSF at the coordinate xi

or κi := κ(xi) for i = 1, ..., N is known, we use the following interpolation schemes

to predict κ(x) at x ∈ R2.

8Stars are categorized among astronomical objects by using their light intensity profiles in the
SDSS project into the format of Flexible Image Transport System (FITS).
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κ(x) =
N∑
i=0

wi(x)κi∑N
j=0wj(x)

, (4.34)

where wi(x) = 1
lpi

is a weighting function and li is a distance metric between x and xi

or the distance between a galaxy of interest and a ith star nearby in the same field

or CCD.

This approach can be interpreted as an optimization over the PSF field by mini-

mizing the `2 norm difference, as follows:

κ0 = argmin
κ

∑
i

‖κ− κi‖2

lpi
=

∑
i κi/l

p
i∑

i 1/l
p
i

, (4.35)

where κi is the light profile of the ith star. For example, for N = 2 and p = 1,

κ0 = l2
l1+l2

κ1 + l1
l1+l2

κ2. This initialization is reasonable if the galaxy is between these

stars. The limitation of this approach is that the estimation does not explain the

gradient or the change of the light profiles over the extended space.

The third approach that addresses this gradual change is the combination of linear

extrapolation and interpolation. In other words, this is to interpolate among projected

κis. As shown in Fig. 4.13, these linearly projected light profiles (κ(x)) are evaluated

with the coordinates of the projected points. Each orthogonal projection point is

made for the galaxy considering each pair of stars. The initial guess is performed as

follows,

κ0 = argmin
κ

∑
i<j

‖κ− κi,j‖2

lpi,j
=

∑
i<j κi,j/l

p
i,j∑

i<j 1/lpi,j
, (4.36)

where κi,j is a spatially linear (extrapolated) function whose value at the coordinate

of κi or κj is exactly κi or κj, respectively. Similar to the approach above, we use

p = 1, and set li,j = 1/(1/li + 1/lj), instead of the distance between κi,j and the

galaxy, to take into account the actual distance between the stars and galaxy.

We present several initialization maps based on assigning nearest neighbors, av-
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Figure 4.13: Initial guess of PSF based on the line projection (extrapolation of PSF
in a 2D space).

eraging neighbors, and averaging extrapolated PSFs in Fig. 4.14. We also note that

the difference between two initializations of (4.34) and (4.35) reduces as the number

or density of PSFs increases.

We present a simple result from astronomical image data in Fig. 4.15, by using

our proposed variational Bayes method in Chapter IV and a mean of local stars as

an initial PSF.

4.6 Appendix 1: Inverse Gamma Distribution

The density of an inverse Gamma random variableX ∼ IG(a, b) is
ba

Γ(a)
x−a−1 exp(− b

x
),

for x ∈ (0,∞). EX−1 = a/b and E ln(X) = ln(b)− ψ(a).

4.7 Appendix 2: Beta Distribution

The density of a Beta random variable X ∼ B(a, b) is
Γ(a)Γ(b)

Γ(a+ b)
xb−1(1−x)a−1, for

x ∈ (0, 1), with Γ(c) =
∫∞

0
tc−1e−tdt. The mean of B(a, b) is b

a+b
and E ln(B(a, b)) =

ψ(b)− ψ(a+ b), where ψ is a digamma function.
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(a) Nearest neighbor map (b) Averaged neighbor map from (4.34)

(c) Averaging extrapolated-PSF map
from (4.35)

Figure 4.14: PSF initialization maps with p = 1. The measured levels can be seen
from (a) and the location of PSFs are rendered as black dots.
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(a) Noisy and blurry observa-
tion y

(b) Projected observation ŷ (c) Difference between obser-
vation and the projected obser-
vation

(d) Initial PSF κ0 (e) Estimated PSF κ̂ (f) Deconvolved galaxy image

Figure 4.15: Semi-blind deconvolution of a galaxy image from SDSS.

91



4.8 Appendix 3: Positively Truncated Gaussian Distribution

The density of a truncated Gaussian random variable xi is denoted by xi ∼

N+(xi;µ, η), and its statistics used in this work are

E [xi|xi > 0] = E [N+(xi;µ, η)]

= µ+
√
η

φ(−µ/√η)

1− Φ0(−µ/
√
η)
,

E
[
x2
i |xi > 0

]
= var[xi|xi > 0] + (E [xi|xi > 0])2

= η + µ(E [xi|xi > 0]),

where Φ0 is a cumulative distribution function for the standard normal distribution.

4.9 Appendix 4: Derivations of q(·)

In this section, we derive the posterior densities defined by variational Bayes

framework in Section 4.2.

4.9.1 Derivation of q(λ)

We denote the expected value of the squared residual term by R = E‖y −Hx‖2.

For λl, l = 1, . . . , K,

R =E‖y −H0x−
∑
l 6=j

Hlxλl −Hjxλj‖2

=λ2
j〈xTHjTHjx〉 − 2λj〈xTHjTy − xHjTH0x

−
∑
l 6=j

xTHjTHlλlx〉+ const,

where Hj is the convolution matrix corresponding to the convolution with κj. For i 6=

j and i, j > 0, E(Hix)T (Hjx) = tr(HiTHj(cov(x) + 〈x〉〈xT 〉)) = (Hi〈x〉)T (Hj〈x〉),
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since tr(HiTHjcov(x)) = tr(HiD
T
HjD) =

∑
k d

2
kh

i
kh

j
k = 0. Here, cov(x) is approxi-

mated as a diagonal matrix D2 = diag(d2
1, . . . , d

2
n). This is reasonable, especially when

the expected recovered signal x̂ exhibits high sparsity. Likewise, E(H0x)T (Hjx) =

κT
0 κj

∑
i var[xi]+(H0〈x〉)T (Hj〈x〉) and E(Hjx)T (Hjx) = ‖κj‖2

∑
i var[xi]+‖Hj〈x〉‖2.

Then, we factorize E
[
− R

2σ2

]
= −

(λj−µλj )
2

2σλj
, with µλj =

〈xTHjTy−xHjTH0x−
P
l 6=j xTHjTHlλlx〉

〈xTHjTHjx〉
,

1/σλj = 〈1/σ2〉〈xTHjTHjx〉.

If we set the prior, p(λj), to be a uniform distribution over a wide range of the

real line that covers error tolerances, we obtain a normally distributed variational

density q(λj) = φ(µλj , σλj) with its mean µλj and variance σλj defined above, because

ln q(λj) = E
[
− R

2σ2

]
. By the independence assumption, q(λ) =

∏
q(λj), so q(λ) can

be easily evaluated.

4.9.2 Derivation of q(σ2)

We evaluate R ignoring edge effects; R = ‖y − 〈H〉〈x〉‖2 +
∑

var[xi][‖〈κ〉‖2 +∑
l σλl‖κl‖2] +

∑
l σλl‖Hl〈x〉‖2. ‖κ‖2 is a kernel energy in `2 sense and the variance

terms add uncertainty, due to the uncertainty in κ, to the estimation of density.

Applying (4.18), (ignoring constants)

ln q(σ2) = E\σ2

[
ln p(y|x,λ, σ2)p(σ2)p(x|a, w)p(w)p(a)

]
= Ex,λ

[
ln p(y|x, σ2)

]
+ ln p(σ2)

= −Ex,λ [‖y −Hx‖2]
2σ2

− P

2
lnσ2 + ln p(σ2).

IG(ς̃0, ς̃1) , q(σ2) = IG(P/2 + ς0, 〈‖y −Hx‖2〉/2 + ς1).

(E\σ2 denotes expectation with respect to all variables except σ2.)
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4.9.3 Derivation of q(x)

For xi, i = 1, . . . , N , R = E‖ei − hixi‖2 with ei = y − Hx−i = y − H0x−i −∑
l H

lλlx−i, hi = [H0 +
∑

Hlλl]i = h0
i +

∑
hliλl = (ith column of H). Ignoring

constants, R = 〈‖hi‖2〉x2
i − 2〈hTi ei〉xi.

