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ABSTRACT

We propose a solution to the image deconvolution problem where the convolution operator or point spread func-
tion (PSF) is assumed to be only partially known. Small perturbations generated from the model are exploited
to produce a few principal components explaining the uncertainty in a high dimensional space. Specifically,
we assume the image is sparse corresponding to the natural sparsity of magnetic resonance force microscopy
(MRFM). Our approach adopts a Bayesian Metropolis-within-Gibbs sampling framework. The performance of
our Bayesian myopic algorithm is superior to previously proposed algorithms such as the alternating minimization
(AM) algorithm for sparse images. We illustrate our myopic algorithm on real MRFM tobacco virus data.

Keywords: Myopic deconvolution, Bayesian inference, Markov Chain Monte Carlo (MCMC) methods, MRFM
experiment

1. INTRODUCTION

Recently, a new 3D imaging technology called magnetic resonance force microscopy (MRFM) has been developed.
The principles of MRFM were introduced by Sidles1–3 who described its potential for achieving 3D atomic scale
resolution. In 1992 and 1996, Rugar et al.4,5 reported experiments that demonstrated the practicality of
MRFM and produced the first MRFM images. More recently, MRFM volumetric spatial resolutions of less than
10nm have been demonstrated for imaging a biological sample.6 The signal provided by MRFM is a so-called
force map that is the 3D convolution of the atomic spin distribution and the point spread function (PSF).7

This formulation casts the estimation of the spin density from the force map as an inverse problem. Several
approaches have been proposed to solve this inverse problem, i.e., to reconstruct the unknown image from the
measured force map. Basic algorithms rely on Wiener5,8, 9 filters whereas others are based on iterative least
squares reconstruction approaches.6,7, 10 More recently, promising works addressed this problem within the
Bayesian estimation framework.11,12

However, all of these reconstruction techniques require prior knowledge of the device response, namely the
PSF. As shown by Mamin et al.,13 this PSF is a function of several parameters specified by the physical model of
the device. Unfortunately, in many practical situations of MRFM imaging, the physical parameters that tune the
response of the MRFM tip are only partially known, even totally unknown. In such circumstances, the PSF used
in the reconstruction algorithm is mismatched to the true PSF and the quality of standard image reconstruction
technique will suffer if one does not account for this mismatch. Estimating the unknown image and the PSF
jointly is usually referred to as semi-blind14,15 or myopic16,17 deconvolution, and this is the approach taken in
this paper.

To mitigate the effects of PSF mismatch on MRFM image reconstruction, an alternating minimization (AM)
algorithm18 was proposed by Herrity et al. which showed robust performance but does not account for prior
information on the PSF or on the image, e.g., through Bayesian priors. In this paper, we propose a hierarchical
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Bayesian approach to myopic image deconvolution that uses prior information on the PSF model. We propose a
myopic modification of the Bayesian MRFM reconstruction approach in Dobigeon et al.,12 whereby one performs
a simple additional step in the initial Gibbs sampler, producing a Bayesian estimate of the PSF and a Bayesian
reconstruction of the image. Our approach can be related to the recent paper of Orieux et al.19 who introduced
a Metropolis-within-Gibbs algorithm to estimate the parameters that tune the device response. This strategy
focuses on reconstruction with smoothness constraints and requires recomputation of the entire PSF at each step
of the algorithm. This is computationally expensive, especially for complex PSF models such as in the MRFM
instrument. Here, we propose an alternative that consists of estimating the deviation from a given nominal PSF.
More precisely, the nominal point response of the device is assumed known and the true PSF is modeled as a
small perturbation about the nominal response. We approximate the full posterior distribution of the PSF and
the image using samples generated by a Markov Chain Monte Carlo algorithm. Simulations are presented that
quantify the advantages of our algorithm for myopic sparse image reconstruction. We then apply it to the real
MRFM tobacco virus data made available by our IBM collaborators.

This paper is organized as follows: Section 2 formulates the problem. Section 3 covers Bayesian framework
of image modeling and the following Section 4 proposes a solution in this framework. Section 5 shows simulation
results and an application to the real MRFM data.