Using the orthogonality of the kernel bases and uncorrelatedness of λl’s, we derive

the following terms (necessary to evaluate R): 〈‖hi‖2〉 = ‖h0
i ‖2 +

∑
l σλl‖hli‖2 and,

〈hTi ei〉 = 〈hTi 〉(y − 〈H〉〈x−i〉)−
∑

l var[λl]h
l
i
T
Hl〈x−i〉.

Then, var[xi] = w′iE [x2
i |xi > 0]−w′2i (E [xi|xi > 0])2, E [xi] = w′iE [xi|xi > 0], where

w′i = q(zi = 1) is the posterior weight for the normal distribution and 1 − w′i is the

weight for the delta function. The required statistics of xi that are used to derive the

distribution above are obtained by applying Appendix 4.8.

4.9.4 Derivation of q(z)

To derive q(zi = 1) = 〈zi〉, we evaluate the unnormalized version q̂(zi) of q(zi) and

normalize it. ln q̂(zi = 1) = E\zi

[
−‖ei−hixi‖2

2σ2 − ln a− xi
a

+ lnw
]

with xi ∼ N+(µi, ηi)

and ln q̂(zi = 0) = E\zi

[
−‖ei‖

2

2σ2 + ln(1− w)
]

with xi = 0. The normalized version

of the weight is q(zi = 1) = 1/[1 + C ′i]. C ′i = exp(ln q̂(zi = 0) − ln q̂(zi = 1)) =

exp(Ci/2×〈1/σ2〉+µ〈1/a〉+〈ln a〉+〈ln(1−w)− lnw〉 = exp(Ci/2× ς̃0/ς̃1 +µα̃0/α̃1 +

ln α̃1−ψ(α̃0) +ψ(β̃0)−ψ(β̃1)). ψ is a digamma function and Ci = 〈‖hi‖2〉(µ2
i + ηi)−

2〈eTi hi〉µi.
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CHAPTER V

EBSD Image Segmentation Using a Physics-Based

Forward Model1

In this chapter, we present a novel classification approach for the EBSD analy-

sis that utilizes a physics-based forward model (dictionary). Our proposed methods

address the deficiencies of conventional EBSD analysis; without a suitable forward

model, conventional methods do not exploit full diffraction patterns and discard much

information except for only a few features in computing crystal orientations. Further-

more, the conventional approaches do not have the capability of detecting anomalous

structures, which critically affect the material use. Another problem is the low res-

olution map of grain and boundary structures. By using the dictionary, we use full

diffraction images to classify the EBSD patterns into the categories of grain interiors,

grain boundaries, and two anomaly types. This framework can also be used to build

a super-resolution grain/boundary map.

5.1 Introduction

Electron backscatter diffraction, EBSD, is used to perform quantitative microstruc-

ture analysis of crystalline materials on a millimeter to nanometer scale [87, 88].

1This chapter is partially based on the papers [85, 86].
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In crystalline materials (including typical metals, minerals, and ceramics), the con-

stituent atoms, molecules, or ions that form the material are arranged in an ordered or

repetitive pattern in three spatial dimensions. Some crystalline materials are formed

of an aggregate of single crystal grains, and this type of material is called poly-

crystalline. Steel, aluminum, and many materials frequently used in engineering are

polycrystalline, and the structure of these polycrystalline materials can be analyzed

by using EBSD [87, 89]. This analysis helps identify specific material imperfections,

because the structure of the materials is not perfect; the lattice within the single crys-

tal grains can contain defects or anomalies. These imperfections affect the properties

of the material, depending on the type of anomaly such as pores and impurities.

To examine the microstructure of such materials, aside from EBSD techniques,

one can use chemical etching, optical microscopy and scanning electron microscopy

[87]. Compared to these modalities, the advantage of EBSD analysis is the poten-

tial to measure crystal orientation, analyze the texture of the material, and identify

the position of all grains and grain boundaries. In this sense, an EBSD analysis

complements the conventional analysis techniques by combining microstructure and

crystallography sensitivities.

Using EBSD analysis, two important characteristics of polycrystalline materials

are investigated [87]. One characteristic is that the crystals in the different grains

have different orientations; the edges/faces of the crystal lattice are oriented in dif-

ferent directions in different grains. The other is that these materials have boundary

regions, called grain boundaries or edges, where the different grains contact each other

spatially [90].

Study of the grain boundary is important, because grain boundaries or interfaces

between grains are critical in the quality of material use. In other words, the ori-

entation in the grain boundary or edge can significantly affect material properties,

because defects such as fracture and corrosion, for instance, can be initiated at grain
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edges. Since different grains have different orientations, EBSD can help identify the

boundary using the difference in the orientations of grains on adjacent sides of the

boundary.

In EBSD, as seen in Fig. 5.1, a beam of electrons is directed onto a tilted crys-

talline material sample. The electrons then interact with the atoms in the crystal

lattice, and a part of the electrons are diffracted by atomic layers in the sample and

generate visible lines in the fluorescent phosphorus screen. The image appearing on

the screen is called a diffraction pattern. A typical pattern consisting of straight lines

(Kikuchi lines) is shown in Fig. 5.1(b). This pattern is essentially a projection of

the geometry of the crystal lattice planes, conveying information on the crystalline

structure and orientation of the grain. The symmetry of the pattern is closely related

to the crystal structure at the beam injection point in the sample. Diffraction pat-

terns are determined by the orientation of a crystal. Indeed, the physical (magnetic

or electrical) characteristics of polycrystalline materials are intimately related to the

distribution of crystal orientations. Based on the diffraction pattern at each point in

the sample, an EBSD analysis produces orientation maps.

In conventional EBSD analysis, the orientations and widths of selected diffraction

lines are measured and matched against a pre-computed index for the material under

study. The indexing yields the crystal orientation, commonly described by three Euler

angles with respect to a reference frame, for the volume illuminated by the beam. By

repeating the process on a grid of points in the sample, an orientation map or image is

produced. The image is then segmented into grains by thresholding norm differences

between the Euler angles. The EBSD measurements can also be fused with other

modalities in multimodal analyses [92, 93].

In contrast to the standard indexing approach described above, in this work we

use the full diffraction patterns to perform segmentation. This allows us to exploit

information that is normally discarded in the indexing process, particularly the char-
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(a) An EBSD system. An
electron beam is scattered
by atoms in different crystal
planes in the sample, produc-
ing a diffraction pattern on the
detector screen. Image taken
from [91].

(b) Typical EBSD pattern
from IN100 material. Data
courtesy of Dr. Megna Shah at
AFRL.

(c) The experimental set up for EBSD. Image taken from
[87].

Figure 5.1: Electron Backscatter Diffraction
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acteristics of the background intensity profile. With this additional information, grain

boundaries and anomalous points can be detected as explicit classes at the same time

as grains are segmented. Anomaly detection is an important capability, since anoma-

lies may correspond to defects or contaminants that affect the material properties. In

addition, processing the diffraction patterns directly avoids problems with indexing

when the observed pattern is a poor match to the database of pre-computed expected

patterns, as occurs for example at grain boundaries.

Image segmentation techniques have been proposed from various perspectives,

including clustering methods [94], region-growing methods [95], level set methods [96,

97], and a recently proposed inverse diffusion and expectation-maximization algorithm

for materials images [98]. This work is distinguished by our use of a detailed physics-

based model, proposed by Callahan et al. [5], for the material, the EBSD interaction,

and the experimental setup. We use a collection of the simulated diffraction patterns,

also called a dictionary, generated by this model for a large densely sampled set of

crystal orientations. Segmentation is done using features that measure similarity

between observed diffraction patterns and elements in the dictionary. To the best of

our knowledge, we are the first to propose this type of dictionary-based segmentation

for EBSD using a physical forward model. The advantage of our approach is its

greater robustness to instrument blur and noise and its ability to detect anomalies

not represented in the dictionary. At the same time, the large size of both the

dictionary and the experimental dataset, together with the high dimension of the

diffraction patterns, necessitate the use of highly efficient computational methods.

Finally, along with the segmentation results, under our model we refine boundaries

to super-resolve boundary locations and to provide statistical evidence, or p-values,

for the discovered boundaries by performing hypothesis testing.
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5.2 Dictionary-based Forward Model

One difficulty in EBSD analysis is that there is no simple model that accurately

describes the physical mechanism that causes the measured diffraction pattern. As an

alternative we use a computational forward model proposed by DeGraef [5, 59] that

generates EBSD diffraction patterns2 using electron transport theory and a stochastic

scattering model. We use a pre-computed set of patterns, that we call a dictionary,

generated numerically from the forward model. The dictionary was provided to us

by Marc DeGraef of Carnegie Mellon University.