2. PROBLEM FORMULATION

We adopt the notation of Dobigeon et al.12 Let X denote the l1 × . . . × ln unknown n-D original image to
be recovered (e.g. n = 2 or n = 3). This image is to be reconstructed from a collection of P measurements
y = [y1, . . . , yP ]T via the following noisy transformation:

y = T (κ,X) + n, (1)

where T (·, ·) is the mean response function E[y|κ,x], n is an P × 1 observation noise vector and κ is the kernel
modeling the response of the imaging device. A typical PSF for MRFM is shown in Mamin et al.13 for horizontal
and vertical MRFM tip configurations. In (1), n is an additive Gaussian noise sequence distributed according to
n ∼ N

(
0, σ2IP

)
. The PSF is assumed to be known up to a perturbation ∆κ about a known nominal κ0:

κ = κ0 + ∆κ. (2)

In the MRFM application the PSF is described by an approximate parametric function that depends on the
experimental setup. Based on the physical parameters tuned during the experiment (external magnetic field,
mass of the probe, etc.), an approximation κ0 of the PSF can be derived. However, due to model mismatch and
experimental errors, the true PSF κ may deviate from the nominal PSF κ0. Our model for this deviation is that
∆κ can be expressed as a linear combination of elements of an a priori known basis vk, k = 1, . . . ,K,

∆κ =
K∑

k=1

λkvk, (3)

where {vk}k=1,...,K is a set of basis functions for the PSF perturbations and λk, k = 1, . . . ,K are unknown
coefficients. To emphasize the influence of these coefficients on the actual PSF, κ will be denoted κ (λ) with
λ = [λ1, . . . , λK ]T .

Note that in standard deblurring, the function T (·, ·) represents the standard nD-convolution operator ⊗. In
this case, the image X can be vectorized as x ∈ RM with M = P = l1l2 . . . ln. With these notations, (1) can be
rewritten:

y = H (λ)x + n or Y = κ (λ)⊗X + N (4)

where y (resp. n) stands for the vectorized version of Y (resp. N) and H (λ) is a P ×M matrix that describes
the convolution by the PSF kernel κ (λ).

We address the problem of estimating the unobserved image x and the PSF perturbation ∆κ under sparsity
constraints given the measurement y and the bilinear function T (·, ·).



3. HIERARCHICAL BAYESIAN MODEL

3.1 Likelihood function

Under the hypothesis that the noise in (1) is Gaussian, the observation model likelihood function takes the form

f
(
y|x,λ, σ2

)
=
(

1
2πσ2

)P
2

exp

(
−‖y − T (κ (λ) ,x)‖2

2σ2

)
, (5)

where ‖·‖ denotes the standard `2 norm: ‖x‖2 = xT x. This function will be denoted f(y|θ), where θ ={
x,λ, σ2

}
.

3.2 Parameter prior distributions

In this section, we introduce prior distributions for the parameters θ. Except PSF parameter prior, the rest
parameter prior distributions are given in Dobigeon et al.12

3.2.1 Image prior

As the prior distribution for xi, we adopt a mixture of a mass at zero and a single-sided exponential distribution:

f (xi|w, a) = (1− w)δ (xi) +
w

a
exp

(
−xi

a

)
1R∗+ (xi) , (6)

where w ∈ [0, 1], a ∈ [0,∞), δ (·) is the Dirac function, R∗+ is a set of real open interval (0,∞) and 1E (x) is the
indicator function of the set E:

1E (x) =
{

1, if x ∈ E,
0, otherwise. (7)

By assuming the components xi to be a conditionally independent (i = 1, . . . ,M) given w, a, σ, the following
conditional prior distribution is obtained for the image x:

f (x|w, a) =
M∏
i=1

[
(1− w)δ (xi) +

w

a
exp

(
−xi

a

)
1R∗+ (xi)

]
. (8)

This image prior is similar to the LAZE distribution (weighted average of a Laplacian pdf and an atom at
zero) used, for example, in Ting et al.11,20 As motivated by Dobigeon et al.,12 the image prior in (6) has the
interesting property of enforcing the pixel value to be zero, reflecting the natural sparsity of the MRFM images.
Furthermore, the proposed prior in (6) ensures positivity of the pixel values (spin density) to be estimated.

3.2.2 PSF parameter prior

We assume that the parameters λ1, . . . , λK are a priori independent and uniformly distributed over known
intervals associated with some error tolerances centered at 0. Define the interval

Sk = [−∆λk,∆λk] (9)

and assume the distribution of λ has density

f (λ) =
K∏

k=1

1
2∆λk

1Sk
(λk) , (10)

with λ = [λ1, . . . , λK ]T .



3.2.3 Noise variance prior

A conjugate inverse-Gamma distribution with parameters ν
2 and γ

2 is chosen as the prior distribution for the
noise variance:

σ2|ν, γ ∼ IG
(ν

2
,
γ

2

)
. (11)

In the following, ν will be fixed to ν = 2 and γ will be an hyperparameter to be estimated (see21–23 for similar
choices).

3.3 Hyperparameter priors
Define the hyperparameter vector associated with the image and noise variance prior distributions as Φ =
{a, γ, w}. In our hierarchical Bayesian framework, the estimation of these hyperparameters requires prior distri-
butions in the hyperparameters. These priors are defined in Dobigeon et al.12 but for completeness of this paper
brief definitions of them are reproduced below.

3.3.1 Hyperparameter a

A conjugate inverse-Gamma distribution is assumed for hyperparameter a:

a|α ∼ IG (α0, α1) , (12)

with α = [α0, α1]
T . The fixed hyperparameters α0 and α1 have been chosen to produce a vague prior, i.e.

α0 = α1 = 10−10.

3.3.2 Hyperparameter γ

A non informative Jeffreys’ prior is selected as prior distribution for hyperparameter γ:

f (γ) ∝ 1
γ
1R+ (γ) . (13)

3.3.3 Hyperparameter w

A uniform distribution on the simplex [0, 1] is selected as prior distribution for the mean proportion of non-zero
pixels:

w ∼ U ([0, 1]) . (14)

Assuming that the individual hyperparameters are independent the full hyperparameter prior distribution
for Φ can be expressed as:

f (Φ|α) = f (w) f (γ) f (a)

∝ 1
γaα0+1

exp
(
−α1

a

)
1[0,1] (w)1R+ (a)1R+ (γ) ,

(15)

3.4 Posterior distribution
The posterior distribution of {θ,Φ} is:

f (θ,Φ|y) ∝ f (y|θ) f (θ|Φ) f (Φ) , (16)

with
f (θ|Φ) = f

(
x|λ, σ2, a, w

)
f (λ) f

(
σ2|γ

)
, (17)

where f (y|θ) and f (Φ) have been defined in (5) and (15). This hierarchical structure allows one to integrate
out the parameters σ2, and the hyperparameter Φ in the full posterior distribution (16), yielding:

f (x,λ|y, α0, α1) ∝
Be (α1 + n1, α0 + n0)

‖y − T (κ (λ) ,x)‖N

Γ (n1)
‖x‖n1

1

K∏
k=1

1
2∆λk

1Sk
(λk) , (18)

where Be is the beta function and Γ is the gamma function.

The next section presents the Metropolis-within-Gibbs algorithm24 that generates samples distributed ac-
cording to the posterior distribution f (x,λ|y). These samples are then used to estimate x and λ.



4. METROPOLIS-WITHIN-GIBBS ALGORITHM
FOR MYOPIC SPARSE IMAGE RECONSTRUCTION

We describe in this section a Metropolis-within-Gibbs sampling strategy that allows one to generate samples{
x(t),λ(t)

}
t=1,...

distributed according to the posterior distribution in (18). As sampling directly from (18) is a

difficult task, we will instead generate samples distributed according to the joint posterior f
(
x,λ, σ2|y, α0, α1

)
.

Sampling from this posterior distribution is done by alternatively sampling one of x,λ, σ2 conditioned on all
other variables.12,25

The main steps of our proposed sampling algorithm are given in subsections 4.1 through 4.3 (see also Algo-
rithm 1).