5.2.1 Diffraction pattern dictionary

As described by Callahan et al. [5] the process of generating the dictionary consists

of three steps repeated for all Euler angles. The first step models the interaction of

the electron beam with a location on the sample using the Schrödinger equation

with a Bloch wave ansatz [99]. The backscattered electron yield is calculated for a

set of directions covering the hemisphere of all possible exit directions. The second

step is to interpolate the intensities over the hemisphere onto the pixel locations

on the collecting detector. This interpolation step uses an equal-area projection of

the hemisphere onto a square or hexagonal grid [100] to permit standard bilinear

interpolation of the intensities. The third step is to model additional instrument

effects such as detector quantum efficiency, Poisson noise, coupling optics, and the

point spread function and binning mode of the CCD. The EBSD master patterns

[5, 59], obtained before the second interpolation step, consider only line patterns and

not background or gradation (Fig. 5.2). The dictionary provided to us by DeGraef

used a simpler model for the background, consisting of averaging over all diffraction

patterns (Fig. 5.3) generated by the master template [5].

The dictionary consists of M = 281700 diffraction patterns finely-sampled in

2Each pattern is generated by using a sampled Euler angle triplet (φ1,Φ, φ2) [59].
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Figure 5.2: The IN100 master pattern defined at the beam energy level 15 keV (From
[5], courtesy of Dr. DeGraef.)

(a) index = 3122 (b) index = 25182 (c) index = 93544 (d) index = 202563

Figure 5.3: Several diffraction patterns in the dictionary. Unlike the master pattern
in Fig. 5.2, they have a background. The dictionary indices for (a),(b),(c),
and (d) are indicated.
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Figure 5.4: The secondary electron image for IN100 sample acquired by Mike Graeber
and Megna Shah at AFRL.

orientation (Euler angle) space. The dictionary was generated by Marc DeGraef,

using the procedure of [5] explained above, for the cubic (m3m) point symmetry

group corresponding to crystals in a Nickel alloy sample (IN100). Due to the 24-fold

symmetry of the Euler angles over this group it was sufficient to sample the patterns in

a fundamental zone occupying 1/24th of the sphere. Each pattern was downsampled

to a 80 times 60 image. The goodness of fit of the pattern dictionary is demonstrated

in [5], where it produces simulated patterns close to experimental patterns acquired

by Mike Graeber and Megna Shah at AFRL. The secondary electron image of the

sample is shown in Fig. 5.4.

5.2.2 Observation model

Here we develop a mathematical model for experimentally observed diffraction

patterns using the dictionary described in Section 5.2.1. We represent the dictionary

of 281700 diffraction patterns as a 4800 × 281700 matrix M with each column mi

corresponding to a vectorized 80× 60 diffraction pattern. In the case where a linear

combination of patterns in the dictionary ‘perfectly’ explain the observed pattern
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yj measured at the jth sample point, the weight vector aj = [aj1, ..., ajM ]T can be

expressed by the following observation equation, where the coefficients aji satisfy the

positivity and sum-up-to 1 constraint (
∑

i aji = 1 and aji ≥ 0):

yj =
∑
i

miaji + nj, (5.1)

where nj is the residual error that accounts for noise and model mismatch.

If we model the background as approximately the same at each location on the

sample, we may express each observed pattern yj as

yj = αjbY + ỹj, (5.2)

where bY is the common background component, αj is a scale factor, and ỹj is

orthogonal to bY. We assume that similar decomposition mi = βibM + m̃i holds for

the elements of the dictionary.

This decomposition3 separates the background from the master pattern compo-

nents of the observed pattern. Least squares estimation of m̃j and ỹj under the model

(5.2) results in compensating for background by subtracting the dictionary mean in-

tensity and observation mean intensity from the dictionary and observation, respec-

tively. After this subtraction/projection-away procedure, the characteristic lines in

the diffraction patterns in {ỹj} and {m̃j} are more distinguishable, as seen in the

uncompensated patterns in Fig. 5.7 and in the compensated patterns in Fig. 5.9.

Both the compensated and uncompensated patterns will be used for segmentation,

as presented below.

This least squares compensation corresponds closely to projection of the measured

pattern onto the subspace that is orthogonal to the first principal component of the

3This process has an additional benefit; it compensates the dictionary-observation mismatch as
seen in Fig. 5.5.
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(a) Mean of observation pat-
terns

(b) Mean of dictionary pat-
terns

(c) Difference

Figure 5.5: Bias between the forward model (dictionary) and observation

(a) The first singular vector
from the SVD analysis of the
dictionary

(b) Mean of dictionary pat-
terns

Figure 5.6: The closeness of the first singular vector to the mean of the dictionary.

dictionary. Indeed we found that the singular value decomposition (SVD) produces

a principal component that is very close to the mean of the patterns, for both the

dictionary and observations over the sample; the normalized difference is on the order

of 10−6 (Fig. 5.6).

Given the orthogonal decomposition in (5.2) and its counterpart for the dictionary,

we propose the following linear model that accounts for noise, mismodeling error and

possible anomalous pixels.

ỹj =
∑
i

m̃iaij + nj + zj. (5.3)
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Specifically, nj represents measurement noise and zj is a gross error that represents

anomalous patterns and is present only for a small number of indices j. For a pattern

ỹj corresponding to a single crystal orientation in the interior of a grain, the number

of significant coefficients aij is expected to be small, corresponding to nearby orien-

tations. For grain boundaries, the coefficients would be close to zero except in a few

neighborhoods of the dictionary corresponding to patterns of the grains adjacent to

the boundary. Thus we can expect that for non-anomalous patterns ỹj, the coeffi-

cients {aij} are sparse, i.e., all but a few coefficients are zero. The reader may better

appreciate this discussion by referring to Fig. 5.13 and accompanying text below.

Under the model in (5.3), an observed pattern yj can be represented by a least

squares estimator of the coefficients {aij}, or by its sparse version using sparse linear

regression [63]. However, due to the high dimension of the dictionary M (4800 ×

281700), such methods are difficult to implement. In this work, we focus on a simpler

dictionary matching pursuit approach that can be interpreted as a special case of

a very stringent sparse linear regression representation. This approach uses inner

products of each sample pattern with all patterns in the dictionary, as described in

Section 5.3. We note that if nj ∼ N (0, I), zj = 0, and ỹj is known to be well-

approximated by a single dictionary element, then inner products are sufficient to

identify the most likely dictionary element and estimate the value of the single nonzero

aij.

5.3 Dictionary Matching Pursuit for Segmentation

In this section, we discuss our dictionary matching pursuit method for segmenting

experimental diffraction patterns. The method segments the sample into four classes

corresponding to (1) grain interiors, (2) grain boundaries, and two types of anomalies,

(3) one with a shifted background pattern and the other (4) where the background is

unshifted but the pattern is very noisy. A sample pattern is classified by a classifier
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(a) (b) (c) (d)

Figure 5.7: Raw uncompensated diffraction patterns for four representative pixels:
(a) grain interior, (b) grain boundary, (c) background-shifted, and (d)
high noise.

trained on two sets of dictionary features: (1) the inner products between the sample

and the dictionary and (2) locally shared neighborhoods in the dictionary. We de-

scribe below these dictionary-derived features used in the classifier before presenting

the DT in Section 5.4.

5.3.1 Uncompensated inner-product features for anomaly detection

The first feature used to perform segmentation measures the similarity of an ob-

served diffraction pattern to patterns in the dictionary with the background com-

ponents included. Since the background typically dominates the total energy in the

patterns (more than 99.7% in both our dictionary and experimental dataset), this

feature essentially measures the similarity between background profiles and can be

a criteria for detecting anomalous patterns. In other words, the anomaly detection

can be performed by analyzing the distribution of these measures; outliers in the

distribution would be dissimilar to the background pattern.