Algorithm 1 Metropolis-within-Gibbs sampling algorithm for myopic sparse image reconstruction
1: % Initialization:

2: Sample the unknown image x(0) from pdf in (8),
3: Sample the noise variance σ̃2(0) from the pdf in (11),
4: % Iterations:

5: for t = 1, 2, . . . , do
6: Sample hyperparameter w(t) from the pdf in (20),
7: Sample hyperparameter a(t) from the pdf in (21),
8: For i = 1, . . . ,M , sample the pixel intensity x

(t)
i from the pdf in (22),

9: For k = 1, . . . ,K, sample the PSF parameter λ
(t)
k from the pdf in (23) (see Algo. 2),

10: Sample the noise variance σ̃2(t) from the pdf in (26),
11: end for

4.1 Generation of samples according to f
(
x
∣∣λ, σ2,y, α0, α1

)
To generate samples distributed according to f

(
x
∣∣λ, σ2,y, α0, α1

)
, it is convenient to sample according to

f
(
x, w, a

∣∣λ, σ2,y, α0, α1

)
by the following 3-step procedure.

4.1.1 Generation of samples according to f (w |x, α0, α1 )

The conditional posterior distribution of w is

f (w |x, α0, α1 ) ∝ (1− w)n0+α0−1wn1+α1−1, (19)

where n1 = ‖x‖0 and n0 = M − ‖x‖0. Therefore, generation of samples according to f (w |x ) is achieved as
follows:

w|x, α0, α1 ∼ Be (α1 + n1, α0 + n0) . (20)

4.1.2 Generation of samples according to f (a |x )

The joint posterior distribution (16) yields:

a |x ∼ IG (‖x‖0 , ‖x‖1) . (21)

4.1.3 Generation of samples according to f
(
x
∣∣w, a, λ,σ

2,y
)

The posterior distribution of each component xi (i = 1, . . . ,M) given all other variables is easily derived:12

f
(
xi|w, a, λ,σ

2,x−i,y
)
∝ (1− wi)δ (xi) + wiφ+

(
xi|µi, η

2
i

)
, (22)

where x−i stands for the vector x whose ith component has been removed and µi and η2
i are given in equation (36)

in Dobigeon et al.12 In (22), φ+

(
·,m, s2

)
stands for the pdf of the truncated Gaussian distribution defined on R∗+

with hidden mean m and hidden variance s2. Therefore, from (22), xi|w, a, λ,σ
2,x−i,y is a Bernoulli-truncated

Gaussian variable with parameter
(
wi, µi, η

2
i

)
.

To summarize, generation of samples distributed according to f
(
x
∣∣w, σ2, a, ,y

)
can be performed by updating

the coordinates of x using M Gibbs moves (requiring to generate Bernoulli-truncated Gaussian variables). An
efficient simulation scheme is presented in Appendix A.



4.2 Generation of samples according to f
(
λ
∣∣x, σ2,y

)
The posterior distribution of the parameter λk conditioned on the unknown image x, the noise variance σ2 and
the other PSF parameters {λj}j 6=k is

f
(
λk|λ−k,x, σ2,y

)
∝ exp

[
−‖y − T (κ (λ) ,x)‖2

2σ2

]
1Sk

(λk) , (23)

with λ−k = {λj}j 6=k. We summarize in Algorithm 2 a procedure for generating samples distributed according
to the posterior in (23) using a simple acceptance-rejection sampling and random walk procedure24 with a
proposed centered Gaussian distribution having variance s2

k. Thus, at iteration t of the algorithm, the acceptance
probability of a proposed state λ?

k is:

ρ
λ

(t)
k →λ?

k

= min (1, ak1Sk
(λ?

k)) , (24)

with

log ak =
1

2σ2

(∥∥∥y − T
(
κ
(
λ

(t)
k

)
,x
)∥∥∥2

)
− 1

2σ2

(
‖y − T (κ (λ?

k) ,x)‖2
)

. (25)

Computing the transformation T (·, ·) at each step of the sampler can be computationally costly. Appendix A
provides a recursive strategy to sample according to f

(
λ
∣∣x, σ2,y

)
efficiently.

Algorithm 2 Sampling according to f
(
λk|λ−k,x, σ2,y

)
1: Sample ε ∼ N

(
0, s2

p

)
,

2: Propose λ?
k according to λ?

k = λ
(t)
k + ε,

3: Draw wk ∼ U ([0, 1]),

4: Set λ
(t+1)
k =

{
λ?

k, if wk ≤ ρ
λ

(t)
k →λ?

k

,

λ
(t)
k , otherwise.

where U (E) stands for the uniform distribution on the set E.

4.3 Generation of samples according to f
(
σ2 |x,y

)
Samples (σ2)(t) are generated according to the posterior

f(σ2 |x,y) = IG

(
P

2
,
‖y − T (κ,x)‖2

2

)
. (26)

5. EXPERIMENTS

In this section we present simulation results that compare the proposed myopic Bayesian deconvolutions with
the AM algorithm18 and the non-myopic Bayesian method.12 Here an nominal PSF κ0 was assumed such that
it corresponds to the mathematical MRFM point response model proposed by Mamin et al.13 This nominal
PSF is used in AM algorithm and the parameter values of AM algorithm were set empirically according to the
procedure in Herrity et al.18

5.1 Simulation on synthetic sparse images

We performed simulations of MRFM measurements for PSF and image models similar to those described in
Dobigeon et al.12 The signal-to-noise ratio was set to SNR = 10dB. Several 32 × 32 synthetic sparse images,
one of which is depicted in Fig. 1(a), were used to produce the data and were estimated using the proposed
Bayesian method. The assumed PSF κ0, generated following the physical model described in Mamin et al.13

when the physical parameters are tuned to the values displayed in Table 1, is a 11×11 2-dimensional convolution



(a) Sparse true image
(‖x‖0 = 11)

(b) Noisy observation

Figure 1. True image and noisy observation

(a) Assumed PSF (b) True PSF (c) Estimated PSF

Figure 2. Assumed PSF κ0 (left), actual PSF κ (middle), and estimated PSF κ̂ (right) of MRFM tip.

kernel, represented in Fig. 2(a). We assume that the true PSF κ comes from the same physical model where
the radius of the tip and the distance from tip to sample have been mis-specified as values R = R0 − 2% = 3.92
and d = d0 + 2% = 6.12, leading to the convolution kernel depicted in Fig. 2(b). The observed measurements y,
shown Fig. 1(b) are a 32× 32 image of size P = 1024.

Table 1. Parameters used to compute the MRFM PSF.

Parameter
Value

Description Name

Amplitude of external magnetic field Bext 9.4× 103 G

Value of Bmag in the resonant slice Bres 1.0× 104 G

Radius of tip R0 4.0 nm

Distance from tip to sample d0 6.0 nm

Cantilever tip moment m 4.6× 105 emu

Peak cantilever oscillation oscillation xpk 0.8 nm

Maximum magnetic field gradient Gmax 125

The proposed algorithm requires the definition of K basis vectors vk, k = 1, . . . ,K, that span a subspace
representing possible perturbations ∆κ. We empirically determined this basis using the following PSF variation
eigendecomposition approach. A set of 5000 experimental PSFs κ̃j , j = 1, . . . , 5000, were generated following the
model described in Mamin et al.13 with parameters d and R randomly drawn according to Gaussian distribution
centered at the nominal values d0, R0, respectively. Then a standard principal component analysis (PCA) of
the residuals {κ̃j − κ0}j=1,...,5000 is used to identify K = 4 principal axes that are associated with the basis



vectors vk. The necessary number of basis vectors, K = 4 here, is determined empirically by looking at the scree
plot in Fig. 3(b) which explains proportions of the variance of the perturbations. The first four eigen-functions,
corresponding to the first four largest eigenvalues, seemed enough to explain major perturbations. The patterns
of basis vectors are depicted in Fig. 3(a).

(a) The K = 4 patterns vk identified by PCA. (b) Scree plot (magnitude is normalized up to the
largest value, i.e. λmax := 1.)

Figure 3. PCA of the PSF perturbations.