Define the normalized inner product between uncompensated patterns mi in the

dictionary and uncompensated observed sample pattern yj:

ρij =
mT

i yj
‖mi‖ ‖yj‖

. (5.4)
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Figure 5.8: Histograms of uncompensated inner products for the three different pixel
locations.

Define the mean inner product

ρ̄j =
1

M

M∑
i=1

ρij (5.5)

as a measure of background similarity, where M = 281700.

We present several histograms of ρ·j for three different patterns (j: pixel locations

for interior grain, edge, and noisy patterns) in Fig. 5.8. This measure ρij is quite

useful to exclude anomalous patterns but is not capable of effectively separating

between the grain interior and boundary patterns. For further separation of the in-

grain and boundary patterns, we introduce compensated inner-product features in

the next section. These features are used in deriving neighborhood similarity features

in Section 5.3.3.

5.3.2 Compensated inner-product features

We perform compensation of the diffraction patterns to achieve better matching

of the dictionary to non-anomalous pixels on the sample. Toward this end, as ex-

plained above, we use the mean ȳ of the observed patterns as an estimate for the

observation background bY, and similarly for the dictionary. We then compute the
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(a) (b) (c)

Figure 5.9: (a)(b) Background-compensated patterns corresponding to Figs. 5.7(a)
and 5.7(b). (c) Best-match dictionary element for both (a) and (b).

background-subtracted patterns ỹj from (5.2), where the scale factor αj is found to

be yTj bY/b
T
YbY. The same is done for the dictionary to determine m̃i.

Figures 5.9(a) and 5.9(b) show the result of removing the background from the

experimental patterns in Figs. 5.7(a) and 5.7(b). The diffraction lines that charac-

terize crystal orientation are preserved. Fig. 5.9(c) shows the background-subtracted

dictionary element with the largest normalized inner product with the patterns in

Fig. 5.9(a) and 5.9(b), which happens to be the same in both cases. The correspon-

dence between diffraction lines suggests that close matches in orientation space can

be found by considering background-compensated normalized inner products.

Using this compensation for a pixel j on the sample, we define the normalized

inner product values between elements of the dictionary and the normalized EBSD

pattern at j:

ρ̃ij =
m̃T

i ỹj
‖m̃i‖ ‖ỹj‖

, i = 1, . . . ,M. (5.6)

In Fig. 5.11, we show the histograms of the inner products {ρij}Mi=1 for two types

of patterns found at different locations js on the IN100 sample. Note that the in-

grain pattern has values of ρ̃ij (i = 1, ...,M) that are less concentrated than they are
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Figure 5.10: Normalized inner products sorted by decreasing absolute value for four
representative pixels - interior, boundary, background-shifted, and high
noise. (left: the 100 largest values, right: the 2000 largest values) The
initial part of the curves indicates that interior and edge pixels are highly
correlated with several dictionary entries, after which the curves steeply
decrease. After the 100 largest values, the curves corresponding to the
interior and edge pixels appear to converge to a low asymptote, whereas
the curves for noisy and background-shifted pixels do not decay much.

for a noisy pattern. This is due to the fact that the in-grain sample patterns have

better matches to the dictionary than noisy patterns, thus having a thicker right tail

(Fig. 5.11(b)). A few large inner product values are in the right tail of the distribu-

tion and the effect of this tail is seen in high order statistics, such as skewness and

kurtosis of the inner product histogram. We note that the skewness (Fig. 5.12(c))

and kurtosis (Fig. 5.12(d)) images differentiate in-grain and edge pixels, while pre-

serving uniformity within grains. The entropy seems to best delineate the boundaries

(Fig. 5.12(f)). The different properties captured by the higher order moments and

entropy reflect the fact the distribution of orientations can be quite different over

different grains.

5.3.3 Neighborhood similarity for grain segmentation

Grain segmentation is performed based on a neighborhood similarity measure

derived from the compensated inner products. The reader will recall that these are

the inner products computed after the background components have been removed

from both the observations and the dictionary.
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(a) (b)

Figure 5.11: (a) Histograms of normalized inner products ρ̃·js between compensated
patterns for an in-grain IN100 sample location (thin blue) and a sample
location at an anomaly in the sample (thick black). The histogram for a
boundary pattern overlaps the histogram for an in-grain pattern and is
not drawn. The evaluated range of ρ̃·js is inside [-0.2 0.2]. (b) The right
tails of histograms in (a).

Based on Fig. 5.9 and the model in (5.3), we represent each observed pattern

with the dictionary elements having the highest normalized inner products with the

observed pattern. Denote by Ij the indices of the dictionary elements chosen for

the observation at pixel j; Ij can be regarded as a proxy for the set of significant

coefficients aij in (5.3). It is clear from Fig. 5.9 that more than one representative is

required to differentiate between interior patterns (Fig. 5.9(a)) and boundary patterns

(Fig. 5.9(b)) since the single best matches can be identical. In addition, using multiple

representatives improves robustness against noise and discretization of the orientation

space.

To determine the number of dictionary elements required, we examine in Fig. 5.10

the decay of the sorted normalized inner products for the four different types of

patterns. Fig. 5.10 suggests that a few tens of dictionary elements are sufficient to

capture the nearest neighbors for interior and boundary patterns. For concreteness,

we choose the number of representatives |Ij| to be 40 after multiple experiments.

Given the sets Ij, we define a dictionary-based measure of similarity between a

pixel j and its neighbors in a 3 × 3 neighborhood Nj centered at but not including
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(a) Mean (b) Variance

(c) Skewness (d) Kurtosis

(e) The 4th moment (f) Entropy

Figure 5.12: Properties of distributions of normalized inner products (ρ̃·js). (thresh-
olded to show values between 5% and 95% quantiles.)
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Figure 5.13: Diagram of kNNs (k-nearest neighbors) in the dictionary (elements as
dots) using `2 inner product for grain interior, grain edge, and anoma-
lous patches. Different types of patches would have different degrees of
concentration of neighbors.

j. Specifically, the similarity between patterns at pixels j and k ∈ Nj is given by

sjk = |Ij ∩ Ik|, and the average similarity of pixel j with its neighbors is

sj =

∑
k∈Nj sjk

|Nj|
. (5.7)

The reasoning behind this membership approach is represented in Fig. 5.13. A grain

interior patch would have the most concentrated neighbors compared to grain edges

and anomalies. A grain edge patch can have overlaps from spatially adjacent grain

interior patches, while an anomalous patch can have dispersed neighbors.

5.3.3.1 Gaussian mixture model for discriminating in-grain vs boundary

patterns

Using the neighborhood similarity measure, we can differentiate between grain

interiors and boundaries. For the IN100 nickel sample studied in Section 5.6, we find

that the empirical distribution of the neighborhood similarities resembles a mixture
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of two Gaussian densities of different mean and different variance (See Figs. 5.16).

Thus, we propose a maximum likelihood approach to separate these components by

using an expectation-maximization (EM) algorithm [22]. This estimate will be used

to determine an optimal decision threshold on the neighborhood similarity measures

for assigning labels of in-grain versus boundary to each pixel.

Let x = (x1, ..., xn) be a sequence of the neighborhood similarity measures where

n is the number of observed pixels. We model that this sequence is an i.i.d. sam-

ple from a Gaussian mixture density of the form τ1f(x;µ1, σ
2
1) + τ2f(x;µ2, σ

2
2) where

τ1 = π (τ2 = 1 − π, π ∈ [0, 1]) is the mixture coefficient and f(x;µ, σ2) is a Gaus-

sian density with mean µ and variance σ2. An equivalent stochastic representation

of the mixture model is obtained by hypothesizing an i.i.d. sequence of latent vari-

ables z = (z1, . . . , zn) which labels each xi with its (unknown) provenance from either

distribution f(x;µ1, σ
2
1) or from f(x;µ2, σ

2
2). Specifically, conditioned on zi = 1 and

zi = 2, respectively, the distribution of xi is distributed with one of the above den-

sities. The unknown parameters θ =
(
τ, µ1, µ2, σ1, σ2

)
of the mixture model can be

estimated by maximum likelihood estimation. For mixture models, such as the one we

are considering here, the expectation-maximization (EM) algorithm can be applied.

This algorithm alternates between computing the expectation of a quantity called

the “complete data log-likelihood” and maximizing this computed quantity over the

unknown parameters.