The proposed Bayesian algorithm was applied to estimate both the sparse image and the PSF coefficients
of vk’s, using the prior in (6) with parameter a = 1 and w = 0.02. From the observation in Fig. 1(b) the
PSF estimated by the proposed algorithm is shown in Fig. 2(c) and is in good agreement with the true one.
The corresponding maximum a posteriori estimate (MAP) of the unknown image is depicted in Fig. 4(d). The
obtained coefficients of the PSF-eigenfunctions are close to true coefficients (Fig. 5). For comparison, Fig. 4(b)
shows the estimate from the method of Dobigeon et al.12 with a mismatched PSF and Fig. 4(c) shows the
estimate generated by the AM algorithm. Our proposed algorithm seems outperform the others visually while
preserving fast convergence.

Quantitative comparisons were obtained, by generating different noises for 100 independent trials with each
true image. Here, six true images with six corresponding different sparsity levels (‖x‖0 = 6, 11, 18, 30, 59, 97)

(a) Sparse true image (b) Non-myopic Bayesian
method12 (Dobigeon)

(c) AM18 (Herrity) (d) Myopic Bayesian method
(proposed here)

Figure 4. Estimated image from previous Bayesian, AM, and myopic Bayesian methods.



Figure 5. Estimated PSF coefficients for 4 PCs over 21 iterations

were tested. Fig. 6 shows reconstruction error performance for several measures of error used in Ting et al.11 and
Dobigeon et al.12 to compare different reconstruction algorithms for sparse MRFM images. Notably, compared to
the AM algorithm that aims to compensate ‘blindness’ of the unknown PSF and the previous Bayesian method,
our method reveals a significant performance gain under most of the displayed performance criteria and sparsity
conditions.

5.2 Application to MRFM data

In this section, we apply the myopic Bayesian reconstruction algorithm to the MRFM tobacco virus data6 shown
in Fig. (7). Here the implementation of AM algorithm is impractical, having “overwhelmingly” slow convergence
rates as noted in Herrity et al.,18 due to the large volume of the data, so we only consider Bayesian methods.

The number of principal components (PC) in the PSF perturbation was selected as 4 based on a scree plot.
In the data, along z axis, the grid in PSF signal space is 3 times finer than the observation sampling density.
We implemented a version of the Bayes MC reconstruction that compensates for unequal projection sampling in
x, y, z directions using the interpolation procedure of Dobigeon et al.12

The reconstruction results are shown in Fig. 8(c), 8(d), and 8(e). The small magnitude of PC coefficients
indicates that the estimated PSF is close to the assumed PSF. We empirically validated these results by multiple
runs of the Gibbs sampler, establishing low standard errors on the estimated PSF coefficients. This suggests
that the nominal PSF used in Degen et al.6 is sufficiently accurate since the myopic reconstruction produces a
PSF estimate which is not significantly different from the nominal.

6. CONCLUSION

We have proposed an extension of the method of Bayes reconstruction in Dobigeon et al.12 that simultaneously
estimates partially known PSF and the unknown but sparse image. The method uses a prior model on the PSF
that reflects a nominal PSF and uncertainty about the nominal PSF. In our algorithm the values of the parameters
of the convolution kernel were estimated by a Metropolis-within-Gibbs algorithm. Our approach can be used
to empirically evaluate the accuracy of assumed nominal PSF models in the presence of model uncertainty. In
our simulation, we showed the myopic Bayesian algorithm has improved performance as compared to the AM
reconstruction algorithm and non-myopic Bayes method12 under several criteria.
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APPENDIX A. FAST RECURSIVE SAMPLING STRATEGY

In iterative MRFM algorithms such as AM and the proposed Bayesian method, repeated evaluations of the trans-
formation T (κ (λ) ,x) can be computationally difficult. For example, at each iteration of the proposed Bayesian
myopic deconvolution algorithm, one must generate xi from its conditional distribution f

(
xi|w, a, λ,σ

2,x−i,y
)
,



(a) ‖x̂‖0 (b)
‖x−x̂‖22
‖x‖22

(c) ‖y − ŷ‖2
2 (d) ‖ κ̂

‖κ̂‖ −
κ
‖κ‖‖

2
2, as a performance gauge of our my-

opic method. ‖ κ0
‖κ0‖

− κ
‖κ‖‖

2
2 = 0.5627

Figure 6. Error bar graphs of results from myopic deconvolution algorithm. For several image x’s of different sparsity
level, errors are illustrated with standard deviations.

Figure 7. Virus data. z in nm here indicates tip-sample distance.



(a) MAP estimate in 3D (b) Estimated image on 6th
plane, showing a virus.

(c) Estimated PSF coefficients for 4 PCs
over 200 iterations

(d) Estimated PSF. (Hard thresholding
with level = max(PSF )×10−4 is applied
for visualization, as in the Fig. 8(e). )

(e) nominal PSF

Figure 8. Myopic MC Bayes method results and PSF coefficient curves. ∆z = 4.3nm, pixel spacing is 8.3nm× 16.6nm in
x× y, respectively. The size of (x, y) plane is 498nm× 531.2nm. Smoothing is applied for visualization.



which requires the calculation of T (κ, x̃i) where x̃i is the vector x whose ith element has been replaced by
0. Moreover, sampling according to the conditional posterior distributions of σ2 and λk (26) and (23) requires
computations of T (κ,x).

Exploiting the bilinearity of the transformation T (·, ·) can be used to reduce the complexity of the algorithm.
We describe below a strategy, similar to those presented in [Appendix B] of Ref. 12 that only requires to compute
T (·, ·) at most M × (K + 1) times. First, let IM denote the M ×M identity matrix and ui its ith column. In a
first step of the analysis, the M vectors h(0)

i (i = 1, . . . ,M)

h(0)
i = T (κ0,ui) , (27)

and KM vectors h(k)
i (i = 1, . . . ,M, k = 1, . . . ,K)

h(k)
i = T (vk,ui) , (28)

are computed. Then one can compute the quantity T (κ, x̃i) and T (κ,x) at any stage of the Gibbs sampler
without evaluating T (·, ·), based on the following decomposition

T (κ,x) =
M∑
i=1

xih
(0)
i +

K∑
k=1

λk

M∑
i=1

xih
(k)
i . (29)

The resulting procedure to update the ith coordinate of the vector x is described in Algorithm 3 below.

Algorithm 3 Efficient simulation according to f
(
x
∣∣w, a, σ2,y

)
At iteration t of the Gibbs sampler, for i = 1, . . . ,M, update the ith coordinate of the vector

x(t,i−1) =
[
x

(t)
1 , . . . , x

(t)
i−1, x

(t−1)
i , x

(t−1)
i+1 , . . . , x

(t−1)
M

]T
via the following steps:

1: compute hi = h(0)
i +

∑K
k=1 λkh

(k)
i ,

2: set T
(
κ, x̃(t,i−1)

i

)
= T

(
κ,x(t,i−1)

)
− x

(t−1)
i hi,

3: set ei = x− T
(
κ, x̃(t,i−1)

i

)
,

4: compute µi, η2
i and wi as defined in [6],

5: draw x
(t)
i according to (22),

6: set x(t,i) =
[
x

(t)
1 , . . . , x

(t)
i−1, x

(t)
i , x

(t−1)
i+1 , . . . , x

(t−1)
M

]T
,

7: set T
(
κ,x(t,i)

)
= T

(
κ, x̃(t,i−1)

i

)
+ x

(t)
i hi.

Note that in step 7. of the algorithm above, T (κ,x) is recursively computed. Once all the coordinates have
been updated, the current T (κ,x) can be directly used to sample according to the posterior distribution of the
noise variance in (26). Moreover, this quantity can be used to sample according to the conditional posterior
distribution of λk in (23). More precisely, evaluating T (κ (λ?

k) ,x) in the acceptance probability (25) can be
recursively evaluated as follows

T (κ (λ?
k) ,x) = T

(
κ
(
λ

(t)
k

)
,x
)
−
(
λ

(t)
k − λ?

k

) M∑
i=1

xih
(k)
i . (30)
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