The complete data likelihood function for the mixture model is the joint distribu-

tion of the observed and unobserved variables x and τ and can be written as:

P (x, z|θ) =
n∏
i=1

2∑
j=1

1(zi = j) τj f(xi;µj, σj), (5.8)

where 1(·) is an indicator function and f is the (assumed) Gaussian probability density

function with mean parameter µj and variance parameter σj, where j = 1 for in-grain

and j = 2 for boundary patterns, respectively.
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The E step and M step are given explicitly below by following the derivation in

[101]:

E step: From the current estimate θ(t), Bayes theorem leads to the following

update form for the conditional weights:

T
(t)
j,i := P(Zi = j|Xi = xi; θ

(t)) =
τ

(t)
j f(xi;µ

(t)
j , σ

(t)
j )

τ
(t)
1 f(xi;µ

(t)
1 , σ

(t)
1 ) + τ

(t)
2 f(xi;µ

(t)
2 , σ

(t)
2 )

. (5.9)

M step: This step maximizes expectation of log likelihood obtained from the

previous E step. The update equations are:

τ
(t+1)
j =

∑n
i=1 T

(t)
j,i∑n

i=1(T
(t)
1,i + T

(t)
2,i )

=
1

n

n∑
i=1

T
(t)
j,i , (5.10)

and

µ
(t+1)
1 =

∑n
i=1 T

(t)
1,i xi∑n

i=1 T
(t)
1,i

and σ
(t+1)
1 =

∑n
i=1 T

(t)
1,i (xi − µ

(t+1)
1 )(xi − µ(t+1)

1 )>∑n
i=1 T

(t)
1,i

(5.11)

and µ
(t+1)
2 =

∑n
i=1 T

(t)
2,i xi∑n

i=1 T
(t)
2,i

and σ
(t+1)
2 =

∑n
i=1 T

(t)
2,i (xi − µ

(t+1)
2 )(xi − µ(t+1)

2 )>∑n
i=1 T

(t)
2,i

. (5.12)

Given ML estimates θ = θ̂, Bayes optimal decision on whether an observed pattern

at pixel j is in-grain (zj = 2) or on the boundary (zj = 1) is the MAP estimator

ẑj = arg maxzj=1,2P(zj|xj; θ). This is equivalent to a Bayes optimal threshold on xj,

which is the solution to the following equation for x:

τ1f(x;µ1, σ1) = τ2f(x;µ2, σ2). (5.13)

This equation for the optimal decision threshold is quadratic.
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5.3.3.2 Uncertainty quantification of discovered boundaries using p-value

By performing hypothesis testing, we evaluate uncertainty measures for the dis-

covered boundaries. As above, define the 3× 3 (9 pixel) spatial neighborhood Nj of

pixel j on the sample. Similarly, for each of the pixels in Nj let Ii denote the indices

of the 40 nearest neighbors of i ∈ Nj in the pattern dictionary. Consider testing

the hypothesis “H0: the neighborhood of pixel j is in-grain” versus the hypothesis

“H1: the neighborhood of pixel j is not in-grain” based on the neighborhood similar-

ity sequences for Nj. Given Ii, under H0 we model the neighborhood overlap ratio

p̂ = |Ij ∩ Ii|/40, i 6= i, as i.i.d. distributed according to a Binomial distribution with

parameters n = 40 and p = p0. Here the value p0 measures the nominal sharing

ratio of neighbors between adjacent locations, and can be determined empirically. A

test of H0 vs H1 of some level α, e.g. α = 0.01, compares the empirical observation

np̂ to the 1 − α quantile of the Binomial cumulative distribution with parameter

n, p0. This one sided test can be used to define a p-value on the observed value of

p̂ = |Ii∩ Ij|/40. Specifically, the p-value for H0 is defined as the probability under H0

that the Binom(40, p0) distributed random variable V is greater than the observed

value p̂. Small p-values indicate that the pixel neighborhood Nj is not inside a grain

and provides strong evidence to reject H0.

5.4 Decision Tree

We adopt a binary decision tree (DT) framework [102] to classify pixels into one of

4 classes, thereby accomplishing segmentation and anomaly detection simultaneously.

The decision tree first decides on one of 2 classes, anomalous and non-anomalous

pixels, and subsequently refines the decision to one of 4 classes: anomalous back-

ground shifted, anomalous non-background shifted, non-anomalous in-grain, and non-

anomalous boundary. The proposed DT classifier is illustrated in Fig. 5.14. We first
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test at node 1 the binary hypothesis that a pixel is an anomaly or not by thresholding

the mean uncompensated inner product ρ̄j in (5.5). If the node 1 test labels the pixel

as anomalous then the DT tests at node 2 whether the pixel is a background-shifted

anomaly or not using a second threshold on ρ̄j. The shift in background makes the

value of ρ̄j significantly lower than for the other anomaly. Finally if the node 1 test

assigns a label of non-anomalous pixel, the DT tests whether the pixel is an in-grain

vs a boundary pixel at node 3 using the neighborhood intersection similarity measure

(5.7), which is computed from background-compensated diffraction patterns. Interior

pixels have high similarity values because they share many common neighbors in the

dictionary with adjacent pixels. On the other hand, boundary pixels can be viewed

as mixtures of adjacent interior pixels and therefore have lower similarities because

the set of nearest neighbors is only partially shared with those on either side of the

boundary.

The only tuning parameters in our DT classifier are the decision thresholds on the

similarity measures used at each node of the tree. When there is ground truth data

available these thresholds can be selected by cross-validated minimization of nodal

deviance measures such as mis-classification rate, Gini index, or entropy [103]. Pa-

rameter selection is generally more difficult however when the learning is unsupervised

as in our case. Our application of DT classifiers differs from previous imaging applica-

tions, e.g., land cover classification in remote sensing [104, 105], in several important

ways. First, our classifier is a hybrid DT in that it uses different features (background-

compensated and uncompensated patterns) and similarity measures (inner products

and neighborhood intersections). Second, unlike standard non-parametric DT clas-

sifiers, our DT is informed by a physics model through the generated dictionary of

diffraction patterns. As a consequence, the tree structure of our DT classifier is fixed

and need not be learned from the data.
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Figure 5.14: Decision tree. The background similarity criterion (5.5) is used at nodes
1 and 2 while the neighborhood similarity criterion (5.7) is used at node
3. The division of the population at each parent node is shown above
the branches. Representative diffraction patterns are also shown.
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5.5 Super-resolution of Grain Boundaries

Once the DT has labeled the boundary pixels the neighborhood model developed

in Section 5.3.3 can be used to obtain a refined estimate of the boundary locations.

These boundary pixels can be expected to be close to patterns that are an amalgam

of the diffraction patterns in the grains that share the boundary. We propose to

evaluate the variation of the dictionary neighborhood of a pixel as it translates along

a line normal to the boundary (see Fig. 5.15). We constrain the following discussion

to 2-grain boundaries - boundaries that separate two grains, called respectively G1

and G2. The approach described below can be extended to tri-grain or higher order

boundaries. We define the pairwise consistency measure for the pixel j as it translates

along the line normal to a 2-grain boundary, as follows:

c1(j) = |NG1 ∩ Ij|, (5.14)

c2(j) = |NG2 ∩ Ij|, (5.15)

where NG1 is the indices of the 40 most common dictionary patterns occurring in the

different kNN neighborhoods (k = 40) found by scanning pixels within grain G1. NG2

is defined similarly by scanning grain G2.

A refinement of the location of the edge is found by solving for the ‘crossing’

point of the two curves c1 and c2 (See the bottom figure in Fig. 5.15). Thus, along

the normal vector for each edge, we evaluate the following super-resolved edge location

by linearly interpolating the curves up to the super-resolved pixel resolution.

argminj|c1(j)− c2(j)|, or (5.16)

argmaxj|c1(j)× c2(j)|, (5.17)

where j is in the super-resolved grid. We present results in the next section using two
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Figure 5.15: Diagram for the super-resolution method using common dictionary kNN
neighborhoods of two different grains. A refined estimate of the bound-
ary is obtained by evaluating the crossing point of the pairwise consis-
tency measures (5.14) and (5.15) in bottom figure.

versions of the super-resolution algorithm. One uses simple vertical and horizontal

scans, ignoring true normal directions to edges. The other version approximates the

normal directions and the detailed algorithm is presented in Appendix 2. The first

simple algorithm is a special case of the second algorithm.
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5.6 Results

5.6.1 Application to IN100 data

Here we apply the method described in Section 5.3 to EBSD data obtained from

a section of the Ni-base alloy IN100. In the next section we apply it to a different

(LSHR) sample. The dimensions of the sample slice are 512 x 384 pixels. The

diffraction pattern corresponding to each pixel in the sample is 80 x 60 pixels in size.

For the IN100 sample, ground truth class labels are not available. Thus, to set the

thresholds in the DT classifier in Fig. 5.14, we consider the empirical distributions

(obtained from the experimental sample) of the background similarity ρ̄j (5.5) and

the neighborhood similarity sj (5.7). The distribution of ρ̄j can be divided into

three parts by inspection: a uniform distribution with a small number of samples

over [ρmin, t1], an increasing tail over [t1, t2], and a large peak over [t2, 1]. We choose

the first threshold t1 = 0.815 to separate background-shifted patterns at node 1.

From Fig. 5.16(a), which shows the histogram of ρ̄j between 0.99 and 1, we select

t2 = 0.996 as the threshold to classify high-noise patterns at node 2. Lastly, at node

3 we use |Ij| = 40 dictionary representatives and consider the empirical histogram of

the neighborhood similarity sj shown in Fig. 5.16(b). We set the threshold at the 0.3

quantile at 31.25, which corresponds to the knee in the histogram. The percentages

in Fig. 5.14 indicate the division of the parent population at each node resulting from

the above thresholds. Note that the percentages below node 3 are not 30% and 70%

exactly because the neighborhood similarities are quantized. Choosing a threshold by

fitting a 2-component Gaussian mixture model (using the EM algorithm in Section

5.3.3.1) to Fig. 5.16(b) yields a very similar value (see Fig. 5.16(c)).

In Fig. 5.17(a), we show a neighborhood similarity map computed according to

(5.7) for |Ij| = 40. As expected, interior pixels have larger similarity values while

boundary pixels and anomalies have smaller similarities since they are less likely to
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(a) (b)

(c)

Figure 5.16: IN100 data. (a) Empirical histogram of the background similarity mea-
sure ρ̄j between 0.99 and 1. The threshold t2 at node 2 in Fig. 5.14 is set
to 0.996. (b) Empirical histogram of the neighborhood similarity mea-
sure sj. The threshold at node 3 in Fig. 5.14 is set to the 0.3 quantile at
31.25. (c) The Bayes optimal decision boundary as an optimal threshold
level is 32.54 under the Gaussian mixture model.
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share common neighbors in the dictionary with spatially adjacent pixels. Similarity

maps evaluated with different numbers of nearest neighbors, |Ij| = 20, 40, 200, and

2000, yield equally good performance visually (not shown). For comparison, we show a

similarity map in Fig. 5.17(b) computed4 using only the observed patterns, specifically

by averaging the uncompensated inner products between a pattern at a given pixel

and patterns at adjacent pixels. Comparing Figs. 5.17(b) and 5.17(a), it can be

seen that the map in Fig. 5.17(b) has blurrier edges near the upper boundary of the

sample5. This suggests that the dictionary-based approach has a denoising effect that

results in sharper segmentation.

Fig. 5.17(c) shows the segmented image produced by our DT classifier using the

thresholds specified above. In terms of segmenting grains, our result is consistent

with the image in Fig. 5.17(d) from a conventional segmentation algorithm that uses

Euler angles, specifically as implemented in the software DREAM.3D [106]. However,

the proposed method also identifies anomalies (colored red and blue in Fig. 5.17(c))

that are either not detected (black clusters) or misclassified as one or more grains in

Fig. 5.17(d). This is due to the fact that the conventional segmentation algorithm

is not aware of anomalies and has difficulty extracting meaningful Euler angles from

anomalous diffraction patterns, as indicated by the black clusters.

As additional evidence for the discovered boundaries, we evaluated p-values under

our neighborhood model following the procedure in Section 5.3.3.2. The null hypoth-

esis H0 is as described in that section with the parameter value p0 in the null binomial

distribution set to 0.8. For IN100 data, visual inspection and the EM algorithm both

estimate the ratio of approximately 0.8 (40×0.8 = 32, which is close to the threshold

we use.) as the optimal decision threshold level (Fig. 5.18). The derived p-value map

for the null hypothesis H0: grain is provided in Fig. 5.18, which is based on a binomial

4This quantity is defined as
P

k∈Nj
ρa

jk

|Nj | , where ρajk = yT
j yk

‖yj‖‖yk‖ .
5These blurry edges are also found in a similarity map computed using only ‘compensated’ ob-

served patterns.
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(a) (b)

(c) (d)

(e)

Figure 5.17: IN100 data. (a) Neighborhood similarity map with |Ij| = 40. The
grayscale runs between the 0.05 and 0.95 quantiles of the similarity values
to suppress the visual effect of outliers. (b) Similarity map derived from
observed patterns only. The upper parts of the sample are blurry and the
boundary structure is not as clear as in the dictionary-based map (a). (c)
Segmentation result from our decision tree in Fig. 5.14. Grain interiors
in white, boundaries in black, noisy pixels in red, and background-shifted
pixels in blue. (d) Segmentation result from DREAM.3D. Black clusters
represent pixels that cannot be classified. (a horizontal white line located
in the lower left side, visible in other figures, is missing here.) (e) back-
scattered electron (BSE) image as a near ground truth from a different
high resolution microscope.

123



Figure 5.18: For IN100 data, p-values as empirical evidence for edge. H0: grain.
the average sharing ratio of dictionary elements is 0.8 among spatial
neighbors.

CDF. We conclude that we have discovered strong evidence for the segmented edges.

Furthermore, we implemented the super-resolution method in Section 5.5 for re-

fining the boundary location estimates. The refined location of an edge lies near the

contact point of the two curves c1(j), c2(j) swept out over a line normal to the edge.

The resulting super-resolved edges (Fig. 5.20(b)), from vertical and horizontal scans

not a normal direction scan, are more highly resolved than the original (Fig. 5.20(a))

after super-resolution processing. Several other examples are illustrated (Fig. 5.21).

This simple scanning of x and y directions (horizontally and vertically, called ‘xy

scanning’) is a special case of Algo. 6) in Appendix 2. Along a scanned direction,

we evaluate pairwise-consistency curves such as in Fig. 5.19 and find the ‘crossing’

coordinate where the two curves meet. Rather than marking one pixel6 that has the

minimum difference between two curves, we mark multiple pixels to prevent discon-

nectivity in some areas (e.g. blobs or blurry parts).

The super-resolution results by scanning more extensive directions following Algo. 6

in Appendix 2 are provided in Fig. 5.22. This algorithm uses several more directions

6For rendering, the pixel location is quantized.
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(a) Between two different grains, scanned from
(425,90) to (490,90).

(b) Between two similar grains, scanned from
(100,296) to (100,304).

Figure 5.19: Pairwise comparison of the common membership. A blue dash curve
indicates the number of common members along the y-axis between a
point at the coordinate in the graph and the grain at the left end point.
A red solid curve indicates the number of common members along the
y-axis between a point at the coordinate in the graph and the grain at
the right end point. The black diamond dots are boundary labels; if the
value of a boundary label is non-zero, it is a boundary.

than the two directions (x and y directions) to find an approximate normal direction

to an edge. We used 12 directions with an angular resolution of 15 degree. The de-

tailed partial views from Fig. 5.22 are illustrated in Fig. 5.23. The results in Fig. 5.22

seem outperform the results from simple xy scanning in terms of the less noisy edge

locations (Fig. 5.23).

In Fig. 5.24, using the proposed super-resolution method we present several consis-

tency curves for thin, thick, and asymmetric edges. These show different grain mantle

changes. The investigation of grain mantle and boundary properties are reserved for

future work, which requires estimation of grain orientations.

5.6.2 Application to LSHR data

To evaluate the robustness of the dictionary to model mismatch, we applied our

methods to the LSHR data set. This dataset was collected from a different microscope

at AFRL than the one used to acquire the IN100 dataset. Recall that the dictionary
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(a) Original edges

(b) Super-resolved edges

Figure 5.20: The original (a) and (5x) super-resolved (b) edges for IN100 by using xy
scanning. Thin connected edges look disconnected due to the rendering
effect (the finite resolution in the downsized image to fit the size of the
paper). For connectivity map, see Fig. 5.21.
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(a) (b)

Figure 5.21: Partial views of Fig. 5.20 with super-resolved edges in white and orig-
inal edge in gray. The boundary pixels are painted at the 5x higher
resolution.

Figure 5.22: For IN100 data, super-resolution result by using Algo. 6 in Appendix 2.
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(a) (b)

Figure 5.23: Partial views of Fig. 5.22 with super-resolved edges in red dots and
original edge in gray. The refined boundary ‘locations’ are marked by red
circles at higher resolution than the resolution of the ‘painted’ boundary
pixels in Fig. 5.20 and 5.21.

was generated by Marc DeGraef specifically tuned to the IN100 sample and the sample

acquisition parameters of the IN100 microscope. We conclude that the results shown

here (see Fig. 5.25) indicate a strong degree of robustness of the dictionary to model

mismatch.

Fig. 5.26(a) presents the empirical histogram of the background similarity mea-

sures. Most values and the peak locations are less than those from IN100 in Fig. 5.16(a).

This is because LSHR diffraction patterns do not perfectly match the dictionary de-

veloped for IN100. However, there is no significant outlier, unlike the IN100 data,

and there are few outliers in the distribution of the background similarity measures

of the LSHR data. This is again demonstrated in the decision map in Fig. 5.27(c).

This is consistent with the higher quality and more exacting standard with which the

LSHR sample was produced.

The threshold value for boundary classification is 28.63, based on visual segmenta-

tion (35% percentile value in Fig. 5.26(b)). This value is close to the value 29.52, which

is derived from a Gaussian mixture model using the EM algorithm (Fig. 5.26(c)).

In Fig. 5.27(a), we show a neighborhood similarity map computed according to
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(a) Thin edge (b) BSE image (c) Consistency curve for (a)

(d) Thick edge (e) BSE image (f) Consistency curve for (d)

(g) Asymmetric edge (h) BSE image (i) Consistency curve for (g)

Figure 5.24: Several examples of different grain mantle transitions.
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(a) observation at
(460,380)

(b) best match for (a) (c) observation at
(336,66)

(d) best match for (c)

(e) observation at
(364,316)

(f) best match for (e)

Figure 5.25: Three representative patterns from the LSHR sample collected with a
different microscope at AFRL than that for which the dictionary was
designed and the best matches in the dictionary, designed for the micro-
scope that acquired the IN100 sample. The observation patterns are of
good match to the dictionary patterns.
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(a) (b)

(c)

Figure 5.26: LSHR data. (a) Empirical histogram of the background similarity mea-
sure ρ̄j. The threshold t2 is set to 0.9865. (b) Empirical histogram of
the neighborhood similarity measure sj. The threshold for boundary
segmentation is set to the 0.35 quantile at 28.63. (c) The Bayes opti-
mal decision boundary as an optimal threshold level is 29.52, under the
Gaussian mixture model.
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(a) (b)

(c) (d)

(e)

Figure 5.27: LSHR data. (a) Neighborhood similarity map with |Ij| = 40. (b) Simi-
larity map derived from observed patterns only. Most parts of the sample
are blurry and the boundary structure is not as clear as in the dictionary-
based map (a). For visualization, 5% - 95% quantile values are used for
thresholding. (c) Segmentation result from our decision rules. Grain
interiors in white, boundaries in black, anomalous pixels in red. (d) Seg-
mentation result using OEM estimated Euler angles. Black colors denote
where Euler angles are different from those of neighboring pixels by at
least 5 degree for each Euler angle component. Some black chunks in-
side grains are mis-classified as edges. (e) back-scattered electron (BSE)
image
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(5.7) for |Ij| = 40. As previously demonstrated with the IN100 results, interior pixels

for LSHR have larger similarity values while boundary pixels and anomalies have

smaller similarities. This map is compared to the autocorrelation map (Fig. 5.27(b))

using only the observed patterns. Comparing these two figures, we again clearly

demonstrate that our proposed similarity measures produce a denoised and deblurred

boundary structure. Fig. 5.27(c) illustrates the segmented image produced by our

DT classifier using the thresholds specified above. This result is consistent with

the images in Fig. 5.27(d), obtained by thresholding norm differences between Euler

angles (EBSD machine outputs), and in Fig. 5.27(e), from a back-scattered electron

microscope. Again, the benefit of the dictionary DT approach is that it identifies

anomalies that are undetected, misclassified, or unclassified using conventional EBSD

methods.

We evaluated p-values as evidence for edges by following the procedure in Sec-

tion 5.3.3.2. The null hypothesis of grain or not-grain assumes a binomial parameter

value to be 0.7, because in the LSHR data, visual inspection and EM both estimate

the ratio of approximately 0.7 (40 × 0.7 = 28. This is close to the threshold we

use.) as the optimal decision threshold level (Fig. 5.28). The p-value map for the

null hypothesis H0: grain is provided in Fig. 5.28, and its computation is based on

a binomial CDF. We again conclude that we have discovered strong evidence for the

found edges.

The super-resolution results by using a simple xy scanning in Section 5.5 to re-

fine the boundary locations are presented in Fig. 5.29. Several examples as partial

magnified views from Fig. 5.29 are shown in Fig. 5.30. Our algorithm in Algo. 6

produces the super-resolution results in Fig. 5.31 by using more extensive scanning

of line angles. The detailed partial views from Fig. 5.31 are illustrated in Fig. 5.32.
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Figure 5.28: For LSHR data, p-values as empirical evidence for edge based on a bino-
mial CDF. H0: grain. the average sharing ratio of dictionary elements
is 0.7 among spatial neighbors.

Figure 5.29: For LSHR data, (5x) super-resolved edges by using xy scanning with
super-resolved edges in white and original edge in gray.
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(a) (b)

Figure 5.30: Partial views of Fig. 5.29 with super-resolved edges in white and original
edge in gray.

Figure 5.31: For LSHR data, super-resolution result by using Algo. 6.
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(a) (b)

Figure 5.32: Partial views of Fig. 5.31 with super-resolved edges in red dots and
original edge in gray.

5.7 Conclusion and Future Work

5.7.1 Conclusion

We have proposed a simultaneous classification and anomaly detection method

for EBSD images. This is novel in its use of full diffraction patterns instead of Euler

angles or equivalent representations of orientation. Our work is the first to exploit this

dictionary of reference diffraction patterns through a physics-based forward model.

Our decision tree classifier uses features that measure similarity between observed

patterns and dictionary elements and is efficient enough to handle large sets of high-

dimensional patterns. The method succeeds in not only segmenting grain interiors

from boundaries but also discovering and identifying two types of anomalies. The edge

enhancement is another benefit gained from using both a neighborhood model and

the physics-based forward model. The statistical significance of edges can be gauged

by p-values using hypothesis testing and can be more precisely located through super-

resolution.

136



5.7.2 Future work

An important issue for future work is to reduce computation time required for

implementation of the dictionary approach. The search of the dictionary for kNN

matches requires computing and evaluating inner products between the dictionary

patterns and patterns observed at every sample pixel. This takes several hours to

complete. A good initialization, such as OEM estimated Euler angles7, is a worth-

while direction for investigating speed-up. To accomplish this, however, the OEM

angles would need to be mapped to the dictionary angles, requiring interpolation and

a consistently defined fundamental zone. Another direction is to develop methods

explicitly designed for estimating Euler angles at the grain level and to estimate mis-

orientation. The former requires a consistent definition of fundamental zone of Euler

angles. A potential improvement of the dictionary is to make the sampling more

uniform over Euler angles (see Appendix 5.8).

Estimation of grain-wise orientations requires a pixel-level estimation and collec-

tion of the statistics of constituent pixels of a grain. The pixel-level estimates can

be obtained after evaluating the weight factors for individual dictionary elements,

which are sparse in the grain interior patterns. Thus, classical sparse estimation

methods, combined with the suitable regularization on weights, would produce de-

sired solutions. The grain-wise orientations together with grain shapes can be used

to characterize different grain and boundary properties such as misorientations and

twin8 grain/boundary areas.

7These angles are outputs from an EBSD scanner combined with its proprietary estimation
algorithm.

8Twin grains interfacing each other have a mirrored symmetry in terms of their crystal orienta-
tions.
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Figure 5.33: Euler angles sampled in the dictionary. The first Euler angle values are
downsampled by a factor of 10.

5.8 Appendix 1: Discussion on Uniformity in the Dictionary

Each element in the dictionary we are using is a diffraction pattern that corre-

sponds to triplet Euler angles (φ1,Φ, φ2). We test the uniformity of these angles and

image patterns. The sampling schedule along triplet Euler angles is represented in

Fig. 5.33. Note that along the second Euler angle, samples in the mid range (in the

upper left side of the Fig. 5.33) are not drawn, due to possible degeneracy of the

Euler angle9 [5, 59, 90]. To better understand this non-uniform sampling scheduling

within the Euler angle space, we further investigated uniformity in the dictionary,

using other representations of the dictionary elements.

We first investigated the image space using an inner product metric. We randomly

selected 4000 out of 281,700 samples and evaluated their individual `2 normalized

inner product values with all other image samples, as seen in Fig. 5.34(a), where

9Degenerate Euler angles do not have a unique representation
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the inner product values for only the top 200 values out of 281,700 are shown. The

inner product curves show that some of the diffraction patterns are not uniformly

sampled but rather densely sampled. The upper curves have larger values (close to 1)

than other curves for the index of approximately 180 along the x-axis in Fig. 5.34(a).

Here, each curve corresponds to one of the 4000 selected patterns. In other words,

the selected dictionary elements for these upper curves have closer neighbors than the

others and correspond to the samples whose second Euler angles are equal or close to

zero. These angles are close to the degenerate Euler angle values. We validated this

finding by running the experiment multiple times.

Another uniformity test is performed in the quaternion space. Since Euler angles

can be converted into unit quaternion vectors up to their signs, we checked whether

these quaternion vectors in a four dimensional space are uniformly distributed on the

three dimensional spherical manifold. Specifically, under cubic symmetry, one triplet

Euler angle has 24 equivalent Euler angles and 48 unit quaternion vectors [90]. This

factor of 2 is due to the additional vectors that are the negative version of the 24

transformed vectors. We performed a uniformity test on this axial data of quaternion

vectors by randomly selecting 4000 triplet Euler angles sampled in the dictionary and

transforming them to (4000×48) unit quaternion vectors. We performed the Bingham

test, which is a simple test of uniformity in the axial data {xi}. The reasoning behind

this test is that uniformity is rejected if the sample scatter matrix

T =
1

n

n∑
i=1

xix
T
i

is far from its expected value p−1Ip with p = 4 for the unit quaternion vectors [107].

The derived test statistic is

S =
p(p+ 2)

2
n(tr(T2)− p−1). (5.18)
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(a) The sorted inner product values for 4000
randomly selected patterns from the dictionary.
Each curve, corresponding to one of the 4000
patterns, consists of the top 200 values from all
the inner product values between a selected pat-
tern and all other patterns in the dictionary.

(b) The Euclidean distances among the selected
4000 curves shown in (a).

(c) MDS (multidimesional scaling) result of
curves in (a)

Figure 5.34: Uniformity check of the dictionary patterns.
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(a) In-grain consistency map for IN100 (b) In-grain consistency map for LSHR

Figure 5.35: Maps of consistency measures for in-grain pixels: ci(j) is similarly de-
fined as (5.14) but with j is in the ithe grain.

The uniformity is rejected for large values of S. The distribution of S, under uni-

formity, is approximately χ2
(p−1)(p+2)/2 with an error on the order of O(n−1), where

χ2
m is a chi-squared distribution with the degree of freedom of m. The value of S in

our data is greater than 105, thus the p-value is significant, and the test rejects the

hypothesis that data is uniformly distributed on the sphere.

Therefore, the dictionary is not uniformly sampled in the unit quaternion space nor

in the image space with the normalized `2 inner product metric. The non-uniformity,

especially in the image space, may affect the performance and accuracy of dictionary-

observation diffraction pattern matching. Indeed, the calculation of grain misorien-

tations depends on the concentration of Euler angles or their surrogates (dictionary

elements). To perform an accurate evaluation of this concentration using our dictio-

nary matching pursuit methods, we need uniformly distributed dictionary elements

over the `2 metric space. The drawback of the current non-uniformity is demonstrated

in the evaluated consistency measuers within grains in Fig. 5.35 for IN100 and LSHR.

We believe that more uniform dictionary can reduce the within-grain variability, as

currently observed in Fig. 5.35.

However, our membership-based approach to classification, segmentation, and

anomaly detecetion is robust against this non-uniformity and insensitive to the densely

sampled image patterns. This is possible because our nearest neighbor model in the

dictionary does not assume a uniform or fixed distance between different sample
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patterns.

5.9 Appendix 2: Super-resolution algorithm

We present a super-resolution algorithm following the guideline in Section 5.5

that is more general than a simple but efficient xy scanning method used in the result

section.

For each boundary pixel, Algorithm 6 tests many lines that cross the pixel and

have a width W but different angles (e.g., from 0 to 165 degree with the increment

of 15 in our experiment). For one of the lines, the algorithm evaluates the multiplied

consistency degree with respect to the two adjacent grains, finds the super-resolved lo-

cation maximizing the multiplied consistency, and evaluates the FWHM. Among the

different directions of lines, the algorithm chooses the one having the least FWHM.

This direction is the near-normal direction to the tested boundary and the new loca-

tion maximizing the multiplied consistency is the super-resolved boundary location

for the original boundary pixel. In our experiment, we used W = 1 and ∆θ = 15

degree to have Na = 12.

Algorithm 6 Super-resolution algorithm
1: % Initialization:

2: Define the width W and the angular resolution ∆θ of the scanning line to have
Na lines having angles of {θk}Nak=1 per pixel,

3: % Iterations:

4: for each boundary pixel j do
5: for angle θk, k = 1, 2, . . . , Na do
6: Evaluate two most popular grains (defined to be G1 and G2) that are swept

by the curve having angle θk,
7: Evaluate consistency measures c1(t) and c2(t) in (5.14) and (5.15) where t is

along the scanning line (super-resolved),
8: Evaluate c(k) := argmaxtc1(t)c2(t) and FWHM(k) := the full width at half

maximum of c(k),
9: end for

10: Evaluate the super-resolved boundary location c(kopt) with kopt =
argminkFWHM(k),

11: end for
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CHAPTER VI

Conclusions

In this thesis, different aspects of microscopic imaging are investigated. For the

MRFM data, we propose several solutions to the image reconstruction problem when

we have imperfect knowledge of the point spread function that blurs the image. We

address this mismatch by using our semi-blind deconvolution algorithms within a

Bayesian framework. This semi-blind sparse image reconstruction is motivated by the

MRFM imaging challenges and its sparse nature and PSF model. Our endeavor within

a Bayesian perspective can be classified into two categories. First, a stochastic sampler

is used that guarantees the convergence of the simulated distributions to the target

distributions. The second category is our deterministic method that converges to

solutions, by approximating the complex posterior distributions to the distributions of

factored forms in their prior configuration. We also present our detailed blueprint for

a future work. As an extension to the image model, we propose a random field model

to incorporate smoothness, in contrast to sparsity, of images. Another extension

involves the PSF field. We investigated methods dealing with the practical issues in

the spatial invariance assumption of PSF, when it can be relaxed.

For the EBSD microscopy, we propose a novel approach to perform classification

and anomaly detection by using a physics-based forward model or the dictionary.

Under the model, we efficiently compute similarity measures between the dictionary

143



and data. From these statistics, raw EBSD patterns are classified into grains, bound-

aries, and two types of anomalies. This classification is robust to noise, instrumental

differences, and material samples. Especially, this work is the first to delineate grain

boundaries at a higher resolution than in the observation dimension and quantify the

uncertainty for the discovered boundaries in a polycrystalline material.
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